blob: c9c7a7fb22d53f4a2397951f3e65757e9232fcb0 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/vk/GrVkImage.h"
#include "src/gpu/vk/GrVkGpu.h"
#include "src/gpu/vk/GrVkImageView.h"
#include "src/gpu/vk/GrVkMemory.h"
#include "src/gpu/vk/GrVkTexture.h"
#include "src/gpu/vk/GrVkUtil.h"
#define VK_CALL(GPU, X) GR_VK_CALL(GPU->vkInterface(), X)
sk_sp<GrVkImage> GrVkImage::MakeStencil(GrVkGpu* gpu,
SkISize dimensions,
int sampleCnt,
VkFormat format) {
VkImageUsageFlags vkUsageFlags =
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
return GrVkImage::Make(gpu,
dimensions,
UsageFlags::kStencilAttachment,
sampleCnt,
format,
/*mipLevels=*/1,
vkUsageFlags,
GrProtected::kNo,
GrMemoryless::kNo,
SkBudgeted::kYes);
}
sk_sp<GrVkImage> GrVkImage::MakeMSAA(GrVkGpu* gpu,
SkISize dimensions,
int numSamples,
VkFormat format,
GrProtected isProtected,
GrMemoryless memoryless) {
SkASSERT(numSamples > 1);
VkImageUsageFlags vkUsageFlags = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
if (memoryless == GrMemoryless::kYes) {
vkUsageFlags |= VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT;
} else {
vkUsageFlags |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
}
return GrVkImage::Make(gpu,
dimensions,
UsageFlags::kColorAttachment,
numSamples,
format,
/*mipLevels=*/1,
vkUsageFlags,
isProtected,
memoryless,
SkBudgeted::kYes);
}
sk_sp<GrVkImage> GrVkImage::MakeTexture(GrVkGpu* gpu,
SkISize dimensions,
VkFormat format,
uint32_t mipLevels,
GrRenderable renderable,
int numSamples,
SkBudgeted budgeted,
GrProtected isProtected) {
UsageFlags usageFlags = UsageFlags::kTexture;
VkImageUsageFlags vkUsageFlags = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT;
if (renderable == GrRenderable::kYes) {
usageFlags |= UsageFlags::kColorAttachment;
vkUsageFlags |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
// We always make our render targets support being used as input attachments
vkUsageFlags |= VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;
}
return GrVkImage::Make(gpu,
dimensions,
usageFlags,
numSamples,
format,
mipLevels,
vkUsageFlags,
isProtected,
GrMemoryless::kNo,
budgeted);
}
static bool make_views(GrVkGpu* gpu,
const GrVkImageInfo& info,
GrAttachment::UsageFlags attachmentUsages,
sk_sp<const GrVkImageView>* framebufferView,
sk_sp<const GrVkImageView>* textureView) {
GrVkImageView::Type viewType;
if (attachmentUsages & GrAttachment::UsageFlags::kStencilAttachment) {
// If we have stencil usage then we shouldn't have any other usages
SkASSERT(attachmentUsages == GrAttachment::UsageFlags::kStencilAttachment);
viewType = GrVkImageView::kStencil_Type;
} else {
viewType = GrVkImageView::kColor_Type;
}
if (SkToBool(attachmentUsages & GrAttachment::UsageFlags::kStencilAttachment) ||
SkToBool(attachmentUsages & GrAttachment::UsageFlags::kColorAttachment)) {
// Attachments can only have a mip level of 1
*framebufferView = GrVkImageView::Make(
gpu, info.fImage, info.fFormat, viewType, 1, info.fYcbcrConversionInfo);
if (!*framebufferView) {
return false;
}
}
if (attachmentUsages & GrAttachment::UsageFlags::kTexture) {
*textureView = GrVkImageView::Make(gpu,
info.fImage,
info.fFormat,
viewType,
info.fLevelCount,
info.fYcbcrConversionInfo);
if (!*textureView) {
return false;
}
}
return true;
}
sk_sp<GrVkImage> GrVkImage::Make(GrVkGpu* gpu,
SkISize dimensions,
UsageFlags attachmentUsages,
int sampleCnt,
VkFormat format,
uint32_t mipLevels,
VkImageUsageFlags vkUsageFlags,
GrProtected isProtected,
GrMemoryless memoryless,
SkBudgeted budgeted) {
GrVkImage::ImageDesc imageDesc;
imageDesc.fImageType = VK_IMAGE_TYPE_2D;
imageDesc.fFormat = format;
imageDesc.fWidth = dimensions.width();
imageDesc.fHeight = dimensions.height();
imageDesc.fLevels = mipLevels;
imageDesc.fSamples = sampleCnt;
imageDesc.fImageTiling = VK_IMAGE_TILING_OPTIMAL;
imageDesc.fUsageFlags = vkUsageFlags;
imageDesc.fIsProtected = isProtected;
GrVkImageInfo info;
if (!GrVkImage::InitImageInfo(gpu, imageDesc, &info)) {
return nullptr;
}
sk_sp<const GrVkImageView> framebufferView;
sk_sp<const GrVkImageView> textureView;
if (!make_views(gpu, info, attachmentUsages, &framebufferView, &textureView)) {
GrVkImage::DestroyImageInfo(gpu, &info);
return nullptr;
}
sk_sp<GrBackendSurfaceMutableStateImpl> mutableState(
new GrBackendSurfaceMutableStateImpl(info.fImageLayout, info.fCurrentQueueFamily));
return sk_sp<GrVkImage>(new GrVkImage(gpu,
dimensions,
attachmentUsages,
info,
std::move(mutableState),
std::move(framebufferView),
std::move(textureView),
budgeted));
}
sk_sp<GrVkImage> GrVkImage::MakeWrapped(GrVkGpu* gpu,
SkISize dimensions,
const GrVkImageInfo& info,
sk_sp<GrBackendSurfaceMutableStateImpl> mutableState,
UsageFlags attachmentUsages,
GrWrapOwnership ownership,
GrWrapCacheable cacheable,
bool forSecondaryCB) {
sk_sp<const GrVkImageView> framebufferView;
sk_sp<const GrVkImageView> textureView;
if (!forSecondaryCB) {
if (!make_views(gpu, info, attachmentUsages, &framebufferView, &textureView)) {
return nullptr;
}
}
GrBackendObjectOwnership backendOwnership = kBorrow_GrWrapOwnership == ownership
? GrBackendObjectOwnership::kBorrowed
: GrBackendObjectOwnership::kOwned;
return sk_sp<GrVkImage>(new GrVkImage(gpu,
dimensions,
attachmentUsages,
info,
std::move(mutableState),
std::move(framebufferView),
std::move(textureView),
backendOwnership,
cacheable,
forSecondaryCB));
}
GrVkImage::GrVkImage(GrVkGpu* gpu,
SkISize dimensions,
UsageFlags supportedUsages,
const GrVkImageInfo& info,
sk_sp<GrBackendSurfaceMutableStateImpl> mutableState,
sk_sp<const GrVkImageView> framebufferView,
sk_sp<const GrVkImageView> textureView,
SkBudgeted budgeted)
: GrAttachment(gpu,
dimensions,
supportedUsages,
info.fSampleCount,
info.fLevelCount > 1 ? GrMipmapped::kYes : GrMipmapped::kNo,
info.fProtected,
info.fAlloc.fFlags & GrVkAlloc::kLazilyAllocated_Flag ? GrMemoryless::kYes
: GrMemoryless::kNo)
, fInfo(info)
, fInitialQueueFamily(info.fCurrentQueueFamily)
, fMutableState(std::move(mutableState))
, fFramebufferView(std::move(framebufferView))
, fTextureView(std::move(textureView))
, fIsBorrowed(false) {
this->init(gpu, false);
this->registerWithCache(budgeted);
}
GrVkImage::GrVkImage(GrVkGpu* gpu,
SkISize dimensions,
UsageFlags supportedUsages,
const GrVkImageInfo& info,
sk_sp<GrBackendSurfaceMutableStateImpl> mutableState,
sk_sp<const GrVkImageView> framebufferView,
sk_sp<const GrVkImageView> textureView,
GrBackendObjectOwnership ownership,
GrWrapCacheable cacheable,
bool forSecondaryCB)
: GrAttachment(gpu,
dimensions,
supportedUsages,
info.fSampleCount,
info.fLevelCount > 1 ? GrMipmapped::kYes : GrMipmapped::kNo,
info.fProtected)
, fInfo(info)
, fInitialQueueFamily(info.fCurrentQueueFamily)
, fMutableState(std::move(mutableState))
, fFramebufferView(std::move(framebufferView))
, fTextureView(std::move(textureView))
, fIsBorrowed(GrBackendObjectOwnership::kBorrowed == ownership) {
this->init(gpu, forSecondaryCB);
this->registerWithCacheWrapped(cacheable);
}
void GrVkImage::init(GrVkGpu* gpu, bool forSecondaryCB) {
SkASSERT(fMutableState->getImageLayout() == fInfo.fImageLayout);
SkASSERT(fMutableState->getQueueFamilyIndex() == fInfo.fCurrentQueueFamily);
#ifdef SK_DEBUG
if (fInfo.fImageUsageFlags & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
SkASSERT(SkToBool(fInfo.fImageUsageFlags & VK_IMAGE_USAGE_TRANSFER_DST_BIT));
} else {
if (fInfo.fAlloc.fFlags & GrVkAlloc::kLazilyAllocated_Flag) {
SkASSERT(fInfo.fImageUsageFlags & VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT);
SkASSERT(!SkToBool(fInfo.fImageUsageFlags & VK_IMAGE_USAGE_TRANSFER_DST_BIT) &&
!SkToBool(fInfo.fImageUsageFlags & VK_IMAGE_USAGE_TRANSFER_SRC_BIT));
} else {
SkASSERT(!SkToBool(fInfo.fImageUsageFlags & VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT));
SkASSERT(SkToBool(fInfo.fImageUsageFlags & VK_IMAGE_USAGE_TRANSFER_DST_BIT) &&
SkToBool(fInfo.fImageUsageFlags & VK_IMAGE_USAGE_TRANSFER_SRC_BIT));
}
}
// We can't transfer from the non graphics queue to the graphics queue since we can't
// release the image from the original queue without having that queue. This limits us in terms
// of the types of queue indices we can handle.
if (fInfo.fCurrentQueueFamily != VK_QUEUE_FAMILY_IGNORED &&
fInfo.fCurrentQueueFamily != VK_QUEUE_FAMILY_EXTERNAL &&
fInfo.fCurrentQueueFamily != VK_QUEUE_FAMILY_FOREIGN_EXT) {
if (fInfo.fSharingMode == VK_SHARING_MODE_EXCLUSIVE) {
if (fInfo.fCurrentQueueFamily != gpu->queueIndex()) {
SkASSERT(false);
}
} else {
SkASSERT(false);
}
}
#endif
if (forSecondaryCB) {
fResource = nullptr;
} else if (fIsBorrowed) {
fResource = new BorrowedResource(gpu, fInfo.fImage, fInfo.fAlloc, fInfo.fImageTiling);
} else {
SkASSERT(VK_NULL_HANDLE != fInfo.fAlloc.fMemory);
fResource = new Resource(gpu, fInfo.fImage, fInfo.fAlloc, fInfo.fImageTiling);
}
}
VkPipelineStageFlags GrVkImage::LayoutToPipelineSrcStageFlags(const VkImageLayout layout) {
if (VK_IMAGE_LAYOUT_GENERAL == layout) {
return VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
} else if (VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL == layout ||
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL == layout) {
return VK_PIPELINE_STAGE_TRANSFER_BIT;
} else if (VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL == layout) {
return VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
} else if (VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL == layout ||
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL == layout) {
return VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
} else if (VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL == layout) {
return VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
} else if (VK_IMAGE_LAYOUT_PREINITIALIZED == layout) {
return VK_PIPELINE_STAGE_HOST_BIT;
} else if (VK_IMAGE_LAYOUT_PRESENT_SRC_KHR == layout) {
return VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
}
SkASSERT(VK_IMAGE_LAYOUT_UNDEFINED == layout);
return VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
}
VkAccessFlags GrVkImage::LayoutToSrcAccessMask(const VkImageLayout layout) {
// Currently we assume we will never being doing any explict shader writes (this doesn't include
// color attachment or depth/stencil writes). So we will ignore the
// VK_MEMORY_OUTPUT_SHADER_WRITE_BIT.
// We can only directly access the host memory if we are in preinitialized or general layout,
// and the image is linear.
// TODO: Add check for linear here so we are not always adding host to general, and we should
// only be in preinitialized if we are linear
VkAccessFlags flags = 0;
if (VK_IMAGE_LAYOUT_GENERAL == layout) {
flags = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
VK_ACCESS_TRANSFER_WRITE_BIT |
VK_ACCESS_HOST_WRITE_BIT;
} else if (VK_IMAGE_LAYOUT_PREINITIALIZED == layout) {
flags = VK_ACCESS_HOST_WRITE_BIT;
} else if (VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL == layout) {
flags = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
} else if (VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL == layout) {
flags = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
} else if (VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL == layout) {
flags = VK_ACCESS_TRANSFER_WRITE_BIT;
} else if (VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL == layout ||
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL == layout ||
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR == layout) {
// There are no writes that need to be made available
flags = 0;
}
return flags;
}
VkImageAspectFlags vk_format_to_aspect_flags(VkFormat format) {
switch (format) {
case VK_FORMAT_S8_UINT:
return VK_IMAGE_ASPECT_STENCIL_BIT;
case VK_FORMAT_D24_UNORM_S8_UINT: // fallthrough
case VK_FORMAT_D32_SFLOAT_S8_UINT:
return VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
default:
return VK_IMAGE_ASPECT_COLOR_BIT;
}
}
void GrVkImage::setImageLayoutAndQueueIndex(const GrVkGpu* gpu,
VkImageLayout newLayout,
VkAccessFlags dstAccessMask,
VkPipelineStageFlags dstStageMask,
bool byRegion,
uint32_t newQueueFamilyIndex) {
// Enable the following block to test new devices to confirm their lazy images stay at 0 memory use.
#if 0
if (fInfo.fAlloc.fFlags & GrVkAlloc::kLazilyAllocated_Flag) {
VkDeviceSize size;
VK_CALL(gpu, GetDeviceMemoryCommitment(gpu->device(), fInfo.fAlloc.fMemory, &size));
SkDebugf("Lazy Image. This: %p, image: %d, size: %d\n", this, fInfo.fImage, size);
}
#endif
SkASSERT(!gpu->isDeviceLost());
SkASSERT(newLayout == this->currentLayout() ||
(VK_IMAGE_LAYOUT_UNDEFINED != newLayout &&
VK_IMAGE_LAYOUT_PREINITIALIZED != newLayout));
VkImageLayout currentLayout = this->currentLayout();
uint32_t currentQueueIndex = this->currentQueueFamilyIndex();
#ifdef SK_DEBUG
if (fInfo.fSharingMode == VK_SHARING_MODE_CONCURRENT) {
if (newQueueFamilyIndex == VK_QUEUE_FAMILY_IGNORED) {
SkASSERT(currentQueueIndex == VK_QUEUE_FAMILY_IGNORED ||
currentQueueIndex == VK_QUEUE_FAMILY_EXTERNAL ||
currentQueueIndex == VK_QUEUE_FAMILY_FOREIGN_EXT);
} else {
SkASSERT(newQueueFamilyIndex == VK_QUEUE_FAMILY_EXTERNAL ||
newQueueFamilyIndex == VK_QUEUE_FAMILY_FOREIGN_EXT);
SkASSERT(currentQueueIndex == VK_QUEUE_FAMILY_IGNORED);
}
} else {
SkASSERT(fInfo.fSharingMode == VK_SHARING_MODE_EXCLUSIVE);
if (newQueueFamilyIndex == VK_QUEUE_FAMILY_IGNORED ||
currentQueueIndex == gpu->queueIndex()) {
SkASSERT(currentQueueIndex == VK_QUEUE_FAMILY_IGNORED ||
currentQueueIndex == VK_QUEUE_FAMILY_EXTERNAL ||
currentQueueIndex == VK_QUEUE_FAMILY_FOREIGN_EXT ||
currentQueueIndex == gpu->queueIndex());
} else if (newQueueFamilyIndex == VK_QUEUE_FAMILY_EXTERNAL ||
newQueueFamilyIndex == VK_QUEUE_FAMILY_FOREIGN_EXT) {
SkASSERT(currentQueueIndex == VK_QUEUE_FAMILY_IGNORED ||
currentQueueIndex == gpu->queueIndex());
}
}
#endif
if (fInfo.fSharingMode == VK_SHARING_MODE_EXCLUSIVE) {
if (newQueueFamilyIndex == VK_QUEUE_FAMILY_IGNORED) {
newQueueFamilyIndex = gpu->queueIndex();
}
if (currentQueueIndex == VK_QUEUE_FAMILY_IGNORED) {
currentQueueIndex = gpu->queueIndex();
}
}
// If the old and new layout are the same and the layout is a read only layout, there is no need
// to put in a barrier unless we also need to switch queues.
if (newLayout == currentLayout && currentQueueIndex == newQueueFamilyIndex &&
(VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL == currentLayout ||
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL == currentLayout ||
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL == currentLayout)) {
return;
}
VkAccessFlags srcAccessMask = GrVkImage::LayoutToSrcAccessMask(currentLayout);
VkPipelineStageFlags srcStageMask = GrVkImage::LayoutToPipelineSrcStageFlags(currentLayout);
VkImageAspectFlags aspectFlags = vk_format_to_aspect_flags(fInfo.fFormat);
VkImageMemoryBarrier imageMemoryBarrier = {
VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType
nullptr, // pNext
srcAccessMask, // srcAccessMask
dstAccessMask, // dstAccessMask
currentLayout, // oldLayout
newLayout, // newLayout
currentQueueIndex, // srcQueueFamilyIndex
newQueueFamilyIndex, // dstQueueFamilyIndex
fInfo.fImage, // image
{ aspectFlags, 0, fInfo.fLevelCount, 0, 1 } // subresourceRange
};
SkASSERT(srcAccessMask == imageMemoryBarrier.srcAccessMask);
gpu->addImageMemoryBarrier(this->resource(), srcStageMask, dstStageMask, byRegion,
&imageMemoryBarrier);
this->updateImageLayout(newLayout);
this->setQueueFamilyIndex(newQueueFamilyIndex);
}
bool GrVkImage::InitImageInfo(GrVkGpu* gpu, const ImageDesc& imageDesc, GrVkImageInfo* info) {
if (0 == imageDesc.fWidth || 0 == imageDesc.fHeight) {
return false;
}
if ((imageDesc.fIsProtected == GrProtected::kYes) && !gpu->vkCaps().supportsProtectedMemory()) {
return false;
}
bool isLinear = VK_IMAGE_TILING_LINEAR == imageDesc.fImageTiling;
VkImageLayout initialLayout = isLinear ? VK_IMAGE_LAYOUT_PREINITIALIZED
: VK_IMAGE_LAYOUT_UNDEFINED;
// Create Image
VkSampleCountFlagBits vkSamples;
if (!GrSampleCountToVkSampleCount(imageDesc.fSamples, &vkSamples)) {
return false;
}
SkASSERT(VK_IMAGE_TILING_OPTIMAL == imageDesc.fImageTiling ||
VK_SAMPLE_COUNT_1_BIT == vkSamples);
VkImageCreateFlags createflags = 0;
if (imageDesc.fIsProtected == GrProtected::kYes || gpu->protectedContext()) {
createflags |= VK_IMAGE_CREATE_PROTECTED_BIT;
}
const VkImageCreateInfo imageCreateInfo = {
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // sType
nullptr, // pNext
createflags, // VkImageCreateFlags
imageDesc.fImageType, // VkImageType
imageDesc.fFormat, // VkFormat
{ imageDesc.fWidth, imageDesc.fHeight, 1 }, // VkExtent3D
imageDesc.fLevels, // mipLevels
1, // arrayLayers
vkSamples, // samples
imageDesc.fImageTiling, // VkImageTiling
imageDesc.fUsageFlags, // VkImageUsageFlags
VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode
0, // queueFamilyCount
nullptr, // pQueueFamilyIndices
initialLayout // initialLayout
};
VkImage image = VK_NULL_HANDLE;
VkResult result;
GR_VK_CALL_RESULT(gpu, result, CreateImage(gpu->device(), &imageCreateInfo, nullptr, &image));
if (result != VK_SUCCESS) {
return false;
}
GrMemoryless memoryless = imageDesc.fUsageFlags & VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT
? GrMemoryless::kYes
: GrMemoryless::kNo;
GrVkAlloc alloc;
if (!GrVkMemory::AllocAndBindImageMemory(gpu, image, memoryless, &alloc) ||
(memoryless == GrMemoryless::kYes &&
!SkToBool(alloc.fFlags & GrVkAlloc::kLazilyAllocated_Flag))) {
VK_CALL(gpu, DestroyImage(gpu->device(), image, nullptr));
return false;
}
info->fImage = image;
info->fAlloc = alloc;
info->fImageTiling = imageDesc.fImageTiling;
info->fImageLayout = initialLayout;
info->fFormat = imageDesc.fFormat;
info->fImageUsageFlags = imageDesc.fUsageFlags;
info->fSampleCount = imageDesc.fSamples;
info->fLevelCount = imageDesc.fLevels;
info->fCurrentQueueFamily = VK_QUEUE_FAMILY_IGNORED;
info->fProtected =
(createflags & VK_IMAGE_CREATE_PROTECTED_BIT) ? GrProtected::kYes : GrProtected::kNo;
info->fSharingMode = VK_SHARING_MODE_EXCLUSIVE;
return true;
}
void GrVkImage::DestroyImageInfo(const GrVkGpu* gpu, GrVkImageInfo* info) {
VK_CALL(gpu, DestroyImage(gpu->device(), info->fImage, nullptr));
GrVkMemory::FreeImageMemory(gpu, info->fAlloc);
}
GrVkImage::~GrVkImage() {
// should have been released first
SkASSERT(!fResource);
SkASSERT(!fFramebufferView);
SkASSERT(!fTextureView);
}
void GrVkImage::prepareForPresent(GrVkGpu* gpu) {
VkImageLayout layout = this->currentLayout();
if (fInitialQueueFamily != VK_QUEUE_FAMILY_EXTERNAL &&
fInitialQueueFamily != VK_QUEUE_FAMILY_FOREIGN_EXT) {
if (gpu->vkCaps().supportsSwapchain()) {
layout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
}
}
this->setImageLayoutAndQueueIndex(gpu, layout, 0, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, false,
fInitialQueueFamily);
}
void GrVkImage::prepareForExternal(GrVkGpu* gpu) {
this->setImageLayoutAndQueueIndex(gpu, this->currentLayout(), 0,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, false,
fInitialQueueFamily);
}
void GrVkImage::releaseImage() {
if (fResource) {
fResource->unref();
fResource = nullptr;
}
fFramebufferView.reset();
fTextureView.reset();
fCachedBlendingInputDescSet.reset();
fCachedMSAALoadInputDescSet.reset();
}
void GrVkImage::onRelease() {
this->releaseImage();
GrAttachment::onRelease();
}
void GrVkImage::onAbandon() {
this->releaseImage();
GrAttachment::onAbandon();
}
void GrVkImage::setResourceRelease(sk_sp<GrRefCntedCallback> releaseHelper) {
SkASSERT(fResource);
// Forward the release proc on to GrVkImage::Resource
fResource->setRelease(std::move(releaseHelper));
}
void GrVkImage::Resource::freeGPUData() const {
this->invokeReleaseProc();
VK_CALL(fGpu, DestroyImage(fGpu->device(), fImage, nullptr));
GrVkMemory::FreeImageMemory(fGpu, fAlloc);
}
void GrVkImage::BorrowedResource::freeGPUData() const {
this->invokeReleaseProc();
}
static void write_input_desc_set(GrVkGpu* gpu,
VkImageView view,
VkImageLayout layout,
VkDescriptorSet descSet) {
VkDescriptorImageInfo imageInfo;
memset(&imageInfo, 0, sizeof(VkDescriptorImageInfo));
imageInfo.sampler = VK_NULL_HANDLE;
imageInfo.imageView = view;
imageInfo.imageLayout = layout;
VkWriteDescriptorSet writeInfo;
memset(&writeInfo, 0, sizeof(VkWriteDescriptorSet));
writeInfo.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeInfo.pNext = nullptr;
writeInfo.dstSet = descSet;
writeInfo.dstBinding = GrVkUniformHandler::kInputBinding;
writeInfo.dstArrayElement = 0;
writeInfo.descriptorCount = 1;
writeInfo.descriptorType = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT;
writeInfo.pImageInfo = &imageInfo;
writeInfo.pBufferInfo = nullptr;
writeInfo.pTexelBufferView = nullptr;
GR_VK_CALL(gpu->vkInterface(), UpdateDescriptorSets(gpu->device(), 1, &writeInfo, 0, nullptr));
}
gr_rp<const GrVkDescriptorSet> GrVkImage::inputDescSetForBlending(GrVkGpu* gpu) {
if (!this->supportsInputAttachmentUsage()) {
return nullptr;
}
if (fCachedBlendingInputDescSet) {
return fCachedBlendingInputDescSet;
}
fCachedBlendingInputDescSet.reset(gpu->resourceProvider().getInputDescriptorSet());
if (!fCachedBlendingInputDescSet) {
return nullptr;
}
write_input_desc_set(gpu,
this->framebufferView()->imageView(),
VK_IMAGE_LAYOUT_GENERAL,
*fCachedBlendingInputDescSet->descriptorSet());
return fCachedBlendingInputDescSet;
}
gr_rp<const GrVkDescriptorSet> GrVkImage::inputDescSetForMSAALoad(GrVkGpu* gpu) {
if (!this->supportsInputAttachmentUsage()) {
return nullptr;
}
if (fCachedMSAALoadInputDescSet) {
return fCachedMSAALoadInputDescSet;
}
fCachedMSAALoadInputDescSet.reset(gpu->resourceProvider().getInputDescriptorSet());
if (!fCachedMSAALoadInputDescSet) {
return nullptr;
}
write_input_desc_set(gpu,
this->framebufferView()->imageView(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
*fCachedMSAALoadInputDescSet->descriptorSet());
return fCachedMSAALoadInputDescSet;
}
GrVkGpu* GrVkImage::getVkGpu() const {
SkASSERT(!this->wasDestroyed());
return static_cast<GrVkGpu*>(this->getGpu());
}
#if GR_TEST_UTILS
void GrVkImage::setCurrentQueueFamilyToGraphicsQueue(GrVkGpu* gpu) {
fMutableState->setQueueFamilyIndex(gpu->queueIndex());
}
#endif