blob: 4b558ec07c80213aee77e69eaa94612061086b6b [file] [log] [blame]
/*
* Copyright 2020 Google LLC.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/tessellate/shaders/GrStrokeTessellationShader.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/glsl/GrGLSLVarying.h"
#include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h"
#include "src/gpu/tessellate/WangsFormula.h"
void GrStrokeTessellationShader::HardwareImpl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
const auto& shader = args.fGeomProc.cast<GrStrokeTessellationShader>();
auto* uniHandler = args.fUniformHandler;
auto* v = args.fVertBuilder;
args.fVaryingHandler->emitAttributes(shader);
v->defineConstant("float", "PI", "3.141592653589793238");
// The vertex shader chops the curve into 3 sections in order to meet our tessellation
// requirements. The stroke tessellator does not allow curve sections to inflect or to rotate
// more than 180 degrees.
//
// We start by chopping at inflections (if the curve has any), or else at midtangent. If we
// still don't have 3 sections after that then we just subdivide uniformly in parametric space.
using TypeModifier = GrShaderVar::TypeModifier;
v->defineConstantf("float", "kParametricEpsilon", "1.0 / (%i * 128)",
args.fShaderCaps->maxTessellationSegments()); // 1/128 of a segment.
// [numSegmentsInJoin, innerJoinRadiusMultiplier, prevJoinTangent.xy]
v->declareGlobal(GrShaderVar("vsJoinArgs0", kFloat4_GrSLType, TypeModifier::Out));
// [radsPerJoinSegment, joinOutsetClamp.xy]
v->declareGlobal(GrShaderVar("vsJoinArgs1", kFloat3_GrSLType, TypeModifier::Out));
// Curve args.
v->declareGlobal(GrShaderVar("vsPts01", kFloat4_GrSLType, TypeModifier::Out));
v->declareGlobal(GrShaderVar("vsPts23", kFloat4_GrSLType, TypeModifier::Out));
v->declareGlobal(GrShaderVar("vsPts45", kFloat4_GrSLType, TypeModifier::Out));
v->declareGlobal(GrShaderVar("vsPts67", kFloat4_GrSLType, TypeModifier::Out));
v->declareGlobal(GrShaderVar("vsPts89", kFloat4_GrSLType, TypeModifier::Out));
v->declareGlobal(GrShaderVar("vsTans01", kFloat4_GrSLType, TypeModifier::Out));
v->declareGlobal(GrShaderVar("vsTans23", kFloat4_GrSLType, TypeModifier::Out));
if (shader.hasDynamicStroke()) {
// [NUM_RADIAL_SEGMENTS_PER_RADIAN, STROKE_RADIUS]
v->declareGlobal(GrShaderVar("vsStrokeArgs", kFloat2_GrSLType, TypeModifier::Out));
}
if (shader.hasDynamicColor()) {
v->declareGlobal(GrShaderVar("vsColor", kHalf4_GrSLType, TypeModifier::Out));
}
v->insertFunction(kCosineBetweenVectorsFn);
v->insertFunction(kMiterExtentFn);
v->insertFunction(kUncheckedMixFn);
if (shader.hasDynamicStroke()) {
v->insertFunction(kNumRadialSegmentsPerRadianFn);
}
if (!shader.hasDynamicStroke()) {
// [PARAMETRIC_PRECISION, NUM_RADIAL_SEGMENTS_PER_RADIAN, JOIN_TYPE, STROKE_RADIUS]
const char* tessArgsName;
fTessControlArgsUniform = uniHandler->addUniform(nullptr,
kVertex_GrShaderFlag |
kTessControl_GrShaderFlag |
kTessEvaluation_GrShaderFlag,
kFloat4_GrSLType, "tessArgs",
&tessArgsName);
v->codeAppendf(R"(
float NUM_RADIAL_SEGMENTS_PER_RADIAN = %s.y;
float JOIN_TYPE = %s.z;)", tessArgsName, tessArgsName);
} else {
const char* parametricPrecisionName;
fTessControlArgsUniform = uniHandler->addUniform(nullptr,
kVertex_GrShaderFlag |
kTessControl_GrShaderFlag |
kTessEvaluation_GrShaderFlag,
kFloat_GrSLType, "parametricPrecision",
&parametricPrecisionName);
v->codeAppendf(R"(
float STROKE_RADIUS = dynamicStrokeAttr.x;
float NUM_RADIAL_SEGMENTS_PER_RADIAN = num_radial_segments_per_radian(%s,STROKE_RADIUS);
float JOIN_TYPE = dynamicStrokeAttr.y;)", parametricPrecisionName);
}
fTranslateUniform = uniHandler->addUniform(nullptr, kTessEvaluation_GrShaderFlag,
kFloat2_GrSLType, "translate", nullptr);
// View matrix uniforms.
const char* affineMatrixName;
// Hairlines apply the affine matrix in their vertex shader, prior to tessellation.
// Otherwise the entire view matrix gets applied at the end of the tess eval shader.
auto affineMatrixVisibility = kTessEvaluation_GrShaderFlag;
if (shader.stroke().isHairlineStyle()) {
affineMatrixVisibility |= kVertex_GrShaderFlag;
}
fAffineMatrixUniform = uniHandler->addUniform(nullptr, affineMatrixVisibility, kFloat4_GrSLType,
"affineMatrix", &affineMatrixName);
if (affineMatrixVisibility & kVertex_GrShaderFlag) {
v->codeAppendf("float2x2 AFFINE_MATRIX = float2x2(%s);\n", affineMatrixName);
}
v->codeAppend(R"(
// Unpack the control points.
float2 prevControlPoint = prevCtrlPtAttr;
float4x2 P = float4x2(pts01Attr.xy, pts01Attr.zw, pts23Attr.xy, pts23Attr.zw);)");
if (shader.stroke().isHairlineStyle()) {
// Hairline case. Transform the points before tessellation. We can still hold off on the
// translate until the end; we just need to perform the scale and skew right now.
v->codeAppend(R"(
P = AFFINE_MATRIX * P;
if (isinf(pts23Attr.w)) {
// If y3 is infinity then x3 is a conic weight. Don't transform.
P[3] = pts23Attr.zw;
}
prevControlPoint = AFFINE_MATRIX * prevControlPoint;)");
}
v->codeAppend(R"(
// Find the tangents. It's imperative that we compute these tangents from the original
// (pre-chopping) input points or else the seams might crack.
float2 prevJoinTangent = P[0] - prevControlPoint;
float2 tan0 = ((P[1] == P[0]) ? P[2] : P[1]) - P[0];
float2 tan1 = (P[3] == P[2] || isinf(P[3].y)) ? P[2] - P[1] : P[3] - P[2];
if (tan0 == float2(0)) {
// [p0, p0, p0, p3] is a reserved pattern that means this patch is a "bowtie".
P[3] = P[0]; // Colocate all the points on the center of the bowtie.
// Use the final curve section to draw the bowtie. Since the points are colocated, this
// curve will register as a line, which overrides innerTangents as [tan0, tan0]. That
// disables the first two sections of the curve because their tangents and points are all
// equal.
tan0 = prevJoinTangent;
prevJoinTangent = float2(0); // Disable the join section.
}
if (tan1 == float2(0)) {
// [p0, p3, p3, p3] is a reserved pattern that means this patch is a join only. Colocate all
// the curve's points to ensure it gets disabled by the tessellation stages.
P[1] = P[2] = P[3] = P[0];
// Since the points are colocated, this curve will register as a line, which overrides
// innerTangents as [tan0, tan0]. Setting tan1=tan0 as well results in all tangents and all
// points being equal, which disables every section of the curve.
tan1 = tan0;
}
// Calculate the number of segments to chop the join into.
float cosTheta = cosine_between_vectors(prevJoinTangent, tan0);
float joinRotation = (cosTheta == 1) ? 0 : acos(cosTheta);
if (cross(prevJoinTangent, tan0) < 0) {
joinRotation = -joinRotation;
}
float joinRadialSegments = abs(joinRotation) * NUM_RADIAL_SEGMENTS_PER_RADIAN;
float numSegmentsInJoin = (joinRadialSegments != 0 /*Is the join non-empty?*/ &&
JOIN_TYPE >= 0 /*Is the join not a round type?*/)
? sign(JOIN_TYPE) + 1 // Non-empty bevel joins have 1 segment and miters have 2.
: ceil(joinRadialSegments); // Otherwise round up the number of radial segments.
// Extends the middle join edge to the miter point.
float innerJoinRadiusMultiplier = 1;
if (JOIN_TYPE > 0 /*Is the join a miter type?*/) {
innerJoinRadiusMultiplier = miter_extent(cosTheta, JOIN_TYPE/*miterLimit*/);
}
// Clamps join geometry to the exterior side of the junction.
float2 joinOutsetClamp = float2(-1, 1);
if (joinRadialSegments > .1 /*Does the join rotate more than 1/10 of a segment?*/) {
// Only clamp if the join angle is large enough to guarantee there won't be cracks on
// the interior side of the junction.
joinOutsetClamp = (joinRotation < 0) ? float2(-1, 0) : float2(0, 1);
}
// Pack join args for the tessellation control stage.
vsJoinArgs0 = float4(numSegmentsInJoin, innerJoinRadiusMultiplier, prevJoinTangent);
vsJoinArgs1 = float3(joinRotation / numSegmentsInJoin, joinOutsetClamp);
// Now find where to chop the curve so the resulting sub-curves are convex and do not rotate
// more than 180 degrees. We don't need to worry about cusps because the caller chops those out
// on the CPU. Start by finding the cubic's power basis coefficients. These define the bezier
// curve as:
//
// |T^3|
// Cubic(T) = x,y = |A 3B 3C| * |T^2| + P0
// |. . .| |T |
//
// And the tangent direction (scaled by a uniform 1/3) will be:
//
// |T^2|
// Tangent_Direction(T) = dx,dy = |A 2B C| * |T |
// |. . .| |1 |
//
float2 C = P[1] - P[0];
float2 D = P[2] - P[1];
float2 E = P[3] - P[0];
float2 B = D - C;
float2 A = fma(float2(-3), D, E);
// Now find the cubic's inflection function. There are inflections where F' x F'' == 0.
// We formulate this as a quadratic equation: F' x F'' == aT^2 + bT + c == 0.
// See: https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
// NOTE: We only need the roots, so a uniform scale factor does not affect the solution.
float a = cross(A, B);
float b = cross(A, C);
float c = cross(B, C);
float b_over_2 = b*.5;
float discr_over_4 = b_over_2*b_over_2 - a*c;
float2x2 innerTangents = float2x2(0);
if (discr_over_4 <= 0) {
// The curve does not inflect. This means it might rotate more than 180 degrees instead.
// Craft a quadratic whose roots are the points were rotation == 180 deg and 0. (These are
// the points where the tangent is parallel to tan0.)
//
// Tangent_Direction(T) x tan0 == 0
// (AT^2 x tan0) + (2BT x tan0) + (C x tan0) == 0
// (A x C)T^2 + (2B x C)T + (C x C) == 0 [[because tan0 == P1 - P0 == C]]
// bT^2 + 2cT + 0 == 0 [[because A x C == b, B x C == c]]
//
// NOTE: When P0 == P1 then C != tan0, C == 0 and these roots will be undefined. But that's
// ok because when P0 == P1 the curve cannot rotate more than 180 degrees anyway.
a = b;
b_over_2 = c;
c = 0;
discr_over_4 = b_over_2*b_over_2;
innerTangents[0] = -C;
}
// Solve our quadratic equation for the chop points. This is inspired by the quadratic formula
// from Numerical Recipes in C.
float q = sqrt(discr_over_4);
if (b_over_2 > 0) {
q = -q;
}
q -= b_over_2;
float2 chopT = float2((a != 0) ? q/a : 0,
(q != 0) ? c/q : 0);
// Reposition any chop points that fall outside ~0..1 and clear their innerTangent.
int numOutside = 0;
if (chopT[0] <= kParametricEpsilon || chopT[0] >= 1 - kParametricEpsilon) {
innerTangents[0] = float2(0);
++numOutside;
}
if (chopT[1] <= kParametricEpsilon || chopT[1] >= 1 - kParametricEpsilon) {
// Swap places with chopT[0]. This ensures chopT[0] is outside when numOutside > 0.
chopT = chopT.ts;
innerTangents = float2x2(0,0, innerTangents[0]);
++numOutside;
}
if (numOutside == 2) {
chopT[1] = 2/3.0;
}
if (numOutside >= 1) {
chopT[0] = (chopT[1] <= .5) ? chopT[1] * .5 : fma(chopT[1], .5, .5);
}
// Sort the chop points.
if (chopT[0] > chopT[1]) {
chopT = chopT.ts;
innerTangents = float2x2(innerTangents[1], innerTangents[0]);
}
// If the curve is a straight line, point, or conic, don't chop it into sections after all.
if ((P[0] == P[1] && P[2] == P[3]) || isinf(P[3].y)) {
chopT = float2(0);
innerTangents = float2x2(tan0, tan0);
}
// Chop the curve at chopT[0] and chopT[1].
float4 ab = unchecked_mix(P[0].xyxy, P[1].xyxy, chopT.sstt);
float4 bc = unchecked_mix(P[1].xyxy, P[2].xyxy, chopT.sstt);
float4 cd = isinf(P[3].y) ? P[2].xyxy : unchecked_mix(P[2].xyxy, P[3].xyxy, chopT.sstt);
float4 abc = unchecked_mix(ab, bc, chopT.sstt);
float4 bcd = unchecked_mix(bc, cd, chopT.sstt);
float4 abcd = unchecked_mix(abc, bcd, chopT.sstt);
float4 middle = unchecked_mix(abc, bcd, chopT.ttss);
// Find tangents at the chop points if an inner tangent wasn't specified.
if (innerTangents[0] == float2(0)) {
innerTangents[0] = bcd.xy - abc.xy;
}
if (innerTangents[1] == float2(0)) {
innerTangents[1] = bcd.zw - abc.zw;
}
// Pack curve args for the tessellation control stage.
vsPts01 = float4(P[0], ab.xy);
vsPts23 = float4(abc.xy, abcd.xy);
vsPts45 = middle;
vsPts67 = float4(abcd.zw, bcd.zw);
vsPts89 = float4(cd.zw, P[3]);
vsTans01 = float4(tan0, innerTangents[0]);
vsTans23 = float4(innerTangents[1], tan1);)");
if (shader.hasDynamicStroke()) {
v->codeAppend(R"(
vsStrokeArgs = float2(NUM_RADIAL_SEGMENTS_PER_RADIAN, STROKE_RADIUS);)");
}
if (shader.hasDynamicColor()) {
v->codeAppend(R"(
vsColor = dynamicColorAttr;)");
}
if (shader.hasDynamicColor()) {
// Color gets passed in from the tess evaluation shader.
fDynamicColorName = "dynamicColor";
SkString flatness(args.fShaderCaps->preferFlatInterpolation() ? "flat" : "");
args.fFragBuilder->declareGlobal(GrShaderVar(fDynamicColorName, kHalf4_GrSLType,
TypeModifier::In, 0, SkString(), flatness));
}
this->emitFragmentCode(shader, args);
}
SkString GrStrokeTessellationShader::HardwareImpl::getTessControlShaderGLSL(
const GrGeometryProcessor& geomProc,
const char* versionAndExtensionDecls,
const GrGLSLUniformHandler& uniformHandler,
const GrShaderCaps& shaderCaps) const {
const auto& shader = geomProc.cast<GrStrokeTessellationShader>();
SkASSERT(shader.mode() == GrStrokeTessellationShader::Mode::kHardwareTessellation);
SkString code(versionAndExtensionDecls);
// Run 3 invocations: 1 for each section that the vertex shader chopped the curve into.
code.append("layout(vertices = 3) out;\n");
code.appendf("precision highp float;\n");
code.appendf("#define float2 vec2\n");
code.appendf("#define float3 vec3\n");
code.appendf("#define float4 vec4\n");
code.appendf("#define float2x2 mat2\n");
code.appendf("#define float3x2 mat3x2\n");
code.appendf("#define float4x2 mat4x2\n");
code.appendf("#define PI 3.141592653589793238\n");
code.appendf("#define MAX_TESSELLATION_SEGMENTS %i.0\n", shaderCaps.maxTessellationSegments());
code.appendf("#define cross cross2d\n"); // GLSL already has a function named "cross".
const char* tessArgsName = uniformHandler.getUniformCStr(fTessControlArgsUniform);
if (!shader.hasDynamicStroke()) {
code.appendf("uniform vec4 %s;\n", tessArgsName);
code.appendf("#define PARAMETRIC_PRECISION %s.x\n", tessArgsName);
code.appendf("#define NUM_RADIAL_SEGMENTS_PER_RADIAN %s.y\n", tessArgsName);
} else {
code.appendf("uniform float %s;\n", tessArgsName);
code.appendf("#define PARAMETRIC_PRECISION %s\n", tessArgsName);
code.appendf("#define NUM_RADIAL_SEGMENTS_PER_RADIAN vsStrokeArgs[0].x\n");
}
code.append(skgpu::wangs_formula::as_sksl());
code.append(kCosineBetweenVectorsFn);
code.append(kMiterExtentFn);
code.append(R"(
float cross2d(vec2 a, vec2 b) {
return determinant(mat2(a,b));
})");
code.append(R"(
in vec4 vsJoinArgs0[];
in vec3 vsJoinArgs1[];
in vec4 vsPts01[];
in vec4 vsPts23[];
in vec4 vsPts45[];
in vec4 vsPts67[];
in vec4 vsPts89[];
in vec4 vsTans01[];
in vec4 vsTans23[];)");
if (shader.hasDynamicStroke()) {
code.append(R"(
in vec2 vsStrokeArgs[];)");
}
if (shader.hasDynamicColor()) {
code.append(R"(
in mediump vec4 vsColor[];)");
}
code.append(R"(
out vec4 tcsPts01[];
out vec4 tcsPt2Tan0[];
out vec3 tcsTessArgs[]; // [numCombinedSegments, numParametricSegments, radsPerSegment]
patch out vec4 tcsJoinArgs0; // [numSegmentsInJoin, innerJoinRadiusMultiplier,
// prevJoinTangent.xy]
patch out vec3 tcsJoinArgs1; // [radsPerJoinSegment, joinOutsetClamp.xy]
patch out vec4 tcsEndPtEndTan;)");
if (shader.hasDynamicStroke()) {
code.append(R"(
patch out float tcsStrokeRadius;)");
}
if (shader.hasDynamicColor()) {
code.append(R"(
patch out mediump vec4 tcsColor;)");
}
code.append(R"(
void main() {
// Forward join args to the evaluation stage.
tcsJoinArgs0 = vsJoinArgs0[0];
tcsJoinArgs1 = vsJoinArgs1[0];)");
if (shader.hasDynamicStroke()) {
code.append(R"(
tcsStrokeRadius = vsStrokeArgs[0].y;)");
}
if (shader.hasDynamicColor()) {
code.append(R"(
tcsColor = vsColor[0];)");
}
code.append(R"(
// Unpack the curve args from the vertex shader.
mat4x2 P;
mat2 tangents;
if (gl_InvocationID == 0) {
// This is the first section of the curve.
P = mat4x2(vsPts01[0], vsPts23[0]);
tangents = mat2(vsTans01[0]);
} else if (gl_InvocationID == 1) {
// This is the middle section of the curve.
P = mat4x2(vsPts23[0].zw, vsPts45[0], vsPts67[0].xy);
tangents = mat2(vsTans01[0].zw, vsTans23[0].xy);
} else {
// This is the final section of the curve.
P = mat4x2(vsPts67[0], vsPts89[0]);
tangents = mat2(vsTans23[0]);
}
// Calculate the number of parametric segments. The final tessellated strip will be a
// composition of these parametric segments as well as radial segments.
float w = isinf(P[3].y) ? P[3].x : -1.0; // w<0 means the curve is an integral cubic.
float numParametricSegments;
if (w < 0.0) {
numParametricSegments = wangs_formula_cubic(PARAMETRIC_PRECISION, P[0], P[1], P[2],
P[3], mat2(1));
} else {
numParametricSegments = wangs_formula_conic(PARAMETRIC_PRECISION, P[0], P[1], P[2], w);
}
if (P[0] == P[1] && P[2] == P[3]) {
// This is how the patch builder articulates lineTos but Wang's formula returns
// >>1 segment in this scenario. Assign 1 parametric segment.
numParametricSegments = 1.0;
}
// Determine the curve's total rotation. The vertex shader ensures our curve does not rotate
// more than 180 degrees or inflect, so the inverse cosine has enough range.
float cosTheta = cosine_between_vectors(tangents[0], tangents[1]);
float rotation = acos(cosTheta);
// Adjust sign of rotation to match the direction the curve turns.
// NOTE: Since the curve is not allowed to inflect, we can just check F'(.5) x F''(.5).
// NOTE: F'(.5) x F''(.5) has the same sign as (P2 - P0) x (P3 - P1)
float turn = isinf(P[3].y) ? cross2d(P[1] - P[0], P[2] - P[1])
: cross2d(P[2] - P[0], P[3] - P[1]);
if (turn == 0.0) { // This is the case for joins and cusps where points are co-located.
turn = determinant(tangents);
}
if (turn < 0.0) {
rotation = -rotation;
}
// Calculate the number of evenly spaced radial segments to chop this section of the curve
// into. Radial segments divide the curve's rotation into even steps. The final tessellated
// strip will be a composition of both parametric and radial segments.
float numRadialSegments = abs(rotation) * NUM_RADIAL_SEGMENTS_PER_RADIAN;
numRadialSegments = max(ceil(numRadialSegments), 1.0);
// The first and last edges are shared by both the parametric and radial sets of edges, so
// the total number of edges is:
//
// numCombinedEdges = numParametricEdges + numRadialEdges - 2
//
// It's also important to differentiate between the number of edges and segments in a strip:
//
// numCombinedSegments = numCombinedEdges - 1
//
// So the total number of segments in the combined strip is:
//
// numCombinedSegments = numParametricEdges + numRadialEdges - 2 - 1
// = numParametricSegments + 1 + numRadialSegments + 1 - 2 - 1
// = numParametricSegments + numRadialSegments - 1
//
float numCombinedSegments = numParametricSegments + numRadialSegments - 1.0;
if (P[0] == P[3] && tangents[0] == tangents[1]) {
// The vertex shader intentionally disabled our section. Set numCombinedSegments to 0.
numCombinedSegments = 0.0;
}
// Pack the args for the evaluation stage.
tcsPts01[gl_InvocationID] = vec4(P[0], P[1]);
tcsPt2Tan0[gl_InvocationID] = vec4(P[2], tangents[0]);
tcsTessArgs[gl_InvocationID] = vec3(numCombinedSegments, numParametricSegments,
rotation / numRadialSegments);
if (gl_InvocationID == 2) {
tcsEndPtEndTan = vec4(P[3], tangents[1]);
}
barrier();
// Tessellate a quad strip with enough segments for the join plus all 3 curve sections
// combined.
float numTotalCombinedSegments = tcsJoinArgs0.x + tcsTessArgs[0].x + tcsTessArgs[1].x +
tcsTessArgs[2].x;
if (tcsJoinArgs0.x != 0.0 && tcsJoinArgs0.x != numTotalCombinedSegments) {
// We are tessellating a quad strip with both a single-sided join and a double-sided
// stroke. Add one more edge to the join. This new edge will fall parallel with the
// first edge of the stroke, eliminating artifacts on the transition from single
// sided to double.
++tcsJoinArgs0.x;
++numTotalCombinedSegments;
}
numTotalCombinedSegments = min(numTotalCombinedSegments, MAX_TESSELLATION_SEGMENTS);
gl_TessLevelInner[0] = numTotalCombinedSegments;
gl_TessLevelInner[1] = 2.0;
gl_TessLevelOuter[0] = 2.0;
gl_TessLevelOuter[1] = numTotalCombinedSegments;
gl_TessLevelOuter[2] = 2.0;
gl_TessLevelOuter[3] = numTotalCombinedSegments;
})");
return code;
}
SkString GrStrokeTessellationShader::HardwareImpl::getTessEvaluationShaderGLSL(
const GrGeometryProcessor& geomProc,
const char* versionAndExtensionDecls,
const GrGLSLUniformHandler& uniformHandler,
const GrShaderCaps& shaderCaps) const {
const auto& shader = geomProc.cast<GrStrokeTessellationShader>();
SkASSERT(shader.mode() == GrStrokeTessellationShader::Mode::kHardwareTessellation);
SkString code(versionAndExtensionDecls);
code.append("layout(quads, equal_spacing, ccw) in;\n");
code.appendf("precision highp float;\n");
code.appendf("#define float2 vec2\n");
code.appendf("#define float3 vec3\n");
code.appendf("#define float4 vec4\n");
code.appendf("#define float2x2 mat2\n");
code.appendf("#define float3x2 mat3x2\n");
code.appendf("#define float4x2 mat4x2\n");
code.appendf("#define PI 3.141592653589793238\n");
if (!shader.hasDynamicStroke()) {
const char* tessArgsName = uniformHandler.getUniformCStr(fTessControlArgsUniform);
code.appendf("uniform vec4 %s;\n", tessArgsName);
code.appendf("#define STROKE_RADIUS %s.w\n", tessArgsName);
} else {
code.appendf("#define STROKE_RADIUS tcsStrokeRadius\n");
}
const char* translateName = uniformHandler.getUniformCStr(fTranslateUniform);
code.appendf("uniform vec2 %s;\n", translateName);
code.appendf("#define TRANSLATE %s\n", translateName);
const char* affineMatrixName = uniformHandler.getUniformCStr(fAffineMatrixUniform);
code.appendf("uniform vec4 %s;\n", affineMatrixName);
code.appendf("#define AFFINE_MATRIX mat2(%s)\n", affineMatrixName);
code.append(R"(
in vec4 tcsPts01[];
in vec4 tcsPt2Tan0[];
in vec3 tcsTessArgs[]; // [numCombinedSegments, numParametricSegments, radsPerSegment]
patch in vec4 tcsJoinArgs0; // [numSegmentsInJoin, innerJoinRadiusMultiplier,
// prevJoinTangent.xy]
patch in vec3 tcsJoinArgs1; // [radsPerJoinSegment, joinOutsetClamp.xy]
patch in vec4 tcsEndPtEndTan;)");
if (shader.hasDynamicStroke()) {
code.append(R"(
patch in float tcsStrokeRadius;)");
}
if (shader.hasDynamicColor()) {
code.appendf(R"(
patch in mediump vec4 tcsColor;
%s out mediump vec4 %s;)",
shaderCaps.preferFlatInterpolation() ? "flat" : "", fDynamicColorName.c_str());
}
code.append(R"(
uniform vec4 sk_RTAdjust;)");
code.append(kUncheckedMixFn);
code.append(R"(
void main() {
// Our patch is composed of exactly "numTotalCombinedSegments + 1" stroke-width edges that
// run orthogonal to the curve and make a strip of "numTotalCombinedSegments" quads.
// Determine which discrete edge belongs to this invocation. An edge can either come from a
// parametric segment or a radial one.
float numSegmentsInJoin = tcsJoinArgs0.x;
float numTotalCombinedSegments = numSegmentsInJoin + tcsTessArgs[0].x + tcsTessArgs[1].x +
tcsTessArgs[2].x;
float combinedEdgeID = round(gl_TessCoord.x * numTotalCombinedSegments);
float strokeOutset = gl_TessCoord.y * 2.0 - 1.0;
// Furthermore, the vertex shader may have chopped the curve into 3 different sections.
// Determine which section we belong to, and where we fall relative to its first edge.
float2 p0, p1, p2, p3;
vec2 tan0;
float numParametricSegments, radsPerSegment;
if (combinedEdgeID < numSegmentsInJoin || numSegmentsInJoin == numTotalCombinedSegments) {
// Our edge belongs to the join preceding the curve.
p3 = p2 = p1 = p0 = tcsPts01[0].xy;
tan0 = tcsJoinArgs0.zw;
numParametricSegments = 1;
radsPerSegment = tcsJoinArgs1.x;
strokeOutset = clamp(strokeOutset, tcsJoinArgs1.y, tcsJoinArgs1.z);
strokeOutset *= (combinedEdgeID == 1.0) ? tcsJoinArgs0.y : 1.0;
} else if ((combinedEdgeID -= numSegmentsInJoin) < tcsTessArgs[0].x) {
// Our edge belongs to the first curve section.
p0=tcsPts01[0].xy, p1=tcsPts01[0].zw, p2=tcsPt2Tan0[0].xy, p3=tcsPts01[1].xy;
tan0 = tcsPt2Tan0[0].zw;
numParametricSegments = tcsTessArgs[0].y;
radsPerSegment = tcsTessArgs[0].z;
} else if ((combinedEdgeID -= tcsTessArgs[0].x) < tcsTessArgs[1].x) {
// Our edge belongs to the second curve section.
p0=tcsPts01[1].xy, p1=tcsPts01[1].zw, p2=tcsPt2Tan0[1].xy, p3=tcsPts01[2].xy;
tan0 = tcsPt2Tan0[1].zw;
numParametricSegments = tcsTessArgs[1].y;
radsPerSegment = tcsTessArgs[1].z;
} else {
// Our edge belongs to the third curve section.
combinedEdgeID -= tcsTessArgs[1].x;
p0=tcsPts01[2].xy, p1=tcsPts01[2].zw, p2=tcsPt2Tan0[2].xy, p3=tcsEndPtEndTan.xy;
tan0 = tcsPt2Tan0[2].zw;
numParametricSegments = tcsTessArgs[2].y;
radsPerSegment = tcsTessArgs[2].z;
}
float2 tan1 = tcsEndPtEndTan.zw;
bool isFinalEdge = (gl_TessCoord.x == 1);
float w = -1.0; // w<0 means the curve is an integral cubic.
if (isinf(p3.y)) {
w = p3.x; // The curve is actually a conic.
p3 = p2; // Setting p3 equal to p2 works for the remaining rotational logic.
})");
GrGPArgs gpArgs;
this->emitTessellationCode(shader, &code, &gpArgs, shaderCaps);
// Manually map the position to OpenGL clip space, since we are generating raw GLSL.
code.appendf(R"(
gl_Position = vec4(%s * sk_RTAdjust.xz + sk_RTAdjust.yw, 0.0, 1.0);)",
gpArgs.fPositionVar.c_str());
if (shader.hasDynamicColor()) {
// Pass color on to the fragment shader.
code.appendf(R"(
%s = tcsColor;)", fDynamicColorName.c_str());
}
code.append(R"(
})");
return code;
}