blob: c559e19355a62be38210d028f3e2bf766160b0e0 [file] [log] [blame]
/*
* Copyright 2020 Google LLC.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/tessellate/shaders/GrStrokeTessellationShader.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h"
#include "src/gpu/tessellate/WangsFormula.h"
using skgpu::VertexWriter;
void GrStrokeTessellationShader::InstancedImpl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
const auto& shader = args.fGeomProc.cast<GrStrokeTessellationShader>();
SkPaint::Join joinType = shader.stroke().getJoin();
args.fVaryingHandler->emitAttributes(shader);
args.fVertBuilder->defineConstant("float", "PI", "3.141592653589793238");
// Helper functions.
if (shader.hasDynamicStroke()) {
args.fVertBuilder->insertFunction(kNumRadialSegmentsPerRadianFn);
}
args.fVertBuilder->insertFunction(kCosineBetweenVectorsFn);
args.fVertBuilder->insertFunction(kMiterExtentFn);
args.fVertBuilder->insertFunction(kUncheckedMixFn);
args.fVertBuilder->insertFunction(skgpu::wangs_formula::as_sksl().c_str());
// Tessellation control uniforms and/or dynamic attributes.
if (!shader.hasDynamicStroke()) {
// [PARAMETRIC_PRECISION, NUM_RADIAL_SEGMENTS_PER_RADIAN, JOIN_TYPE, STROKE_RADIUS]
const char* tessArgsName;
fTessControlArgsUniform = args.fUniformHandler->addUniform(
nullptr, kVertex_GrShaderFlag, kFloat4_GrSLType, "tessControlArgs",
&tessArgsName);
args.fVertBuilder->codeAppendf(R"(
float PARAMETRIC_PRECISION = %s.x;
float NUM_RADIAL_SEGMENTS_PER_RADIAN = %s.y;
float JOIN_TYPE = %s.z;
float STROKE_RADIUS = %s.w;)", tessArgsName, tessArgsName, tessArgsName, tessArgsName);
} else {
const char* parametricPrecisionName;
fTessControlArgsUniform = args.fUniformHandler->addUniform(
nullptr, kVertex_GrShaderFlag, kFloat_GrSLType, "parametricPrecision",
&parametricPrecisionName);
args.fVertBuilder->codeAppendf(R"(
float PARAMETRIC_PRECISION = %s;
float STROKE_RADIUS = dynamicStrokeAttr.x;
float NUM_RADIAL_SEGMENTS_PER_RADIAN = num_radial_segments_per_radian(
PARAMETRIC_PRECISION, STROKE_RADIUS);
float JOIN_TYPE = dynamicStrokeAttr.y;)", parametricPrecisionName);
}
if (shader.hasDynamicColor()) {
// Create a varying for color to get passed in through.
GrGLSLVarying dynamicColor{kHalf4_GrSLType};
args.fVaryingHandler->addVarying("dynamicColor", &dynamicColor);
args.fVertBuilder->codeAppendf("%s = dynamicColorAttr;", dynamicColor.vsOut());
fDynamicColorName = dynamicColor.fsIn();
}
if (shader.mode() == GrStrokeTessellationShader::Mode::kLog2Indirect) {
args.fVertBuilder->codeAppend(R"(
float NUM_TOTAL_EDGES = abs(argsAttr.z);)");
} else {
SkASSERT(shader.mode() == GrStrokeTessellationShader::Mode::kFixedCount);
const char* edgeCountName;
fEdgeCountUniform = args.fUniformHandler->addUniform(
nullptr, kVertex_GrShaderFlag, kFloat_GrSLType, "edgeCount", &edgeCountName);
args.fVertBuilder->codeAppendf(R"(
float NUM_TOTAL_EDGES = %s;)", edgeCountName);
}
// View matrix uniforms.
const char* translateName, *affineMatrixName;
fAffineMatrixUniform = args.fUniformHandler->addUniform(nullptr, kVertex_GrShaderFlag,
kFloat4_GrSLType, "affineMatrix",
&affineMatrixName);
fTranslateUniform = args.fUniformHandler->addUniform(nullptr, kVertex_GrShaderFlag,
kFloat2_GrSLType, "translate",
&translateName);
args.fVertBuilder->codeAppendf("float2x2 AFFINE_MATRIX = float2x2(%s);\n", affineMatrixName);
args.fVertBuilder->codeAppendf("float2 TRANSLATE = %s;\n", translateName);
if (args.fShaderCaps->infinitySupport()) {
args.fVertBuilder->insertFunction(R"(
bool is_conic_curve() { return isinf(pts23Attr.w); })");
} else {
args.fVertBuilder->insertFunction(SkStringPrintf(R"(
bool is_conic_curve() { return curveTypeAttr != %g; })", kCubicCurveType).c_str());
}
// Tessellation code.
args.fVertBuilder->codeAppend(R"(
float2 p0=pts01Attr.xy, p1=pts01Attr.zw, p2=pts23Attr.xy, p3=pts23Attr.zw;
float2 lastControlPoint = argsAttr.xy;
float w = -1; // w<0 means the curve is an integral cubic.
if (is_conic_curve()) {
// Conics are 3 points, with the weight in p3.
w = p3.x;
p3 = p2; // Setting p3 equal to p2 works for the remaining rotational logic.
})");
if (shader.stroke().isHairlineStyle()) {
// Hairline case. Transform the points before tessellation. We can still hold off on the
// translate until the end; we just need to perform the scale and skew right now.
args.fVertBuilder->codeAppend(R"(
p0 = AFFINE_MATRIX * p0;
p1 = AFFINE_MATRIX * p1;
p2 = AFFINE_MATRIX * p2;
p3 = AFFINE_MATRIX * p3;
lastControlPoint = AFFINE_MATRIX * lastControlPoint;)");
}
args.fVertBuilder->codeAppend(R"(
// Find how many parametric segments this stroke requires.
float numParametricSegments;
if (w < 0) {
numParametricSegments = wangs_formula_cubic(PARAMETRIC_PRECISION, p0, p1, p2, p3,
float2x2(1));
} else {
numParametricSegments = wangs_formula_conic(PARAMETRIC_PRECISION, p0, p1, p2, w);
}
if (p0 == p1 && p2 == p3) {
// This is how we describe lines, but Wang's formula does not return 1 in this case.
numParametricSegments = 1;
}
// Find the starting and ending tangents.
float2 tan0 = ((p0 == p1) ? (p1 == p2) ? p3 : p2 : p1) - p0;
float2 tan1 = p3 - ((p3 == p2) ? (p2 == p1) ? p0 : p1 : p2);
if (tan0 == float2(0)) {
// The stroke is a point. This special case tells us to draw a stroke-width circle as a
// 180 degree point stroke instead.
tan0 = float2(1,0);
tan1 = float2(-1,0);
})");
if (args.fShaderCaps->vertexIDSupport()) {
// If we don't have sk_VertexID support then "edgeID" already came in as a vertex attrib.
args.fVertBuilder->codeAppend(R"(
float edgeID = float(sk_VertexID >> 1);
if ((sk_VertexID & 1) != 0) {
edgeID = -edgeID;
})");
}
// Potential optimization: (shader.hasDynamicStroke() && shader.hasRoundJoins())?
if (shader.stroke().getJoin() == SkPaint::kRound_Join || shader.hasDynamicStroke()) {
args.fVertBuilder->codeAppend(R"(
// Determine how many edges to give to the round join. We emit the first and final edges
// of the join twice: once full width and once restricted to half width. This guarantees
// perfect seaming by matching the vertices from the join as well as from the strokes on
// either side.
float joinRads = acos(cosine_between_vectors(p0 - lastControlPoint, tan0));
float numRadialSegmentsInJoin = max(ceil(joinRads * NUM_RADIAL_SEGMENTS_PER_RADIAN), 1);
// +2 because we emit the beginning and ending edges twice (see above comment).
float numEdgesInJoin = numRadialSegmentsInJoin + 2;
// The stroke section needs at least two edges. Don't assign more to the join than
// "NUM_TOTAL_EDGES - 2".
numEdgesInJoin = min(numEdgesInJoin, NUM_TOTAL_EDGES - 2);)");
if (shader.mode() == GrStrokeTessellationShader::Mode::kLog2Indirect) {
args.fVertBuilder->codeAppend(R"(
// Negative argsAttr.z means the join is an internal chop or circle, and both of
// those have empty joins. All we need is a bevel join.
if (argsAttr.z < 0) {
// +2 because we emit the beginning and ending edges twice (see above comment).
numEdgesInJoin = 1 + 2;
})");
}
if (shader.hasDynamicStroke()) {
args.fVertBuilder->codeAppend(R"(
if (JOIN_TYPE >= 0 /*Is the join not a round type?*/) {
// Bevel and miter joins get 1 and 2 segments respectively.
// +2 because we emit the beginning and ending edges twice (see above comments).
numEdgesInJoin = sign(JOIN_TYPE) + 1 + 2;
})");
}
} else {
args.fVertBuilder->codeAppendf(R"(
float numEdgesInJoin = %i;)", GrStrokeTessellationShader::NumFixedEdgesInJoin(joinType));
}
args.fVertBuilder->codeAppend(R"(
// Find which direction the curve turns.
// NOTE: Since the curve is not allowed to inflect, we can just check F'(.5) x F''(.5).
// NOTE: F'(.5) x F''(.5) has the same sign as (P2 - P0) x (P3 - P1)
float turn = cross(p2 - p0, p3 - p1);
float combinedEdgeID = abs(edgeID) - numEdgesInJoin;
if (combinedEdgeID < 0) {
tan1 = tan0;
// Don't let tan0 become zero. The code as-is isn't built to handle that case. tan0=0
// means the join is disabled, and to disable it with the existing code we can leave
// tan0 equal to tan1.
if (lastControlPoint != p0) {
tan0 = p0 - lastControlPoint;
}
turn = cross(tan0, tan1);
}
// Calculate the curve's starting angle and rotation.
float cosTheta = cosine_between_vectors(tan0, tan1);
float rotation = acos(cosTheta);
if (turn < 0) {
// Adjust sign of rotation to match the direction the curve turns.
rotation = -rotation;
}
float numRadialSegments;
float strokeOutset = sign(edgeID);
if (combinedEdgeID < 0) {
// We belong to the preceding join. The first and final edges get duplicated, so we only
// have "numEdgesInJoin - 2" segments.
numRadialSegments = numEdgesInJoin - 2;
numParametricSegments = 1; // Joins don't have parametric segments.
p3 = p2 = p1 = p0; // Colocate all points on the junction point.
// Shift combinedEdgeID to the range [-1, numRadialSegments]. This duplicates the first
// edge and lands one edge at the very end of the join. (The duplicated final edge will
// actually come from the section of our strip that belongs to the stroke.)
combinedEdgeID += numRadialSegments + 1;
// We normally restrict the join on one side of the junction, but if the tangents are
// nearly equivalent this could theoretically result in bad seaming and/or cracks on the
// side we don't put it on. If the tangents are nearly equivalent then we leave the join
// double-sided.
float sinEpsilon = 1e-2; // ~= sin(180deg / 3000)
bool tangentsNearlyParallel =
(abs(turn) * inversesqrt(dot(tan0, tan0) * dot(tan1, tan1))) < sinEpsilon;
if (!tangentsNearlyParallel || dot(tan0, tan1) < 0) {
// There are two edges colocated at the beginning. Leave the first one double sided
// for seaming with the previous stroke. (The double sided edge at the end will
// actually come from the section of our strip that belongs to the stroke.)
if (combinedEdgeID >= 0) {
strokeOutset = (turn < 0) ? min(strokeOutset, 0) : max(strokeOutset, 0);
}
}
combinedEdgeID = max(combinedEdgeID, 0);
} else {
// We belong to the stroke.
float maxCombinedSegments = NUM_TOTAL_EDGES - numEdgesInJoin - 1;
numRadialSegments = max(ceil(abs(rotation) * NUM_RADIAL_SEGMENTS_PER_RADIAN), 1);
numRadialSegments = min(numRadialSegments, maxCombinedSegments);
numParametricSegments = min(numParametricSegments,
maxCombinedSegments - numRadialSegments + 1);
}
// Additional parameters for emitTessellationCode().
float radsPerSegment = rotation / numRadialSegments;
float numCombinedSegments = numParametricSegments + numRadialSegments - 1;
bool isFinalEdge = (combinedEdgeID >= numCombinedSegments);
if (combinedEdgeID > numCombinedSegments) {
strokeOutset = 0; // The strip has more edges than we need. Drop this one.
})");
if (joinType == SkPaint::kMiter_Join || shader.hasDynamicStroke()) {
args.fVertBuilder->codeAppendf(R"(
// Edge #2 extends to the miter point.
if (abs(edgeID) == 2 && %s) {
strokeOutset *= miter_extent(cosTheta, JOIN_TYPE/*miterLimit*/);
})", shader.hasDynamicStroke() ? "JOIN_TYPE > 0/*Is the join a miter type?*/" : "true");
}
this->emitTessellationCode(shader, &args.fVertBuilder->code(), gpArgs, *args.fShaderCaps);
this->emitFragmentCode(shader, args);
}
void GrStrokeTessellationShader::InitializeVertexIDFallbackBuffer(VertexWriter vertexWriter,
size_t bufferSize) {
SkASSERT(bufferSize % (sizeof(float) * 2) == 0);
int edgeCount = bufferSize / (sizeof(float) * 2);
for (int i = 0; i < edgeCount; ++i) {
vertexWriter << (float)i << (float)-i;
}
}