|  | // Copyright 2011 the V8 project authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "src/execution/mips/simulator-mips.h" | 
|  |  | 
|  | // Only build the simulator if not compiling for real MIPS hardware. | 
|  | #if defined(USE_SIMULATOR) | 
|  |  | 
|  | #include <limits.h> | 
|  | #include <stdarg.h> | 
|  | #include <stdlib.h> | 
|  |  | 
|  | #include <cmath> | 
|  |  | 
|  | #include "src/base/bits.h" | 
|  | #include "src/base/lazy-instance.h" | 
|  | #include "src/base/platform/platform.h" | 
|  | #include "src/base/platform/wrappers.h" | 
|  | #include "src/codegen/assembler-inl.h" | 
|  | #include "src/codegen/macro-assembler.h" | 
|  | #include "src/codegen/mips/constants-mips.h" | 
|  | #include "src/diagnostics/disasm.h" | 
|  | #include "src/heap/combined-heap.h" | 
|  | #include "src/runtime/runtime-utils.h" | 
|  | #include "src/utils/ostreams.h" | 
|  | #include "src/utils/vector.h" | 
|  |  | 
|  | namespace v8 { | 
|  | namespace internal { | 
|  |  | 
|  | DEFINE_LAZY_LEAKY_OBJECT_GETTER(Simulator::GlobalMonitor, | 
|  | Simulator::GlobalMonitor::Get) | 
|  |  | 
|  | // Utils functions. | 
|  | bool HaveSameSign(int32_t a, int32_t b) { return ((a ^ b) >= 0); } | 
|  |  | 
|  | uint32_t get_fcsr_condition_bit(uint32_t cc) { | 
|  | if (cc == 0) { | 
|  | return 23; | 
|  | } else { | 
|  | return 24 + cc; | 
|  | } | 
|  | } | 
|  |  | 
|  | // This macro provides a platform independent use of sscanf. The reason for | 
|  | // SScanF not being implemented in a platform independent was through | 
|  | // ::v8::internal::OS in the same way as SNPrintF is that the Windows C Run-Time | 
|  | // Library does not provide vsscanf. | 
|  | #define SScanF sscanf  // NOLINT | 
|  |  | 
|  | // The MipsDebugger class is used by the simulator while debugging simulated | 
|  | // code. | 
|  | class MipsDebugger { | 
|  | public: | 
|  | explicit MipsDebugger(Simulator* sim) : sim_(sim) {} | 
|  |  | 
|  | void Stop(Instruction* instr); | 
|  | void Debug(); | 
|  | // Print all registers with a nice formatting. | 
|  | void PrintAllRegs(); | 
|  | void PrintAllRegsIncludingFPU(); | 
|  |  | 
|  | private: | 
|  | // We set the breakpoint code to 0xFFFFF to easily recognize it. | 
|  | static const Instr kBreakpointInstr = SPECIAL | BREAK | 0xFFFFF << 6; | 
|  | static const Instr kNopInstr = 0x0; | 
|  |  | 
|  | Simulator* sim_; | 
|  |  | 
|  | int32_t GetRegisterValue(int regnum); | 
|  | int32_t GetFPURegisterValue32(int regnum); | 
|  | int64_t GetFPURegisterValue64(int regnum); | 
|  | float GetFPURegisterValueFloat(int regnum); | 
|  | double GetFPURegisterValueDouble(int regnum); | 
|  | bool GetValue(const char* desc, int32_t* value); | 
|  | bool GetValue(const char* desc, int64_t* value); | 
|  |  | 
|  | // Set or delete a breakpoint. Returns true if successful. | 
|  | bool SetBreakpoint(Instruction* breakpc); | 
|  | bool DeleteBreakpoint(Instruction* breakpc); | 
|  |  | 
|  | // Undo and redo all breakpoints. This is needed to bracket disassembly and | 
|  | // execution to skip past breakpoints when run from the debugger. | 
|  | void UndoBreakpoints(); | 
|  | void RedoBreakpoints(); | 
|  | }; | 
|  |  | 
|  | #define UNSUPPORTED() printf("Sim: Unsupported instruction.\n"); | 
|  |  | 
|  | void MipsDebugger::Stop(Instruction* instr) { | 
|  | // Get the stop code. | 
|  | uint32_t code = instr->Bits(25, 6); | 
|  | PrintF("Simulator hit (%u)\n", code); | 
|  | Debug(); | 
|  | } | 
|  |  | 
|  | int32_t MipsDebugger::GetRegisterValue(int regnum) { | 
|  | if (regnum == kNumSimuRegisters) { | 
|  | return sim_->get_pc(); | 
|  | } else { | 
|  | return sim_->get_register(regnum); | 
|  | } | 
|  | } | 
|  |  | 
|  | int32_t MipsDebugger::GetFPURegisterValue32(int regnum) { | 
|  | if (regnum == kNumFPURegisters) { | 
|  | return sim_->get_pc(); | 
|  | } else { | 
|  | return sim_->get_fpu_register_word(regnum); | 
|  | } | 
|  | } | 
|  |  | 
|  | int64_t MipsDebugger::GetFPURegisterValue64(int regnum) { | 
|  | if (regnum == kNumFPURegisters) { | 
|  | return sim_->get_pc(); | 
|  | } else { | 
|  | return sim_->get_fpu_register(regnum); | 
|  | } | 
|  | } | 
|  |  | 
|  | float MipsDebugger::GetFPURegisterValueFloat(int regnum) { | 
|  | if (regnum == kNumFPURegisters) { | 
|  | return sim_->get_pc(); | 
|  | } else { | 
|  | return sim_->get_fpu_register_float(regnum); | 
|  | } | 
|  | } | 
|  |  | 
|  | double MipsDebugger::GetFPURegisterValueDouble(int regnum) { | 
|  | if (regnum == kNumFPURegisters) { | 
|  | return sim_->get_pc(); | 
|  | } else { | 
|  | return sim_->get_fpu_register_double(regnum); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool MipsDebugger::GetValue(const char* desc, int32_t* value) { | 
|  | int regnum = Registers::Number(desc); | 
|  | int fpuregnum = FPURegisters::Number(desc); | 
|  |  | 
|  | if (regnum != kInvalidRegister) { | 
|  | *value = GetRegisterValue(regnum); | 
|  | return true; | 
|  | } else if (fpuregnum != kInvalidFPURegister) { | 
|  | *value = GetFPURegisterValue32(fpuregnum); | 
|  | return true; | 
|  | } else if (strncmp(desc, "0x", 2) == 0) { | 
|  | return SScanF(desc, "%x", reinterpret_cast<uint32_t*>(value)) == 1; | 
|  | } else { | 
|  | return SScanF(desc, "%i", value) == 1; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool MipsDebugger::GetValue(const char* desc, int64_t* value) { | 
|  | int regnum = Registers::Number(desc); | 
|  | int fpuregnum = FPURegisters::Number(desc); | 
|  |  | 
|  | if (regnum != kInvalidRegister) { | 
|  | *value = GetRegisterValue(regnum); | 
|  | return true; | 
|  | } else if (fpuregnum != kInvalidFPURegister) { | 
|  | *value = GetFPURegisterValue64(fpuregnum); | 
|  | return true; | 
|  | } else if (strncmp(desc, "0x", 2) == 0) { | 
|  | return SScanF(desc + 2, "%" SCNx64, reinterpret_cast<uint64_t*>(value)) == | 
|  | 1; | 
|  | } else { | 
|  | return SScanF(desc, "%" SCNu64, reinterpret_cast<uint64_t*>(value)) == 1; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool MipsDebugger::SetBreakpoint(Instruction* breakpc) { | 
|  | // Check if a breakpoint can be set. If not return without any side-effects. | 
|  | if (sim_->break_pc_ != nullptr) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Set the breakpoint. | 
|  | sim_->break_pc_ = breakpc; | 
|  | sim_->break_instr_ = breakpc->InstructionBits(); | 
|  | // Not setting the breakpoint instruction in the code itself. It will be set | 
|  | // when the debugger shell continues. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool MipsDebugger::DeleteBreakpoint(Instruction* breakpc) { | 
|  | if (sim_->break_pc_ != nullptr) { | 
|  | sim_->break_pc_->SetInstructionBits(sim_->break_instr_); | 
|  | } | 
|  |  | 
|  | sim_->break_pc_ = nullptr; | 
|  | sim_->break_instr_ = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void MipsDebugger::UndoBreakpoints() { | 
|  | if (sim_->break_pc_ != nullptr) { | 
|  | sim_->break_pc_->SetInstructionBits(sim_->break_instr_); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MipsDebugger::RedoBreakpoints() { | 
|  | if (sim_->break_pc_ != nullptr) { | 
|  | sim_->break_pc_->SetInstructionBits(kBreakpointInstr); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MipsDebugger::PrintAllRegs() { | 
|  | #define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n) | 
|  |  | 
|  | PrintF("\n"); | 
|  | // at, v0, a0. | 
|  | PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", REG_INFO(1), | 
|  | REG_INFO(2), REG_INFO(4)); | 
|  | // v1, a1. | 
|  | PrintF("%26s\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", "", REG_INFO(3), | 
|  | REG_INFO(5)); | 
|  | // a2. | 
|  | PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(6)); | 
|  | // a3. | 
|  | PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(7)); | 
|  | PrintF("\n"); | 
|  | // t0-t7, s0-s7 | 
|  | for (int i = 0; i < 8; i++) { | 
|  | PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", REG_INFO(8 + i), | 
|  | REG_INFO(16 + i)); | 
|  | } | 
|  | PrintF("\n"); | 
|  | // t8, k0, LO. | 
|  | PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", REG_INFO(24), | 
|  | REG_INFO(26), REG_INFO(32)); | 
|  | // t9, k1, HI. | 
|  | PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", REG_INFO(25), | 
|  | REG_INFO(27), REG_INFO(33)); | 
|  | // sp, fp, gp. | 
|  | PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", REG_INFO(29), | 
|  | REG_INFO(30), REG_INFO(28)); | 
|  | // pc. | 
|  | PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", REG_INFO(31), REG_INFO(34)); | 
|  |  | 
|  | #undef REG_INFO | 
|  | } | 
|  |  | 
|  | void MipsDebugger::PrintAllRegsIncludingFPU() { | 
|  | #define FPU_REG_INFO32(n)                                     \ | 
|  | FPURegisters::Name(n), FPURegisters::Name(n + 1),           \ | 
|  | GetFPURegisterValue32(n + 1), GetFPURegisterValue32(n), \ | 
|  | GetFPURegisterValueDouble(n) | 
|  |  | 
|  | #define FPU_REG_INFO64(n) \ | 
|  | FPURegisters::Name(n), GetFPURegisterValue64(n), GetFPURegisterValueDouble(n) | 
|  |  | 
|  | PrintAllRegs(); | 
|  |  | 
|  | PrintF("\n\n"); | 
|  | // f0, f1, f2, ... f31. | 
|  | // This must be a compile-time switch, | 
|  | // compiler will throw out warnings otherwise. | 
|  | if (kFpuMode == kFP64) { | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(0)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(1)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(2)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(3)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(4)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(5)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(6)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(7)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(8)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(9)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(10)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(11)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(12)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(13)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(14)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(15)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(16)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(17)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(18)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(19)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(20)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(21)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(22)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(23)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(24)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(25)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(26)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(27)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(28)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(29)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(30)); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(31)); | 
|  | } else { | 
|  | PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(0)); | 
|  | PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(2)); | 
|  | PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(4)); | 
|  | PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(6)); | 
|  | PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(8)); | 
|  | PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(10)); | 
|  | PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(12)); | 
|  | PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(14)); | 
|  | PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(16)); | 
|  | PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(18)); | 
|  | PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(20)); | 
|  | PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(22)); | 
|  | PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(24)); | 
|  | PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(26)); | 
|  | PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(28)); | 
|  | PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(30)); | 
|  | } | 
|  |  | 
|  | #undef FPU_REG_INFO32 | 
|  | #undef FPU_REG_INFO64 | 
|  | } | 
|  |  | 
|  | void MipsDebugger::Debug() { | 
|  | intptr_t last_pc = -1; | 
|  | bool done = false; | 
|  |  | 
|  | #define COMMAND_SIZE 63 | 
|  | #define ARG_SIZE 255 | 
|  |  | 
|  | #define STR(a) #a | 
|  | #define XSTR(a) STR(a) | 
|  |  | 
|  | char cmd[COMMAND_SIZE + 1]; | 
|  | char arg1[ARG_SIZE + 1]; | 
|  | char arg2[ARG_SIZE + 1]; | 
|  | char* argv[3] = {cmd, arg1, arg2}; | 
|  |  | 
|  | // Make sure to have a proper terminating character if reaching the limit. | 
|  | cmd[COMMAND_SIZE] = 0; | 
|  | arg1[ARG_SIZE] = 0; | 
|  | arg2[ARG_SIZE] = 0; | 
|  |  | 
|  | // Undo all set breakpoints while running in the debugger shell. This will | 
|  | // make them invisible to all commands. | 
|  | UndoBreakpoints(); | 
|  |  | 
|  | while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) { | 
|  | if (last_pc != sim_->get_pc()) { | 
|  | disasm::NameConverter converter; | 
|  | disasm::Disassembler dasm(converter); | 
|  | // Use a reasonably large buffer. | 
|  | v8::internal::EmbeddedVector<char, 256> buffer; | 
|  | dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc())); | 
|  | PrintF("  0x%08x  %s\n", sim_->get_pc(), buffer.begin()); | 
|  | last_pc = sim_->get_pc(); | 
|  | } | 
|  | char* line = ReadLine("sim> "); | 
|  | if (line == nullptr) { | 
|  | break; | 
|  | } else { | 
|  | char* last_input = sim_->last_debugger_input(); | 
|  | if (strcmp(line, "\n") == 0 && last_input != nullptr) { | 
|  | line = last_input; | 
|  | } else { | 
|  | // Ownership is transferred to sim_; | 
|  | sim_->set_last_debugger_input(line); | 
|  | } | 
|  | // Use sscanf to parse the individual parts of the command line. At the | 
|  | // moment no command expects more than two parameters. | 
|  | int argc = SScanF(line, | 
|  | "%" XSTR(COMMAND_SIZE) "s " | 
|  | "%" XSTR(ARG_SIZE) "s " | 
|  | "%" XSTR(ARG_SIZE) "s", | 
|  | cmd, arg1, arg2); | 
|  | if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { | 
|  | Instruction* instr = reinterpret_cast<Instruction*>(sim_->get_pc()); | 
|  | if (!(instr->IsTrap()) || | 
|  | instr->InstructionBits() == rtCallRedirInstr) { | 
|  | sim_->InstructionDecode( | 
|  | reinterpret_cast<Instruction*>(sim_->get_pc())); | 
|  | } else { | 
|  | // Allow si to jump over generated breakpoints. | 
|  | PrintF("/!\\ Jumping over generated breakpoint.\n"); | 
|  | sim_->set_pc(sim_->get_pc() + kInstrSize); | 
|  | } | 
|  | } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { | 
|  | // Execute the one instruction we broke at with breakpoints disabled. | 
|  | sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc())); | 
|  | // Leave the debugger shell. | 
|  | done = true; | 
|  | } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { | 
|  | if (argc == 2) { | 
|  | if (strcmp(arg1, "all") == 0) { | 
|  | PrintAllRegs(); | 
|  | } else if (strcmp(arg1, "allf") == 0) { | 
|  | PrintAllRegsIncludingFPU(); | 
|  | } else { | 
|  | int regnum = Registers::Number(arg1); | 
|  | int fpuregnum = FPURegisters::Number(arg1); | 
|  |  | 
|  | if (regnum != kInvalidRegister) { | 
|  | int32_t value; | 
|  | value = GetRegisterValue(regnum); | 
|  | PrintF("%s: 0x%08x %d \n", arg1, value, value); | 
|  | } else if (fpuregnum != kInvalidFPURegister) { | 
|  | if (IsFp64Mode()) { | 
|  | int64_t value; | 
|  | double dvalue; | 
|  | value = GetFPURegisterValue64(fpuregnum); | 
|  | dvalue = GetFPURegisterValueDouble(fpuregnum); | 
|  | PrintF("%3s: 0x%016llx %16.4e\n", FPURegisters::Name(fpuregnum), | 
|  | value, dvalue); | 
|  | } else { | 
|  | if (fpuregnum % 2 == 1) { | 
|  | int32_t value; | 
|  | float fvalue; | 
|  | value = GetFPURegisterValue32(fpuregnum); | 
|  | fvalue = GetFPURegisterValueFloat(fpuregnum); | 
|  | PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue); | 
|  | } else { | 
|  | double dfvalue; | 
|  | int32_t lvalue1 = GetFPURegisterValue32(fpuregnum); | 
|  | int32_t lvalue2 = GetFPURegisterValue32(fpuregnum + 1); | 
|  | dfvalue = GetFPURegisterValueDouble(fpuregnum); | 
|  | PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", | 
|  | FPURegisters::Name(fpuregnum + 1), | 
|  | FPURegisters::Name(fpuregnum), lvalue1, lvalue2, | 
|  | dfvalue); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | PrintF("%s unrecognized\n", arg1); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (argc == 3) { | 
|  | if (strcmp(arg2, "single") == 0) { | 
|  | int32_t value; | 
|  | float fvalue; | 
|  | int fpuregnum = FPURegisters::Number(arg1); | 
|  |  | 
|  | if (fpuregnum != kInvalidFPURegister) { | 
|  | value = GetFPURegisterValue32(fpuregnum); | 
|  | fvalue = GetFPURegisterValueFloat(fpuregnum); | 
|  | PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue); | 
|  | } else { | 
|  | PrintF("%s unrecognized\n", arg1); | 
|  | } | 
|  | } else { | 
|  | PrintF("print <fpu register> single\n"); | 
|  | } | 
|  | } else { | 
|  | PrintF("print <register> or print <fpu register> single\n"); | 
|  | } | 
|  | } | 
|  | } else if ((strcmp(cmd, "po") == 0) || | 
|  | (strcmp(cmd, "printobject") == 0)) { | 
|  | if (argc == 2) { | 
|  | int32_t value; | 
|  | StdoutStream os; | 
|  | if (GetValue(arg1, &value)) { | 
|  | Object obj(value); | 
|  | os << arg1 << ": \n"; | 
|  | #ifdef DEBUG | 
|  | obj.Print(os); | 
|  | os << "\n"; | 
|  | #else | 
|  | os << Brief(obj) << "\n"; | 
|  | #endif | 
|  | } else { | 
|  | os << arg1 << " unrecognized\n"; | 
|  | } | 
|  | } else { | 
|  | PrintF("printobject <value>\n"); | 
|  | } | 
|  | } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0 || | 
|  | strcmp(cmd, "dump") == 0) { | 
|  | int32_t* cur = nullptr; | 
|  | int32_t* end = nullptr; | 
|  | int next_arg = 1; | 
|  |  | 
|  | if (strcmp(cmd, "stack") == 0) { | 
|  | cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp)); | 
|  | } else {  // Command "mem". | 
|  | int32_t value; | 
|  | if (!GetValue(arg1, &value)) { | 
|  | PrintF("%s unrecognized\n", arg1); | 
|  | continue; | 
|  | } | 
|  | cur = reinterpret_cast<int32_t*>(value); | 
|  | next_arg++; | 
|  | } | 
|  |  | 
|  | // TODO(palfia): optimize this. | 
|  | if (IsFp64Mode()) { | 
|  | int64_t words; | 
|  | if (argc == next_arg) { | 
|  | words = 10; | 
|  | } else { | 
|  | if (!GetValue(argv[next_arg], &words)) { | 
|  | words = 10; | 
|  | } | 
|  | } | 
|  | end = cur + words; | 
|  | } else { | 
|  | int32_t words; | 
|  | if (argc == next_arg) { | 
|  | words = 10; | 
|  | } else { | 
|  | if (!GetValue(argv[next_arg], &words)) { | 
|  | words = 10; | 
|  | } | 
|  | } | 
|  | end = cur + words; | 
|  | } | 
|  |  | 
|  | bool skip_obj_print = (strcmp(cmd, "dump") == 0); | 
|  | while (cur < end) { | 
|  | PrintF("  0x%08" PRIxPTR ":  0x%08x %10d", | 
|  | reinterpret_cast<intptr_t>(cur), *cur, *cur); | 
|  | Object obj(*cur); | 
|  | Heap* current_heap = sim_->isolate_->heap(); | 
|  | if (!skip_obj_print) { | 
|  | if (obj.IsSmi() || | 
|  | IsValidHeapObject(current_heap, HeapObject::cast(obj))) { | 
|  | PrintF(" ("); | 
|  | if (obj.IsSmi()) { | 
|  | PrintF("smi %d", Smi::ToInt(obj)); | 
|  | } else { | 
|  | obj.ShortPrint(); | 
|  | } | 
|  | PrintF(")"); | 
|  | } | 
|  | } | 
|  | PrintF("\n"); | 
|  | cur++; | 
|  | } | 
|  |  | 
|  | } else if ((strcmp(cmd, "disasm") == 0) || (strcmp(cmd, "dpc") == 0) || | 
|  | (strcmp(cmd, "di") == 0)) { | 
|  | disasm::NameConverter converter; | 
|  | disasm::Disassembler dasm(converter); | 
|  | // Use a reasonably large buffer. | 
|  | v8::internal::EmbeddedVector<char, 256> buffer; | 
|  |  | 
|  | byte* cur = nullptr; | 
|  | byte* end = nullptr; | 
|  |  | 
|  | if (argc == 1) { | 
|  | cur = reinterpret_cast<byte*>(sim_->get_pc()); | 
|  | end = cur + (10 * kInstrSize); | 
|  | } else if (argc == 2) { | 
|  | int regnum = Registers::Number(arg1); | 
|  | if (regnum != kInvalidRegister || strncmp(arg1, "0x", 2) == 0) { | 
|  | // The argument is an address or a register name. | 
|  | int32_t value; | 
|  | if (GetValue(arg1, &value)) { | 
|  | cur = reinterpret_cast<byte*>(value); | 
|  | // Disassemble 10 instructions at <arg1>. | 
|  | end = cur + (10 * kInstrSize); | 
|  | } | 
|  | } else { | 
|  | // The argument is the number of instructions. | 
|  | int32_t value; | 
|  | if (GetValue(arg1, &value)) { | 
|  | cur = reinterpret_cast<byte*>(sim_->get_pc()); | 
|  | // Disassemble <arg1> instructions. | 
|  | end = cur + (value * kInstrSize); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | int32_t value1; | 
|  | int32_t value2; | 
|  | if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { | 
|  | cur = reinterpret_cast<byte*>(value1); | 
|  | end = cur + (value2 * kInstrSize); | 
|  | } | 
|  | } | 
|  |  | 
|  | while (cur < end) { | 
|  | dasm.InstructionDecode(buffer, cur); | 
|  | PrintF("  0x%08" PRIxPTR "  %s\n", reinterpret_cast<intptr_t>(cur), | 
|  | buffer.begin()); | 
|  | cur += kInstrSize; | 
|  | } | 
|  | } else if (strcmp(cmd, "gdb") == 0) { | 
|  | PrintF("relinquishing control to gdb\n"); | 
|  | v8::base::OS::DebugBreak(); | 
|  | PrintF("regaining control from gdb\n"); | 
|  | } else if (strcmp(cmd, "break") == 0) { | 
|  | if (argc == 2) { | 
|  | int32_t value; | 
|  | if (GetValue(arg1, &value)) { | 
|  | if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) { | 
|  | PrintF("setting breakpoint failed\n"); | 
|  | } | 
|  | } else { | 
|  | PrintF("%s unrecognized\n", arg1); | 
|  | } | 
|  | } else { | 
|  | PrintF("break <address>\n"); | 
|  | } | 
|  | } else if (strcmp(cmd, "del") == 0) { | 
|  | if (!DeleteBreakpoint(nullptr)) { | 
|  | PrintF("deleting breakpoint failed\n"); | 
|  | } | 
|  | } else if (strcmp(cmd, "flags") == 0) { | 
|  | PrintF("No flags on MIPS !\n"); | 
|  | } else if (strcmp(cmd, "stop") == 0) { | 
|  | int32_t value; | 
|  | intptr_t stop_pc = sim_->get_pc() - 2 * kInstrSize; | 
|  | Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc); | 
|  | Instruction* msg_address = | 
|  | reinterpret_cast<Instruction*>(stop_pc + kInstrSize); | 
|  | if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { | 
|  | // Remove the current stop. | 
|  | if (sim_->IsStopInstruction(stop_instr)) { | 
|  | stop_instr->SetInstructionBits(kNopInstr); | 
|  | msg_address->SetInstructionBits(kNopInstr); | 
|  | } else { | 
|  | PrintF("Not at debugger stop.\n"); | 
|  | } | 
|  | } else if (argc == 3) { | 
|  | // Print information about all/the specified breakpoint(s). | 
|  | if (strcmp(arg1, "info") == 0) { | 
|  | if (strcmp(arg2, "all") == 0) { | 
|  | PrintF("Stop information:\n"); | 
|  | for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode; | 
|  | i++) { | 
|  | sim_->PrintStopInfo(i); | 
|  | } | 
|  | } else if (GetValue(arg2, &value)) { | 
|  | sim_->PrintStopInfo(value); | 
|  | } else { | 
|  | PrintF("Unrecognized argument.\n"); | 
|  | } | 
|  | } else if (strcmp(arg1, "enable") == 0) { | 
|  | // Enable all/the specified breakpoint(s). | 
|  | if (strcmp(arg2, "all") == 0) { | 
|  | for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode; | 
|  | i++) { | 
|  | sim_->EnableStop(i); | 
|  | } | 
|  | } else if (GetValue(arg2, &value)) { | 
|  | sim_->EnableStop(value); | 
|  | } else { | 
|  | PrintF("Unrecognized argument.\n"); | 
|  | } | 
|  | } else if (strcmp(arg1, "disable") == 0) { | 
|  | // Disable all/the specified breakpoint(s). | 
|  | if (strcmp(arg2, "all") == 0) { | 
|  | for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode; | 
|  | i++) { | 
|  | sim_->DisableStop(i); | 
|  | } | 
|  | } else if (GetValue(arg2, &value)) { | 
|  | sim_->DisableStop(value); | 
|  | } else { | 
|  | PrintF("Unrecognized argument.\n"); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | PrintF("Wrong usage. Use help command for more information.\n"); | 
|  | } | 
|  | } else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) { | 
|  | // Print registers and disassemble. | 
|  | PrintAllRegs(); | 
|  | PrintF("\n"); | 
|  |  | 
|  | disasm::NameConverter converter; | 
|  | disasm::Disassembler dasm(converter); | 
|  | // Use a reasonably large buffer. | 
|  | v8::internal::EmbeddedVector<char, 256> buffer; | 
|  |  | 
|  | byte* cur = nullptr; | 
|  | byte* end = nullptr; | 
|  |  | 
|  | if (argc == 1) { | 
|  | cur = reinterpret_cast<byte*>(sim_->get_pc()); | 
|  | end = cur + (10 * kInstrSize); | 
|  | } else if (argc == 2) { | 
|  | int32_t value; | 
|  | if (GetValue(arg1, &value)) { | 
|  | cur = reinterpret_cast<byte*>(value); | 
|  | // no length parameter passed, assume 10 instructions | 
|  | end = cur + (10 * kInstrSize); | 
|  | } | 
|  | } else { | 
|  | int32_t value1; | 
|  | int32_t value2; | 
|  | if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { | 
|  | cur = reinterpret_cast<byte*>(value1); | 
|  | end = cur + (value2 * kInstrSize); | 
|  | } | 
|  | } | 
|  |  | 
|  | while (cur < end) { | 
|  | dasm.InstructionDecode(buffer, cur); | 
|  | PrintF("  0x%08" PRIxPTR "  %s\n", reinterpret_cast<intptr_t>(cur), | 
|  | buffer.begin()); | 
|  | cur += kInstrSize; | 
|  | } | 
|  | } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { | 
|  | PrintF("cont\n"); | 
|  | PrintF("  continue execution (alias 'c')\n"); | 
|  | PrintF("stepi\n"); | 
|  | PrintF("  step one instruction (alias 'si')\n"); | 
|  | PrintF("print <register>\n"); | 
|  | PrintF("  print register content (alias 'p')\n"); | 
|  | PrintF("  use register name 'all' to print all registers\n"); | 
|  | PrintF("printobject <register>\n"); | 
|  | PrintF("  print an object from a register (alias 'po')\n"); | 
|  | PrintF("stack [<words>]\n"); | 
|  | PrintF("  dump stack content, default dump 10 words)\n"); | 
|  | PrintF("mem <address> [<words>]\n"); | 
|  | PrintF("  dump memory content, default dump 10 words)\n"); | 
|  | PrintF("dump [<words>]\n"); | 
|  | PrintF( | 
|  | "  dump memory content without pretty printing JS objects, default " | 
|  | "dump 10 words)\n"); | 
|  | PrintF("flags\n"); | 
|  | PrintF("  print flags\n"); | 
|  | PrintF("disasm [<instructions>]\n"); | 
|  | PrintF("disasm [<address/register>]\n"); | 
|  | PrintF("disasm [[<address/register>] <instructions>]\n"); | 
|  | PrintF("  disassemble code, default is 10 instructions\n"); | 
|  | PrintF("  from pc (alias 'di')\n"); | 
|  | PrintF("gdb\n"); | 
|  | PrintF("  enter gdb\n"); | 
|  | PrintF("break <address>\n"); | 
|  | PrintF("  set a break point on the address\n"); | 
|  | PrintF("del\n"); | 
|  | PrintF("  delete the breakpoint\n"); | 
|  | PrintF("stop feature:\n"); | 
|  | PrintF("  Description:\n"); | 
|  | PrintF("    Stops are debug instructions inserted by\n"); | 
|  | PrintF("    the Assembler::stop() function.\n"); | 
|  | PrintF("    When hitting a stop, the Simulator will\n"); | 
|  | PrintF("    stop and give control to the Debugger.\n"); | 
|  | PrintF("    All stop codes are watched:\n"); | 
|  | PrintF("    - They can be enabled / disabled: the Simulator\n"); | 
|  | PrintF("       will / won't stop when hitting them.\n"); | 
|  | PrintF("    - The Simulator keeps track of how many times they \n"); | 
|  | PrintF("      are met. (See the info command.) Going over a\n"); | 
|  | PrintF("      disabled stop still increases its counter. \n"); | 
|  | PrintF("  Commands:\n"); | 
|  | PrintF("    stop info all/<code> : print infos about number <code>\n"); | 
|  | PrintF("      or all stop(s).\n"); | 
|  | PrintF("    stop enable/disable all/<code> : enables / disables\n"); | 
|  | PrintF("      all or number <code> stop(s)\n"); | 
|  | PrintF("    stop unstop\n"); | 
|  | PrintF("      ignore the stop instruction at the current location\n"); | 
|  | PrintF("      from now on\n"); | 
|  | } else { | 
|  | PrintF("Unknown command: %s\n", cmd); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add all the breakpoints back to stop execution and enter the debugger | 
|  | // shell when hit. | 
|  | RedoBreakpoints(); | 
|  |  | 
|  | #undef COMMAND_SIZE | 
|  | #undef ARG_SIZE | 
|  |  | 
|  | #undef STR | 
|  | #undef XSTR | 
|  | } | 
|  |  | 
|  | bool Simulator::ICacheMatch(void* one, void* two) { | 
|  | DCHECK_EQ(reinterpret_cast<intptr_t>(one) & CachePage::kPageMask, 0); | 
|  | DCHECK_EQ(reinterpret_cast<intptr_t>(two) & CachePage::kPageMask, 0); | 
|  | return one == two; | 
|  | } | 
|  |  | 
|  | static uint32_t ICacheHash(void* key) { | 
|  | return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2; | 
|  | } | 
|  |  | 
|  | static bool AllOnOnePage(uintptr_t start, int size) { | 
|  | intptr_t start_page = (start & ~CachePage::kPageMask); | 
|  | intptr_t end_page = ((start + size) & ~CachePage::kPageMask); | 
|  | return start_page == end_page; | 
|  | } | 
|  |  | 
|  | void Simulator::set_last_debugger_input(char* input) { | 
|  | DeleteArray(last_debugger_input_); | 
|  | last_debugger_input_ = input; | 
|  | } | 
|  |  | 
|  | void Simulator::SetRedirectInstruction(Instruction* instruction) { | 
|  | instruction->SetInstructionBits(rtCallRedirInstr); | 
|  | } | 
|  |  | 
|  | void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache, | 
|  | void* start_addr, size_t size) { | 
|  | intptr_t start = reinterpret_cast<intptr_t>(start_addr); | 
|  | int intra_line = (start & CachePage::kLineMask); | 
|  | start -= intra_line; | 
|  | size += intra_line; | 
|  | size = ((size - 1) | CachePage::kLineMask) + 1; | 
|  | int offset = (start & CachePage::kPageMask); | 
|  | while (!AllOnOnePage(start, size - 1)) { | 
|  | int bytes_to_flush = CachePage::kPageSize - offset; | 
|  | FlushOnePage(i_cache, start, bytes_to_flush); | 
|  | start += bytes_to_flush; | 
|  | size -= bytes_to_flush; | 
|  | DCHECK_EQ(0, start & CachePage::kPageMask); | 
|  | offset = 0; | 
|  | } | 
|  | if (size != 0) { | 
|  | FlushOnePage(i_cache, start, size); | 
|  | } | 
|  | } | 
|  |  | 
|  | CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache, | 
|  | void* page) { | 
|  | base::CustomMatcherHashMap::Entry* entry = | 
|  | i_cache->LookupOrInsert(page, ICacheHash(page)); | 
|  | if (entry->value == nullptr) { | 
|  | CachePage* new_page = new CachePage(); | 
|  | entry->value = new_page; | 
|  | } | 
|  | return reinterpret_cast<CachePage*>(entry->value); | 
|  | } | 
|  |  | 
|  | // Flush from start up to and not including start + size. | 
|  | void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache, | 
|  | intptr_t start, int size) { | 
|  | DCHECK_LE(size, CachePage::kPageSize); | 
|  | DCHECK(AllOnOnePage(start, size - 1)); | 
|  | DCHECK_EQ(start & CachePage::kLineMask, 0); | 
|  | DCHECK_EQ(size & CachePage::kLineMask, 0); | 
|  | void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); | 
|  | int offset = (start & CachePage::kPageMask); | 
|  | CachePage* cache_page = GetCachePage(i_cache, page); | 
|  | char* valid_bytemap = cache_page->ValidityByte(offset); | 
|  | memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); | 
|  | } | 
|  |  | 
|  | void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache, | 
|  | Instruction* instr) { | 
|  | intptr_t address = reinterpret_cast<intptr_t>(instr); | 
|  | void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); | 
|  | void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); | 
|  | int offset = (address & CachePage::kPageMask); | 
|  | CachePage* cache_page = GetCachePage(i_cache, page); | 
|  | char* cache_valid_byte = cache_page->ValidityByte(offset); | 
|  | bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); | 
|  | char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); | 
|  | if (cache_hit) { | 
|  | // Check that the data in memory matches the contents of the I-cache. | 
|  | CHECK_EQ(0, memcmp(reinterpret_cast<void*>(instr), | 
|  | cache_page->CachedData(offset), kInstrSize)); | 
|  | } else { | 
|  | // Cache miss.  Load memory into the cache. | 
|  | memcpy(cached_line, line, CachePage::kLineLength); | 
|  | *cache_valid_byte = CachePage::LINE_VALID; | 
|  | } | 
|  | } | 
|  |  | 
|  | Simulator::Simulator(Isolate* isolate) : isolate_(isolate) { | 
|  | // Set up simulator support first. Some of this information is needed to | 
|  | // setup the architecture state. | 
|  | stack_size_ = FLAG_sim_stack_size * KB; | 
|  | stack_ = reinterpret_cast<char*>(base::Malloc(stack_size_)); | 
|  | pc_modified_ = false; | 
|  | icount_ = 0; | 
|  | break_count_ = 0; | 
|  | break_pc_ = nullptr; | 
|  | break_instr_ = 0; | 
|  |  | 
|  | // Set up architecture state. | 
|  | // All registers are initialized to zero to start with. | 
|  | for (int i = 0; i < kNumSimuRegisters; i++) { | 
|  | registers_[i] = 0; | 
|  | } | 
|  | for (int i = 0; i < kNumFPURegisters; i++) { | 
|  | FPUregisters_[2 * i] = 0; | 
|  | FPUregisters_[2 * i + 1] = 0;  // upper part for MSA ASE | 
|  | } | 
|  | if (IsMipsArchVariant(kMips32r6)) { | 
|  | FCSR_ = kFCSRNaN2008FlagMask; | 
|  | MSACSR_ = 0; | 
|  | } else { | 
|  | DCHECK(IsMipsArchVariant(kMips32r1) || IsMipsArchVariant(kMips32r2)); | 
|  | FCSR_ = 0; | 
|  | } | 
|  |  | 
|  | // The sp is initialized to point to the bottom (high address) of the | 
|  | // allocated stack area. To be safe in potential stack underflows we leave | 
|  | // some buffer below. | 
|  | registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size_ - 64; | 
|  | // The ra and pc are initialized to a known bad value that will cause an | 
|  | // access violation if the simulator ever tries to execute it. | 
|  | registers_[pc] = bad_ra; | 
|  | registers_[ra] = bad_ra; | 
|  | last_debugger_input_ = nullptr; | 
|  | } | 
|  |  | 
|  | Simulator::~Simulator() { | 
|  | GlobalMonitor::Get()->RemoveLinkedAddress(&global_monitor_thread_); | 
|  | base::Free(stack_); | 
|  | } | 
|  |  | 
|  | // Get the active Simulator for the current thread. | 
|  | Simulator* Simulator::current(Isolate* isolate) { | 
|  | v8::internal::Isolate::PerIsolateThreadData* isolate_data = | 
|  | isolate->FindOrAllocatePerThreadDataForThisThread(); | 
|  | DCHECK_NOT_NULL(isolate_data); | 
|  |  | 
|  | Simulator* sim = isolate_data->simulator(); | 
|  | if (sim == nullptr) { | 
|  | // TODO(146): delete the simulator object when a thread/isolate goes away. | 
|  | sim = new Simulator(isolate); | 
|  | isolate_data->set_simulator(sim); | 
|  | } | 
|  | return sim; | 
|  | } | 
|  |  | 
|  | // Sets the register in the architecture state. It will also deal with updating | 
|  | // Simulator internal state for special registers such as PC. | 
|  | void Simulator::set_register(int reg, int32_t value) { | 
|  | DCHECK((reg >= 0) && (reg < kNumSimuRegisters)); | 
|  | if (reg == pc) { | 
|  | pc_modified_ = true; | 
|  | } | 
|  |  | 
|  | // Zero register always holds 0. | 
|  | registers_[reg] = (reg == 0) ? 0 : value; | 
|  | } | 
|  |  | 
|  | void Simulator::set_dw_register(int reg, const int* dbl) { | 
|  | DCHECK((reg >= 0) && (reg < kNumSimuRegisters)); | 
|  | registers_[reg] = dbl[0]; | 
|  | registers_[reg + 1] = dbl[1]; | 
|  | } | 
|  |  | 
|  | void Simulator::set_fpu_register(int fpureg, int64_t value) { | 
|  | DCHECK(IsFp64Mode()); | 
|  | DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); | 
|  | FPUregisters_[fpureg * 2] = value; | 
|  | } | 
|  |  | 
|  | void Simulator::set_fpu_register_word(int fpureg, int32_t value) { | 
|  | // Set ONLY lower 32-bits, leaving upper bits untouched. | 
|  | // TODO(plind): big endian issue. | 
|  | DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); | 
|  | int32_t* pword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg * 2]); | 
|  | *pword = value; | 
|  | } | 
|  |  | 
|  | void Simulator::set_fpu_register_hi_word(int fpureg, int32_t value) { | 
|  | // Set ONLY upper 32-bits, leaving lower bits untouched. | 
|  | // TODO(plind): big endian issue. | 
|  | DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); | 
|  | int32_t* phiword = | 
|  | (reinterpret_cast<int32_t*>(&FPUregisters_[fpureg * 2])) + 1; | 
|  | *phiword = value; | 
|  | } | 
|  |  | 
|  | void Simulator::set_fpu_register_float(int fpureg, float value) { | 
|  | DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); | 
|  | *bit_cast<float*>(&FPUregisters_[fpureg * 2]) = value; | 
|  | } | 
|  |  | 
|  | void Simulator::set_fpu_register_double(int fpureg, double value) { | 
|  | if (IsFp64Mode()) { | 
|  | DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); | 
|  | *bit_cast<double*>(&FPUregisters_[fpureg * 2]) = value; | 
|  | } else { | 
|  | DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0)); | 
|  | int64_t i64 = bit_cast<int64_t>(value); | 
|  | set_fpu_register_word(fpureg, i64 & 0xFFFFFFFF); | 
|  | set_fpu_register_word(fpureg + 1, i64 >> 32); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Get the register from the architecture state. This function does handle | 
|  | // the special case of accessing the PC register. | 
|  | int32_t Simulator::get_register(int reg) const { | 
|  | DCHECK((reg >= 0) && (reg < kNumSimuRegisters)); | 
|  | if (reg == 0) | 
|  | return 0; | 
|  | else | 
|  | return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0); | 
|  | } | 
|  |  | 
|  | double Simulator::get_double_from_register_pair(int reg) { | 
|  | // TODO(plind): bad ABI stuff, refactor or remove. | 
|  | DCHECK((reg >= 0) && (reg < kNumSimuRegisters) && ((reg % 2) == 0)); | 
|  |  | 
|  | double dm_val = 0.0; | 
|  | // Read the bits from the unsigned integer register_[] array | 
|  | // into the double precision floating point value and return it. | 
|  | char buffer[2 * sizeof(registers_[0])]; | 
|  | memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0])); | 
|  | memcpy(&dm_val, buffer, 2 * sizeof(registers_[0])); | 
|  | return (dm_val); | 
|  | } | 
|  |  | 
|  | int64_t Simulator::get_fpu_register(int fpureg) const { | 
|  | if (IsFp64Mode()) { | 
|  | DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); | 
|  | return FPUregisters_[fpureg * 2]; | 
|  | } else { | 
|  | DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0)); | 
|  | uint64_t i64; | 
|  | i64 = static_cast<uint32_t>(get_fpu_register_word(fpureg)); | 
|  | i64 |= static_cast<uint64_t>(get_fpu_register_word(fpureg + 1)) << 32; | 
|  | return static_cast<int64_t>(i64); | 
|  | } | 
|  | } | 
|  |  | 
|  | int32_t Simulator::get_fpu_register_word(int fpureg) const { | 
|  | DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); | 
|  | return static_cast<int32_t>(FPUregisters_[fpureg * 2] & 0xFFFFFFFF); | 
|  | } | 
|  |  | 
|  | int32_t Simulator::get_fpu_register_signed_word(int fpureg) const { | 
|  | DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); | 
|  | return static_cast<int32_t>(FPUregisters_[fpureg * 2] & 0xFFFFFFFF); | 
|  | } | 
|  |  | 
|  | int32_t Simulator::get_fpu_register_hi_word(int fpureg) const { | 
|  | DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); | 
|  | return static_cast<int32_t>((FPUregisters_[fpureg * 2] >> 32) & 0xFFFFFFFF); | 
|  | } | 
|  |  | 
|  | float Simulator::get_fpu_register_float(int fpureg) const { | 
|  | DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); | 
|  | return *bit_cast<float*>(const_cast<int64_t*>(&FPUregisters_[fpureg * 2])); | 
|  | } | 
|  |  | 
|  | double Simulator::get_fpu_register_double(int fpureg) const { | 
|  | if (IsFp64Mode()) { | 
|  | DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); | 
|  | return *bit_cast<double*>(&FPUregisters_[fpureg * 2]); | 
|  | } else { | 
|  | DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0)); | 
|  | int64_t i64; | 
|  | i64 = static_cast<uint32_t>(get_fpu_register_word(fpureg)); | 
|  | i64 |= static_cast<uint64_t>(get_fpu_register_word(fpureg + 1)) << 32; | 
|  | return bit_cast<double>(i64); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void Simulator::get_msa_register(int wreg, T* value) { | 
|  | DCHECK((wreg >= 0) && (wreg < kNumMSARegisters)); | 
|  | memcpy(value, FPUregisters_ + wreg * 2, kSimd128Size); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void Simulator::set_msa_register(int wreg, const T* value) { | 
|  | DCHECK((wreg >= 0) && (wreg < kNumMSARegisters)); | 
|  | memcpy(FPUregisters_ + wreg * 2, value, kSimd128Size); | 
|  | } | 
|  |  | 
|  | // Runtime FP routines take up to two double arguments and zero | 
|  | // or one integer arguments. All are constructed here, | 
|  | // from a0-a3 or f12 and f14. | 
|  | void Simulator::GetFpArgs(double* x, double* y, int32_t* z) { | 
|  | if (!IsMipsSoftFloatABI) { | 
|  | *x = get_fpu_register_double(12); | 
|  | *y = get_fpu_register_double(14); | 
|  | *z = get_register(a2); | 
|  | } else { | 
|  | // TODO(plind): bad ABI stuff, refactor or remove. | 
|  | // We use a char buffer to get around the strict-aliasing rules which | 
|  | // otherwise allow the compiler to optimize away the copy. | 
|  | char buffer[sizeof(*x)]; | 
|  | int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer); | 
|  |  | 
|  | // Registers a0 and a1 -> x. | 
|  | reg_buffer[0] = get_register(a0); | 
|  | reg_buffer[1] = get_register(a1); | 
|  | memcpy(x, buffer, sizeof(buffer)); | 
|  | // Registers a2 and a3 -> y. | 
|  | reg_buffer[0] = get_register(a2); | 
|  | reg_buffer[1] = get_register(a3); | 
|  | memcpy(y, buffer, sizeof(buffer)); | 
|  | // Register 2 -> z. | 
|  | reg_buffer[0] = get_register(a2); | 
|  | memcpy(z, buffer, sizeof(*z)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The return value is either in v0/v1 or f0. | 
|  | void Simulator::SetFpResult(const double& result) { | 
|  | if (!IsMipsSoftFloatABI) { | 
|  | set_fpu_register_double(0, result); | 
|  | } else { | 
|  | char buffer[2 * sizeof(registers_[0])]; | 
|  | int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer); | 
|  | memcpy(buffer, &result, sizeof(buffer)); | 
|  | // Copy result to v0 and v1. | 
|  | set_register(v0, reg_buffer[0]); | 
|  | set_register(v1, reg_buffer[1]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Helper functions for setting and testing the FCSR register's bits. | 
|  | void Simulator::set_fcsr_bit(uint32_t cc, bool value) { | 
|  | if (value) { | 
|  | FCSR_ |= (1 << cc); | 
|  | } else { | 
|  | FCSR_ &= ~(1 << cc); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Simulator::test_fcsr_bit(uint32_t cc) { return FCSR_ & (1 << cc); } | 
|  |  | 
|  | void Simulator::set_fcsr_rounding_mode(FPURoundingMode mode) { | 
|  | FCSR_ |= mode & kFPURoundingModeMask; | 
|  | } | 
|  |  | 
|  | void Simulator::set_msacsr_rounding_mode(FPURoundingMode mode) { | 
|  | MSACSR_ |= mode & kFPURoundingModeMask; | 
|  | } | 
|  |  | 
|  | unsigned int Simulator::get_fcsr_rounding_mode() { | 
|  | return FCSR_ & kFPURoundingModeMask; | 
|  | } | 
|  |  | 
|  | unsigned int Simulator::get_msacsr_rounding_mode() { | 
|  | return MSACSR_ & kFPURoundingModeMask; | 
|  | } | 
|  |  | 
|  | void Simulator::set_fpu_register_word_invalid_result(float original, | 
|  | float rounded) { | 
|  | if (FCSR_ & kFCSRNaN2008FlagMask) { | 
|  | double max_int32 = std::numeric_limits<int32_t>::max(); | 
|  | double min_int32 = std::numeric_limits<int32_t>::min(); | 
|  | if (std::isnan(original)) { | 
|  | set_fpu_register_word(fd_reg(), 0); | 
|  | } else if (rounded > max_int32) { | 
|  | set_fpu_register_word(fd_reg(), kFPUInvalidResult); | 
|  | } else if (rounded < min_int32) { | 
|  | set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative); | 
|  | } else { | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } else { | 
|  | set_fpu_register_word(fd_reg(), kFPUInvalidResult); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::set_fpu_register_invalid_result(float original, float rounded) { | 
|  | if (FCSR_ & kFCSRNaN2008FlagMask) { | 
|  | double max_int32 = std::numeric_limits<int32_t>::max(); | 
|  | double min_int32 = std::numeric_limits<int32_t>::min(); | 
|  | if (std::isnan(original)) { | 
|  | set_fpu_register(fd_reg(), 0); | 
|  | } else if (rounded > max_int32) { | 
|  | set_fpu_register(fd_reg(), kFPUInvalidResult); | 
|  | } else if (rounded < min_int32) { | 
|  | set_fpu_register(fd_reg(), kFPUInvalidResultNegative); | 
|  | } else { | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } else { | 
|  | set_fpu_register(fd_reg(), kFPUInvalidResult); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::set_fpu_register_invalid_result64(float original, | 
|  | float rounded) { | 
|  | if (FCSR_ & kFCSRNaN2008FlagMask) { | 
|  | // The value of INT64_MAX (2^63-1) can't be represented as double exactly, | 
|  | // loading the most accurate representation into max_int64, which is 2^63. | 
|  | double max_int64 = std::numeric_limits<int64_t>::max(); | 
|  | double min_int64 = std::numeric_limits<int64_t>::min(); | 
|  | if (std::isnan(original)) { | 
|  | set_fpu_register(fd_reg(), 0); | 
|  | } else if (rounded >= max_int64) { | 
|  | set_fpu_register(fd_reg(), kFPU64InvalidResult); | 
|  | } else if (rounded < min_int64) { | 
|  | set_fpu_register(fd_reg(), kFPU64InvalidResultNegative); | 
|  | } else { | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } else { | 
|  | set_fpu_register(fd_reg(), kFPU64InvalidResult); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::set_fpu_register_word_invalid_result(double original, | 
|  | double rounded) { | 
|  | if (FCSR_ & kFCSRNaN2008FlagMask) { | 
|  | double max_int32 = std::numeric_limits<int32_t>::max(); | 
|  | double min_int32 = std::numeric_limits<int32_t>::min(); | 
|  | if (std::isnan(original)) { | 
|  | set_fpu_register_word(fd_reg(), 0); | 
|  | } else if (rounded > max_int32) { | 
|  | set_fpu_register_word(fd_reg(), kFPUInvalidResult); | 
|  | } else if (rounded < min_int32) { | 
|  | set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative); | 
|  | } else { | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } else { | 
|  | set_fpu_register_word(fd_reg(), kFPUInvalidResult); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::set_fpu_register_invalid_result(double original, | 
|  | double rounded) { | 
|  | if (FCSR_ & kFCSRNaN2008FlagMask) { | 
|  | double max_int32 = std::numeric_limits<int32_t>::max(); | 
|  | double min_int32 = std::numeric_limits<int32_t>::min(); | 
|  | if (std::isnan(original)) { | 
|  | set_fpu_register(fd_reg(), 0); | 
|  | } else if (rounded > max_int32) { | 
|  | set_fpu_register(fd_reg(), kFPUInvalidResult); | 
|  | } else if (rounded < min_int32) { | 
|  | set_fpu_register(fd_reg(), kFPUInvalidResultNegative); | 
|  | } else { | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } else { | 
|  | set_fpu_register(fd_reg(), kFPUInvalidResult); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::set_fpu_register_invalid_result64(double original, | 
|  | double rounded) { | 
|  | if (FCSR_ & kFCSRNaN2008FlagMask) { | 
|  | // The value of INT64_MAX (2^63-1) can't be represented as double exactly, | 
|  | // loading the most accurate representation into max_int64, which is 2^63. | 
|  | double max_int64 = std::numeric_limits<int64_t>::max(); | 
|  | double min_int64 = std::numeric_limits<int64_t>::min(); | 
|  | if (std::isnan(original)) { | 
|  | set_fpu_register(fd_reg(), 0); | 
|  | } else if (rounded >= max_int64) { | 
|  | set_fpu_register(fd_reg(), kFPU64InvalidResult); | 
|  | } else if (rounded < min_int64) { | 
|  | set_fpu_register(fd_reg(), kFPU64InvalidResultNegative); | 
|  | } else { | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } else { | 
|  | set_fpu_register(fd_reg(), kFPU64InvalidResult); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Sets the rounding error codes in FCSR based on the result of the rounding. | 
|  | // Returns true if the operation was invalid. | 
|  | bool Simulator::set_fcsr_round_error(double original, double rounded) { | 
|  | bool ret = false; | 
|  | double max_int32 = std::numeric_limits<int32_t>::max(); | 
|  | double min_int32 = std::numeric_limits<int32_t>::min(); | 
|  |  | 
|  | if (!std::isfinite(original) || !std::isfinite(rounded)) { | 
|  | set_fcsr_bit(kFCSRInvalidOpFlagBit, true); | 
|  | ret = true; | 
|  | } | 
|  |  | 
|  | if (original != rounded) { | 
|  | set_fcsr_bit(kFCSRInexactFlagBit, true); | 
|  | } | 
|  |  | 
|  | if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) { | 
|  | set_fcsr_bit(kFCSRUnderflowFlagBit, true); | 
|  | ret = true; | 
|  | } | 
|  |  | 
|  | if (rounded > max_int32 || rounded < min_int32) { | 
|  | set_fcsr_bit(kFCSROverflowFlagBit, true); | 
|  | // The reference is not really clear but it seems this is required: | 
|  | set_fcsr_bit(kFCSRInvalidOpFlagBit, true); | 
|  | ret = true; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // Sets the rounding error codes in FCSR based on the result of the rounding. | 
|  | // Returns true if the operation was invalid. | 
|  | bool Simulator::set_fcsr_round64_error(double original, double rounded) { | 
|  | bool ret = false; | 
|  | // The value of INT64_MAX (2^63-1) can't be represented as double exactly, | 
|  | // loading the most accurate representation into max_int64, which is 2^63. | 
|  | double max_int64 = std::numeric_limits<int64_t>::max(); | 
|  | double min_int64 = std::numeric_limits<int64_t>::min(); | 
|  |  | 
|  | if (!std::isfinite(original) || !std::isfinite(rounded)) { | 
|  | set_fcsr_bit(kFCSRInvalidOpFlagBit, true); | 
|  | ret = true; | 
|  | } | 
|  |  | 
|  | if (original != rounded) { | 
|  | set_fcsr_bit(kFCSRInexactFlagBit, true); | 
|  | } | 
|  |  | 
|  | if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) { | 
|  | set_fcsr_bit(kFCSRUnderflowFlagBit, true); | 
|  | ret = true; | 
|  | } | 
|  |  | 
|  | if (rounded >= max_int64 || rounded < min_int64) { | 
|  | set_fcsr_bit(kFCSROverflowFlagBit, true); | 
|  | // The reference is not really clear but it seems this is required: | 
|  | set_fcsr_bit(kFCSRInvalidOpFlagBit, true); | 
|  | ret = true; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // Sets the rounding error codes in FCSR based on the result of the rounding. | 
|  | // Returns true if the operation was invalid. | 
|  | bool Simulator::set_fcsr_round_error(float original, float rounded) { | 
|  | bool ret = false; | 
|  | double max_int32 = std::numeric_limits<int32_t>::max(); | 
|  | double min_int32 = std::numeric_limits<int32_t>::min(); | 
|  |  | 
|  | if (!std::isfinite(original) || !std::isfinite(rounded)) { | 
|  | set_fcsr_bit(kFCSRInvalidOpFlagBit, true); | 
|  | ret = true; | 
|  | } | 
|  |  | 
|  | if (original != rounded) { | 
|  | set_fcsr_bit(kFCSRInexactFlagBit, true); | 
|  | } | 
|  |  | 
|  | if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) { | 
|  | set_fcsr_bit(kFCSRUnderflowFlagBit, true); | 
|  | ret = true; | 
|  | } | 
|  |  | 
|  | if (rounded > max_int32 || rounded < min_int32) { | 
|  | set_fcsr_bit(kFCSROverflowFlagBit, true); | 
|  | // The reference is not really clear but it seems this is required: | 
|  | set_fcsr_bit(kFCSRInvalidOpFlagBit, true); | 
|  | ret = true; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // Sets the rounding error codes in FCSR based on the result of the rounding. | 
|  | // Returns true if the operation was invalid. | 
|  | bool Simulator::set_fcsr_round64_error(float original, float rounded) { | 
|  | bool ret = false; | 
|  | // The value of INT64_MAX (2^63-1) can't be represented as double exactly, | 
|  | // loading the most accurate representation into max_int64, which is 2^63. | 
|  | double max_int64 = std::numeric_limits<int64_t>::max(); | 
|  | double min_int64 = std::numeric_limits<int64_t>::min(); | 
|  |  | 
|  | if (!std::isfinite(original) || !std::isfinite(rounded)) { | 
|  | set_fcsr_bit(kFCSRInvalidOpFlagBit, true); | 
|  | ret = true; | 
|  | } | 
|  |  | 
|  | if (original != rounded) { | 
|  | set_fcsr_bit(kFCSRInexactFlagBit, true); | 
|  | } | 
|  |  | 
|  | if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) { | 
|  | set_fcsr_bit(kFCSRUnderflowFlagBit, true); | 
|  | ret = true; | 
|  | } | 
|  |  | 
|  | if (rounded >= max_int64 || rounded < min_int64) { | 
|  | set_fcsr_bit(kFCSROverflowFlagBit, true); | 
|  | // The reference is not really clear but it seems this is required: | 
|  | set_fcsr_bit(kFCSRInvalidOpFlagBit, true); | 
|  | ret = true; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void Simulator::round_according_to_fcsr(double toRound, double* rounded, | 
|  | int32_t* rounded_int, double fs) { | 
|  | // 0 RN (round to nearest): Round a result to the nearest | 
|  | // representable value; if the result is exactly halfway between | 
|  | // two representable values, round to zero. Behave like round_w_d. | 
|  |  | 
|  | // 1 RZ (round toward zero): Round a result to the closest | 
|  | // representable value whose absolute value is less than or | 
|  | // equal to the infinitely accurate result. Behave like trunc_w_d. | 
|  |  | 
|  | // 2 RP (round up, or toward  infinity): Round a result to the | 
|  | // next representable value up. Behave like ceil_w_d. | 
|  |  | 
|  | // 3 RD (round down, or toward −infinity): Round a result to | 
|  | // the next representable value down. Behave like floor_w_d. | 
|  | switch (get_fcsr_rounding_mode()) { | 
|  | case kRoundToNearest: | 
|  | *rounded = std::floor(fs + 0.5); | 
|  | *rounded_int = static_cast<int32_t>(*rounded); | 
|  | if ((*rounded_int & 1) != 0 && *rounded_int - fs == 0.5) { | 
|  | // If the number is halfway between two integers, | 
|  | // round to the even one. | 
|  | *rounded_int -= 1; | 
|  | *rounded -= 1.; | 
|  | } | 
|  | break; | 
|  | case kRoundToZero: | 
|  | *rounded = trunc(fs); | 
|  | *rounded_int = static_cast<int32_t>(*rounded); | 
|  | break; | 
|  | case kRoundToPlusInf: | 
|  | *rounded = std::ceil(fs); | 
|  | *rounded_int = static_cast<int32_t>(*rounded); | 
|  | break; | 
|  | case kRoundToMinusInf: | 
|  | *rounded = std::floor(fs); | 
|  | *rounded_int = static_cast<int32_t>(*rounded); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::round_according_to_fcsr(float toRound, float* rounded, | 
|  | int32_t* rounded_int, float fs) { | 
|  | // 0 RN (round to nearest): Round a result to the nearest | 
|  | // representable value; if the result is exactly halfway between | 
|  | // two representable values, round to zero. Behave like round_w_d. | 
|  |  | 
|  | // 1 RZ (round toward zero): Round a result to the closest | 
|  | // representable value whose absolute value is less than or | 
|  | // equal to the infinitely accurate result. Behave like trunc_w_d. | 
|  |  | 
|  | // 2 RP (round up, or toward  infinity): Round a result to the | 
|  | // next representable value up. Behave like ceil_w_d. | 
|  |  | 
|  | // 3 RD (round down, or toward −infinity): Round a result to | 
|  | // the next representable value down. Behave like floor_w_d. | 
|  | switch (get_fcsr_rounding_mode()) { | 
|  | case kRoundToNearest: | 
|  | *rounded = std::floor(fs + 0.5); | 
|  | *rounded_int = static_cast<int32_t>(*rounded); | 
|  | if ((*rounded_int & 1) != 0 && *rounded_int - fs == 0.5) { | 
|  | // If the number is halfway between two integers, | 
|  | // round to the even one. | 
|  | *rounded_int -= 1; | 
|  | *rounded -= 1.f; | 
|  | } | 
|  | break; | 
|  | case kRoundToZero: | 
|  | *rounded = trunc(fs); | 
|  | *rounded_int = static_cast<int32_t>(*rounded); | 
|  | break; | 
|  | case kRoundToPlusInf: | 
|  | *rounded = std::ceil(fs); | 
|  | *rounded_int = static_cast<int32_t>(*rounded); | 
|  | break; | 
|  | case kRoundToMinusInf: | 
|  | *rounded = std::floor(fs); | 
|  | *rounded_int = static_cast<int32_t>(*rounded); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename T_fp, typename T_int> | 
|  | void Simulator::round_according_to_msacsr(T_fp toRound, T_fp* rounded, | 
|  | T_int* rounded_int) { | 
|  | // 0 RN (round to nearest): Round a result to the nearest | 
|  | // representable value; if the result is exactly halfway between | 
|  | // two representable values, round to zero. Behave like round_w_d. | 
|  |  | 
|  | // 1 RZ (round toward zero): Round a result to the closest | 
|  | // representable value whose absolute value is less than or | 
|  | // equal to the infinitely accurate result. Behave like trunc_w_d. | 
|  |  | 
|  | // 2 RP (round up, or toward  infinity): Round a result to the | 
|  | // next representable value up. Behave like ceil_w_d. | 
|  |  | 
|  | // 3 RD (round down, or toward −infinity): Round a result to | 
|  | // the next representable value down. Behave like floor_w_d. | 
|  | switch (get_msacsr_rounding_mode()) { | 
|  | case kRoundToNearest: | 
|  | *rounded = std::floor(toRound + 0.5); | 
|  | *rounded_int = static_cast<T_int>(*rounded); | 
|  | if ((*rounded_int & 1) != 0 && *rounded_int - toRound == 0.5) { | 
|  | // If the number is halfway between two integers, | 
|  | // round to the even one. | 
|  | *rounded_int -= 1; | 
|  | *rounded -= 1; | 
|  | } | 
|  | break; | 
|  | case kRoundToZero: | 
|  | *rounded = trunc(toRound); | 
|  | *rounded_int = static_cast<T_int>(*rounded); | 
|  | break; | 
|  | case kRoundToPlusInf: | 
|  | *rounded = std::ceil(toRound); | 
|  | *rounded_int = static_cast<T_int>(*rounded); | 
|  | break; | 
|  | case kRoundToMinusInf: | 
|  | *rounded = std::floor(toRound); | 
|  | *rounded_int = static_cast<T_int>(*rounded); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::round64_according_to_fcsr(double toRound, double* rounded, | 
|  | int64_t* rounded_int, double fs) { | 
|  | // 0 RN (round to nearest): Round a result to the nearest | 
|  | // representable value; if the result is exactly halfway between | 
|  | // two representable values, round to zero. Behave like round_w_d. | 
|  |  | 
|  | // 1 RZ (round toward zero): Round a result to the closest | 
|  | // representable value whose absolute value is less than or. | 
|  | // equal to the infinitely accurate result. Behave like trunc_w_d. | 
|  |  | 
|  | // 2 RP (round up, or toward +infinity): Round a result to the | 
|  | // next representable value up. Behave like ceil_w_d. | 
|  |  | 
|  | // 3 RN (round down, or toward −infinity): Round a result to | 
|  | // the next representable value down. Behave like floor_w_d. | 
|  | switch (FCSR_ & 3) { | 
|  | case kRoundToNearest: | 
|  | *rounded = std::floor(fs + 0.5); | 
|  | *rounded_int = static_cast<int64_t>(*rounded); | 
|  | if ((*rounded_int & 1) != 0 && *rounded_int - fs == 0.5) { | 
|  | // If the number is halfway between two integers, | 
|  | // round to the even one. | 
|  | *rounded_int -= 1; | 
|  | *rounded -= 1.; | 
|  | } | 
|  | break; | 
|  | case kRoundToZero: | 
|  | *rounded = trunc(fs); | 
|  | *rounded_int = static_cast<int64_t>(*rounded); | 
|  | break; | 
|  | case kRoundToPlusInf: | 
|  | *rounded = std::ceil(fs); | 
|  | *rounded_int = static_cast<int64_t>(*rounded); | 
|  | break; | 
|  | case kRoundToMinusInf: | 
|  | *rounded = std::floor(fs); | 
|  | *rounded_int = static_cast<int64_t>(*rounded); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::round64_according_to_fcsr(float toRound, float* rounded, | 
|  | int64_t* rounded_int, float fs) { | 
|  | // 0 RN (round to nearest): Round a result to the nearest | 
|  | // representable value; if the result is exactly halfway between | 
|  | // two representable values, round to zero. Behave like round_w_d. | 
|  |  | 
|  | // 1 RZ (round toward zero): Round a result to the closest | 
|  | // representable value whose absolute value is less than or. | 
|  | // equal to the infinitely accurate result. Behave like trunc_w_d. | 
|  |  | 
|  | // 2 RP (round up, or toward +infinity): Round a result to the | 
|  | // next representable value up. Behave like ceil_w_d. | 
|  |  | 
|  | // 3 RN (round down, or toward −infinity): Round a result to | 
|  | // the next representable value down. Behave like floor_w_d. | 
|  | switch (FCSR_ & 3) { | 
|  | case kRoundToNearest: | 
|  | *rounded = std::floor(fs + 0.5); | 
|  | *rounded_int = static_cast<int64_t>(*rounded); | 
|  | if ((*rounded_int & 1) != 0 && *rounded_int - fs == 0.5) { | 
|  | // If the number is halfway between two integers, | 
|  | // round to the even one. | 
|  | *rounded_int -= 1; | 
|  | *rounded -= 1.f; | 
|  | } | 
|  | break; | 
|  | case kRoundToZero: | 
|  | *rounded = trunc(fs); | 
|  | *rounded_int = static_cast<int64_t>(*rounded); | 
|  | break; | 
|  | case kRoundToPlusInf: | 
|  | *rounded = std::ceil(fs); | 
|  | *rounded_int = static_cast<int64_t>(*rounded); | 
|  | break; | 
|  | case kRoundToMinusInf: | 
|  | *rounded = std::floor(fs); | 
|  | *rounded_int = static_cast<int64_t>(*rounded); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Raw access to the PC register. | 
|  | void Simulator::set_pc(int32_t value) { | 
|  | pc_modified_ = true; | 
|  | registers_[pc] = value; | 
|  | } | 
|  |  | 
|  | bool Simulator::has_bad_pc() const { | 
|  | return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc)); | 
|  | } | 
|  |  | 
|  | // Raw access to the PC register without the special adjustment when reading. | 
|  | int32_t Simulator::get_pc() const { return registers_[pc]; } | 
|  |  | 
|  | // The MIPS cannot do unaligned reads and writes.  On some MIPS platforms an | 
|  | // interrupt is caused.  On others it does a funky rotation thing.  For now we | 
|  | // simply disallow unaligned reads, but at some point we may want to move to | 
|  | // emulating the rotate behaviour.  Note that simulator runs have the runtime | 
|  | // system running directly on the host system and only generated code is | 
|  | // executed in the simulator.  Since the host is typically IA32 we will not | 
|  | // get the correct MIPS-like behaviour on unaligned accesses. | 
|  |  | 
|  | void Simulator::TraceRegWr(int32_t value, TraceType t) { | 
|  | if (::v8::internal::FLAG_trace_sim) { | 
|  | union { | 
|  | int32_t fmt_int32; | 
|  | float fmt_float; | 
|  | } v; | 
|  | v.fmt_int32 = value; | 
|  |  | 
|  | switch (t) { | 
|  | case WORD: | 
|  | SNPrintF(trace_buf_, | 
|  | "%08" PRIx32 "    (%" PRIu64 ")    int32:%" PRId32 | 
|  | " uint32:%" PRIu32, | 
|  | value, icount_, value, value); | 
|  | break; | 
|  | case FLOAT: | 
|  | SNPrintF(trace_buf_, "%08" PRIx32 "    (%" PRIu64 ")    flt:%e", | 
|  | v.fmt_int32, icount_, v.fmt_float); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::TraceRegWr(int64_t value, TraceType t) { | 
|  | if (::v8::internal::FLAG_trace_sim) { | 
|  | union { | 
|  | int64_t fmt_int64; | 
|  | double fmt_double; | 
|  | } v; | 
|  | v.fmt_int64 = value; | 
|  |  | 
|  | switch (t) { | 
|  | case DWORD: | 
|  | SNPrintF(trace_buf_, | 
|  | "%016" PRIx64 "    (%" PRIu64 ")    int64:%" PRId64 | 
|  | " uint64:%" PRIu64, | 
|  | value, icount_, value, value); | 
|  | break; | 
|  | case DOUBLE: | 
|  | SNPrintF(trace_buf_, "%016" PRIx64 "    (%" PRIu64 ")    dbl:%e", | 
|  | v.fmt_int64, icount_, v.fmt_double); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void Simulator::TraceMSARegWr(T* value, TraceType t) { | 
|  | if (::v8::internal::FLAG_trace_sim) { | 
|  | union { | 
|  | uint8_t b[16]; | 
|  | uint16_t h[8]; | 
|  | uint32_t w[4]; | 
|  | uint64_t d[2]; | 
|  | float f[4]; | 
|  | double df[2]; | 
|  | } v; | 
|  | memcpy(v.b, value, kSimd128Size); | 
|  | switch (t) { | 
|  | case BYTE: | 
|  | SNPrintF(trace_buf_, | 
|  | "LO: %016" PRIx64 "  HI: %016" PRIx64 "    (%" PRIu64 ")", | 
|  | v.d[0], v.d[1], icount_); | 
|  | break; | 
|  | case HALF: | 
|  | SNPrintF(trace_buf_, | 
|  | "LO: %016" PRIx64 "  HI: %016" PRIx64 "    (%" PRIu64 ")", | 
|  | v.d[0], v.d[1], icount_); | 
|  | break; | 
|  | case WORD: | 
|  | SNPrintF(trace_buf_, | 
|  | "LO: %016" PRIx64 "  HI: %016" PRIx64 "    (%" PRIu64 | 
|  | ")    int32[0..3]:%" PRId32 "  %" PRId32 "  %" PRId32 | 
|  | "  %" PRId32, | 
|  | v.d[0], v.d[1], icount_, v.w[0], v.w[1], v.w[2], v.w[3]); | 
|  | break; | 
|  | case DWORD: | 
|  | SNPrintF(trace_buf_, | 
|  | "LO: %016" PRIx64 "  HI: %016" PRIx64 "    (%" PRIu64 ")", | 
|  | v.d[0], v.d[1], icount_); | 
|  | break; | 
|  | case FLOAT: | 
|  | SNPrintF(trace_buf_, | 
|  | "LO: %016" PRIx64 "  HI: %016" PRIx64 "    (%" PRIu64 | 
|  | ")    flt[0..3]:%e  %e  %e  %e", | 
|  | v.d[0], v.d[1], icount_, v.f[0], v.f[1], v.f[2], v.f[3]); | 
|  | break; | 
|  | case DOUBLE: | 
|  | SNPrintF(trace_buf_, | 
|  | "LO: %016" PRIx64 "  HI: %016" PRIx64 "    (%" PRIu64 | 
|  | ")    dbl[0..1]:%e  %e", | 
|  | v.d[0], v.d[1], icount_, v.df[0], v.df[1]); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void Simulator::TraceMSARegWr(T* value) { | 
|  | if (::v8::internal::FLAG_trace_sim) { | 
|  | union { | 
|  | uint8_t b[kMSALanesByte]; | 
|  | uint16_t h[kMSALanesHalf]; | 
|  | uint32_t w[kMSALanesWord]; | 
|  | uint64_t d[kMSALanesDword]; | 
|  | float f[kMSALanesWord]; | 
|  | double df[kMSALanesDword]; | 
|  | } v; | 
|  | memcpy(v.b, value, kMSALanesByte); | 
|  |  | 
|  | if (std::is_same<T, int32_t>::value) { | 
|  | SNPrintF(trace_buf_, | 
|  | "LO: %016" PRIx64 "  HI: %016" PRIx64 "    (%" PRIu64 | 
|  | ")    int32[0..3]:%" PRId32 "  %" PRId32 "  %" PRId32 | 
|  | "  %" PRId32, | 
|  | v.d[0], v.d[1], icount_, v.w[0], v.w[1], v.w[2], v.w[3]); | 
|  | } else if (std::is_same<T, float>::value) { | 
|  | SNPrintF(trace_buf_, | 
|  | "LO: %016" PRIx64 "  HI: %016" PRIx64 "    (%" PRIu64 | 
|  | ")    flt[0..3]:%e  %e  %e  %e", | 
|  | v.d[0], v.d[1], icount_, v.f[0], v.f[1], v.f[2], v.f[3]); | 
|  | } else if (std::is_same<T, double>::value) { | 
|  | SNPrintF(trace_buf_, | 
|  | "LO: %016" PRIx64 "  HI: %016" PRIx64 "    (%" PRIu64 | 
|  | ")    dbl[0..1]:%e  %e", | 
|  | v.d[0], v.d[1], icount_, v.df[0], v.df[1]); | 
|  | } else { | 
|  | SNPrintF(trace_buf_, | 
|  | "LO: %016" PRIx64 "  HI: %016" PRIx64 "    (%" PRIu64 ")", | 
|  | v.d[0], v.d[1], icount_); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO(plind): consider making icount_ printing a flag option. | 
|  | void Simulator::TraceMemRd(int32_t addr, int32_t value, TraceType t) { | 
|  | if (::v8::internal::FLAG_trace_sim) { | 
|  | union { | 
|  | int32_t fmt_int32; | 
|  | float fmt_float; | 
|  | } v; | 
|  | v.fmt_int32 = value; | 
|  |  | 
|  | switch (t) { | 
|  | case WORD: | 
|  | SNPrintF(trace_buf_, | 
|  | "%08" PRIx32 " <-- [%08" PRIx32 "]    (%" PRIu64 | 
|  | ")    int32:%" PRId32 " uint32:%" PRIu32, | 
|  | value, addr, icount_, value, value); | 
|  | break; | 
|  | case FLOAT: | 
|  | SNPrintF(trace_buf_, | 
|  | "%08" PRIx32 " <-- [%08" PRIx32 "]    (%" PRIu64 ")    flt:%e", | 
|  | v.fmt_int32, addr, icount_, v.fmt_float); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::TraceMemWr(int32_t addr, int32_t value, TraceType t) { | 
|  | if (::v8::internal::FLAG_trace_sim) { | 
|  | switch (t) { | 
|  | case BYTE: | 
|  | SNPrintF(trace_buf_, | 
|  | "      %02" PRIx8 " --> [%08" PRIx32 "]    (%" PRIu64 ")", | 
|  | static_cast<uint8_t>(value), addr, icount_); | 
|  | break; | 
|  | case HALF: | 
|  | SNPrintF(trace_buf_, | 
|  | "    %04" PRIx16 " --> [%08" PRIx32 "]    (%" PRIu64 ")", | 
|  | static_cast<uint16_t>(value), addr, icount_); | 
|  | break; | 
|  | case WORD: | 
|  | SNPrintF(trace_buf_, | 
|  | "%08" PRIx32 " --> [%08" PRIx32 "]    (%" PRIu64 ")", value, | 
|  | addr, icount_); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void Simulator::TraceMemRd(int32_t addr, T value) { | 
|  | if (::v8::internal::FLAG_trace_sim) { | 
|  | switch (sizeof(T)) { | 
|  | case 1: | 
|  | SNPrintF(trace_buf_, | 
|  | "%08" PRIx8 " <-- [%08" PRIx32 "]    (%" PRIu64 | 
|  | ")    int8:%" PRId8 " uint8:%" PRIu8, | 
|  | static_cast<uint8_t>(value), addr, icount_, | 
|  | static_cast<int8_t>(value), static_cast<uint8_t>(value)); | 
|  | break; | 
|  | case 2: | 
|  | SNPrintF(trace_buf_, | 
|  | "%08" PRIx16 " <-- [%08" PRIx32 "]    (%" PRIu64 | 
|  | ")    int16:%" PRId16 " uint16:%" PRIu16, | 
|  | static_cast<uint16_t>(value), addr, icount_, | 
|  | static_cast<int16_t>(value), static_cast<uint16_t>(value)); | 
|  | break; | 
|  | case 4: | 
|  | SNPrintF(trace_buf_, | 
|  | "%08" PRIx32 " <-- [%08" PRIx32 "]    (%" PRIu64 | 
|  | ")    int32:%" PRId32 " uint32:%" PRIu32, | 
|  | static_cast<uint32_t>(value), addr, icount_, | 
|  | static_cast<int32_t>(value), static_cast<uint32_t>(value)); | 
|  | break; | 
|  | case 8: | 
|  | SNPrintF(trace_buf_, | 
|  | "%08" PRIx64 " <-- [%08" PRIx32 "]    (%" PRIu64 | 
|  | ")    int64:%" PRId64 " uint64:%" PRIu64, | 
|  | static_cast<uint64_t>(value), addr, icount_, | 
|  | static_cast<int64_t>(value), static_cast<uint64_t>(value)); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void Simulator::TraceMemWr(int32_t addr, T value) { | 
|  | if (::v8::internal::FLAG_trace_sim) { | 
|  | switch (sizeof(T)) { | 
|  | case 1: | 
|  | SNPrintF(trace_buf_, | 
|  | "      %02" PRIx8 " --> [%08" PRIx32 "]    (%" PRIu64 ")", | 
|  | static_cast<uint8_t>(value), addr, icount_); | 
|  | break; | 
|  | case 2: | 
|  | SNPrintF(trace_buf_, | 
|  | "    %04" PRIx16 " --> [%08" PRIx32 "]    (%" PRIu64 ")", | 
|  | static_cast<uint16_t>(value), addr, icount_); | 
|  | break; | 
|  | case 4: | 
|  | SNPrintF(trace_buf_, | 
|  | "%08" PRIx32 " --> [%08" PRIx32 "]    (%" PRIu64 ")", | 
|  | static_cast<uint32_t>(value), addr, icount_); | 
|  | break; | 
|  | case 8: | 
|  | SNPrintF(trace_buf_, | 
|  | "%16" PRIx64 " --> [%08" PRIx32 "]    (%" PRIu64 ")", | 
|  | static_cast<uint64_t>(value), addr, icount_); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::TraceMemRd(int32_t addr, int64_t value, TraceType t) { | 
|  | if (::v8::internal::FLAG_trace_sim) { | 
|  | union { | 
|  | int64_t fmt_int64; | 
|  | int32_t fmt_int32[2]; | 
|  | float fmt_float[2]; | 
|  | double fmt_double; | 
|  | } v; | 
|  | v.fmt_int64 = value; | 
|  |  | 
|  | switch (t) { | 
|  | case DWORD: | 
|  | SNPrintF(trace_buf_, | 
|  | "%016" PRIx64 " <-- [%08" PRIx32 "]    (%" PRIu64 | 
|  | ")    int64:%" PRId64 " uint64:%" PRIu64, | 
|  | v.fmt_int64, addr, icount_, v.fmt_int64, v.fmt_int64); | 
|  | break; | 
|  | case DOUBLE: | 
|  | SNPrintF(trace_buf_, | 
|  | "%016" PRIx64 " <-- [%08" PRIx32 "]    (%" PRIu64 | 
|  | ")    dbl:%e", | 
|  | v.fmt_int64, addr, icount_, v.fmt_double); | 
|  | break; | 
|  | case FLOAT_DOUBLE: | 
|  | SNPrintF(trace_buf_, | 
|  | "%08" PRIx32 " <-- [%08" PRIx32 "]    (%" PRIu64 | 
|  | ")    flt:%e dbl:%e", | 
|  | v.fmt_int32[1], addr, icount_, v.fmt_float[1], v.fmt_double); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::TraceMemWr(int32_t addr, int64_t value, TraceType t) { | 
|  | if (::v8::internal::FLAG_trace_sim) { | 
|  | switch (t) { | 
|  | case DWORD: | 
|  | SNPrintF(trace_buf_, | 
|  | "%016" PRIx64 " --> [%08" PRIx32 "]    (%" PRIu64 ")", value, | 
|  | addr, icount_); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int Simulator::ReadW(int32_t addr, Instruction* instr, TraceType t) { | 
|  | if (addr >= 0 && addr < 0x400) { | 
|  | // This has to be a nullptr-dereference, drop into debugger. | 
|  | PrintF("Memory read from bad address: 0x%08x, pc=0x%08" PRIxPTR "\n", addr, | 
|  | reinterpret_cast<intptr_t>(instr)); | 
|  | MipsDebugger dbg(this); | 
|  | dbg.Debug(); | 
|  | } | 
|  | if ((addr & kPointerAlignmentMask) == 0 || IsMipsArchVariant(kMips32r6)) { | 
|  | local_monitor_.NotifyLoad(); | 
|  | intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); | 
|  | switch (t) { | 
|  | case WORD: | 
|  | TraceMemRd(addr, static_cast<int32_t>(*ptr), t); | 
|  | break; | 
|  | case FLOAT: | 
|  | // This TraceType is allowed but tracing for this value will be omitted. | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | return *ptr; | 
|  | } | 
|  | PrintF("Unaligned read at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr, | 
|  | reinterpret_cast<intptr_t>(instr)); | 
|  | MipsDebugger dbg(this); | 
|  | dbg.Debug(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void Simulator::WriteW(int32_t addr, int value, Instruction* instr) { | 
|  | if (addr >= 0 && addr < 0x400) { | 
|  | // This has to be a nullptr-dereference, drop into debugger. | 
|  | PrintF("Memory write to bad address: 0x%08x, pc=0x%08" PRIxPTR "\n", addr, | 
|  | reinterpret_cast<intptr_t>(instr)); | 
|  | MipsDebugger dbg(this); | 
|  | dbg.Debug(); | 
|  | } | 
|  | if ((addr & kPointerAlignmentMask) == 0 || IsMipsArchVariant(kMips32r6)) { | 
|  | local_monitor_.NotifyStore(); | 
|  | base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); | 
|  | GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_thread_); | 
|  | intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); | 
|  | TraceMemWr(addr, value, WORD); | 
|  | *ptr = value; | 
|  | return; | 
|  | } | 
|  | PrintF("Unaligned write at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr, | 
|  | reinterpret_cast<intptr_t>(instr)); | 
|  | MipsDebugger dbg(this); | 
|  | dbg.Debug(); | 
|  | } | 
|  |  | 
|  | void Simulator::WriteConditionalW(int32_t addr, int32_t value, | 
|  | Instruction* instr, int32_t rt_reg) { | 
|  | if (addr >= 0 && addr < 0x400) { | 
|  | // This has to be a nullptr-dereference, drop into debugger. | 
|  | PrintF("Memory write to bad address: 0x%08x, pc=0x%08" PRIxPTR "\n", addr, | 
|  | reinterpret_cast<intptr_t>(instr)); | 
|  | MipsDebugger dbg(this); | 
|  | dbg.Debug(); | 
|  | } | 
|  | if ((addr & kPointerAlignmentMask) == 0 || IsMipsArchVariant(kMips32r6)) { | 
|  | base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); | 
|  | if (local_monitor_.NotifyStoreConditional(addr, TransactionSize::Word) && | 
|  | GlobalMonitor::Get()->NotifyStoreConditional_Locked( | 
|  | addr, &global_monitor_thread_)) { | 
|  | local_monitor_.NotifyStore(); | 
|  | GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_thread_); | 
|  | TraceMemWr(addr, value, WORD); | 
|  | int* ptr = reinterpret_cast<int*>(addr); | 
|  | *ptr = value; | 
|  | set_register(rt_reg, 1); | 
|  | } else { | 
|  | set_register(rt_reg, 0); | 
|  | } | 
|  | return; | 
|  | } | 
|  | PrintF("Unaligned write at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr, | 
|  | reinterpret_cast<intptr_t>(instr)); | 
|  | MipsDebugger dbg(this); | 
|  | dbg.Debug(); | 
|  | } | 
|  |  | 
|  | double Simulator::ReadD(int32_t addr, Instruction* instr) { | 
|  | if ((addr & kDoubleAlignmentMask) == 0 || IsMipsArchVariant(kMips32r6)) { | 
|  | local_monitor_.NotifyLoad(); | 
|  | double* ptr = reinterpret_cast<double*>(addr); | 
|  | return *ptr; | 
|  | } | 
|  | PrintF("Unaligned (double) read at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr, | 
|  | reinterpret_cast<intptr_t>(instr)); | 
|  | base::OS::Abort(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void Simulator::WriteD(int32_t addr, double value, Instruction* instr) { | 
|  | if ((addr & kDoubleAlignmentMask) == 0 || IsMipsArchVariant(kMips32r6)) { | 
|  | local_monitor_.NotifyStore(); | 
|  | base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); | 
|  | GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_thread_); | 
|  | double* ptr = reinterpret_cast<double*>(addr); | 
|  | *ptr = value; | 
|  | return; | 
|  | } | 
|  | PrintF("Unaligned (double) write at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr, | 
|  | reinterpret_cast<intptr_t>(instr)); | 
|  | base::OS::Abort(); | 
|  | } | 
|  |  | 
|  | uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) { | 
|  | if ((addr & 1) == 0 || IsMipsArchVariant(kMips32r6)) { | 
|  | local_monitor_.NotifyLoad(); | 
|  | uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); | 
|  | TraceMemRd(addr, static_cast<int32_t>(*ptr)); | 
|  | return *ptr; | 
|  | } | 
|  | PrintF("Unaligned unsigned halfword read at 0x%08x, pc=0x%08" V8PRIxPTR "\n", | 
|  | addr, reinterpret_cast<intptr_t>(instr)); | 
|  | base::OS::Abort(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int16_t Simulator::ReadH(int32_t addr, Instruction* instr) { | 
|  | if ((addr & 1) == 0 || IsMipsArchVariant(kMips32r6)) { | 
|  | local_monitor_.NotifyLoad(); | 
|  | int16_t* ptr = reinterpret_cast<int16_t*>(addr); | 
|  | TraceMemRd(addr, static_cast<int32_t>(*ptr)); | 
|  | return *ptr; | 
|  | } | 
|  | PrintF("Unaligned signed halfword read at 0x%08x, pc=0x%08" V8PRIxPTR "\n", | 
|  | addr, reinterpret_cast<intptr_t>(instr)); | 
|  | base::OS::Abort(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) { | 
|  | if ((addr & 1) == 0 || IsMipsArchVariant(kMips32r6)) { | 
|  | local_monitor_.NotifyStore(); | 
|  | base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); | 
|  | GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_thread_); | 
|  | uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); | 
|  | TraceMemWr(addr, value, HALF); | 
|  | *ptr = value; | 
|  | return; | 
|  | } | 
|  | PrintF("Unaligned unsigned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n", | 
|  | addr, reinterpret_cast<intptr_t>(instr)); | 
|  | base::OS::Abort(); | 
|  | } | 
|  |  | 
|  | void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) { | 
|  | if ((addr & 1) == 0 || IsMipsArchVariant(kMips32r6)) { | 
|  | local_monitor_.NotifyStore(); | 
|  | base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); | 
|  | GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_thread_); | 
|  | int16_t* ptr = reinterpret_cast<int16_t*>(addr); | 
|  | TraceMemWr(addr, value, HALF); | 
|  | *ptr = value; | 
|  | return; | 
|  | } | 
|  | PrintF("Unaligned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr, | 
|  | reinterpret_cast<intptr_t>(instr)); | 
|  | base::OS::Abort(); | 
|  | } | 
|  |  | 
|  | uint32_t Simulator::ReadBU(int32_t addr) { | 
|  | local_monitor_.NotifyLoad(); | 
|  | uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); | 
|  | TraceMemRd(addr, static_cast<int32_t>(*ptr)); | 
|  | return *ptr & 0xFF; | 
|  | } | 
|  |  | 
|  | int32_t Simulator::ReadB(int32_t addr) { | 
|  | local_monitor_.NotifyLoad(); | 
|  | int8_t* ptr = reinterpret_cast<int8_t*>(addr); | 
|  | TraceMemRd(addr, static_cast<int32_t>(*ptr)); | 
|  | return *ptr; | 
|  | } | 
|  |  | 
|  | void Simulator::WriteB(int32_t addr, uint8_t value) { | 
|  | local_monitor_.NotifyStore(); | 
|  | base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); | 
|  | GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_thread_); | 
|  | uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); | 
|  | TraceMemWr(addr, value, BYTE); | 
|  | *ptr = value; | 
|  | } | 
|  |  | 
|  | void Simulator::WriteB(int32_t addr, int8_t value) { | 
|  | local_monitor_.NotifyStore(); | 
|  | base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); | 
|  | GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_thread_); | 
|  | int8_t* ptr = reinterpret_cast<int8_t*>(addr); | 
|  | TraceMemWr(addr, value, BYTE); | 
|  | *ptr = value; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | T Simulator::ReadMem(int32_t addr, Instruction* instr) { | 
|  | int alignment_mask = (1 << sizeof(T)) - 1; | 
|  | if ((addr & alignment_mask) == 0 || IsMipsArchVariant(kMips32r6)) { | 
|  | local_monitor_.NotifyLoad(); | 
|  | T* ptr = reinterpret_cast<T*>(addr); | 
|  | TraceMemRd(addr, *ptr); | 
|  | return *ptr; | 
|  | } | 
|  | PrintF("Unaligned read of type sizeof(%d) at 0x%08x, pc=0x%08" V8PRIxPTR "\n", | 
|  | sizeof(T), addr, reinterpret_cast<intptr_t>(instr)); | 
|  | base::OS::Abort(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void Simulator::WriteMem(int32_t addr, T value, Instruction* instr) { | 
|  | local_monitor_.NotifyStore(); | 
|  | base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); | 
|  | GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_thread_); | 
|  | int alignment_mask = (1 << sizeof(T)) - 1; | 
|  | if ((addr & alignment_mask) == 0 || IsMipsArchVariant(kMips32r6)) { | 
|  | T* ptr = reinterpret_cast<T*>(addr); | 
|  | *ptr = value; | 
|  | TraceMemWr(addr, value); | 
|  | return; | 
|  | } | 
|  | PrintF("Unaligned write of type sizeof(%d) at 0x%08x, pc=0x%08" V8PRIxPTR | 
|  | "\n", | 
|  | sizeof(T), addr, reinterpret_cast<intptr_t>(instr)); | 
|  | base::OS::Abort(); | 
|  | } | 
|  |  | 
|  | // Returns the limit of the stack area to enable checking for stack overflows. | 
|  | uintptr_t Simulator::StackLimit(uintptr_t c_limit) const { | 
|  | // The simulator uses a separate JS stack. If we have exhausted the C stack, | 
|  | // we also drop down the JS limit to reflect the exhaustion on the JS stack. | 
|  | if (base::Stack::GetCurrentStackPosition() < c_limit) { | 
|  | return reinterpret_cast<uintptr_t>(get_sp()); | 
|  | } | 
|  |  | 
|  | // Otherwise the limit is the JS stack. Leave a safety margin of 1024 bytes | 
|  | // to prevent overrunning the stack when pushing values. | 
|  | return reinterpret_cast<uintptr_t>(stack_) + 1024; | 
|  | } | 
|  |  | 
|  | // Unsupported instructions use Format to print an error and stop execution. | 
|  | void Simulator::Format(Instruction* instr, const char* format) { | 
|  | PrintF("Simulator found unsupported instruction:\n 0x%08" PRIxPTR ": %s\n", | 
|  | reinterpret_cast<intptr_t>(instr), format); | 
|  | UNIMPLEMENTED_MIPS(); | 
|  | } | 
|  |  | 
|  | // Calls into the V8 runtime are based on this very simple interface. | 
|  | // Note: To be able to return two values from some calls the code in runtime.cc | 
|  | // uses the ObjectPair which is essentially two 32-bit values stuffed into a | 
|  | // 64-bit value. With the code below we assume that all runtime calls return | 
|  | // 64 bits of result. If they don't, the v1 result register contains a bogus | 
|  | // value, which is fine because it is caller-saved. | 
|  | using SimulatorRuntimeCall = int64_t (*)(int32_t arg0, int32_t arg1, | 
|  | int32_t arg2, int32_t arg3, | 
|  | int32_t arg4, int32_t arg5, | 
|  | int32_t arg6, int32_t arg7, | 
|  | int32_t arg8, int32_t arg9); | 
|  |  | 
|  | // These prototypes handle the four types of FP calls. | 
|  | using SimulatorRuntimeCompareCall = int64_t (*)(double darg0, double darg1); | 
|  | using SimulatorRuntimeFPFPCall = double (*)(double darg0, double darg1); | 
|  | using SimulatorRuntimeFPCall = double (*)(double darg0); | 
|  | using SimulatorRuntimeFPIntCall = double (*)(double darg0, int32_t arg0); | 
|  |  | 
|  | // This signature supports direct call in to API function native callback | 
|  | // (refer to InvocationCallback in v8.h). | 
|  | using SimulatorRuntimeDirectApiCall = void (*)(int32_t arg0); | 
|  | using SimulatorRuntimeProfilingApiCall = void (*)(int32_t arg0, void* arg1); | 
|  |  | 
|  | // This signature supports direct call to accessor getter callback. | 
|  | using SimulatorRuntimeDirectGetterCall = void (*)(int32_t arg0, int32_t arg1); | 
|  | using SimulatorRuntimeProfilingGetterCall = void (*)(int32_t arg0, int32_t arg1, | 
|  | void* arg2); | 
|  |  | 
|  | // Software interrupt instructions are used by the simulator to call into the | 
|  | // C-based V8 runtime. They are also used for debugging with simulator. | 
|  | void Simulator::SoftwareInterrupt() { | 
|  | // There are several instructions that could get us here, | 
|  | // the break_ instruction, or several variants of traps. All | 
|  | // Are "SPECIAL" class opcode, and are distinuished by function. | 
|  | int32_t func = instr_.FunctionFieldRaw(); | 
|  | uint32_t code = (func == BREAK) ? instr_.Bits(25, 6) : -1; | 
|  |  | 
|  | // We first check if we met a call_rt_redirected. | 
|  | if (instr_.InstructionBits() == rtCallRedirInstr) { | 
|  | Redirection* redirection = Redirection::FromInstruction(instr_.instr()); | 
|  | int32_t arg0 = get_register(a0); | 
|  | int32_t arg1 = get_register(a1); | 
|  | int32_t arg2 = get_register(a2); | 
|  | int32_t arg3 = get_register(a3); | 
|  |  | 
|  | int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp)); | 
|  | // Args 4 and 5 are on the stack after the reserved space for args 0..3. | 
|  | int32_t arg4 = stack_pointer[4]; | 
|  | int32_t arg5 = stack_pointer[5]; | 
|  | int32_t arg6 = stack_pointer[6]; | 
|  | int32_t arg7 = stack_pointer[7]; | 
|  | int32_t arg8 = stack_pointer[8]; | 
|  | int32_t arg9 = stack_pointer[9]; | 
|  | STATIC_ASSERT(kMaxCParameters == 10); | 
|  |  | 
|  | bool fp_call = | 
|  | (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) || | 
|  | (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) || | 
|  | (redirection->type() == ExternalReference::BUILTIN_FP_CALL) || | 
|  | (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL); | 
|  |  | 
|  | if (!IsMipsSoftFloatABI) { | 
|  | // With the hard floating point calling convention, double | 
|  | // arguments are passed in FPU registers. Fetch the arguments | 
|  | // from there and call the builtin using soft floating point | 
|  | // convention. | 
|  | switch (redirection->type()) { | 
|  | case ExternalReference::BUILTIN_FP_FP_CALL: | 
|  | case ExternalReference::BUILTIN_COMPARE_CALL: | 
|  | if (IsFp64Mode()) { | 
|  | arg0 = get_fpu_register_word(f12); | 
|  | arg1 = get_fpu_register_hi_word(f12); | 
|  | arg2 = get_fpu_register_word(f14); | 
|  | arg3 = get_fpu_register_hi_word(f14); | 
|  | } else { | 
|  | arg0 = get_fpu_register_word(f12); | 
|  | arg1 = get_fpu_register_word(f13); | 
|  | arg2 = get_fpu_register_word(f14); | 
|  | arg3 = get_fpu_register_word(f15); | 
|  | } | 
|  | break; | 
|  | case ExternalReference::BUILTIN_FP_CALL: | 
|  | if (IsFp64Mode()) { | 
|  | arg0 = get_fpu_register_word(f12); | 
|  | arg1 = get_fpu_register_hi_word(f12); | 
|  | } else { | 
|  | arg0 = get_fpu_register_word(f12); | 
|  | arg1 = get_fpu_register_word(f13); | 
|  | } | 
|  | break; | 
|  | case ExternalReference::BUILTIN_FP_INT_CALL: | 
|  | if (IsFp64Mode()) { | 
|  | arg0 = get_fpu_register_word(f12); | 
|  | arg1 = get_fpu_register_hi_word(f12); | 
|  | } else { | 
|  | arg0 = get_fpu_register_word(f12); | 
|  | arg1 = get_fpu_register_word(f13); | 
|  | } | 
|  | arg2 = get_register(a2); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // This is dodgy but it works because the C entry stubs are never moved. | 
|  | // See comment in codegen-arm.cc and bug 1242173. | 
|  | int32_t saved_ra = get_register(ra); | 
|  |  | 
|  | intptr_t external = | 
|  | reinterpret_cast<intptr_t>(redirection->external_function()); | 
|  |  | 
|  | // Based on CpuFeatures::IsSupported(FPU), Mips will use either hardware | 
|  | // FPU, or gcc soft-float routines. Hardware FPU is simulated in this | 
|  | // simulator. Soft-float has additional abstraction of ExternalReference, | 
|  | // to support serialization. | 
|  | if (fp_call) { | 
|  | double dval0, dval1;  // one or two double parameters | 
|  | int32_t ival;         // zero or one integer parameters | 
|  | int64_t iresult = 0;  // integer return value | 
|  | double dresult = 0;   // double return value | 
|  | GetFpArgs(&dval0, &dval1, &ival); | 
|  | SimulatorRuntimeCall generic_target = | 
|  | reinterpret_cast<SimulatorRuntimeCall>(external); | 
|  | if (::v8::internal::FLAG_trace_sim) { | 
|  | switch (redirection->type()) { | 
|  | case ExternalReference::BUILTIN_FP_FP_CALL: | 
|  | case ExternalReference::BUILTIN_COMPARE_CALL: | 
|  | PrintF("Call to host function at %p with args %f, %f", | 
|  | reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)), | 
|  | dval0, dval1); | 
|  | break; | 
|  | case ExternalReference::BUILTIN_FP_CALL: | 
|  | PrintF("Call to host function at %p with arg %f", | 
|  | reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)), | 
|  | dval0); | 
|  | break; | 
|  | case ExternalReference::BUILTIN_FP_INT_CALL: | 
|  | PrintF("Call to host function at %p with args %f, %d", | 
|  | reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)), | 
|  | dval0, ival); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | switch (redirection->type()) { | 
|  | case ExternalReference::BUILTIN_COMPARE_CALL: { | 
|  | SimulatorRuntimeCompareCall target = | 
|  | reinterpret_cast<SimulatorRuntimeCompareCall>(external); | 
|  | iresult = target(dval0, dval1); | 
|  | set_register(v0, static_cast<int32_t>(iresult)); | 
|  | set_register(v1, static_cast<int32_t>(iresult >> 32)); | 
|  | break; | 
|  | } | 
|  | case ExternalReference::BUILTIN_FP_FP_CALL: { | 
|  | SimulatorRuntimeFPFPCall target = | 
|  | reinterpret_cast<SimulatorRuntimeFPFPCall>(external); | 
|  | dresult = target(dval0, dval1); | 
|  | SetFpResult(dresult); | 
|  | break; | 
|  | } | 
|  | case ExternalReference::BUILTIN_FP_CALL: { | 
|  | SimulatorRuntimeFPCall target = | 
|  | reinterpret_cast<SimulatorRuntimeFPCall>(external); | 
|  | dresult = target(dval0); | 
|  | SetFpResult(dresult); | 
|  | break; | 
|  | } | 
|  | case ExternalReference::BUILTIN_FP_INT_CALL: { | 
|  | SimulatorRuntimeFPIntCall target = | 
|  | reinterpret_cast<SimulatorRuntimeFPIntCall>(external); | 
|  | dresult = target(dval0, ival); | 
|  | SetFpResult(dresult); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | if (::v8::internal::FLAG_trace_sim) { | 
|  | switch (redirection->type()) { | 
|  | case ExternalReference::BUILTIN_COMPARE_CALL: | 
|  | PrintF("Returned %08x\n", static_cast<int32_t>(iresult)); | 
|  | break; | 
|  | case ExternalReference::BUILTIN_FP_FP_CALL: | 
|  | case ExternalReference::BUILTIN_FP_CALL: | 
|  | case ExternalReference::BUILTIN_FP_INT_CALL: | 
|  | PrintF("Returned %f\n", dresult); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) { | 
|  | if (::v8::internal::FLAG_trace_sim) { | 
|  | PrintF("Call to host function at %p args %08x\n", | 
|  | reinterpret_cast<void*>(external), arg0); | 
|  | } | 
|  | SimulatorRuntimeDirectApiCall target = | 
|  | reinterpret_cast<SimulatorRuntimeDirectApiCall>(external); | 
|  | target(arg0); | 
|  | } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) { | 
|  | if (::v8::internal::FLAG_trace_sim) { | 
|  | PrintF("Call to host function at %p args %08x %08x\n", | 
|  | reinterpret_cast<void*>(external), arg0, arg1); | 
|  | } | 
|  | SimulatorRuntimeProfilingApiCall target = | 
|  | reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external); | 
|  | target(arg0, Redirection::ReverseRedirection(arg1)); | 
|  | } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) { | 
|  | if (::v8::internal::FLAG_trace_sim) { | 
|  | PrintF("Call to host function at %p args %08x %08x\n", | 
|  | reinterpret_cast<void*>(external), arg0, arg1); | 
|  | } | 
|  | SimulatorRuntimeDirectGetterCall target = | 
|  | reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external); | 
|  | target(arg0, arg1); | 
|  | } else if (redirection->type() == | 
|  | ExternalReference::PROFILING_GETTER_CALL) { | 
|  | if (::v8::internal::FLAG_trace_sim) { | 
|  | PrintF("Call to host function at %p args %08x %08x %08x\n", | 
|  | reinterpret_cast<void*>(external), arg0, arg1, arg2); | 
|  | } | 
|  | SimulatorRuntimeProfilingGetterCall target = | 
|  | reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external); | 
|  | target(arg0, arg1, Redirection::ReverseRedirection(arg2)); | 
|  | } else { | 
|  | DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL || | 
|  | redirection->type() == ExternalReference::BUILTIN_CALL_PAIR); | 
|  | SimulatorRuntimeCall target = | 
|  | reinterpret_cast<SimulatorRuntimeCall>(external); | 
|  | if (::v8::internal::FLAG_trace_sim) { | 
|  | PrintF( | 
|  | "Call to host function at %p " | 
|  | "args %08x, %08x, %08x, %08x, %08x, %08x, %08x, %08x, %08x, %08x\n", | 
|  | reinterpret_cast<void*>(FUNCTION_ADDR(target)), arg0, arg1, arg2, | 
|  | arg3, arg4, arg5, arg6, arg7, arg8, arg9); | 
|  | } | 
|  | int64_t result = | 
|  | target(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9); | 
|  | set_register(v0, static_cast<int32_t>(result)); | 
|  | set_register(v1, static_cast<int32_t>(result >> 32)); | 
|  | } | 
|  | if (::v8::internal::FLAG_trace_sim) { | 
|  | PrintF("Returned %08x : %08x\n", get_register(v1), get_register(v0)); | 
|  | } | 
|  | set_register(ra, saved_ra); | 
|  | set_pc(get_register(ra)); | 
|  |  | 
|  | } else if (func == BREAK && code <= kMaxStopCode) { | 
|  | if (IsWatchpoint(code)) { | 
|  | PrintWatchpoint(code); | 
|  | } else { | 
|  | IncreaseStopCounter(code); | 
|  | HandleStop(code, instr_.instr()); | 
|  | } | 
|  | } else { | 
|  | // All remaining break_ codes, and all traps are handled here. | 
|  | MipsDebugger dbg(this); | 
|  | dbg.Debug(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Stop helper functions. | 
|  | bool Simulator::IsWatchpoint(uint32_t code) { | 
|  | return (code <= kMaxWatchpointCode); | 
|  | } | 
|  |  | 
|  | void Simulator::PrintWatchpoint(uint32_t code) { | 
|  | MipsDebugger dbg(this); | 
|  | ++break_count_; | 
|  | PrintF("\n---- break %d marker: %3d  (instr count: %" PRIu64 | 
|  | ") ----------" | 
|  | "----------------------------------", | 
|  | code, break_count_, icount_); | 
|  | dbg.PrintAllRegs();  // Print registers and continue running. | 
|  | } | 
|  |  | 
|  | void Simulator::HandleStop(uint32_t code, Instruction* instr) { | 
|  | // Stop if it is enabled, otherwise go on jumping over the stop | 
|  | // and the message address. | 
|  | if (IsEnabledStop(code)) { | 
|  | MipsDebugger dbg(this); | 
|  | dbg.Stop(instr); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Simulator::IsStopInstruction(Instruction* instr) { | 
|  | int32_t func = instr->FunctionFieldRaw(); | 
|  | uint32_t code = static_cast<uint32_t>(instr->Bits(25, 6)); | 
|  | return (func == BREAK) && code > kMaxWatchpointCode && code <= kMaxStopCode; | 
|  | } | 
|  |  | 
|  | bool Simulator::IsEnabledStop(uint32_t code) { | 
|  | DCHECK_LE(code, kMaxStopCode); | 
|  | DCHECK_GT(code, kMaxWatchpointCode); | 
|  | return !(watched_stops_[code].count & kStopDisabledBit); | 
|  | } | 
|  |  | 
|  | void Simulator::EnableStop(uint32_t code) { | 
|  | if (!IsEnabledStop(code)) { | 
|  | watched_stops_[code].count &= ~kStopDisabledBit; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DisableStop(uint32_t code) { | 
|  | if (IsEnabledStop(code)) { | 
|  | watched_stops_[code].count |= kStopDisabledBit; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::IncreaseStopCounter(uint32_t code) { | 
|  | DCHECK_LE(code, kMaxStopCode); | 
|  | if ((watched_stops_[code].count & ~(1 << 31)) == 0x7FFFFFFF) { | 
|  | PrintF( | 
|  | "Stop counter for code %i has overflowed.\n" | 
|  | "Enabling this code and reseting the counter to 0.\n", | 
|  | code); | 
|  | watched_stops_[code].count = 0; | 
|  | EnableStop(code); | 
|  | } else { | 
|  | watched_stops_[code].count++; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Print a stop status. | 
|  | void Simulator::PrintStopInfo(uint32_t code) { | 
|  | if (code <= kMaxWatchpointCode) { | 
|  | PrintF("That is a watchpoint, not a stop.\n"); | 
|  | return; | 
|  | } else if (code > kMaxStopCode) { | 
|  | PrintF("Code too large, only %u stops can be used\n", kMaxStopCode + 1); | 
|  | return; | 
|  | } | 
|  | const char* state = IsEnabledStop(code) ? "Enabled" : "Disabled"; | 
|  | int32_t count = watched_stops_[code].count & ~kStopDisabledBit; | 
|  | // Don't print the state of unused breakpoints. | 
|  | if (count != 0) { | 
|  | if (watched_stops_[code].desc) { | 
|  | PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code, state, | 
|  | count, watched_stops_[code].desc); | 
|  | } else { | 
|  | PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state, | 
|  | count); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::SignalException(Exception e) { | 
|  | FATAL("Error: Exception %i raised.", static_cast<int>(e)); | 
|  | } | 
|  |  | 
|  | // Min/Max template functions for Double and Single arguments. | 
|  |  | 
|  | template <typename T> | 
|  | static T FPAbs(T a); | 
|  |  | 
|  | template <> | 
|  | double FPAbs<double>(double a) { | 
|  | return fabs(a); | 
|  | } | 
|  |  | 
|  | template <> | 
|  | float FPAbs<float>(float a) { | 
|  | return fabsf(a); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | static bool FPUProcessNaNsAndZeros(T a, T b, MaxMinKind kind, T* result) { | 
|  | if (std::isnan(a) && std::isnan(b)) { | 
|  | *result = a; | 
|  | } else if (std::isnan(a)) { | 
|  | *result = b; | 
|  | } else if (std::isnan(b)) { | 
|  | *result = a; | 
|  | } else if (b == a) { | 
|  | // Handle -0.0 == 0.0 case. | 
|  | // std::signbit() returns int 0 or 1 so subtracting MaxMinKind::kMax | 
|  | // negates the result. | 
|  | *result = std::signbit(b) - static_cast<int>(kind) ? b : a; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | static T FPUMin(T a, T b) { | 
|  | T result; | 
|  | if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, &result)) { | 
|  | return result; | 
|  | } else { | 
|  | return b < a ? b : a; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | static T FPUMax(T a, T b) { | 
|  | T result; | 
|  | if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMax, &result)) { | 
|  | return result; | 
|  | } else { | 
|  | return b > a ? b : a; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | static T FPUMinA(T a, T b) { | 
|  | T result; | 
|  | if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, &result)) { | 
|  | if (FPAbs(a) < FPAbs(b)) { | 
|  | result = a; | 
|  | } else if (FPAbs(b) < FPAbs(a)) { | 
|  | result = b; | 
|  | } else { | 
|  | result = a < b ? a : b; | 
|  | } | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | static T FPUMaxA(T a, T b) { | 
|  | T result; | 
|  | if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, &result)) { | 
|  | if (FPAbs(a) > FPAbs(b)) { | 
|  | result = a; | 
|  | } else if (FPAbs(b) > FPAbs(a)) { | 
|  | result = b; | 
|  | } else { | 
|  | result = a > b ? a : b; | 
|  | } | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | enum class KeepSign : bool { no = false, yes }; | 
|  |  | 
|  | template <typename T, typename std::enable_if<std::is_floating_point<T>::value, | 
|  | int>::type = 0> | 
|  | T FPUCanonalizeNaNArg(T result, T arg, KeepSign keepSign = KeepSign::no) { | 
|  | DCHECK(std::isnan(arg)); | 
|  | T qNaN = std::numeric_limits<T>::quiet_NaN(); | 
|  | if (keepSign == KeepSign::yes) { | 
|  | return std::copysign(qNaN, result); | 
|  | } | 
|  | return qNaN; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | T FPUCanonalizeNaNArgs(T result, KeepSign keepSign, T first) { | 
|  | if (std::isnan(first)) { | 
|  | return FPUCanonalizeNaNArg(result, first, keepSign); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | template <typename T, typename... Args> | 
|  | T FPUCanonalizeNaNArgs(T result, KeepSign keepSign, T first, Args... args) { | 
|  | if (std::isnan(first)) { | 
|  | return FPUCanonalizeNaNArg(result, first, keepSign); | 
|  | } | 
|  | return FPUCanonalizeNaNArgs(result, keepSign, args...); | 
|  | } | 
|  |  | 
|  | template <typename Func, typename T, typename... Args> | 
|  | T FPUCanonalizeOperation(Func f, T first, Args... args) { | 
|  | return FPUCanonalizeOperation(f, KeepSign::no, first, args...); | 
|  | } | 
|  |  | 
|  | template <typename Func, typename T, typename... Args> | 
|  | T FPUCanonalizeOperation(Func f, KeepSign keepSign, T first, Args... args) { | 
|  | T result = f(first, args...); | 
|  | if (std::isnan(result)) { | 
|  | result = FPUCanonalizeNaNArgs(result, keepSign, first, args...); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | // Handle execution based on instruction types. | 
|  |  | 
|  | void Simulator::DecodeTypeRegisterDRsType() { | 
|  | double ft, fs, fd; | 
|  | uint32_t cc, fcsr_cc; | 
|  | int64_t i64; | 
|  | fs = get_fpu_register_double(fs_reg()); | 
|  | ft = (instr_.FunctionFieldRaw() != MOVF) ? get_fpu_register_double(ft_reg()) | 
|  | : 0.0; | 
|  | fd = get_fpu_register_double(fd_reg()); | 
|  | int64_t ft_int = bit_cast<int64_t>(ft); | 
|  | int64_t fd_int = bit_cast<int64_t>(fd); | 
|  | cc = instr_.FCccValue(); | 
|  | fcsr_cc = get_fcsr_condition_bit(cc); | 
|  | switch (instr_.FunctionFieldRaw()) { | 
|  | case RINT: { | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | double result, temp, temp_result; | 
|  | double upper = std::ceil(fs); | 
|  | double lower = std::floor(fs); | 
|  | switch (get_fcsr_rounding_mode()) { | 
|  | case kRoundToNearest: | 
|  | if (upper - fs < fs - lower) { | 
|  | result = upper; | 
|  | } else if (upper - fs > fs - lower) { | 
|  | result = lower; | 
|  | } else { | 
|  | temp_result = upper / 2; | 
|  | double reminder = modf(temp_result, &temp); | 
|  | if (reminder == 0) { | 
|  | result = upper; | 
|  | } else { | 
|  | result = lower; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case kRoundToZero: | 
|  | result = (fs > 0 ? lower : upper); | 
|  | break; | 
|  | case kRoundToPlusInf: | 
|  | result = upper; | 
|  | break; | 
|  | case kRoundToMinusInf: | 
|  | result = lower; | 
|  | break; | 
|  | } | 
|  | SetFPUDoubleResult(fd_reg(), result); | 
|  | if (result != fs) { | 
|  | set_fcsr_bit(kFCSRInexactFlagBit, true); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case SEL: | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | SetFPUDoubleResult(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft); | 
|  | break; | 
|  | case SELEQZ_C: | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | SetFPUDoubleResult(fd_reg(), (ft_int & 0x1) == 0 ? fs : 0.0); | 
|  | break; | 
|  | case SELNEZ_C: | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | SetFPUDoubleResult(fd_reg(), (ft_int & 0x1) != 0 ? fs : 0.0); | 
|  | break; | 
|  | case MOVZ_C: { | 
|  | DCHECK(IsMipsArchVariant(kMips32r2)); | 
|  | if (rt() == 0) { | 
|  | SetFPUDoubleResult(fd_reg(), fs); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case MOVN_C: { | 
|  | DCHECK(IsMipsArchVariant(kMips32r2)); | 
|  | int32_t rt_reg = instr_.RtValue(); | 
|  | int32_t rt = get_register(rt_reg); | 
|  | if (rt != 0) { | 
|  | SetFPUDoubleResult(fd_reg(), fs); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case MOVF: { | 
|  | // Same function field for MOVT.D and MOVF.D | 
|  | uint32_t ft_cc = (ft_reg() >> 2) & 0x7; | 
|  | ft_cc = get_fcsr_condition_bit(ft_cc); | 
|  | if (instr_.Bit(16)) {  // Read Tf bit. | 
|  | // MOVT.D | 
|  | if (test_fcsr_bit(ft_cc)) SetFPUDoubleResult(fd_reg(), fs); | 
|  | } else { | 
|  | // MOVF.D | 
|  | if (!test_fcsr_bit(ft_cc)) SetFPUDoubleResult(fd_reg(), fs); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case MIN: | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | SetFPUDoubleResult(fd_reg(), FPUMin(ft, fs)); | 
|  | break; | 
|  | case MAX: | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | SetFPUDoubleResult(fd_reg(), FPUMax(ft, fs)); | 
|  | break; | 
|  | case MINA: | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | SetFPUDoubleResult(fd_reg(), FPUMinA(ft, fs)); | 
|  | break; | 
|  | case MAXA: | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | SetFPUDoubleResult(fd_reg(), FPUMaxA(ft, fs)); | 
|  | break; | 
|  | case ADD_D: | 
|  | SetFPUDoubleResult( | 
|  | fd_reg(), | 
|  | FPUCanonalizeOperation( | 
|  | [](double lhs, double rhs) { return lhs + rhs; }, fs, ft)); | 
|  | break; | 
|  | case SUB_D: | 
|  | SetFPUDoubleResult( | 
|  | fd_reg(), | 
|  | FPUCanonalizeOperation( | 
|  | [](double lhs, double rhs) { return lhs - rhs; }, fs, ft)); | 
|  | break; | 
|  | case MADDF_D: | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | SetFPUDoubleResult(fd_reg(), std::fma(fs, ft, fd)); | 
|  | break; | 
|  | case MSUBF_D: | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | SetFPUDoubleResult(fd_reg(), std::fma(-fs, ft, fd)); | 
|  | break; | 
|  | case MUL_D: | 
|  | SetFPUDoubleResult( | 
|  | fd_reg(), | 
|  | FPUCanonalizeOperation( | 
|  | [](double lhs, double rhs) { return lhs * rhs; }, fs, ft)); | 
|  | break; | 
|  | case DIV_D: | 
|  | SetFPUDoubleResult( | 
|  | fd_reg(), | 
|  | FPUCanonalizeOperation( | 
|  | [](double lhs, double rhs) { return lhs / rhs; }, fs, ft)); | 
|  | break; | 
|  | case ABS_D: | 
|  | SetFPUDoubleResult( | 
|  | fd_reg(), | 
|  | FPUCanonalizeOperation([](double fs) { return FPAbs(fs); }, fs)); | 
|  | break; | 
|  | case MOV_D: | 
|  | SetFPUDoubleResult(fd_reg(), fs); | 
|  | break; | 
|  | case NEG_D: | 
|  | SetFPUDoubleResult(fd_reg(), | 
|  | FPUCanonalizeOperation([](double src) { return -src; }, | 
|  | KeepSign::yes, fs)); | 
|  | break; | 
|  | case SQRT_D: | 
|  | SetFPUDoubleResult( | 
|  | fd_reg(), | 
|  | FPUCanonalizeOperation([](double fs) { return std::sqrt(fs); }, fs)); | 
|  | break; | 
|  | case RSQRT_D: | 
|  | SetFPUDoubleResult( | 
|  | fd_reg(), FPUCanonalizeOperation( | 
|  | [](double fs) { return 1.0 / std::sqrt(fs); }, fs)); | 
|  | break; | 
|  | case RECIP_D: | 
|  | SetFPUDoubleResult(fd_reg(), FPUCanonalizeOperation( | 
|  | [](double fs) { return 1.0 / fs; }, fs)); | 
|  | break; | 
|  | case C_UN_D: | 
|  | set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft)); | 
|  | TraceRegWr(test_fcsr_bit(fcsr_cc)); | 
|  | break; | 
|  | case C_EQ_D: | 
|  | set_fcsr_bit(fcsr_cc, (fs == ft)); | 
|  | TraceRegWr(test_fcsr_bit(fcsr_cc)); | 
|  | break; | 
|  | case C_UEQ_D: | 
|  | set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft))); | 
|  | TraceRegWr(test_fcsr_bit(fcsr_cc)); | 
|  | break; | 
|  | case C_OLT_D: | 
|  | set_fcsr_bit(fcsr_cc, (fs < ft)); | 
|  | TraceRegWr(test_fcsr_bit(fcsr_cc)); | 
|  | break; | 
|  | case C_ULT_D: | 
|  | set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft))); | 
|  | TraceRegWr(test_fcsr_bit(fcsr_cc)); | 
|  | break; | 
|  | case C_OLE_D: | 
|  | set_fcsr_bit(fcsr_cc, (fs <= ft)); | 
|  | TraceRegWr(test_fcsr_bit(fcsr_cc)); | 
|  | break; | 
|  | case C_ULE_D: | 
|  | set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft))); | 
|  | TraceRegWr(test_fcsr_bit(fcsr_cc)); | 
|  | break; | 
|  | case CVT_W_D: {  // Convert double to word. | 
|  | double rounded; | 
|  | int32_t result; | 
|  | round_according_to_fcsr(fs, &rounded, &result, fs); | 
|  | SetFPUWordResult(fd_reg(), result); | 
|  | if (set_fcsr_round_error(fs, rounded)) { | 
|  | set_fpu_register_word_invalid_result(fs, rounded); | 
|  | } | 
|  | } break; | 
|  | case ROUND_W_D:  // Round double to word (round half to even). | 
|  | { | 
|  | double rounded = std::floor(fs + 0.5); | 
|  | int32_t result = static_cast<int32_t>(rounded); | 
|  | if ((result & 1) != 0 && result - fs == 0.5) { | 
|  | // If the number is halfway between two integers, | 
|  | // round to the even one. | 
|  | result--; | 
|  | } | 
|  | SetFPUWordResult(fd_reg(), result); | 
|  | if (set_fcsr_round_error(fs, rounded)) { | 
|  | set_fpu_register_word_invalid_result(fs, rounded); | 
|  | } | 
|  | } break; | 
|  | case TRUNC_W_D:  // Truncate double to word (round towards 0). | 
|  | { | 
|  | double rounded = trunc(fs); | 
|  | int32_t result = static_cast<int32_t>(rounded); | 
|  | SetFPUWordResult(fd_reg(), result); | 
|  | if (set_fcsr_round_error(fs, rounded)) { | 
|  | set_fpu_register_word_invalid_result(fs, rounded); | 
|  | } | 
|  | } break; | 
|  | case FLOOR_W_D:  // Round double to word towards negative infinity. | 
|  | { | 
|  | double rounded = std::floor(fs); | 
|  | int32_t result = static_cast<int32_t>(rounded); | 
|  | SetFPUWordResult(fd_reg(), result); | 
|  | if (set_fcsr_round_error(fs, rounded)) { | 
|  | set_fpu_register_word_invalid_result(fs, rounded); | 
|  | } | 
|  | } break; | 
|  | case CEIL_W_D:  // Round double to word towards positive infinity. | 
|  | { | 
|  | double rounded = std::ceil(fs); | 
|  | int32_t result = static_cast<int32_t>(rounded); | 
|  | SetFPUWordResult(fd_reg(), result); | 
|  | if (set_fcsr_round_error(fs, rounded)) { | 
|  | set_fpu_register_word_invalid_result(fs, rounded); | 
|  | } | 
|  | } break; | 
|  | case CVT_S_D:  // Convert double to float (single). | 
|  | SetFPUFloatResult(fd_reg(), static_cast<float>(fs)); | 
|  | break; | 
|  | case CVT_L_D: {  // Mips32r2: Truncate double to 64-bit long-word. | 
|  | if (IsFp64Mode()) { | 
|  | int64_t result; | 
|  | double rounded; | 
|  | round64_according_to_fcsr(fs, &rounded, &result, fs); | 
|  | SetFPUResult(fd_reg(), result); | 
|  | if (set_fcsr_round64_error(fs, rounded)) { | 
|  | set_fpu_register_invalid_result64(fs, rounded); | 
|  | } | 
|  | } else { | 
|  | UNSUPPORTED(); | 
|  | } | 
|  | break; | 
|  | break; | 
|  | } | 
|  | case TRUNC_L_D: {  // Mips32r2 instruction. | 
|  | DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); | 
|  | double rounded = trunc(fs); | 
|  | i64 = static_cast<int64_t>(rounded); | 
|  | if (IsFp64Mode()) { | 
|  | SetFPUResult(fd_reg(), i64); | 
|  | if (set_fcsr_round64_error(fs, rounded)) { | 
|  | set_fpu_register_invalid_result64(fs, rounded); | 
|  | } | 
|  | } else { | 
|  | UNSUPPORTED(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ROUND_L_D: {  // Mips32r2 instruction. | 
|  | DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); | 
|  | double rounded = std::floor(fs + 0.5); | 
|  | int64_t result = static_cast<int64_t>(rounded); | 
|  | if ((result & 1) != 0 && result - fs == 0.5) { | 
|  | // If the number is halfway between two integers, | 
|  | // round to the even one. | 
|  | result--; | 
|  | } | 
|  | int64_t i64 = static_cast<int64_t>(result); | 
|  | if (IsFp64Mode()) { | 
|  | SetFPUResult(fd_reg(), i64); | 
|  | if (set_fcsr_round64_error(fs, rounded)) { | 
|  | set_fpu_register_invalid_result64(fs, rounded); | 
|  | } | 
|  | } else { | 
|  | UNSUPPORTED(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case FLOOR_L_D: {  // Mips32r2 instruction. | 
|  | DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); | 
|  | double rounded = std::floor(fs); | 
|  | int64_t i64 = static_cast<int64_t>(rounded); | 
|  | if (IsFp64Mode()) { | 
|  | SetFPUResult(fd_reg(), i64); | 
|  | if (set_fcsr_round64_error(fs, rounded)) { | 
|  | set_fpu_register_invalid_result64(fs, rounded); | 
|  | } | 
|  | } else { | 
|  | UNSUPPORTED(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case CEIL_L_D: {  // Mips32r2 instruction. | 
|  | DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); | 
|  | double rounded = std::ceil(fs); | 
|  | int64_t i64 = static_cast<int64_t>(rounded); | 
|  | if (IsFp64Mode()) { | 
|  | SetFPUResult(fd_reg(), i64); | 
|  | if (set_fcsr_round64_error(fs, rounded)) { | 
|  | set_fpu_register_invalid_result64(fs, rounded); | 
|  | } | 
|  | } else { | 
|  | UNSUPPORTED(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case CLASS_D: {  // Mips32r6 instruction | 
|  | // Convert double input to uint64_t for easier bit manipulation | 
|  | uint64_t classed = bit_cast<uint64_t>(fs); | 
|  |  | 
|  | // Extracting sign, exponent and mantissa from the input double | 
|  | uint32_t sign = (classed >> 63) & 1; | 
|  | uint32_t exponent = (classed >> 52) & 0x00000000000007FF; | 
|  | uint64_t mantissa = classed & 0x000FFFFFFFFFFFFF; | 
|  | uint64_t result; | 
|  | double dResult; | 
|  |  | 
|  | // Setting flags if input double is negative infinity, | 
|  | // positive infinity, negative zero or positive zero | 
|  | bool negInf = (classed == 0xFFF0000000000000); | 
|  | bool posInf = (classed == 0x7FF0000000000000); | 
|  | bool negZero = (classed == 0x8000000000000000); | 
|  | bool posZero = (classed == 0x0000000000000000); | 
|  |  | 
|  | bool signalingNan; | 
|  | bool quietNan; | 
|  | bool negSubnorm; | 
|  | bool posSubnorm; | 
|  | bool negNorm; | 
|  | bool posNorm; | 
|  |  | 
|  | // Setting flags if double is NaN | 
|  | signalingNan = false; | 
|  | quietNan = false; | 
|  | if (!negInf && !posInf && exponent == 0x7FF) { | 
|  | quietNan = ((mantissa & 0x0008000000000000) != 0) && | 
|  | ((mantissa & (0x0008000000000000 - 1)) == 0); | 
|  | signalingNan = !quietNan; | 
|  | } | 
|  |  | 
|  | // Setting flags if double is subnormal number | 
|  | posSubnorm = false; | 
|  | negSubnorm = false; | 
|  | if ((exponent == 0) && (mantissa != 0)) { | 
|  | DCHECK(sign == 0 || sign == 1); | 
|  | posSubnorm = (sign == 0); | 
|  | negSubnorm = (sign == 1); | 
|  | } | 
|  |  | 
|  | // Setting flags if double is normal number | 
|  | posNorm = false; | 
|  | negNorm = false; | 
|  | if (!posSubnorm && !negSubnorm && !posInf && !negInf && !signalingNan && | 
|  | !quietNan && !negZero && !posZero) { | 
|  | DCHECK(sign == 0 || sign == 1); | 
|  | posNorm = (sign == 0); | 
|  | negNorm = (sign == 1); | 
|  | } | 
|  |  | 
|  | // Calculating result according to description of CLASS.D instruction | 
|  | result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) | | 
|  | (posInf << 6) | (negZero << 5) | (negSubnorm << 4) | | 
|  | (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan; | 
|  |  | 
|  | DCHECK_NE(result, 0); | 
|  |  | 
|  | dResult = bit_cast<double>(result); | 
|  | SetFPUDoubleResult(fd_reg(), dResult); | 
|  |  | 
|  | break; | 
|  | } | 
|  | case C_F_D: { | 
|  | set_fcsr_bit(fcsr_cc, false); | 
|  | TraceRegWr(test_fcsr_bit(fcsr_cc)); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeTypeRegisterWRsType() { | 
|  | float fs = get_fpu_register_float(fs_reg()); | 
|  | float ft = get_fpu_register_float(ft_reg()); | 
|  | int32_t alu_out = 0x12345678; | 
|  | switch (instr_.FunctionFieldRaw()) { | 
|  | case CVT_S_W:  // Convert word to float (single). | 
|  | alu_out = get_fpu_register_signed_word(fs_reg()); | 
|  | SetFPUFloatResult(fd_reg(), static_cast<float>(alu_out)); | 
|  | break; | 
|  | case CVT_D_W:  // Convert word to double. | 
|  | alu_out = get_fpu_register_signed_word(fs_reg()); | 
|  | SetFPUDoubleResult(fd_reg(), static_cast<double>(alu_out)); | 
|  | break; | 
|  | case CMP_AF: | 
|  | SetFPUWordResult(fd_reg(), 0); | 
|  | break; | 
|  | case CMP_UN: | 
|  | if (std::isnan(fs) || std::isnan(ft)) { | 
|  | SetFPUWordResult(fd_reg(), -1); | 
|  | } else { | 
|  | SetFPUWordResult(fd_reg(), 0); | 
|  | } | 
|  | break; | 
|  | case CMP_EQ: | 
|  | if (fs == ft) { | 
|  | SetFPUWordResult(fd_reg(), -1); | 
|  | } else { | 
|  | SetFPUWordResult(fd_reg(), 0); | 
|  | } | 
|  | break; | 
|  | case CMP_UEQ: | 
|  | if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) { | 
|  | SetFPUWordResult(fd_reg(), -1); | 
|  | } else { | 
|  | SetFPUWordResult(fd_reg(), 0); | 
|  | } | 
|  | break; | 
|  | case CMP_LT: | 
|  | if (fs < ft) { | 
|  | SetFPUWordResult(fd_reg(), -1); | 
|  | } else { | 
|  | SetFPUWordResult(fd_reg(), 0); | 
|  | } | 
|  | break; | 
|  | case CMP_ULT: | 
|  | if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) { | 
|  | SetFPUWordResult(fd_reg(), -1); | 
|  | } else { | 
|  | SetFPUWordResult(fd_reg(), 0); | 
|  | } | 
|  | break; | 
|  | case CMP_LE: | 
|  | if (fs <= ft) { | 
|  | SetFPUWordResult(fd_reg(), -1); | 
|  | } else { | 
|  | SetFPUWordResult(fd_reg(), 0); | 
|  | } | 
|  | break; | 
|  | case CMP_ULE: | 
|  | if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) { | 
|  | SetFPUWordResult(fd_reg(), -1); | 
|  | } else { | 
|  | SetFPUWordResult(fd_reg(), 0); | 
|  | } | 
|  | break; | 
|  | case CMP_OR: | 
|  | if (!std::isnan(fs) && !std::isnan(ft)) { | 
|  | SetFPUWordResult(fd_reg(), -1); | 
|  | } else { | 
|  | SetFPUWordResult(fd_reg(), 0); | 
|  | } | 
|  | break; | 
|  | case CMP_UNE: | 
|  | if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) { | 
|  | SetFPUWordResult(fd_reg(), -1); | 
|  | } else { | 
|  | SetFPUWordResult(fd_reg(), 0); | 
|  | } | 
|  | break; | 
|  | case CMP_NE: | 
|  | if (fs != ft) { | 
|  | SetFPUWordResult(fd_reg(), -1); | 
|  | } else { | 
|  | SetFPUWordResult(fd_reg(), 0); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeTypeRegisterSRsType() { | 
|  | float fs, ft, fd; | 
|  | fs = get_fpu_register_float(fs_reg()); | 
|  | ft = get_fpu_register_float(ft_reg()); | 
|  | fd = get_fpu_register_float(fd_reg()); | 
|  | int32_t ft_int = bit_cast<int32_t>(ft); | 
|  | int32_t fd_int = bit_cast<int32_t>(fd); | 
|  | uint32_t cc, fcsr_cc; | 
|  | cc = instr_.FCccValue(); | 
|  | fcsr_cc = get_fcsr_condition_bit(cc); | 
|  | switch (instr_.FunctionFieldRaw()) { | 
|  | case RINT: { | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | float result, temp_result; | 
|  | double temp; | 
|  | float upper = std::ceil(fs); | 
|  | float lower = std::floor(fs); | 
|  | switch (get_fcsr_rounding_mode()) { | 
|  | case kRoundToNearest: | 
|  | if (upper - fs < fs - lower) { | 
|  | result = upper; | 
|  | } else if (upper - fs > fs - lower) { | 
|  | result = lower; | 
|  | } else { | 
|  | temp_result = upper / 2; | 
|  | float reminder = modf(temp_result, &temp); | 
|  | if (reminder == 0) { | 
|  | result = upper; | 
|  | } else { | 
|  | result = lower; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case kRoundToZero: | 
|  | result = (fs > 0 ? lower : upper); | 
|  | break; | 
|  | case kRoundToPlusInf: | 
|  | result = upper; | 
|  | break; | 
|  | case kRoundToMinusInf: | 
|  | result = lower; | 
|  | break; | 
|  | } | 
|  | SetFPUFloatResult(fd_reg(), result); | 
|  | if (result != fs) { | 
|  | set_fcsr_bit(kFCSRInexactFlagBit, true); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ADD_S: | 
|  | SetFPUFloatResult( | 
|  | fd_reg(), | 
|  | FPUCanonalizeOperation([](float lhs, float rhs) { return lhs + rhs; }, | 
|  | fs, ft)); | 
|  | break; | 
|  | case SUB_S: | 
|  | SetFPUFloatResult( | 
|  | fd_reg(), | 
|  | FPUCanonalizeOperation([](float lhs, float rhs) { return lhs - rhs; }, | 
|  | fs, ft)); | 
|  | break; | 
|  | case MADDF_S: | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | SetFPUFloatResult(fd_reg(), std::fma(fs, ft, fd)); | 
|  | break; | 
|  | case MSUBF_S: | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | SetFPUFloatResult(fd_reg(), std::fma(-fs, ft, fd)); | 
|  | break; | 
|  | case MUL_S: | 
|  | SetFPUFloatResult( | 
|  | fd_reg(), | 
|  | FPUCanonalizeOperation([](float lhs, float rhs) { return lhs * rhs; }, | 
|  | fs, ft)); | 
|  | break; | 
|  | case DIV_S: | 
|  | SetFPUFloatResult( | 
|  | fd_reg(), | 
|  | FPUCanonalizeOperation([](float lhs, float rhs) { return lhs / rhs; }, | 
|  | fs, ft)); | 
|  | break; | 
|  | case ABS_S: | 
|  | SetFPUFloatResult(fd_reg(), FPUCanonalizeOperation( | 
|  | [](float fs) { return FPAbs(fs); }, fs)); | 
|  | break; | 
|  | case MOV_S: | 
|  | SetFPUFloatResult(fd_reg(), fs); | 
|  | break; | 
|  | case NEG_S: | 
|  | SetFPUFloatResult(fd_reg(), | 
|  | FPUCanonalizeOperation([](float src) { return -src; }, | 
|  | KeepSign::yes, fs)); | 
|  | break; | 
|  | case SQRT_S: | 
|  | SetFPUFloatResult( | 
|  | fd_reg(), | 
|  | FPUCanonalizeOperation([](float src) { return std::sqrt(src); }, fs)); | 
|  | break; | 
|  | case RSQRT_S: | 
|  | SetFPUFloatResult( | 
|  | fd_reg(), FPUCanonalizeOperation( | 
|  | [](float src) { return 1.0 / std::sqrt(src); }, fs)); | 
|  | break; | 
|  | case RECIP_S: | 
|  | SetFPUFloatResult(fd_reg(), FPUCanonalizeOperation( | 
|  | [](float src) { return 1.0 / src; }, fs)); | 
|  | break; | 
|  | case C_F_D: | 
|  | set_fcsr_bit(fcsr_cc, false); | 
|  | TraceRegWr(test_fcsr_bit(fcsr_cc)); | 
|  | break; | 
|  | case C_UN_D: | 
|  | set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft)); | 
|  | TraceRegWr(test_fcsr_bit(fcsr_cc)); | 
|  | break; | 
|  | case C_EQ_D: | 
|  | set_fcsr_bit(fcsr_cc, (fs == ft)); | 
|  | TraceRegWr(test_fcsr_bit(fcsr_cc)); | 
|  | break; | 
|  | case C_UEQ_D: | 
|  | set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft))); | 
|  | TraceRegWr(test_fcsr_bit(fcsr_cc)); | 
|  | break; | 
|  | case C_OLT_D: | 
|  | set_fcsr_bit(fcsr_cc, (fs < ft)); | 
|  | TraceRegWr(test_fcsr_bit(fcsr_cc)); | 
|  | break; | 
|  | case C_ULT_D: | 
|  | set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft))); | 
|  | TraceRegWr(test_fcsr_bit(fcsr_cc)); | 
|  | break; | 
|  | case C_OLE_D: | 
|  | set_fcsr_bit(fcsr_cc, (fs <= ft)); | 
|  | TraceRegWr(test_fcsr_bit(fcsr_cc)); | 
|  | break; | 
|  | case C_ULE_D: | 
|  | set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft))); | 
|  | TraceRegWr(test_fcsr_bit(fcsr_cc)); | 
|  | break; | 
|  | case CVT_D_S: | 
|  | SetFPUDoubleResult(fd_reg(), static_cast<double>(fs)); | 
|  | break; | 
|  | case SEL: | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | SetFPUFloatResult(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft); | 
|  | break; | 
|  | case CLASS_S: {  // Mips32r6 instruction | 
|  | // Convert float input to uint32_t for easier bit manipulation | 
|  | float fs = get_fpu_register_float(fs_reg()); | 
|  | uint32_t classed = bit_cast<uint32_t>(fs); | 
|  |  | 
|  | // Extracting sign, exponent and mantissa from the input float | 
|  | uint32_t sign = (classed >> 31) & 1; | 
|  | uint32_t exponent = (classed >> 23) & 0x000000FF; | 
|  | uint32_t mantissa = classed & 0x007FFFFF; | 
|  | uint32_t result; | 
|  | float fResult; | 
|  |  | 
|  | // Setting flags if input float is negative infinity, | 
|  | // positive infinity, negative zero or positive zero | 
|  | bool negInf = (classed == 0xFF800000); | 
|  | bool posInf = (classed == 0x7F800000); | 
|  | bool negZero = (classed == 0x80000000); | 
|  | bool posZero = (classed == 0x00000000); | 
|  |  | 
|  | bool signalingNan; | 
|  | bool quietNan; | 
|  | bool negSubnorm; | 
|  | bool posSubnorm; | 
|  | bool negNorm; | 
|  | bool posNorm; | 
|  |  | 
|  | // Setting flags if float is NaN | 
|  | signalingNan = false; | 
|  | quietNan = false; | 
|  | if (!negInf && !posInf && (exponent == 0xFF)) { | 
|  | quietNan = ((mantissa & 0x00200000) == 0) && | 
|  | ((mantissa & (0x00200000 - 1)) == 0); | 
|  | signalingNan = !quietNan; | 
|  | } | 
|  |  | 
|  | // Setting flags if float is subnormal number | 
|  | posSubnorm = false; | 
|  | negSubnorm = false; | 
|  | if ((exponent == 0) && (mantissa != 0)) { | 
|  | DCHECK(sign == 0 || sign == 1); | 
|  | posSubnorm = (sign == 0); | 
|  | negSubnorm = (sign == 1); | 
|  | } | 
|  |  | 
|  | // Setting flags if float is normal number | 
|  | posNorm = false; | 
|  | negNorm = false; | 
|  | if (!posSubnorm && !negSubnorm && !posInf && !negInf && !signalingNan && | 
|  | !quietNan && !negZero && !posZero) { | 
|  | DCHECK(sign == 0 || sign == 1); | 
|  | posNorm = (sign == 0); | 
|  | negNorm = (sign == 1); | 
|  | } | 
|  |  | 
|  | // Calculating result according to description of CLASS.S instruction | 
|  | result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) | | 
|  | (posInf << 6) | (negZero << 5) | (negSubnorm << 4) | | 
|  | (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan; | 
|  |  | 
|  | DCHECK_NE(result, 0); | 
|  |  | 
|  | fResult = bit_cast<float>(result); | 
|  | SetFPUFloatResult(fd_reg(), fResult); | 
|  |  | 
|  | break; | 
|  | } | 
|  | case SELEQZ_C: | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | SetFPUFloatResult(fd_reg(), (ft_int & 0x1) == 0 | 
|  | ? get_fpu_register_float(fs_reg()) | 
|  | : 0.0); | 
|  | break; | 
|  | case SELNEZ_C: | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | SetFPUFloatResult(fd_reg(), (ft_int & 0x1) != 0 | 
|  | ? get_fpu_register_float(fs_reg()) | 
|  | : 0.0); | 
|  | break; | 
|  | case MOVZ_C: { | 
|  | DCHECK(IsMipsArchVariant(kMips32r2)); | 
|  | if (rt() == 0) { | 
|  | SetFPUFloatResult(fd_reg(), fs); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case MOVN_C: { | 
|  | DCHECK(IsMipsArchVariant(kMips32r2)); | 
|  | if (rt() != 0) { | 
|  | SetFPUFloatResult(fd_reg(), fs); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case MOVF: { | 
|  | // Same function field for MOVT.D and MOVF.D | 
|  | uint32_t ft_cc = (ft_reg() >> 2) & 0x7; | 
|  | ft_cc = get_fcsr_condition_bit(ft_cc); | 
|  |  | 
|  | if (instr_.Bit(16)) {  // Read Tf bit. | 
|  | // MOVT.D | 
|  | if (test_fcsr_bit(ft_cc)) SetFPUFloatResult(fd_reg(), fs); | 
|  | } else { | 
|  | // MOVF.D | 
|  | if (!test_fcsr_bit(ft_cc)) SetFPUFloatResult(fd_reg(), fs); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case TRUNC_W_S: {  // Truncate single to word (round towards 0). | 
|  | float rounded = trunc(fs); | 
|  | int32_t result = static_cast<int32_t>(rounded); | 
|  | SetFPUWordResult(fd_reg(), result); | 
|  | if (set_fcsr_round_error(fs, rounded)) { | 
|  | set_fpu_register_word_invalid_result(fs, rounded); | 
|  | } | 
|  | } break; | 
|  | case TRUNC_L_S: {  // Mips32r2 instruction. | 
|  | DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); | 
|  | float rounded = trunc(fs); | 
|  | int64_t i64 = static_cast<int64_t>(rounded); | 
|  | if (IsFp64Mode()) { | 
|  | SetFPUResult(fd_reg(), i64); | 
|  | if (set_fcsr_round64_error(fs, rounded)) { | 
|  | set_fpu_register_invalid_result64(fs, rounded); | 
|  | } | 
|  | } else { | 
|  | UNSUPPORTED(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case FLOOR_W_S:  // Round double to word towards negative infinity. | 
|  | { | 
|  | float rounded = std::floor(fs); | 
|  | int32_t result = static_cast<int32_t>(rounded); | 
|  | SetFPUWordResult(fd_reg(), result); | 
|  | if (set_fcsr_round_error(fs, rounded)) { | 
|  | set_fpu_register_word_invalid_result(fs, rounded); | 
|  | } | 
|  | } break; | 
|  | case FLOOR_L_S: {  // Mips32r2 instruction. | 
|  | DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); | 
|  | float rounded = std::floor(fs); | 
|  | int64_t i64 = static_cast<int64_t>(rounded); | 
|  | if (IsFp64Mode()) { | 
|  | SetFPUResult(fd_reg(), i64); | 
|  | if (set_fcsr_round64_error(fs, rounded)) { | 
|  | set_fpu_register_invalid_result64(fs, rounded); | 
|  | } | 
|  | } else { | 
|  | UNSUPPORTED(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ROUND_W_S: { | 
|  | float rounded = std::floor(fs + 0.5); | 
|  | int32_t result = static_cast<int32_t>(rounded); | 
|  | if ((result & 1) != 0 && result - fs == 0.5) { | 
|  | // If the number is halfway between two integers, | 
|  | // round to the even one. | 
|  | result--; | 
|  | } | 
|  | SetFPUWordResult(fd_reg(), result); | 
|  | if (set_fcsr_round_error(fs, rounded)) { | 
|  | set_fpu_register_word_invalid_result(fs, rounded); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ROUND_L_S: {  // Mips32r2 instruction. | 
|  | DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); | 
|  | float rounded = std::floor(fs + 0.5); | 
|  | int64_t result = static_cast<int64_t>(rounded); | 
|  | if ((result & 1) != 0 && result - fs == 0.5) { | 
|  | // If the number is halfway between two integers, | 
|  | // round to the even one. | 
|  | result--; | 
|  | } | 
|  | int64_t i64 = static_cast<int64_t>(result); | 
|  | if (IsFp64Mode()) { | 
|  | SetFPUResult(fd_reg(), i64); | 
|  | if (set_fcsr_round64_error(fs, rounded)) { | 
|  | set_fpu_register_invalid_result64(fs, rounded); | 
|  | } | 
|  | } else { | 
|  | UNSUPPORTED(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case CEIL_W_S:  // Round double to word towards positive infinity. | 
|  | { | 
|  | float rounded = std::ceil(fs); | 
|  | int32_t result = static_cast<int32_t>(rounded); | 
|  | SetFPUWordResult(fd_reg(), result); | 
|  | if (set_fcsr_round_error(fs, rounded)) { | 
|  | set_fpu_register_word_invalid_result(fs, rounded); | 
|  | } | 
|  | } break; | 
|  | case CEIL_L_S: {  // Mips32r2 instruction. | 
|  | DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); | 
|  | float rounded = std::ceil(fs); | 
|  | int64_t i64 = static_cast<int64_t>(rounded); | 
|  | if (IsFp64Mode()) { | 
|  | SetFPUResult(fd_reg(), i64); | 
|  | if (set_fcsr_round64_error(fs, rounded)) { | 
|  | set_fpu_register_invalid_result64(fs, rounded); | 
|  | } | 
|  | } else { | 
|  | UNSUPPORTED(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case MIN: | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | SetFPUFloatResult(fd_reg(), FPUMin(ft, fs)); | 
|  | break; | 
|  | case MAX: | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | SetFPUFloatResult(fd_reg(), FPUMax(ft, fs)); | 
|  | break; | 
|  | case MINA: | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | SetFPUFloatResult(fd_reg(), FPUMinA(ft, fs)); | 
|  | break; | 
|  | case MAXA: | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | SetFPUFloatResult(fd_reg(), FPUMaxA(ft, fs)); | 
|  | break; | 
|  | case CVT_L_S: { | 
|  | if (IsFp64Mode()) { | 
|  | int64_t result; | 
|  | float rounded; | 
|  | round64_according_to_fcsr(fs, &rounded, &result, fs); | 
|  | SetFPUResult(fd_reg(), result); | 
|  | if (set_fcsr_round64_error(fs, rounded)) { | 
|  | set_fpu_register_invalid_result64(fs, rounded); | 
|  | } | 
|  | } else { | 
|  | UNSUPPORTED(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case CVT_W_S: { | 
|  | float rounded; | 
|  | int32_t result; | 
|  | round_according_to_fcsr(fs, &rounded, &result, fs); | 
|  | SetFPUWordResult(fd_reg(), result); | 
|  | if (set_fcsr_round_error(fs, rounded)) { | 
|  | set_fpu_register_word_invalid_result(fs, rounded); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | // CVT_W_S CVT_L_S  ROUND_W_S ROUND_L_S FLOOR_W_S FLOOR_L_S | 
|  | // CEIL_W_S CEIL_L_S CVT_PS_S are unimplemented. | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeTypeRegisterLRsType() { | 
|  | double fs = get_fpu_register_double(fs_reg()); | 
|  | double ft = get_fpu_register_double(ft_reg()); | 
|  | switch (instr_.FunctionFieldRaw()) { | 
|  | case CVT_D_L:  // Mips32r2 instruction. | 
|  | // Watch the signs here, we want 2 32-bit vals | 
|  | // to make a sign-64. | 
|  | int64_t i64; | 
|  | if (IsFp64Mode()) { | 
|  | i64 = get_fpu_register(fs_reg()); | 
|  | } else { | 
|  | i64 = static_cast<uint32_t>(get_fpu_register_word(fs_reg())); | 
|  | i64 |= static_cast<int64_t>(get_fpu_register_word(fs_reg() + 1)) << 32; | 
|  | } | 
|  | SetFPUDoubleResult(fd_reg(), static_cast<double>(i64)); | 
|  | break; | 
|  | case CVT_S_L: | 
|  | if (IsFp64Mode()) { | 
|  | i64 = get_fpu_register(fs_reg()); | 
|  | } else { | 
|  | i64 = static_cast<uint32_t>(get_fpu_register_word(fs_reg())); | 
|  | i64 |= static_cast<int64_t>(get_fpu_register_word(fs_reg() + 1)) << 32; | 
|  | } | 
|  | SetFPUFloatResult(fd_reg(), static_cast<float>(i64)); | 
|  | break; | 
|  | case CMP_AF:  // Mips64r6 CMP.D instructions. | 
|  | SetFPUResult(fd_reg(), 0); | 
|  | break; | 
|  | case CMP_UN: | 
|  | if (std::isnan(fs) || std::isnan(ft)) { | 
|  | SetFPUResult(fd_reg(), -1); | 
|  | } else { | 
|  | SetFPUResult(fd_reg(), 0); | 
|  | } | 
|  | break; | 
|  | case CMP_EQ: | 
|  | if (fs == ft) { | 
|  | SetFPUResult(fd_reg(), -1); | 
|  | } else { | 
|  | SetFPUResult(fd_reg(), 0); | 
|  | } | 
|  | break; | 
|  | case CMP_UEQ: | 
|  | if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) { | 
|  | SetFPUResult(fd_reg(), -1); | 
|  | } else { | 
|  | SetFPUResult(fd_reg(), 0); | 
|  | } | 
|  | break; | 
|  | case CMP_LT: | 
|  | if (fs < ft) { | 
|  | SetFPUResult(fd_reg(), -1); | 
|  | } else { | 
|  | SetFPUResult(fd_reg(), 0); | 
|  | } | 
|  | break; | 
|  | case CMP_ULT: | 
|  | if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) { | 
|  | SetFPUResult(fd_reg(), -1); | 
|  | } else { | 
|  | SetFPUResult(fd_reg(), 0); | 
|  | } | 
|  | break; | 
|  | case CMP_LE: | 
|  | if (fs <= ft) { | 
|  | SetFPUResult(fd_reg(), -1); | 
|  | } else { | 
|  | SetFPUResult(fd_reg(), 0); | 
|  | } | 
|  | break; | 
|  | case CMP_ULE: | 
|  | if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) { | 
|  | SetFPUResult(fd_reg(), -1); | 
|  | } else { | 
|  | SetFPUResult(fd_reg(), 0); | 
|  | } | 
|  | break; | 
|  | case CMP_OR: | 
|  | if (!std::isnan(fs) && !std::isnan(ft)) { | 
|  | SetFPUResult(fd_reg(), -1); | 
|  | } else { | 
|  | SetFPUResult(fd_reg(), 0); | 
|  | } | 
|  | break; | 
|  | case CMP_UNE: | 
|  | if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) { | 
|  | SetFPUResult(fd_reg(), -1); | 
|  | } else { | 
|  | SetFPUResult(fd_reg(), 0); | 
|  | } | 
|  | break; | 
|  | case CMP_NE: | 
|  | if (fs != ft && (!std::isnan(fs) && !std::isnan(ft))) { | 
|  | SetFPUResult(fd_reg(), -1); | 
|  | } else { | 
|  | SetFPUResult(fd_reg(), 0); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeTypeRegisterCOP1() { | 
|  | switch (instr_.RsFieldRaw()) { | 
|  | case CFC1: | 
|  | // At the moment only FCSR is supported. | 
|  | DCHECK_EQ(fs_reg(), kFCSRRegister); | 
|  | SetResult(rt_reg(), FCSR_); | 
|  | break; | 
|  | case MFC1: | 
|  | SetResult(rt_reg(), get_fpu_register_word(fs_reg())); | 
|  | break; | 
|  | case MFHC1: | 
|  | if (IsFp64Mode()) { | 
|  | SetResult(rt_reg(), get_fpu_register_hi_word(fs_reg())); | 
|  | } else { | 
|  | SetResult(rt_reg(), get_fpu_register_word(fs_reg() + 1)); | 
|  | } | 
|  | break; | 
|  | case CTC1: { | 
|  | // At the moment only FCSR is supported. | 
|  | DCHECK_EQ(fs_reg(), kFCSRRegister); | 
|  | int32_t reg = registers_[rt_reg()]; | 
|  | if (IsMipsArchVariant(kMips32r6)) { | 
|  | FCSR_ = reg | kFCSRNaN2008FlagMask; | 
|  | } else { | 
|  | DCHECK(IsMipsArchVariant(kMips32r1) || IsMipsArchVariant(kMips32r2)); | 
|  | FCSR_ = reg & ~kFCSRNaN2008FlagMask; | 
|  | } | 
|  | TraceRegWr(static_cast<int32_t>(FCSR_)); | 
|  | break; | 
|  | } | 
|  | case MTC1: | 
|  | // Hardware writes upper 32-bits to zero on mtc1. | 
|  | set_fpu_register_hi_word(fs_reg(), 0); | 
|  | set_fpu_register_word(fs_reg(), registers_[rt_reg()]); | 
|  | TraceRegWr(get_fpu_register_word(fs_reg()), FLOAT); | 
|  | break; | 
|  | case MTHC1: | 
|  | if (IsFp64Mode()) { | 
|  | set_fpu_register_hi_word(fs_reg(), registers_[rt_reg()]); | 
|  | TraceRegWr(get_fpu_register(fs_reg()), DOUBLE); | 
|  | } else { | 
|  | set_fpu_register_word(fs_reg() + 1, registers_[rt_reg()]); | 
|  | if (fs_reg() % 2) { | 
|  | TraceRegWr(get_fpu_register_word(fs_reg() + 1), FLOAT); | 
|  | } else { | 
|  | TraceRegWr(get_fpu_register(fs_reg()), DOUBLE); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case S: { | 
|  | DecodeTypeRegisterSRsType(); | 
|  | break; | 
|  | } | 
|  | case D: | 
|  | DecodeTypeRegisterDRsType(); | 
|  | break; | 
|  | case W: | 
|  | DecodeTypeRegisterWRsType(); | 
|  | break; | 
|  | case L: | 
|  | DecodeTypeRegisterLRsType(); | 
|  | break; | 
|  | case PS: | 
|  | // Not implemented. | 
|  | UNREACHABLE(); | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeTypeRegisterCOP1X() { | 
|  | switch (instr_.FunctionFieldRaw()) { | 
|  | case MADD_S: { | 
|  | DCHECK(IsMipsArchVariant(kMips32r2)); | 
|  | float fr, ft, fs; | 
|  | fr = get_fpu_register_float(fr_reg()); | 
|  | fs = get_fpu_register_float(fs_reg()); | 
|  | ft = get_fpu_register_float(ft_reg()); | 
|  | SetFPUFloatResult(fd_reg(), fs * ft + fr); | 
|  | break; | 
|  | } | 
|  | case MSUB_S: { | 
|  | DCHECK(IsMipsArchVariant(kMips32r2)); | 
|  | float fr, ft, fs; | 
|  | fr = get_fpu_register_float(fr_reg()); | 
|  | fs = get_fpu_register_float(fs_reg()); | 
|  | ft = get_fpu_register_float(ft_reg()); | 
|  | SetFPUFloatResult(fd_reg(), fs * ft - fr); | 
|  | break; | 
|  | } | 
|  | case MADD_D: { | 
|  | DCHECK(IsMipsArchVariant(kMips32r2)); | 
|  | double fr, ft, fs; | 
|  | fr = get_fpu_register_double(fr_reg()); | 
|  | fs = get_fpu_register_double(fs_reg()); | 
|  | ft = get_fpu_register_double(ft_reg()); | 
|  | SetFPUDoubleResult(fd_reg(), fs * ft + fr); | 
|  | break; | 
|  | } | 
|  | case MSUB_D: { | 
|  | DCHECK(IsMipsArchVariant(kMips32r2)); | 
|  | double fr, ft, fs; | 
|  | fr = get_fpu_register_double(fr_reg()); | 
|  | fs = get_fpu_register_double(fs_reg()); | 
|  | ft = get_fpu_register_double(ft_reg()); | 
|  | SetFPUDoubleResult(fd_reg(), fs * ft - fr); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeTypeRegisterSPECIAL() { | 
|  | int64_t alu_out = 0x12345678; | 
|  | int64_t i64hilo = 0; | 
|  | uint64_t u64hilo = 0; | 
|  | bool do_interrupt = false; | 
|  |  | 
|  | switch (instr_.FunctionFieldRaw()) { | 
|  | case SELEQZ_S: | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | SetResult(rd_reg(), rt() == 0 ? rs() : 0); | 
|  | break; | 
|  | case SELNEZ_S: | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | SetResult(rd_reg(), rt() != 0 ? rs() : 0); | 
|  | break; | 
|  | case JR: { | 
|  | int32_t next_pc = rs(); | 
|  | int32_t current_pc = get_pc(); | 
|  | Instruction* branch_delay_instr = | 
|  | reinterpret_cast<Instruction*>(current_pc + kInstrSize); | 
|  | BranchDelayInstructionDecode(branch_delay_instr); | 
|  | set_pc(next_pc); | 
|  | pc_modified_ = true; | 
|  | break; | 
|  | } | 
|  | case JALR: { | 
|  | int32_t next_pc = rs(); | 
|  | int32_t return_addr_reg = rd_reg(); | 
|  | int32_t current_pc = get_pc(); | 
|  | Instruction* branch_delay_instr = | 
|  | reinterpret_cast<Instruction*>(current_pc + kInstrSize); | 
|  | BranchDelayInstructionDecode(branch_delay_instr); | 
|  | set_register(return_addr_reg, current_pc + 2 * kInstrSize); | 
|  | set_pc(next_pc); | 
|  | pc_modified_ = true; | 
|  | break; | 
|  | } | 
|  | case SLL: | 
|  | alu_out = rt() << sa(); | 
|  | SetResult(rd_reg(), static_cast<int32_t>(alu_out)); | 
|  | break; | 
|  | case SRL: | 
|  | if (rs_reg() == 0) { | 
|  | // Regular logical right shift of a word by a fixed number of | 
|  | // bits instruction. RS field is always equal to 0. | 
|  | alu_out = rt_u() >> sa(); | 
|  | } else { | 
|  | // Logical right-rotate of a word by a fixed number of bits. This | 
|  | // is special case of SRL instruction, added in MIPS32 Release 2. | 
|  | // RS field is equal to 00001. | 
|  | alu_out = base::bits::RotateRight32(rt_u(), sa()); | 
|  | } | 
|  | SetResult(rd_reg(), static_cast<int32_t>(alu_out)); | 
|  | break; | 
|  | case SRA: | 
|  | alu_out = rt() >> sa(); | 
|  | SetResult(rd_reg(), static_cast<int32_t>(alu_out)); | 
|  | break; | 
|  | case SLLV: | 
|  | alu_out = rt() << rs(); | 
|  | SetResult(rd_reg(), static_cast<int32_t>(alu_out)); | 
|  | break; | 
|  | case SRLV: | 
|  | if (sa() == 0) { | 
|  | // Regular logical right-shift of a word by a variable number of | 
|  | // bits instruction. SA field is always equal to 0. | 
|  | alu_out = rt_u() >> rs(); | 
|  | } else { | 
|  | // Logical right-rotate of a word by a variable number of bits. | 
|  | // This is special case od SRLV instruction, added in MIPS32 | 
|  | // Release 2. SA field is equal to 00001. | 
|  | alu_out = base::bits::RotateRight32(rt_u(), rs_u()); | 
|  | } | 
|  | SetResult(rd_reg(), static_cast<int32_t>(alu_out)); | 
|  | break; | 
|  | case SRAV: | 
|  | SetResult(rd_reg(), rt() >> rs()); | 
|  | break; | 
|  | case LSA: { | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | int8_t sa = lsa_sa() + 1; | 
|  | int32_t _rt = rt(); | 
|  | int32_t _rs = rs(); | 
|  | int32_t res = _rs << sa; | 
|  | res += _rt; | 
|  | DCHECK_EQ(res, (rs() << (lsa_sa() + 1)) + rt()); | 
|  | SetResult(rd_reg(), (rs() << (lsa_sa() + 1)) + rt()); | 
|  | break; | 
|  | } | 
|  | case MFHI:  // MFHI == CLZ on R6. | 
|  | if (!IsMipsArchVariant(kMips32r6)) { | 
|  | DCHECK_EQ(sa(), 0); | 
|  | alu_out = get_register(HI); | 
|  | } else { | 
|  | // MIPS spec: If no bits were set in GPR rs, the result written to | 
|  | // GPR rd is 32. | 
|  | DCHECK_EQ(sa(), 1); | 
|  | alu_out = base::bits::CountLeadingZeros32(rs_u()); | 
|  | } | 
|  | SetResult(rd_reg(), static_cast<int32_t>(alu_out)); | 
|  | break; | 
|  | case MFLO: | 
|  | alu_out = get_register(LO); | 
|  | SetResult(rd_reg(), static_cast<int32_t>(alu_out)); | 
|  | break; | 
|  | // Instructions using HI and LO registers. | 
|  | case MULT: | 
|  | i64hilo = static_cast<int64_t>(rs()) * static_cast<int64_t>(rt()); | 
|  | if (!IsMipsArchVariant(kMips32r6)) { | 
|  | set_register(LO, static_cast<int32_t>(i64hilo & 0xFFFFFFFF)); | 
|  | set_register(HI, static_cast<int32_t>(i64hilo >> 32)); | 
|  | } else { | 
|  | switch (sa()) { | 
|  | case MUL_OP: | 
|  | SetResult(rd_reg(), static_cast<int32_t>(i64hilo & 0xFFFFFFFF)); | 
|  | break; | 
|  | case MUH_OP: | 
|  | SetResult(rd_reg(), static_cast<int32_t>(i64hilo >> 32)); | 
|  | break; | 
|  | default: | 
|  | UNIMPLEMENTED_MIPS(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case MULTU: | 
|  | u64hilo = static_cast<uint64_t>(rs_u()) * static_cast<uint64_t>(rt_u()); | 
|  | if (!IsMipsArchVariant(kMips32r6)) { | 
|  | set_register(LO, static_cast<int32_t>(u64hilo & 0xFFFFFFFF)); | 
|  | set_register(HI, static_cast<int32_t>(u64hilo >> 32)); | 
|  | } else { | 
|  | switch (sa()) { | 
|  | case MUL_OP: | 
|  | SetResult(rd_reg(), static_cast<int32_t>(u64hilo & 0xFFFFFFFF)); | 
|  | break; | 
|  | case MUH_OP: | 
|  | SetResult(rd_reg(), static_cast<int32_t>(u64hilo >> 32)); | 
|  | break; | 
|  | default: | 
|  | UNIMPLEMENTED_MIPS(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case DIV: | 
|  | if (IsMipsArchVariant(kMips32r6)) { | 
|  | switch (sa()) { | 
|  | case DIV_OP: | 
|  | if (rs() == INT_MIN && rt() == -1) { | 
|  | SetResult(rd_reg(), INT_MIN); | 
|  | } else if (rt() != 0) { | 
|  | SetResult(rd_reg(), rs() / rt()); | 
|  | } | 
|  | break; | 
|  | case MOD_OP: | 
|  | if (rs() == INT_MIN && rt() == -1) { | 
|  | SetResult(rd_reg(), 0); | 
|  | } else if (rt() != 0) { | 
|  | SetResult(rd_reg(), rs() % rt()); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | UNIMPLEMENTED_MIPS(); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | // Divide by zero and overflow was not checked in the | 
|  | // configuration step - div and divu do not raise exceptions. On | 
|  | // division by 0 the result will be UNPREDICTABLE. On overflow | 
|  | // (INT_MIN/-1), return INT_MIN which is what the hardware does. | 
|  | if (rs() == INT_MIN && rt() == -1) { | 
|  | set_register(LO, INT_MIN); | 
|  | set_register(HI, 0); | 
|  | } else if (rt() != 0) { | 
|  | set_register(LO, rs() / rt()); | 
|  | set_register(HI, rs() % rt()); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case DIVU: | 
|  | if (IsMipsArchVariant(kMips32r6)) { | 
|  | switch (sa()) { | 
|  | case DIV_OP: | 
|  | if (rt_u() != 0) { | 
|  | SetResult(rd_reg(), rs_u() / rt_u()); | 
|  | } | 
|  | break; | 
|  | case MOD_OP: | 
|  | if (rt_u() != 0) { | 
|  | SetResult(rd_reg(), rs_u() % rt_u()); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | UNIMPLEMENTED_MIPS(); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | if (rt_u() != 0) { | 
|  | set_register(LO, rs_u() / rt_u()); | 
|  | set_register(HI, rs_u() % rt_u()); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ADD: | 
|  | if (HaveSameSign(rs(), rt())) { | 
|  | if (rs() > 0) { | 
|  | if (rs() <= (Registers::kMaxValue - rt())) { | 
|  | SignalException(kIntegerOverflow); | 
|  | } | 
|  | } else if (rs() < 0) { | 
|  | if (rs() >= (Registers::kMinValue - rt())) { | 
|  | SignalException(kIntegerUnderflow); | 
|  | } | 
|  | } | 
|  | } | 
|  | SetResult(rd_reg(), rs() + rt()); | 
|  | break; | 
|  | case ADDU: | 
|  | SetResult(rd_reg(), rs() + rt()); | 
|  | break; | 
|  | case SUB: | 
|  | if (!HaveSameSign(rs(), rt())) { | 
|  | if (rs() > 0) { | 
|  | if (rs() <= (Registers::kMaxValue + rt())) { | 
|  | SignalException(kIntegerOverflow); | 
|  | } | 
|  | } else if (rs() < 0) { | 
|  | if (rs() >= (Registers::kMinValue + rt())) { | 
|  | SignalException(kIntegerUnderflow); | 
|  | } | 
|  | } | 
|  | } | 
|  | SetResult(rd_reg(), rs() - rt()); | 
|  | break; | 
|  | case SUBU: | 
|  | SetResult(rd_reg(), rs() - rt()); | 
|  | break; | 
|  | case AND: | 
|  | SetResult(rd_reg(), rs() & rt()); | 
|  | break; | 
|  | case OR: | 
|  | SetResult(rd_reg(), rs() | rt()); | 
|  | break; | 
|  | case XOR: | 
|  | SetResult(rd_reg(), rs() ^ rt()); | 
|  | break; | 
|  | case NOR: | 
|  | SetResult(rd_reg(), ~(rs() | rt())); | 
|  | break; | 
|  | case SLT: | 
|  | SetResult(rd_reg(), rs() < rt() ? 1 : 0); | 
|  | break; | 
|  | case SLTU: | 
|  | SetResult(rd_reg(), rs_u() < rt_u() ? 1 : 0); | 
|  | break; | 
|  | // Break and trap instructions. | 
|  | case BREAK: | 
|  | do_interrupt = true; | 
|  | break; | 
|  | case TGE: | 
|  | do_interrupt = rs() >= rt(); | 
|  | break; | 
|  | case TGEU: | 
|  | do_interrupt = rs_u() >= rt_u(); | 
|  | break; | 
|  | case TLT: | 
|  | do_interrupt = rs() < rt(); | 
|  | break; | 
|  | case TLTU: | 
|  | do_interrupt = rs_u() < rt_u(); | 
|  | break; | 
|  | case TEQ: | 
|  | do_interrupt = rs() == rt(); | 
|  | break; | 
|  | case TNE: | 
|  | do_interrupt = rs() != rt(); | 
|  | break; | 
|  | case SYNC: | 
|  | // TODO(palfia): Ignore sync instruction for now. | 
|  | break; | 
|  | // Conditional moves. | 
|  | case MOVN: | 
|  | if (rt()) { | 
|  | SetResult(rd_reg(), rs()); | 
|  | } | 
|  | break; | 
|  | case MOVCI: { | 
|  | uint32_t cc = instr_.FBccValue(); | 
|  | uint32_t fcsr_cc = get_fcsr_condition_bit(cc); | 
|  | if (instr_.Bit(16)) {  // Read Tf bit. | 
|  | if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs()); | 
|  | } else { | 
|  | if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs()); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case MOVZ: | 
|  | if (!rt()) { | 
|  | SetResult(rd_reg(), rs()); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | if (do_interrupt) { | 
|  | SoftwareInterrupt(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeTypeRegisterSPECIAL2() { | 
|  | int32_t alu_out; | 
|  | switch (instr_.FunctionFieldRaw()) { | 
|  | case MUL: | 
|  | // Only the lower 32 bits are kept. | 
|  | alu_out = rs_u() * rt_u(); | 
|  | // HI and LO are UNPREDICTABLE after the operation. | 
|  | set_register(LO, Unpredictable); | 
|  | set_register(HI, Unpredictable); | 
|  | break; | 
|  | case CLZ: | 
|  | // MIPS32 spec: If no bits were set in GPR rs, the result written to | 
|  | // GPR rd is 32. | 
|  | alu_out = base::bits::CountLeadingZeros32(rs_u()); | 
|  | break; | 
|  | default: | 
|  | alu_out = 0x12345678; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | SetResult(rd_reg(), alu_out); | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeTypeRegisterSPECIAL3() { | 
|  | int32_t alu_out; | 
|  | switch (instr_.FunctionFieldRaw()) { | 
|  | case INS: {  // Mips32r2 instruction. | 
|  | // Interpret rd field as 5-bit msb of insert. | 
|  | uint16_t msb = rd_reg(); | 
|  | // Interpret sa field as 5-bit lsb of insert. | 
|  | uint16_t lsb = sa(); | 
|  | uint16_t size = msb - lsb + 1; | 
|  | uint32_t mask; | 
|  | if (size < 32) { | 
|  | mask = (1 << size) - 1; | 
|  | } else { | 
|  | mask = std::numeric_limits<uint32_t>::max(); | 
|  | } | 
|  | alu_out = (rt_u() & ~(mask << lsb)) | ((rs_u() & mask) << lsb); | 
|  | // Ins instr leaves result in Rt, rather than Rd. | 
|  | SetResult(rt_reg(), alu_out); | 
|  | break; | 
|  | } | 
|  | case EXT: {  // Mips32r2 instruction. | 
|  | // Interpret rd field as 5-bit msb of extract. | 
|  | uint16_t msb = rd_reg(); | 
|  | // Interpret sa field as 5-bit lsb of extract. | 
|  | uint16_t lsb = sa(); | 
|  | uint16_t size = msb + 1; | 
|  | uint32_t mask; | 
|  | if (size < 32) { | 
|  | mask = (1 << size) - 1; | 
|  | } else { | 
|  | mask = std::numeric_limits<uint32_t>::max(); | 
|  | } | 
|  | alu_out = (rs_u() & (mask << lsb)) >> lsb; | 
|  | SetResult(rt_reg(), alu_out); | 
|  | break; | 
|  | } | 
|  | case BSHFL: { | 
|  | int sa = instr_.SaFieldRaw() >> kSaShift; | 
|  | switch (sa) { | 
|  | case BITSWAP: { | 
|  | uint32_t input = static_cast<uint32_t>(rt()); | 
|  | uint32_t output = 0; | 
|  | uint8_t i_byte, o_byte; | 
|  |  | 
|  | // Reverse the bit in byte for each individual byte | 
|  | for (int i = 0; i < 4; i++) { | 
|  | output = output >> 8; | 
|  | i_byte = input & 0xFF; | 
|  |  | 
|  | // Fast way to reverse bits in byte | 
|  | // Devised by Sean Anderson, July 13, 2001 | 
|  | o_byte = static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) | | 
|  | (i_byte * 0x8020LU & 0x88440LU)) * | 
|  | 0x10101LU >> | 
|  | 16); | 
|  |  | 
|  | output = output | (static_cast<uint32_t>(o_byte << 24)); | 
|  | input = input >> 8; | 
|  | } | 
|  |  | 
|  | alu_out = static_cast<int32_t>(output); | 
|  | break; | 
|  | } | 
|  | case SEB: { | 
|  | uint8_t input = static_cast<uint8_t>(rt()); | 
|  | uint32_t output = input; | 
|  | uint32_t mask = 0x00000080; | 
|  |  | 
|  | // Extending sign | 
|  | if (mask & input) { | 
|  | output |= 0xFFFFFF00; | 
|  | } | 
|  |  | 
|  | alu_out = static_cast<int32_t>(output); | 
|  | break; | 
|  | } | 
|  | case SEH: { | 
|  | uint16_t input = static_cast<uint16_t>(rt()); | 
|  | uint32_t output = input; | 
|  | uint32_t mask = 0x00008000; | 
|  |  | 
|  | // Extending sign | 
|  | if (mask & input) { | 
|  | output |= 0xFFFF0000; | 
|  | } | 
|  |  | 
|  | alu_out = static_cast<int32_t>(output); | 
|  | break; | 
|  | } | 
|  | case WSBH: { | 
|  | uint32_t input = static_cast<uint32_t>(rt()); | 
|  | uint32_t output = 0; | 
|  |  | 
|  | uint32_t mask = 0xFF000000; | 
|  | for (int i = 0; i < 4; i++) { | 
|  | uint32_t tmp = mask & input; | 
|  | if (i % 2 == 0) { | 
|  | tmp = tmp >> 8; | 
|  | } else { | 
|  | tmp = tmp << 8; | 
|  | } | 
|  | output = output | tmp; | 
|  | mask = mask >> 8; | 
|  | } | 
|  |  | 
|  | alu_out = static_cast<int32_t>(output); | 
|  | break; | 
|  | } | 
|  | default: { | 
|  | const uint8_t bp = instr_.Bp2Value(); | 
|  | sa >>= kBp2Bits; | 
|  | switch (sa) { | 
|  | case ALIGN: { | 
|  | if (bp == 0) { | 
|  | alu_out = static_cast<int32_t>(rt()); | 
|  | } else { | 
|  | uint32_t rt_hi = rt() << (8 * bp); | 
|  | uint32_t rs_lo = rs() >> (8 * (4 - bp)); | 
|  | alu_out = static_cast<int32_t>(rt_hi | rs_lo); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | alu_out = 0x12345678; | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | SetResult(rd_reg(), alu_out); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | int Simulator::DecodeMsaDataFormat() { | 
|  | int df = -1; | 
|  | if (instr_.IsMSABranchInstr()) { | 
|  | switch (instr_.RsFieldRaw()) { | 
|  | case BZ_V: | 
|  | case BNZ_V: | 
|  | df = MSA_VECT; | 
|  | break; | 
|  | case BZ_B: | 
|  | case BNZ_B: | 
|  | df = MSA_BYTE; | 
|  | break; | 
|  | case BZ_H: | 
|  | case BNZ_H: | 
|  | df = MSA_HALF; | 
|  | break; | 
|  | case BZ_W: | 
|  | case BNZ_W: | 
|  | df = MSA_WORD; | 
|  | break; | 
|  | case BZ_D: | 
|  | case BNZ_D: | 
|  | df = MSA_DWORD; | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | int DF[] = {MSA_BYTE, MSA_HALF, MSA_WORD, MSA_DWORD}; | 
|  | switch (instr_.MSAMinorOpcodeField()) { | 
|  | case kMsaMinorI5: | 
|  | case kMsaMinorI10: | 
|  | case kMsaMinor3R: | 
|  | df = DF[instr_.Bits(22, 21)]; | 
|  | break; | 
|  | case kMsaMinorMI10: | 
|  | df = DF[instr_.Bits(1, 0)]; | 
|  | break; | 
|  | case kMsaMinorBIT: | 
|  | df = DF[instr_.MsaBitDf()]; | 
|  | break; | 
|  | case kMsaMinorELM: | 
|  | df = DF[instr_.MsaElmDf()]; | 
|  | break; | 
|  | case kMsaMinor3RF: { | 
|  | uint32_t opcode = instr_.InstructionBits() & kMsa3RFMask; | 
|  | switch (opcode) { | 
|  | case FEXDO: | 
|  | case FTQ: | 
|  | case MUL_Q: | 
|  | case MADD_Q: | 
|  | case MSUB_Q: | 
|  | case MULR_Q: | 
|  | case MADDR_Q: | 
|  | case MSUBR_Q: | 
|  | df = DF[1 + instr_.Bit(21)]; | 
|  | break; | 
|  | default: | 
|  | df = DF[2 + instr_.Bit(21)]; | 
|  | break; | 
|  | } | 
|  | } break; | 
|  | case kMsaMinor2R: | 
|  | df = DF[instr_.Bits(17, 16)]; | 
|  | break; | 
|  | case kMsaMinor2RF: | 
|  | df = DF[2 + instr_.Bit(16)]; | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return df; | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeTypeMsaI8() { | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); | 
|  | uint32_t opcode = instr_.InstructionBits() & kMsaI8Mask; | 
|  | int8_t i8 = instr_.MsaImm8Value(); | 
|  | msa_reg_t ws, wd; | 
|  |  | 
|  | switch (opcode) { | 
|  | case ANDI_B: | 
|  | get_msa_register(instr_.WsValue(), ws.b); | 
|  | for (int i = 0; i < kMSALanesByte; i++) { | 
|  | wd.b[i] = ws.b[i] & i8; | 
|  | } | 
|  | set_msa_register(instr_.WdValue(), wd.b); | 
|  | TraceMSARegWr(wd.b); | 
|  | break; | 
|  | case ORI_B: | 
|  | get_msa_register(instr_.WsValue(), ws.b); | 
|  | for (int i = 0; i < kMSALanesByte; i++) { | 
|  | wd.b[i] = ws.b[i] | i8; | 
|  | } | 
|  | set_msa_register(instr_.WdValue(), wd.b); | 
|  | TraceMSARegWr(wd.b); | 
|  | break; | 
|  | case NORI_B: | 
|  | get_msa_register(instr_.WsValue(), ws.b); | 
|  | for (int i = 0; i < kMSALanesByte; i++) { | 
|  | wd.b[i] = ~(ws.b[i] | i8); | 
|  | } | 
|  | set_msa_register(instr_.WdValue(), wd.b); | 
|  | TraceMSARegWr(wd.b); | 
|  | break; | 
|  | case XORI_B: | 
|  | get_msa_register(instr_.WsValue(), ws.b); | 
|  | for (int i = 0; i < kMSALanesByte; i++) { | 
|  | wd.b[i] = ws.b[i] ^ i8; | 
|  | } | 
|  | set_msa_register(instr_.WdValue(), wd.b); | 
|  | TraceMSARegWr(wd.b); | 
|  | break; | 
|  | case BMNZI_B: | 
|  | get_msa_register(instr_.WsValue(), ws.b); | 
|  | get_msa_register(instr_.WdValue(), wd.b); | 
|  | for (int i = 0; i < kMSALanesByte; i++) { | 
|  | wd.b[i] = (ws.b[i] & i8) | (wd.b[i] & ~i8); | 
|  | } | 
|  | set_msa_register(instr_.WdValue(), wd.b); | 
|  | TraceMSARegWr(wd.b); | 
|  | break; | 
|  | case BMZI_B: | 
|  | get_msa_register(instr_.WsValue(), ws.b); | 
|  | get_msa_register(instr_.WdValue(), wd.b); | 
|  | for (int i = 0; i < kMSALanesByte; i++) { | 
|  | wd.b[i] = (ws.b[i] & ~i8) | (wd.b[i] & i8); | 
|  | } | 
|  | set_msa_register(instr_.WdValue(), wd.b); | 
|  | TraceMSARegWr(wd.b); | 
|  | break; | 
|  | case BSELI_B: | 
|  | get_msa_register(instr_.WsValue(), ws.b); | 
|  | get_msa_register(instr_.WdValue(), wd.b); | 
|  | for (int i = 0; i < kMSALanesByte; i++) { | 
|  | wd.b[i] = (ws.b[i] & ~wd.b[i]) | (wd.b[i] & i8); | 
|  | } | 
|  | set_msa_register(instr_.WdValue(), wd.b); | 
|  | TraceMSARegWr(wd.b); | 
|  | break; | 
|  | case SHF_B: | 
|  | get_msa_register(instr_.WsValue(), ws.b); | 
|  | for (int i = 0; i < kMSALanesByte; i++) { | 
|  | int j = i % 4; | 
|  | int k = (i8 >> (2 * j)) & 0x3; | 
|  | wd.b[i] = ws.b[i - j + k]; | 
|  | } | 
|  | set_msa_register(instr_.WdValue(), wd.b); | 
|  | TraceMSARegWr(wd.b); | 
|  | break; | 
|  | case SHF_H: | 
|  | get_msa_register(instr_.WsValue(), ws.h); | 
|  | for (int i = 0; i < kMSALanesHalf; i++) { | 
|  | int j = i % 4; | 
|  | int k = (i8 >> (2 * j)) & 0x3; | 
|  | wd.h[i] = ws.h[i - j + k]; | 
|  | } | 
|  | set_msa_register(instr_.WdValue(), wd.h); | 
|  | TraceMSARegWr(wd.h); | 
|  | break; | 
|  | case SHF_W: | 
|  | get_msa_register(instr_.WsValue(), ws.w); | 
|  | for (int i = 0; i < kMSALanesWord; i++) { | 
|  | int j = (i8 >> (2 * i)) & 0x3; | 
|  | wd.w[i] = ws.w[j]; | 
|  | } | 
|  | set_msa_register(instr_.WdValue(), wd.w); | 
|  | TraceMSARegWr(wd.w); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | T Simulator::MsaI5InstrHelper(uint32_t opcode, T ws, int32_t i5) { | 
|  | T res; | 
|  | uint32_t ui5 = i5 & 0x1Fu; | 
|  | uint64_t ws_u64 = static_cast<uint64_t>(ws); | 
|  | uint64_t ui5_u64 = static_cast<uint64_t>(ui5); | 
|  |  | 
|  | switch (opcode) { | 
|  | case ADDVI: | 
|  | res = static_cast<T>(ws + ui5); | 
|  | break; | 
|  | case SUBVI: | 
|  | res = static_cast<T>(ws - ui5); | 
|  | break; | 
|  | case MAXI_S: | 
|  | res = static_cast<T>(Max(ws, static_cast<T>(i5))); | 
|  | break; | 
|  | case MINI_S: | 
|  | res = static_cast<T>(Min(ws, static_cast<T>(i5))); | 
|  | break; | 
|  | case MAXI_U: | 
|  | res = static_cast<T>(Max(ws_u64, ui5_u64)); | 
|  | break; | 
|  | case MINI_U: | 
|  | res = static_cast<T>(Min(ws_u64, ui5_u64)); | 
|  | break; | 
|  | case CEQI: | 
|  | res = static_cast<T>(!Compare(ws, static_cast<T>(i5)) ? -1ull : 0ull); | 
|  | break; | 
|  | case CLTI_S: | 
|  | res = static_cast<T>((Compare(ws, static_cast<T>(i5)) == -1) ? -1ull | 
|  | : 0ull); | 
|  | break; | 
|  | case CLTI_U: | 
|  | res = static_cast<T>((Compare(ws_u64, ui5_u64) == -1) ? -1ull : 0ull); | 
|  | break; | 
|  | case CLEI_S: | 
|  | res = | 
|  | static_cast<T>((Compare(ws, static_cast<T>(i5)) != 1) ? -1ull : 0ull); | 
|  | break; | 
|  | case CLEI_U: | 
|  | res = static_cast<T>((Compare(ws_u64, ui5_u64) != 1) ? -1ull : 0ull); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeTypeMsaI5() { | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); | 
|  | uint32_t opcode = instr_.InstructionBits() & kMsaI5Mask; | 
|  | msa_reg_t ws, wd; | 
|  |  | 
|  | // sign extend 5bit value to int32_t | 
|  | int32_t i5 = static_cast<int32_t>(instr_.MsaImm5Value() << 27) >> 27; | 
|  |  | 
|  | #define MSA_I5_DF(elem, num_of_lanes)                      \ | 
|  | get_msa_register(instr_.WsValue(), ws.elem);             \ | 
|  | for (int i = 0; i < num_of_lanes; i++) {                 \ | 
|  | wd.elem[i] = MsaI5InstrHelper(opcode, ws.elem[i], i5); \ | 
|  | }                                                        \ | 
|  | set_msa_register(instr_.WdValue(), wd.elem);             \ | 
|  | TraceMSARegWr(wd.elem) | 
|  |  | 
|  | switch (DecodeMsaDataFormat()) { | 
|  | case MSA_BYTE: | 
|  | MSA_I5_DF(b, kMSALanesByte); | 
|  | break; | 
|  | case MSA_HALF: | 
|  | MSA_I5_DF(h, kMSALanesHalf); | 
|  | break; | 
|  | case MSA_WORD: | 
|  | MSA_I5_DF(w, kMSALanesWord); | 
|  | break; | 
|  | case MSA_DWORD: | 
|  | MSA_I5_DF(d, kMSALanesDword); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | #undef MSA_I5_DF | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeTypeMsaI10() { | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); | 
|  | uint32_t opcode = instr_.InstructionBits() & kMsaI5Mask; | 
|  | int64_t s10 = (static_cast<int64_t>(instr_.MsaImm10Value()) << 54) >> 54; | 
|  | msa_reg_t wd; | 
|  |  | 
|  | #define MSA_I10_DF(elem, num_of_lanes, T)      \ | 
|  | for (int i = 0; i < num_of_lanes; ++i) {     \ | 
|  | wd.elem[i] = static_cast<T>(s10);          \ | 
|  | }                                            \ | 
|  | set_msa_register(instr_.WdValue(), wd.elem); \ | 
|  | TraceMSARegWr(wd.elem) | 
|  |  | 
|  | if (opcode == LDI) { | 
|  | switch (DecodeMsaDataFormat()) { | 
|  | case MSA_BYTE: | 
|  | MSA_I10_DF(b, kMSALanesByte, int8_t); | 
|  | break; | 
|  | case MSA_HALF: | 
|  | MSA_I10_DF(h, kMSALanesHalf, int16_t); | 
|  | break; | 
|  | case MSA_WORD: | 
|  | MSA_I10_DF(w, kMSALanesWord, int32_t); | 
|  | break; | 
|  | case MSA_DWORD: | 
|  | MSA_I10_DF(d, kMSALanesDword, int64_t); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } else { | 
|  | UNREACHABLE(); | 
|  | } | 
|  | #undef MSA_I10_DF | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeTypeMsaELM() { | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); | 
|  | uint32_t opcode = instr_.InstructionBits() & kMsaLongerELMMask; | 
|  | int32_t n = instr_.MsaElmNValue(); | 
|  | int32_t alu_out; | 
|  | switch (opcode) { | 
|  | case CTCMSA: | 
|  | DCHECK_EQ(sa(), kMSACSRRegister); | 
|  | MSACSR_ = bit_cast<uint32_t>(registers_[rd_reg()]); | 
|  | TraceRegWr(static_cast<int32_t>(MSACSR_)); | 
|  | break; | 
|  | case CFCMSA: | 
|  | DCHECK_EQ(rd_reg(), kMSACSRRegister); | 
|  | SetResult(sa(), bit_cast<int32_t>(MSACSR_)); | 
|  | break; | 
|  | case MOVE_V: { | 
|  | msa_reg_t ws; | 
|  | get_msa_register(ws_reg(), &ws); | 
|  | set_msa_register(wd_reg(), &ws); | 
|  | TraceMSARegWr(&ws); | 
|  | } break; | 
|  | default: | 
|  | opcode &= kMsaELMMask; | 
|  | switch (opcode) { | 
|  | case COPY_S: | 
|  | case COPY_U: { | 
|  | msa_reg_t ws; | 
|  | switch (DecodeMsaDataFormat()) { | 
|  | case MSA_BYTE: { | 
|  | DCHECK_LT(n, kMSALanesByte); | 
|  | get_msa_register(instr_.WsValue(), ws.b); | 
|  | alu_out = static_cast<int32_t>(ws.b[n]); | 
|  | SetResult(wd_reg(), | 
|  | (opcode == COPY_U) ? alu_out & 0xFFu : alu_out); | 
|  | break; | 
|  | } | 
|  | case MSA_HALF: { | 
|  | DCHECK_LT(n, kMSALanesHalf); | 
|  | get_msa_register(instr_.WsValue(), ws.h); | 
|  | alu_out = static_cast<int32_t>(ws.h[n]); | 
|  | SetResult(wd_reg(), | 
|  | (opcode == COPY_U) ? alu_out & 0xFFFFu : alu_out); | 
|  | break; | 
|  | } | 
|  | case MSA_WORD: { | 
|  | DCHECK_LT(n, kMSALanesWord); | 
|  | get_msa_register(instr_.WsValue(), ws.w); | 
|  | alu_out = static_cast<int32_t>(ws.w[n]); | 
|  | SetResult(wd_reg(), alu_out); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } break; | 
|  | case INSERT: { | 
|  | msa_reg_t wd; | 
|  | switch (DecodeMsaDataFormat()) { | 
|  | case MSA_BYTE: { | 
|  | DCHECK_LT(n, kMSALanesByte); | 
|  | int32_t rs = get_register(instr_.WsValue()); | 
|  | get_msa_register(instr_.WdValue(), wd.b); | 
|  | wd.b[n] = rs & 0xFFu; | 
|  | set_msa_register(instr_.WdValue(), wd.b); | 
|  | TraceMSARegWr(wd.b); | 
|  | break; | 
|  | } | 
|  | case MSA_HALF: { | 
|  | DCHECK_LT(n, kMSALanesHalf); | 
|  | int32_t rs = get_register(instr_.WsValue()); | 
|  | get_msa_register(instr_.WdValue(), wd.h); | 
|  | wd.h[n] = rs & 0xFFFFu; | 
|  | set_msa_register(instr_.WdValue(), wd.h); | 
|  | TraceMSARegWr(wd.h); | 
|  | break; | 
|  | } | 
|  | case MSA_WORD: { | 
|  | DCHECK_LT(n, kMSALanesWord); | 
|  | int32_t rs = get_register(instr_.WsValue()); | 
|  | get_msa_register(instr_.WdValue(), wd.w); | 
|  | wd.w[n] = rs; | 
|  | set_msa_register(instr_.WdValue(), wd.w); | 
|  | TraceMSARegWr(wd.w); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } break; | 
|  | case SLDI: { | 
|  | uint8_t v[32]; | 
|  | msa_reg_t ws; | 
|  | msa_reg_t wd; | 
|  | get_msa_register(ws_reg(), &ws); | 
|  | get_msa_register(wd_reg(), &wd); | 
|  | #define SLDI_DF(s, k)                \ | 
|  | for (unsigned i = 0; i < s; i++) { \ | 
|  | v[i] = ws.b[s * k + i];          \ | 
|  | v[i + s] = wd.b[s * k + i];      \ | 
|  | }                                  \ | 
|  | for (unsigned i = 0; i < s; i++) { \ | 
|  | wd.b[s * k + i] = v[i + n];      \ | 
|  | } | 
|  | switch (DecodeMsaDataFormat()) { | 
|  | case MSA_BYTE: | 
|  | DCHECK(n < kMSALanesByte); | 
|  | SLDI_DF(kMSARegSize / sizeof(int8_t) / kBitsPerByte, 0) | 
|  | break; | 
|  | case MSA_HALF: | 
|  | DCHECK(n < kMSALanesHalf); | 
|  | for (int k = 0; k < 2; ++k) { | 
|  | SLDI_DF(kMSARegSize / sizeof(int16_t) / kBitsPerByte, k) | 
|  | } | 
|  | break; | 
|  | case MSA_WORD: | 
|  | DCHECK(n < kMSALanesWord); | 
|  | for (int k = 0; k < 4; ++k) { | 
|  | SLDI_DF(kMSARegSize / sizeof(int32_t) / kBitsPerByte, k) | 
|  | } | 
|  | break; | 
|  | case MSA_DWORD: | 
|  | DCHECK(n < kMSALanesDword); | 
|  | for (int k = 0; k < 8; ++k) { | 
|  | SLDI_DF(kMSARegSize / sizeof(int64_t) / kBitsPerByte, k) | 
|  | } | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | set_msa_register(wd_reg(), &wd); | 
|  | TraceMSARegWr(&wd); | 
|  | } break; | 
|  | #undef SLDI_DF | 
|  | case SPLATI: | 
|  | case INSVE: | 
|  | UNIMPLEMENTED(); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | T Simulator::MsaBitInstrHelper(uint32_t opcode, T wd, T ws, int32_t m) { | 
|  | using uT = typename std::make_unsigned<T>::type; | 
|  | T res; | 
|  | switch (opcode) { | 
|  | case SLLI: | 
|  | res = static_cast<T>(ws << m); | 
|  | break; | 
|  | case SRAI: | 
|  | res = static_cast<T>(ArithmeticShiftRight(ws, m)); | 
|  | break; | 
|  | case SRLI: | 
|  | res = static_cast<T>(static_cast<uT>(ws) >> m); | 
|  | break; | 
|  | case BCLRI: | 
|  | res = static_cast<T>(static_cast<T>(~(1ull << m)) & ws); | 
|  | break; | 
|  | case BSETI: | 
|  | res = static_cast<T>(static_cast<T>(1ull << m) | ws); | 
|  | break; | 
|  | case BNEGI: | 
|  | res = static_cast<T>(static_cast<T>(1ull << m) ^ ws); | 
|  | break; | 
|  | case BINSLI: { | 
|  | int elem_size = 8 * sizeof(T); | 
|  | int bits = m + 1; | 
|  | if (bits == elem_size) { | 
|  | res = static_cast<T>(ws); | 
|  | } else { | 
|  | uint64_t mask = ((1ull << bits) - 1) << (elem_size - bits); | 
|  | res = static_cast<T>((static_cast<T>(mask) & ws) | | 
|  | (static_cast<T>(~mask) & wd)); | 
|  | } | 
|  | } break; | 
|  | case BINSRI: { | 
|  | int elem_size = 8 * sizeof(T); | 
|  | int bits = m + 1; | 
|  | if (bits == elem_size) { | 
|  | res = static_cast<T>(ws); | 
|  | } else { | 
|  | uint64_t mask = (1ull << bits) - 1; | 
|  | res = static_cast<T>((static_cast<T>(mask) & ws) | | 
|  | (static_cast<T>(~mask) & wd)); | 
|  | } | 
|  | } break; | 
|  | case SAT_S: { | 
|  | #define M_MAX_INT(x) static_cast<int64_t>((1LL << ((x)-1)) - 1) | 
|  | #define M_MIN_INT(x) static_cast<int64_t>(-(1LL << ((x)-1))) | 
|  | int shift = 64 - 8 * sizeof(T); | 
|  | int64_t ws_i64 = (static_cast<int64_t>(ws) << shift) >> shift; | 
|  | res = static_cast<T>(ws_i64 < M_MIN_INT(m + 1) | 
|  | ? M_MIN_INT(m + 1) | 
|  | : ws_i64 > M_MAX_INT(m + 1) ? M_MAX_INT(m + 1) | 
|  | : ws_i64); | 
|  | #undef M_MAX_INT | 
|  | #undef M_MIN_INT | 
|  | } break; | 
|  | case SAT_U: { | 
|  | #define M_MAX_UINT(x) static_cast<uint64_t>(-1ULL >> (64 - (x))) | 
|  | uint64_t mask = static_cast<uint64_t>(-1ULL >> (64 - 8 * sizeof(T))); | 
|  | uint64_t ws_u64 = static_cast<uint64_t>(ws) & mask; | 
|  | res = static_cast<T>(ws_u64 < M_MAX_UINT(m + 1) ? ws_u64 | 
|  | : M_MAX_UINT(m + 1)); | 
|  | #undef M_MAX_UINT | 
|  | } break; | 
|  | case SRARI: | 
|  | if (!m) { | 
|  | res = static_cast<T>(ws); | 
|  | } else { | 
|  | res = static_cast<T>(ArithmeticShiftRight(ws, m)) + | 
|  | static_cast<T>((ws >> (m - 1)) & 0x1); | 
|  | } | 
|  | break; | 
|  | case SRLRI: | 
|  | if (!m) { | 
|  | res = static_cast<T>(ws); | 
|  | } else { | 
|  | res = static_cast<T>(static_cast<uT>(ws) >> m) + | 
|  | static_cast<T>((ws >> (m - 1)) & 0x1); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeTypeMsaBIT() { | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); | 
|  | uint32_t opcode = instr_.InstructionBits() & kMsaBITMask; | 
|  | int32_t m = instr_.MsaBitMValue(); | 
|  | msa_reg_t wd, ws; | 
|  |  | 
|  | #define MSA_BIT_DF(elem, num_of_lanes)                                 \ | 
|  | get_msa_register(instr_.WsValue(), ws.elem);                         \ | 
|  | if (opcode == BINSLI || opcode == BINSRI) {                          \ | 
|  | get_msa_register(instr_.WdValue(), wd.elem);                       \ | 
|  | }                                                                    \ | 
|  | for (int i = 0; i < num_of_lanes; i++) {                             \ | 
|  | wd.elem[i] = MsaBitInstrHelper(opcode, wd.elem[i], ws.elem[i], m); \ | 
|  | }                                                                    \ | 
|  | set_msa_register(instr_.WdValue(), wd.elem);                         \ | 
|  | TraceMSARegWr(wd.elem) | 
|  |  | 
|  | switch (DecodeMsaDataFormat()) { | 
|  | case MSA_BYTE: | 
|  | DCHECK(m < kMSARegSize / kMSALanesByte); | 
|  | MSA_BIT_DF(b, kMSALanesByte); | 
|  | break; | 
|  | case MSA_HALF: | 
|  | DCHECK(m < kMSARegSize / kMSALanesHalf); | 
|  | MSA_BIT_DF(h, kMSALanesHalf); | 
|  | break; | 
|  | case MSA_WORD: | 
|  | DCHECK(m < kMSARegSize / kMSALanesWord); | 
|  | MSA_BIT_DF(w, kMSALanesWord); | 
|  | break; | 
|  | case MSA_DWORD: | 
|  | DCHECK(m < kMSARegSize / kMSALanesDword); | 
|  | MSA_BIT_DF(d, kMSALanesDword); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | #undef MSA_BIT_DF | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeTypeMsaMI10() { | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); | 
|  | uint32_t opcode = instr_.InstructionBits() & kMsaMI10Mask; | 
|  | int32_t s10 = (static_cast<int32_t>(instr_.MsaImmMI10Value()) << 22) >> 22; | 
|  | int32_t rs = get_register(instr_.WsValue()); | 
|  | int32_t addr; | 
|  | msa_reg_t wd; | 
|  |  | 
|  | #define MSA_MI10_LOAD(elem, num_of_lanes, T)       \ | 
|  | for (int i = 0; i < num_of_lanes; ++i) {         \ | 
|  | addr = rs + (s10 + i) * sizeof(T);             \ | 
|  | wd.elem[i] = ReadMem<T>(addr, instr_.instr()); \ | 
|  | }                                                \ | 
|  | set_msa_register(instr_.WdValue(), wd.elem); | 
|  |  | 
|  | #define MSA_MI10_STORE(elem, num_of_lanes, T)      \ | 
|  | get_msa_register(instr_.WdValue(), wd.elem);     \ | 
|  | for (int i = 0; i < num_of_lanes; ++i) {         \ | 
|  | addr = rs + (s10 + i) * sizeof(T);             \ | 
|  | WriteMem<T>(addr, wd.elem[i], instr_.instr()); \ | 
|  | } | 
|  |  | 
|  | if (opcode == MSA_LD) { | 
|  | switch (DecodeMsaDataFormat()) { | 
|  | case MSA_BYTE: | 
|  | MSA_MI10_LOAD(b, kMSALanesByte, int8_t); | 
|  | break; | 
|  | case MSA_HALF: | 
|  | MSA_MI10_LOAD(h, kMSALanesHalf, int16_t); | 
|  | break; | 
|  | case MSA_WORD: | 
|  | MSA_MI10_LOAD(w, kMSALanesWord, int32_t); | 
|  | break; | 
|  | case MSA_DWORD: | 
|  | MSA_MI10_LOAD(d, kMSALanesDword, int64_t); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } else if (opcode == MSA_ST) { | 
|  | switch (DecodeMsaDataFormat()) { | 
|  | case MSA_BYTE: | 
|  | MSA_MI10_STORE(b, kMSALanesByte, int8_t); | 
|  | break; | 
|  | case MSA_HALF: | 
|  | MSA_MI10_STORE(h, kMSALanesHalf, int16_t); | 
|  | break; | 
|  | case MSA_WORD: | 
|  | MSA_MI10_STORE(w, kMSALanesWord, int32_t); | 
|  | break; | 
|  | case MSA_DWORD: | 
|  | MSA_MI10_STORE(d, kMSALanesDword, int64_t); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } else { | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | #undef MSA_MI10_LOAD | 
|  | #undef MSA_MI10_STORE | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | T Simulator::Msa3RInstrHelper(uint32_t opcode, T wd, T ws, T wt) { | 
|  | using uT = typename std::make_unsigned<T>::type; | 
|  | T res; | 
|  | T wt_modulo = wt % (sizeof(T) * 8); | 
|  | switch (opcode) { | 
|  | case SLL_MSA: | 
|  | res = static_cast<T>(ws << wt_modulo); | 
|  | break; | 
|  | case SRA_MSA: | 
|  | res = static_cast<T>(ArithmeticShiftRight(ws, wt_modulo)); | 
|  | break; | 
|  | case SRL_MSA: | 
|  | res = static_cast<T>(static_cast<uT>(ws) >> wt_modulo); | 
|  | break; | 
|  | case BCLR: | 
|  | res = static_cast<T>(static_cast<T>(~(1ull << wt_modulo)) & ws); | 
|  | break; | 
|  | case BSET: | 
|  | res = static_cast<T>(static_cast<T>(1ull << wt_modulo) | ws); | 
|  | break; | 
|  | case BNEG: | 
|  | res = static_cast<T>(static_cast<T>(1ull << wt_modulo) ^ ws); | 
|  | break; | 
|  | case BINSL: { | 
|  | int elem_size = 8 * sizeof(T); | 
|  | int bits = wt_modulo + 1; | 
|  | if (bits == elem_size) { | 
|  | res = static_cast<T>(ws); | 
|  | } else { | 
|  | uint64_t mask = ((1ull << bits) - 1) << (elem_size - bits); | 
|  | res = static_cast<T>((static_cast<T>(mask) & ws) | | 
|  | (static_cast<T>(~mask) & wd)); | 
|  | } | 
|  | } break; | 
|  | case BINSR: { | 
|  | int elem_size = 8 * sizeof(T); | 
|  | int bits = wt_modulo + 1; | 
|  | if (bits == elem_size) { | 
|  | res = static_cast<T>(ws); | 
|  | } else { | 
|  | uint64_t mask = (1ull << bits) - 1; | 
|  | res = static_cast<T>((static_cast<T>(mask) & ws) | | 
|  | (static_cast<T>(~mask) & wd)); | 
|  | } | 
|  | } break; | 
|  | case ADDV: | 
|  | res = ws + wt; | 
|  | break; | 
|  | case SUBV: | 
|  | res = ws - wt; | 
|  | break; | 
|  | case MAX_S: | 
|  | res = Max(ws, wt); | 
|  | break; | 
|  | case MAX_U: | 
|  | res = static_cast<T>(Max(static_cast<uT>(ws), static_cast<uT>(wt))); | 
|  | break; | 
|  | case MIN_S: | 
|  | res = Min(ws, wt); | 
|  | break; | 
|  | case MIN_U: | 
|  | res = static_cast<T>(Min(static_cast<uT>(ws), static_cast<uT>(wt))); | 
|  | break; | 
|  | case MAX_A: | 
|  | // We use negative abs in order to avoid problems | 
|  | // with corner case for MIN_INT | 
|  | res = Nabs(ws) < Nabs(wt) ? ws : wt; | 
|  | break; | 
|  | case MIN_A: | 
|  | // We use negative abs in order to avoid problems | 
|  | // with corner case for MIN_INT | 
|  | res = Nabs(ws) > Nabs(wt) ? ws : wt; | 
|  | break; | 
|  | case CEQ: | 
|  | res = static_cast<T>(!Compare(ws, wt) ? -1ull : 0ull); | 
|  | break; | 
|  | case CLT_S: | 
|  | res = static_cast<T>((Compare(ws, wt) == -1) ? -1ull : 0ull); | 
|  | break; | 
|  | case CLT_U: | 
|  | res = static_cast<T>( | 
|  | (Compare(static_cast<uT>(ws), static_cast<uT>(wt)) == -1) ? -1ull | 
|  | : 0ull); | 
|  | break; | 
|  | case CLE_S: | 
|  | res = static_cast<T>((Compare(ws, wt) != 1) ? -1ull : 0ull); | 
|  | break; | 
|  | case CLE_U: | 
|  | res = static_cast<T>( | 
|  | (Compare(static_cast<uT>(ws), static_cast<uT>(wt)) != 1) ? -1ull | 
|  | : 0ull); | 
|  | break; | 
|  | case ADD_A: | 
|  | res = static_cast<T>(Abs(ws) + Abs(wt)); | 
|  | break; | 
|  | case ADDS_A: { | 
|  | T ws_nabs = Nabs(ws); | 
|  | T wt_nabs = Nabs(wt); | 
|  | if (ws_nabs < -std::numeric_limits<T>::max() - wt_nabs) { | 
|  | res = std::numeric_limits<T>::max(); | 
|  | } else { | 
|  | res = -(ws_nabs + wt_nabs); | 
|  | } | 
|  | } break; | 
|  | case ADDS_S: | 
|  | res = SaturateAdd(ws, wt); | 
|  | break; | 
|  | case ADDS_U: { | 
|  | uT ws_u = static_cast<uT>(ws); | 
|  | uT wt_u = static_cast<uT>(wt); | 
|  | res = static_cast<T>(SaturateAdd(ws_u, wt_u)); | 
|  | } break; | 
|  | case AVE_S: | 
|  | res = static_cast<T>((wt & ws) + ((wt ^ ws) >> 1)); | 
|  | break; | 
|  | case AVE_U: { | 
|  | uT ws_u = static_cast<uT>(ws); | 
|  | uT wt_u = static_cast<uT>(wt); | 
|  | res = static_cast<T>((wt_u & ws_u) + ((wt_u ^ ws_u) >> 1)); | 
|  | } break; | 
|  | case AVER_S: | 
|  | res = static_cast<T>((wt | ws) - ((wt ^ ws) >> 1)); | 
|  | break; | 
|  | case AVER_U: { | 
|  | uT ws_u = static_cast<uT>(ws); | 
|  | uT wt_u = static_cast<uT>(wt); | 
|  | res = static_cast<T>((wt_u | ws_u) - ((wt_u ^ ws_u) >> 1)); | 
|  | } break; | 
|  | case SUBS_S: | 
|  | res = SaturateSub(ws, wt); | 
|  | break; | 
|  | case SUBS_U: { | 
|  | uT ws_u = static_cast<uT>(ws); | 
|  | uT wt_u = static_cast<uT>(wt); | 
|  | res = static_cast<T>(SaturateSub(ws_u, wt_u)); | 
|  | } break; | 
|  | case SUBSUS_U: { | 
|  | uT wsu = static_cast<uT>(ws); | 
|  | if (wt > 0) { | 
|  | uT wtu = static_cast<uT>(wt); | 
|  | if (wtu > wsu) { | 
|  | res = 0; | 
|  | } else { | 
|  | res = static_cast<T>(wsu - wtu); | 
|  | } | 
|  | } else { | 
|  | if (wsu > std::numeric_limits<uT>::max() + wt) { | 
|  | res = static_cast<T>(std::numeric_limits<uT>::max()); | 
|  | } else { | 
|  | res = static_cast<T>(wsu - wt); | 
|  | } | 
|  | } | 
|  | } break; | 
|  | case SUBSUU_S: { | 
|  | uT wsu = static_cast<uT>(ws); | 
|  | uT wtu = static_cast<uT>(wt); | 
|  | uT wdu; | 
|  | if (wsu > wtu) { | 
|  | wdu = wsu - wtu; | 
|  | if (wdu > std::numeric_limits<T>::max()) { | 
|  | res = std::numeric_limits<T>::max(); | 
|  | } else { | 
|  | res = static_cast<T>(wdu); | 
|  | } | 
|  | } else { | 
|  | wdu = wtu - wsu; | 
|  | CHECK(-std::numeric_limits<T>::max() == | 
|  | std::numeric_limits<T>::min() + 1); | 
|  | if (wdu <= std::numeric_limits<T>::max()) { | 
|  | res = -static_cast<T>(wdu); | 
|  | } else { | 
|  | res = std::numeric_limits<T>::min(); | 
|  | } | 
|  | } | 
|  | } break; | 
|  | case ASUB_S: | 
|  | res = static_cast<T>(Abs(ws - wt)); | 
|  | break; | 
|  | case ASUB_U: { | 
|  | uT wsu = static_cast<uT>(ws); | 
|  | uT wtu = static_cast<uT>(wt); | 
|  | res = static_cast<T>(wsu > wtu ? wsu - wtu : wtu - wsu); | 
|  | } break; | 
|  | case MULV: | 
|  | res = ws * wt; | 
|  | break; | 
|  | case MADDV: | 
|  | res = wd + ws * wt; | 
|  | break; | 
|  | case MSUBV: | 
|  | res = wd - ws * wt; | 
|  | break; | 
|  | case DIV_S_MSA: | 
|  | res = wt != 0 ? ws / wt : static_cast<T>(Unpredictable); | 
|  | break; | 
|  | case DIV_U: | 
|  | res = wt != 0 ? static_cast<T>(static_cast<uT>(ws) / static_cast<uT>(wt)) | 
|  | : static_cast<T>(Unpredictable); | 
|  | break; | 
|  | case MOD_S: | 
|  | res = wt != 0 ? ws % wt : static_cast<T>(Unpredictable); | 
|  | break; | 
|  | case MOD_U: | 
|  | res = wt != 0 ? static_cast<T>(static_cast<uT>(ws) % static_cast<uT>(wt)) | 
|  | : static_cast<T>(Unpredictable); | 
|  | break; | 
|  | case DOTP_S: | 
|  | case DOTP_U: | 
|  | case DPADD_S: | 
|  | case DPADD_U: | 
|  | case DPSUB_S: | 
|  | case DPSUB_U: | 
|  | case SLD: | 
|  | case SPLAT: | 
|  | UNIMPLEMENTED(); | 
|  | break; | 
|  | case SRAR: { | 
|  | int bit = wt_modulo == 0 ? 0 : (ws >> (wt_modulo - 1)) & 1; | 
|  | res = static_cast<T>(ArithmeticShiftRight(ws, wt_modulo) + bit); | 
|  | } break; | 
|  | case SRLR: { | 
|  | uT wsu = static_cast<uT>(ws); | 
|  | int bit = wt_modulo == 0 ? 0 : (wsu >> (wt_modulo - 1)) & 1; | 
|  | res = static_cast<T>((wsu >> wt_modulo) + bit); | 
|  | } break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | template <typename T_int, typename T_reg> | 
|  | void Msa3RInstrHelper_shuffle(const uint32_t opcode, T_reg ws, T_reg wt, | 
|  | T_reg wd, const int i, const int num_of_lanes) { | 
|  | T_int *ws_p, *wt_p, *wd_p; | 
|  | ws_p = reinterpret_cast<T_int*>(ws); | 
|  | wt_p = reinterpret_cast<T_int*>(wt); | 
|  | wd_p = reinterpret_cast<T_int*>(wd); | 
|  | switch (opcode) { | 
|  | case PCKEV: | 
|  | wd_p[i] = wt_p[2 * i]; | 
|  | wd_p[i + num_of_lanes / 2] = ws_p[2 * i]; | 
|  | break; | 
|  | case PCKOD: | 
|  | wd_p[i] = wt_p[2 * i + 1]; | 
|  | wd_p[i + num_of_lanes / 2] = ws_p[2 * i + 1]; | 
|  | break; | 
|  | case ILVL: | 
|  | wd_p[2 * i] = wt_p[i + num_of_lanes / 2]; | 
|  | wd_p[2 * i + 1] = ws_p[i + num_of_lanes / 2]; | 
|  | break; | 
|  | case ILVR: | 
|  | wd_p[2 * i] = wt_p[i]; | 
|  | wd_p[2 * i + 1] = ws_p[i]; | 
|  | break; | 
|  | case ILVEV: | 
|  | wd_p[2 * i] = wt_p[2 * i]; | 
|  | wd_p[2 * i + 1] = ws_p[2 * i]; | 
|  | break; | 
|  | case ILVOD: | 
|  | wd_p[2 * i] = wt_p[2 * i + 1]; | 
|  | wd_p[2 * i + 1] = ws_p[2 * i + 1]; | 
|  | break; | 
|  | case VSHF: { | 
|  | const int mask_not_valid = 0xC0; | 
|  | const int mask_6_bits = 0x3F; | 
|  | if ((wd_p[i] & mask_not_valid)) { | 
|  | wd_p[i] = 0; | 
|  | } else { | 
|  | int k = (wd_p[i] & mask_6_bits) % (num_of_lanes * 2); | 
|  | wd_p[i] = k >= num_of_lanes ? ws_p[k - num_of_lanes] : wt_p[k]; | 
|  | } | 
|  | } break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename T_int, typename T_smaller_int, typename T_reg> | 
|  | void Msa3RInstrHelper_horizontal(const uint32_t opcode, T_reg ws, T_reg wt, | 
|  | T_reg wd, const int i, | 
|  | const int num_of_lanes) { | 
|  | using T_uint = typename std::make_unsigned<T_int>::type; | 
|  | using T_smaller_uint = typename std::make_unsigned<T_smaller_int>::type; | 
|  | T_int* wd_p; | 
|  | T_smaller_int *ws_p, *wt_p; | 
|  | ws_p = reinterpret_cast<T_smaller_int*>(ws); | 
|  | wt_p = reinterpret_cast<T_smaller_int*>(wt); | 
|  | wd_p = reinterpret_cast<T_int*>(wd); | 
|  | T_uint* wd_pu; | 
|  | T_smaller_uint *ws_pu, *wt_pu; | 
|  | ws_pu = reinterpret_cast<T_smaller_uint*>(ws); | 
|  | wt_pu = reinterpret_cast<T_smaller_uint*>(wt); | 
|  | wd_pu = reinterpret_cast<T_uint*>(wd); | 
|  | switch (opcode) { | 
|  | case HADD_S: | 
|  | wd_p[i] = | 
|  | static_cast<T_int>(ws_p[2 * i + 1]) + static_cast<T_int>(wt_p[2 * i]); | 
|  | break; | 
|  | case HADD_U: | 
|  | wd_pu[i] = static_cast<T_uint>(ws_pu[2 * i + 1]) + | 
|  | static_cast<T_uint>(wt_pu[2 * i]); | 
|  | break; | 
|  | case HSUB_S: | 
|  | wd_p[i] = | 
|  | static_cast<T_int>(ws_p[2 * i + 1]) - static_cast<T_int>(wt_p[2 * i]); | 
|  | break; | 
|  | case HSUB_U: | 
|  | wd_pu[i] = static_cast<T_uint>(ws_pu[2 * i + 1]) - | 
|  | static_cast<T_uint>(wt_pu[2 * i]); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeTypeMsa3R() { | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); | 
|  | uint32_t opcode = instr_.InstructionBits() & kMsa3RMask; | 
|  | msa_reg_t ws, wd, wt; | 
|  | get_msa_register(ws_reg(), &ws); | 
|  | get_msa_register(wt_reg(), &wt); | 
|  | get_msa_register(wd_reg(), &wd); | 
|  | switch (opcode) { | 
|  | case HADD_S: | 
|  | case HADD_U: | 
|  | case HSUB_S: | 
|  | case HSUB_U: | 
|  | #define HORIZONTAL_ARITHMETIC_DF(num_of_lanes, int_type, lesser_int_type) \ | 
|  | for (int i = 0; i < num_of_lanes; ++i) {                                \ | 
|  | Msa3RInstrHelper_horizontal<int_type, lesser_int_type>(               \ | 
|  | opcode, &ws, &wt, &wd, i, num_of_lanes);                          \ | 
|  | } | 
|  | switch (DecodeMsaDataFormat()) { | 
|  | case MSA_HALF: | 
|  | HORIZONTAL_ARITHMETIC_DF(kMSALanesHalf, int16_t, int8_t); | 
|  | break; | 
|  | case MSA_WORD: | 
|  | HORIZONTAL_ARITHMETIC_DF(kMSALanesWord, int32_t, int16_t); | 
|  | break; | 
|  | case MSA_DWORD: | 
|  | HORIZONTAL_ARITHMETIC_DF(kMSALanesDword, int64_t, int32_t); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | break; | 
|  | #undef HORIZONTAL_ARITHMETIC_DF | 
|  | case VSHF: | 
|  | #define VSHF_DF(num_of_lanes, int_type)                          \ | 
|  | for (int i = 0; i < num_of_lanes; ++i) {                       \ | 
|  | Msa3RInstrHelper_shuffle<int_type>(opcode, &ws, &wt, &wd, i, \ | 
|  | num_of_lanes);            \ | 
|  | } | 
|  | switch (DecodeMsaDataFormat()) { | 
|  | case MSA_BYTE: | 
|  | VSHF_DF(kMSALanesByte, int8_t); | 
|  | break; | 
|  | case MSA_HALF: | 
|  | VSHF_DF(kMSALanesHalf, int16_t); | 
|  | break; | 
|  | case MSA_WORD: | 
|  | VSHF_DF(kMSALanesWord, int32_t); | 
|  | break; | 
|  | case MSA_DWORD: | 
|  | VSHF_DF(kMSALanesDword, int64_t); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | #undef VSHF_DF | 
|  | break; | 
|  | case PCKEV: | 
|  | case PCKOD: | 
|  | case ILVL: | 
|  | case ILVR: | 
|  | case ILVEV: | 
|  | case ILVOD: | 
|  | #define INTERLEAVE_PACK_DF(num_of_lanes, int_type)               \ | 
|  | for (int i = 0; i < num_of_lanes / 2; ++i) {                   \ | 
|  | Msa3RInstrHelper_shuffle<int_type>(opcode, &ws, &wt, &wd, i, \ | 
|  | num_of_lanes);            \ | 
|  | } | 
|  | switch (DecodeMsaDataFormat()) { | 
|  | case MSA_BYTE: | 
|  | INTERLEAVE_PACK_DF(kMSALanesByte, int8_t); | 
|  | break; | 
|  | case MSA_HALF: | 
|  | INTERLEAVE_PACK_DF(kMSALanesHalf, int16_t); | 
|  | break; | 
|  | case MSA_WORD: | 
|  | INTERLEAVE_PACK_DF(kMSALanesWord, int32_t); | 
|  | break; | 
|  | case MSA_DWORD: | 
|  | INTERLEAVE_PACK_DF(kMSALanesDword, int64_t); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | break; | 
|  | #undef INTERLEAVE_PACK_DF | 
|  | default: | 
|  | #define MSA_3R_DF(elem, num_of_lanes)                                          \ | 
|  | for (int i = 0; i < num_of_lanes; i++) {                                     \ | 
|  | wd.elem[i] = Msa3RInstrHelper(opcode, wd.elem[i], ws.elem[i], wt.elem[i]); \ | 
|  | } | 
|  |  | 
|  | switch (DecodeMsaDataFormat()) { | 
|  | case MSA_BYTE: | 
|  | MSA_3R_DF(b, kMSALanesByte); | 
|  | break; | 
|  | case MSA_HALF: | 
|  | MSA_3R_DF(h, kMSALanesHalf); | 
|  | break; | 
|  | case MSA_WORD: | 
|  | MSA_3R_DF(w, kMSALanesWord); | 
|  | break; | 
|  | case MSA_DWORD: | 
|  | MSA_3R_DF(d, kMSALanesDword); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | #undef MSA_3R_DF | 
|  | break; | 
|  | } | 
|  | set_msa_register(wd_reg(), &wd); | 
|  | TraceMSARegWr(&wd); | 
|  | } | 
|  |  | 
|  | template <typename T_int, typename T_fp, typename T_reg> | 
|  | void Msa3RFInstrHelper(uint32_t opcode, T_reg ws, T_reg wt, T_reg* wd) { | 
|  | const T_int all_ones = static_cast<T_int>(-1); | 
|  | const T_fp s_element = *reinterpret_cast<T_fp*>(&ws); | 
|  | const T_fp t_element = *reinterpret_cast<T_fp*>(&wt); | 
|  | switch (opcode) { | 
|  | case FCUN: { | 
|  | if (std::isnan(s_element) || std::isnan(t_element)) { | 
|  | *wd = all_ones; | 
|  | } else { | 
|  | *wd = 0; | 
|  | } | 
|  | } break; | 
|  | case FCEQ: { | 
|  | if (s_element != t_element || std::isnan(s_element) || | 
|  | std::isnan(t_element)) { | 
|  | *wd = 0; | 
|  | } else { | 
|  | *wd = all_ones; | 
|  | } | 
|  | } break; | 
|  | case FCUEQ: { | 
|  | if (s_element == t_element || std::isnan(s_element) || | 
|  | std::isnan(t_element)) { | 
|  | *wd = all_ones; | 
|  | } else { | 
|  | *wd = 0; | 
|  | } | 
|  | } break; | 
|  | case FCLT: { | 
|  | if (s_element >= t_element || std::isnan(s_element) || | 
|  | std::isnan(t_element)) { | 
|  | *wd = 0; | 
|  | } else { | 
|  | *wd = all_ones; | 
|  | } | 
|  | } break; | 
|  | case FCULT: { | 
|  | if (s_element < t_element || std::isnan(s_element) || | 
|  | std::isnan(t_element)) { | 
|  | *wd = all_ones; | 
|  | } else { | 
|  | *wd = 0; | 
|  | } | 
|  | } break; | 
|  | case FCLE: { | 
|  | if (s_element > t_element || std::isnan(s_element) || | 
|  | std::isnan(t_element)) { | 
|  | *wd = 0; | 
|  | } else { | 
|  | *wd = all_ones; | 
|  | } | 
|  | } break; | 
|  | case FCULE: { | 
|  | if (s_element <= t_element || std::isnan(s_element) || | 
|  | std::isnan(t_element)) { | 
|  | *wd = all_ones; | 
|  | } else { | 
|  | *wd = 0; | 
|  | } | 
|  | } break; | 
|  | case FCOR: { | 
|  | if (std::isnan(s_element) || std::isnan(t_element)) { | 
|  | *wd = 0; | 
|  | } else { | 
|  | *wd = all_ones; | 
|  | } | 
|  | } break; | 
|  | case FCUNE: { | 
|  | if (s_element != t_element || std::isnan(s_element) || | 
|  | std::isnan(t_element)) { | 
|  | *wd = all_ones; | 
|  | } else { | 
|  | *wd = 0; | 
|  | } | 
|  | } break; | 
|  | case FCNE: { | 
|  | if (s_element == t_element || std::isnan(s_element) || | 
|  | std::isnan(t_element)) { | 
|  | *wd = 0; | 
|  | } else { | 
|  | *wd = all_ones; | 
|  | } | 
|  | } break; | 
|  | case FADD: | 
|  | *wd = bit_cast<T_int>(s_element + t_element); | 
|  | break; | 
|  | case FSUB: | 
|  | *wd = bit_cast<T_int>(s_element - t_element); | 
|  | break; | 
|  | case FMUL: | 
|  | *wd = bit_cast<T_int>(s_element * t_element); | 
|  | break; | 
|  | case FDIV: { | 
|  | if (t_element == 0) { | 
|  | *wd = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN()); | 
|  | } else { | 
|  | *wd = bit_cast<T_int>(s_element / t_element); | 
|  | } | 
|  | } break; | 
|  | case FMADD: | 
|  | *wd = bit_cast<T_int>( | 
|  | std::fma(s_element, t_element, *reinterpret_cast<T_fp*>(wd))); | 
|  | break; | 
|  | case FMSUB: | 
|  | *wd = bit_cast<T_int>( | 
|  | std::fma(s_element, -t_element, *reinterpret_cast<T_fp*>(wd))); | 
|  | break; | 
|  | case FEXP2: | 
|  | *wd = bit_cast<T_int>(std::ldexp(s_element, static_cast<int>(wt))); | 
|  | break; | 
|  | case FMIN: | 
|  | *wd = bit_cast<T_int>(std::min(s_element, t_element)); | 
|  | break; | 
|  | case FMAX: | 
|  | *wd = bit_cast<T_int>(std::max(s_element, t_element)); | 
|  | break; | 
|  | case FMIN_A: { | 
|  | *wd = bit_cast<T_int>( | 
|  | std::fabs(s_element) < std::fabs(t_element) ? s_element : t_element); | 
|  | } break; | 
|  | case FMAX_A: { | 
|  | *wd = bit_cast<T_int>( | 
|  | std::fabs(s_element) > std::fabs(t_element) ? s_element : t_element); | 
|  | } break; | 
|  | case FSOR: | 
|  | case FSUNE: | 
|  | case FSNE: | 
|  | case FSAF: | 
|  | case FSUN: | 
|  | case FSEQ: | 
|  | case FSUEQ: | 
|  | case FSLT: | 
|  | case FSULT: | 
|  | case FSLE: | 
|  | case FSULE: | 
|  | UNIMPLEMENTED(); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename T_int, typename T_int_dbl, typename T_reg> | 
|  | void Msa3RFInstrHelper2(uint32_t opcode, T_reg ws, T_reg wt, T_reg* wd) { | 
|  | //  using T_uint = typename std::make_unsigned<T_int>::type; | 
|  | using T_uint_dbl = typename std::make_unsigned<T_int_dbl>::type; | 
|  | const T_int max_int = std::numeric_limits<T_int>::max(); | 
|  | const T_int min_int = std::numeric_limits<T_int>::min(); | 
|  | const int shift = kBitsPerByte * sizeof(T_int) - 1; | 
|  | const T_int_dbl reg_s = ws; | 
|  | const T_int_dbl reg_t = wt; | 
|  | T_int_dbl product, result; | 
|  | product = reg_s * reg_t; | 
|  | switch (opcode) { | 
|  | case MUL_Q: { | 
|  | const T_int_dbl min_fix_dbl = | 
|  | bit_cast<T_uint_dbl>(std::numeric_limits<T_int_dbl>::min()) >> 1U; | 
|  | const T_int_dbl max_fix_dbl = std::numeric_limits<T_int_dbl>::max() >> 1U; | 
|  | if (product == min_fix_dbl) { | 
|  | product = max_fix_dbl; | 
|  | } | 
|  | *wd = static_cast<T_int>(product >> shift); | 
|  | } break; | 
|  | case MADD_Q: { | 
|  | result = (product + (static_cast<T_int_dbl>(*wd) << shift)) >> shift; | 
|  | *wd = static_cast<T_int>( | 
|  | result > max_int ? max_int : result < min_int ? min_int : result); | 
|  | } break; | 
|  | case MSUB_Q: { | 
|  | result = (-product + (static_cast<T_int_dbl>(*wd) << shift)) >> shift; | 
|  | *wd = static_cast<T_int>( | 
|  | result > max_int ? max_int : result < min_int ? min_int : result); | 
|  | } break; | 
|  | case MULR_Q: { | 
|  | const T_int_dbl min_fix_dbl = | 
|  | bit_cast<T_uint_dbl>(std::numeric_limits<T_int_dbl>::min()) >> 1U; | 
|  | const T_int_dbl max_fix_dbl = std::numeric_limits<T_int_dbl>::max() >> 1U; | 
|  | if (product == min_fix_dbl) { | 
|  | *wd = static_cast<T_int>(max_fix_dbl >> shift); | 
|  | break; | 
|  | } | 
|  | *wd = static_cast<T_int>((product + (1 << (shift - 1))) >> shift); | 
|  | } break; | 
|  | case MADDR_Q: { | 
|  | result = (product + (static_cast<T_int_dbl>(*wd) << shift) + | 
|  | (1 << (shift - 1))) >> | 
|  | shift; | 
|  | *wd = static_cast<T_int>( | 
|  | result > max_int ? max_int : result < min_int ? min_int : result); | 
|  | } break; | 
|  | case MSUBR_Q: { | 
|  | result = (-product + (static_cast<T_int_dbl>(*wd) << shift) + | 
|  | (1 << (shift - 1))) >> | 
|  | shift; | 
|  | *wd = static_cast<T_int>( | 
|  | result > max_int ? max_int : result < min_int ? min_int : result); | 
|  | } break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeTypeMsa3RF() { | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); | 
|  | uint32_t opcode = instr_.InstructionBits() & kMsa3RFMask; | 
|  | msa_reg_t wd, ws, wt; | 
|  | if (opcode != FCAF) { | 
|  | get_msa_register(ws_reg(), &ws); | 
|  | get_msa_register(wt_reg(), &wt); | 
|  | } | 
|  | switch (opcode) { | 
|  | case FCAF: | 
|  | wd.d[0] = 0; | 
|  | wd.d[1] = 0; | 
|  | break; | 
|  | case FEXDO: | 
|  | #define PACK_FLOAT16(sign, exp, frac) \ | 
|  | static_cast<uint16_t>(((sign) << 15) + ((exp) << 10) + (frac)) | 
|  | #define FEXDO_DF(source, dst)                                        \ | 
|  | do {                                                               \ | 
|  | element = source;                                                \ | 
|  | aSign = element >> 31;                                           \ | 
|  | aExp = element >> 23 & 0xFF;                                     \ | 
|  | aFrac = element & 0x007FFFFF;                                    \ | 
|  | if (aExp == 0xFF) {                                              \ | 
|  | if (aFrac) {                                                   \ | 
|  | /* Input is a NaN */                                         \ | 
|  | dst = 0x7DFFU;                                               \ | 
|  | break;                                                       \ | 
|  | }                                                              \ | 
|  | /* Infinity */                                                 \ | 
|  | dst = PACK_FLOAT16(aSign, 0x1F, 0);                            \ | 
|  | break;                                                         \ | 
|  | } else if (aExp == 0 && aFrac == 0) {                            \ | 
|  | dst = PACK_FLOAT16(aSign, 0, 0);                               \ | 
|  | break;                                                         \ | 
|  | } else {                                                         \ | 
|  | int maxexp = 29;                                               \ | 
|  | uint32_t mask;                                                 \ | 
|  | uint32_t increment;                                            \ | 
|  | bool rounding_bumps_exp;                                       \ | 
|  | aFrac |= 0x00800000;                                           \ | 
|  | aExp -= 0x71;                                                  \ | 
|  | if (aExp < 1) {                                                \ | 
|  | /* Will be denormal in halfprec */                           \ | 
|  | mask = 0x00FFFFFF;                                           \ | 
|  | if (aExp >= -11) {                                           \ | 
|  | mask >>= 11 + aExp;                                        \ | 
|  | }                                                            \ | 
|  | } else {                                                       \ | 
|  | /* Normal number in halfprec */                              \ | 
|  | mask = 0x00001FFF;                                           \ | 
|  | }                                                              \ | 
|  | switch (MSACSR_ & 3) {                                         \ | 
|  | case kRoundToNearest:                                        \ | 
|  | increment = (mask + 1) >> 1;                               \ | 
|  | if ((aFrac & mask) == increment) {                         \ | 
|  | increment = aFrac & (increment << 1);                    \ | 
|  | }                                                          \ | 
|  | break;                                                     \ | 
|  | case kRoundToPlusInf:                                        \ | 
|  | increment = aSign ? 0 : mask;                              \ | 
|  | break;                                                     \ | 
|  | case kRoundToMinusInf:                                       \ | 
|  | increment = aSign ? mask : 0;                              \ | 
|  | break;                                                     \ | 
|  | case kRoundToZero:                                           \ | 
|  | increment = 0;                                             \ | 
|  | break;                                                     \ | 
|  | }                                                              \ | 
|  | rounding_bumps_exp = (aFrac + increment >= 0x01000000);        \ | 
|  | if (aExp > maxexp || (aExp == maxexp && rounding_bumps_exp)) { \ | 
|  | dst = PACK_FLOAT16(aSign, 0x1F, 0);                          \ | 
|  | break;                                                       \ | 
|  | }                                                              \ | 
|  | aFrac += increment;                                            \ | 
|  | if (rounding_bumps_exp) {                                      \ | 
|  | aFrac >>= 1;                                                 \ | 
|  | aExp++;                                                      \ | 
|  | }                                                              \ | 
|  | if (aExp < -10) {                                              \ | 
|  | dst = PACK_FLOAT16(aSign, 0, 0);                             \ | 
|  | break;                                                       \ | 
|  | }                                                              \ | 
|  | if (aExp < 0) {                                                \ | 
|  | aFrac >>= -aExp;                                             \ | 
|  | aExp = 0;                                                    \ | 
|  | }                                                              \ | 
|  | dst = PACK_FLOAT16(aSign, aExp, aFrac >> 13);                  \ | 
|  | }                                                                \ | 
|  | } while (0); | 
|  | switch (DecodeMsaDataFormat()) { | 
|  | case MSA_HALF: | 
|  | for (int i = 0; i < kMSALanesWord; i++) { | 
|  | uint_fast32_t element; | 
|  | uint_fast32_t aSign, aFrac; | 
|  | int_fast32_t aExp; | 
|  | FEXDO_DF(ws.uw[i], wd.uh[i + kMSALanesHalf / 2]) | 
|  | FEXDO_DF(wt.uw[i], wd.uh[i]) | 
|  | } | 
|  | break; | 
|  | case MSA_WORD: | 
|  | for (int i = 0; i < kMSALanesDword; i++) { | 
|  | wd.w[i + kMSALanesWord / 2] = bit_cast<int32_t>( | 
|  | static_cast<float>(bit_cast<double>(ws.d[i]))); | 
|  | wd.w[i] = bit_cast<int32_t>( | 
|  | static_cast<float>(bit_cast<double>(wt.d[i]))); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | break; | 
|  | #undef PACK_FLOAT16 | 
|  | #undef FEXDO_DF | 
|  | case FTQ: | 
|  | #define FTQ_DF(source, dst, fp_type, int_type)                  \ | 
|  | element = bit_cast<fp_type>(source) *                         \ | 
|  | (1U << (sizeof(int_type) * kBitsPerByte - 1));      \ | 
|  | if (element > std::numeric_limits<int_type>::max()) {         \ | 
|  | dst = std::numeric_limits<int_type>::max();                 \ | 
|  | } else if (element < std::numeric_limits<int_type>::min()) {  \ | 
|  | dst = std::numeric_limits<int_type>::min();                 \ | 
|  | } else if (std::isnan(element)) {                             \ | 
|  | dst = 0;                                                    \ | 
|  | } else {                                                      \ | 
|  | int_type fixed_point;                                       \ | 
|  | round_according_to_msacsr(element, &element, &fixed_point); \ | 
|  | dst = fixed_point;                                          \ | 
|  | } | 
|  |  | 
|  | switch (DecodeMsaDataFormat()) { | 
|  | case MSA_HALF: | 
|  | for (int i = 0; i < kMSALanesWord; i++) { | 
|  | float element; | 
|  | FTQ_DF(ws.w[i], wd.h[i + kMSALanesHalf / 2], float, int16_t) | 
|  | FTQ_DF(wt.w[i], wd.h[i], float, int16_t) | 
|  | } | 
|  | break; | 
|  | case MSA_WORD: | 
|  | double element; | 
|  | for (int i = 0; i < kMSALanesDword; i++) { | 
|  | FTQ_DF(ws.d[i], wd.w[i + kMSALanesWord / 2], double, int32_t) | 
|  | FTQ_DF(wt.d[i], wd.w[i], double, int32_t) | 
|  | } | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | break; | 
|  | #undef FTQ_DF | 
|  | #define MSA_3RF_DF(T1, T2, Lanes, ws, wt, wd)         \ | 
|  | for (int i = 0; i < Lanes; i++) {                   \ | 
|  | Msa3RFInstrHelper<T1, T2>(opcode, ws, wt, &(wd)); \ | 
|  | } | 
|  | #define MSA_3RF_DF2(T1, T2, Lanes, ws, wt, wd)         \ | 
|  | for (int i = 0; i < Lanes; i++) {                    \ | 
|  | Msa3RFInstrHelper2<T1, T2>(opcode, ws, wt, &(wd)); \ | 
|  | } | 
|  | case MADD_Q: | 
|  | case MSUB_Q: | 
|  | case MADDR_Q: | 
|  | case MSUBR_Q: | 
|  | get_msa_register(wd_reg(), &wd); | 
|  | V8_FALLTHROUGH; | 
|  | case MUL_Q: | 
|  | case MULR_Q: | 
|  | switch (DecodeMsaDataFormat()) { | 
|  | case MSA_HALF: | 
|  | MSA_3RF_DF2(int16_t, int32_t, kMSALanesHalf, ws.h[i], wt.h[i], | 
|  | wd.h[i]) | 
|  | break; | 
|  | case MSA_WORD: | 
|  | MSA_3RF_DF2(int32_t, int64_t, kMSALanesWord, ws.w[i], wt.w[i], | 
|  | wd.w[i]) | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | if (opcode == FMADD || opcode == FMSUB) { | 
|  | get_msa_register(wd_reg(), &wd); | 
|  | } | 
|  | switch (DecodeMsaDataFormat()) { | 
|  | case MSA_WORD: | 
|  | MSA_3RF_DF(int32_t, float, kMSALanesWord, ws.w[i], wt.w[i], wd.w[i]) | 
|  | break; | 
|  | case MSA_DWORD: | 
|  | MSA_3RF_DF(int64_t, double, kMSALanesDword, ws.d[i], wt.d[i], wd.d[i]) | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | break; | 
|  | #undef MSA_3RF_DF | 
|  | #undef MSA_3RF_DF2 | 
|  | } | 
|  | set_msa_register(wd_reg(), &wd); | 
|  | TraceMSARegWr(&wd); | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeTypeMsaVec() { | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); | 
|  | uint32_t opcode = instr_.InstructionBits() & kMsaVECMask; | 
|  | msa_reg_t wd, ws, wt; | 
|  |  | 
|  | get_msa_register(instr_.WsValue(), ws.w); | 
|  | get_msa_register(instr_.WtValue(), wt.w); | 
|  | if (opcode == BMNZ_V || opcode == BMZ_V || opcode == BSEL_V) { | 
|  | get_msa_register(instr_.WdValue(), wd.w); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < kMSALanesWord; i++) { | 
|  | switch (opcode) { | 
|  | case AND_V: | 
|  | wd.w[i] = ws.w[i] & wt.w[i]; | 
|  | break; | 
|  | case OR_V: | 
|  | wd.w[i] = ws.w[i] | wt.w[i]; | 
|  | break; | 
|  | case NOR_V: | 
|  | wd.w[i] = ~(ws.w[i] | wt.w[i]); | 
|  | break; | 
|  | case XOR_V: | 
|  | wd.w[i] = ws.w[i] ^ wt.w[i]; | 
|  | break; | 
|  | case BMNZ_V: | 
|  | wd.w[i] = (wt.w[i] & ws.w[i]) | (~wt.w[i] & wd.w[i]); | 
|  | break; | 
|  | case BMZ_V: | 
|  | wd.w[i] = (~wt.w[i] & ws.w[i]) | (wt.w[i] & wd.w[i]); | 
|  | break; | 
|  | case BSEL_V: | 
|  | wd.w[i] = (~wd.w[i] & ws.w[i]) | (wd.w[i] & wt.w[i]); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  | set_msa_register(instr_.WdValue(), wd.w); | 
|  | TraceMSARegWr(wd.d); | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeTypeMsa2R() { | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); | 
|  | uint32_t opcode = instr_.InstructionBits() & kMsa2RMask; | 
|  | msa_reg_t wd, ws; | 
|  | switch (opcode) { | 
|  | case FILL: | 
|  | switch (DecodeMsaDataFormat()) { | 
|  | case MSA_BYTE: { | 
|  | int32_t rs = get_register(instr_.WsValue()); | 
|  | for (int i = 0; i < kMSALanesByte; i++) { | 
|  | wd.b[i] = rs & 0xFFu; | 
|  | } | 
|  | set_msa_register(instr_.WdValue(), wd.b); | 
|  | TraceMSARegWr(wd.b); | 
|  | break; | 
|  | } | 
|  | case MSA_HALF: { | 
|  | int32_t rs = get_register(instr_.WsValue()); | 
|  | for (int i = 0; i < kMSALanesHalf; i++) { | 
|  | wd.h[i] = rs & 0xFFFFu; | 
|  | } | 
|  | set_msa_register(instr_.WdValue(), wd.h); | 
|  | TraceMSARegWr(wd.h); | 
|  | break; | 
|  | } | 
|  | case MSA_WORD: { | 
|  | int32_t rs = get_register(instr_.WsValue()); | 
|  | for (int i = 0; i < kMSALanesWord; i++) { | 
|  | wd.w[i] = rs; | 
|  | } | 
|  | set_msa_register(instr_.WdValue(), wd.w); | 
|  | TraceMSARegWr(wd.w); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | break; | 
|  | case PCNT: | 
|  | #define PCNT_DF(elem, num_of_lanes)                       \ | 
|  | get_msa_register(instr_.WsValue(), ws.elem);            \ | 
|  | for (int i = 0; i < num_of_lanes; i++) {                \ | 
|  | uint64_t u64elem = static_cast<uint64_t>(ws.elem[i]); \ | 
|  | wd.elem[i] = base::bits::CountPopulation(u64elem);    \ | 
|  | }                                                       \ | 
|  | set_msa_register(instr_.WdValue(), wd.elem);            \ | 
|  | TraceMSARegWr(wd.elem) | 
|  |  | 
|  | switch (DecodeMsaDataFormat()) { | 
|  | case MSA_BYTE: | 
|  | PCNT_DF(ub, kMSALanesByte); | 
|  | break; | 
|  | case MSA_HALF: | 
|  | PCNT_DF(uh, kMSALanesHalf); | 
|  | break; | 
|  | case MSA_WORD: | 
|  | PCNT_DF(uw, kMSALanesWord); | 
|  | break; | 
|  | case MSA_DWORD: | 
|  | PCNT_DF(ud, kMSALanesDword); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | #undef PCNT_DF | 
|  | break; | 
|  | case NLOC: | 
|  | #define NLOC_DF(elem, num_of_lanes)                                         \ | 
|  | get_msa_register(instr_.WsValue(), ws.elem);                              \ | 
|  | for (int i = 0; i < num_of_lanes; i++) {                                  \ | 
|  | const uint64_t mask = (num_of_lanes == kMSALanesDword)                  \ | 
|  | ? UINT64_MAX                                  \ | 
|  | : (1ULL << (kMSARegSize / num_of_lanes)) - 1; \ | 
|  | uint64_t u64elem = static_cast<uint64_t>(~ws.elem[i]) & mask;           \ | 
|  | wd.elem[i] = base::bits::CountLeadingZeros64(u64elem) -                 \ | 
|  | (64 - kMSARegSize / num_of_lanes);                         \ | 
|  | }                                                                         \ | 
|  | set_msa_register(instr_.WdValue(), wd.elem);                              \ | 
|  | TraceMSARegWr(wd.elem) | 
|  |  | 
|  | switch (DecodeMsaDataFormat()) { | 
|  | case MSA_BYTE: | 
|  | NLOC_DF(ub, kMSALanesByte); | 
|  | break; | 
|  | case MSA_HALF: | 
|  | NLOC_DF(uh, kMSALanesHalf); | 
|  | break; | 
|  | case MSA_WORD: | 
|  | NLOC_DF(uw, kMSALanesWord); | 
|  | break; | 
|  | case MSA_DWORD: | 
|  | NLOC_DF(ud, kMSALanesDword); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | #undef NLOC_DF | 
|  | break; | 
|  | case NLZC: | 
|  | #define NLZC_DF(elem, num_of_lanes)                         \ | 
|  | get_msa_register(instr_.WsValue(), ws.elem);              \ | 
|  | for (int i = 0; i < num_of_lanes; i++) {                  \ | 
|  | uint64_t u64elem = static_cast<uint64_t>(ws.elem[i]);   \ | 
|  | wd.elem[i] = base::bits::CountLeadingZeros64(u64elem) - \ | 
|  | (64 - kMSARegSize / num_of_lanes);         \ | 
|  | }                                                         \ | 
|  | set_msa_register(instr_.WdValue(), wd.elem);              \ | 
|  | TraceMSARegWr(wd.elem) | 
|  |  | 
|  | switch (DecodeMsaDataFormat()) { | 
|  | case MSA_BYTE: | 
|  | NLZC_DF(ub, kMSALanesByte); | 
|  | break; | 
|  | case MSA_HALF: | 
|  | NLZC_DF(uh, kMSALanesHalf); | 
|  | break; | 
|  | case MSA_WORD: | 
|  | NLZC_DF(uw, kMSALanesWord); | 
|  | break; | 
|  | case MSA_DWORD: | 
|  | NLZC_DF(ud, kMSALanesDword); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | #undef NLZC_DF | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define BIT(n) (0x1LL << n) | 
|  | #define QUIET_BIT_S(nan) (bit_cast<int32_t>(nan) & BIT(22)) | 
|  | #define QUIET_BIT_D(nan) (bit_cast<int64_t>(nan) & BIT(51)) | 
|  | static inline bool isSnan(float fp) { return !QUIET_BIT_S(fp); } | 
|  | static inline bool isSnan(double fp) { return !QUIET_BIT_D(fp); } | 
|  | #undef QUIET_BIT_S | 
|  | #undef QUIET_BIT_D | 
|  |  | 
|  | template <typename T_int, typename T_fp, typename T_src, typename T_dst> | 
|  | T_int Msa2RFInstrHelper(uint32_t opcode, T_src src, T_dst* dst, | 
|  | Simulator* sim) { | 
|  | using T_uint = typename std::make_unsigned<T_int>::type; | 
|  | switch (opcode) { | 
|  | case FCLASS: { | 
|  | #define SNAN_BIT BIT(0) | 
|  | #define QNAN_BIT BIT(1) | 
|  | #define NEG_INFINITY_BIT BIT(2) | 
|  | #define NEG_NORMAL_BIT BIT(3) | 
|  | #define NEG_SUBNORMAL_BIT BIT(4) | 
|  | #define NEG_ZERO_BIT BIT(5) | 
|  | #define POS_INFINITY_BIT BIT(6) | 
|  | #define POS_NORMAL_BIT BIT(7) | 
|  | #define POS_SUBNORMAL_BIT BIT(8) | 
|  | #define POS_ZERO_BIT BIT(9) | 
|  | T_fp element = *reinterpret_cast<T_fp*>(&src); | 
|  | switch (std::fpclassify(element)) { | 
|  | case FP_INFINITE: | 
|  | if (std::signbit(element)) { | 
|  | *dst = NEG_INFINITY_BIT; | 
|  | } else { | 
|  | *dst = POS_INFINITY_BIT; | 
|  | } | 
|  | break; | 
|  | case FP_NAN: | 
|  | if (isSnan(element)) { | 
|  | *dst = SNAN_BIT; | 
|  | } else { | 
|  | *dst = QNAN_BIT; | 
|  | } | 
|  | break; | 
|  | case FP_NORMAL: | 
|  | if (std::signbit(element)) { | 
|  | *dst = NEG_NORMAL_BIT; | 
|  | } else { | 
|  | *dst = POS_NORMAL_BIT; | 
|  | } | 
|  | break; | 
|  | case FP_SUBNORMAL: | 
|  | if (std::signbit(element)) { | 
|  | *dst = NEG_SUBNORMAL_BIT; | 
|  | } else { | 
|  | *dst = POS_SUBNORMAL_BIT; | 
|  | } | 
|  | break; | 
|  | case FP_ZERO: | 
|  | if (std::signbit(element)) { | 
|  | *dst = NEG_ZERO_BIT; | 
|  | } else { | 
|  | *dst = POS_ZERO_BIT; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | #undef BIT | 
|  | #undef SNAN_BIT | 
|  | #undef QNAN_BIT | 
|  | #undef NEG_INFINITY_BIT | 
|  | #undef NEG_NORMAL_BIT | 
|  | #undef NEG_SUBNORMAL_BIT | 
|  | #undef NEG_ZERO_BIT | 
|  | #undef POS_INFINITY_BIT | 
|  | #undef POS_NORMAL_BIT | 
|  | #undef POS_SUBNORMAL_BIT | 
|  | #undef POS_ZERO_BIT | 
|  | case FTRUNC_S: { | 
|  | T_fp element = bit_cast<T_fp>(src); | 
|  | const T_int max_int = std::numeric_limits<T_int>::max(); | 
|  | const T_int min_int = std::numeric_limits<T_int>::min(); | 
|  | if (std::isnan(element)) { | 
|  | *dst = 0; | 
|  | } else if (element >= max_int || element <= min_int) { | 
|  | *dst = element >= max_int ? max_int : min_int; | 
|  | } else { | 
|  | *dst = static_cast<T_int>(std::trunc(element)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case FTRUNC_U: { | 
|  | T_fp element = bit_cast<T_fp>(src); | 
|  | const T_uint max_int = std::numeric_limits<T_uint>::max(); | 
|  | if (std::isnan(element)) { | 
|  | *dst = 0; | 
|  | } else if (element >= max_int || element <= 0) { | 
|  | *dst = element >= max_int ? max_int : 0; | 
|  | } else { | 
|  | *dst = static_cast<T_uint>(std::trunc(element)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case FSQRT: { | 
|  | T_fp element = bit_cast<T_fp>(src); | 
|  | if (element < 0 || std::isnan(element)) { | 
|  | *dst = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN()); | 
|  | } else { | 
|  | *dst = bit_cast<T_int>(std::sqrt(element)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case FRSQRT: { | 
|  | T_fp element = bit_cast<T_fp>(src); | 
|  | if (element < 0 || std::isnan(element)) { | 
|  | *dst = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN()); | 
|  | } else { | 
|  | *dst = bit_cast<T_int>(1 / std::sqrt(element)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case FRCP: { | 
|  | T_fp element = bit_cast<T_fp>(src); | 
|  | if (std::isnan(element)) { | 
|  | *dst = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN()); | 
|  | } else { | 
|  | *dst = bit_cast<T_int>(1 / element); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case FRINT: { | 
|  | T_fp element = bit_cast<T_fp>(src); | 
|  | if (std::isnan(element)) { | 
|  | *dst = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN()); | 
|  | } else { | 
|  | T_int dummy; | 
|  | sim->round_according_to_msacsr<T_fp, T_int>(element, &element, &dummy); | 
|  | *dst = bit_cast<T_int>(element); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case FLOG2: { | 
|  | T_fp element = bit_cast<T_fp>(src); | 
|  | switch (std::fpclassify(element)) { | 
|  | case FP_NORMAL: | 
|  | case FP_SUBNORMAL: | 
|  | *dst = bit_cast<T_int>(std::logb(element)); | 
|  | break; | 
|  | case FP_ZERO: | 
|  | *dst = bit_cast<T_int>(-std::numeric_limits<T_fp>::infinity()); | 
|  | break; | 
|  | case FP_NAN: | 
|  | *dst = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN()); | 
|  | break; | 
|  | case FP_INFINITE: | 
|  | if (element < 0) { | 
|  | *dst = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN()); | 
|  | } else { | 
|  | *dst = bit_cast<T_int>(std::numeric_limits<T_fp>::infinity()); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case FTINT_S: { | 
|  | T_fp element = bit_cast<T_fp>(src); | 
|  | const T_int max_int = std::numeric_limits<T_int>::max(); | 
|  | const T_int min_int = std::numeric_limits<T_int>::min(); | 
|  | if (std::isnan(element)) { | 
|  | *dst = 0; | 
|  | } else if (element < min_int || element > max_int) { | 
|  | *dst = element > max_int ? max_int : min_int; | 
|  | } else { | 
|  | sim->round_according_to_msacsr<T_fp, T_int>(element, &element, dst); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case FTINT_U: { | 
|  | T_fp element = bit_cast<T_fp>(src); | 
|  | const T_uint max_uint = std::numeric_limits<T_uint>::max(); | 
|  | if (std::isnan(element)) { | 
|  | *dst = 0; | 
|  | } else if (element < 0 || element > max_uint) { | 
|  | *dst = element > max_uint ? max_uint : 0; | 
|  | } else { | 
|  | T_uint res; | 
|  | sim->round_according_to_msacsr<T_fp, T_uint>(element, &element, &res); | 
|  | *dst = *reinterpret_cast<T_int*>(&res); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case FFINT_S: | 
|  | *dst = bit_cast<T_int>(static_cast<T_fp>(src)); | 
|  | break; | 
|  | case FFINT_U: | 
|  | using uT_src = typename std::make_unsigned<T_src>::type; | 
|  | *dst = bit_cast<T_int>(static_cast<T_fp>(bit_cast<uT_src>(src))); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | template <typename T_int, typename T_fp, typename T_reg> | 
|  | T_int Msa2RFInstrHelper2(uint32_t opcode, T_reg ws, int i) { | 
|  | switch (opcode) { | 
|  | #define EXTRACT_FLOAT16_SIGN(fp16) (fp16 >> 15) | 
|  | #define EXTRACT_FLOAT16_EXP(fp16) (fp16 >> 10 & 0x1F) | 
|  | #define EXTRACT_FLOAT16_FRAC(fp16) (fp16 & 0x3FF) | 
|  | #define PACK_FLOAT32(sign, exp, frac) \ | 
|  | static_cast<uint32_t>(((sign) << 31) + ((exp) << 23) + (frac)) | 
|  | #define FEXUP_DF(src_index)                                                   \ | 
|  | uint_fast16_t element = ws.uh[src_index];                                   \ | 
|  | uint_fast32_t aSign, aFrac;                                                 \ | 
|  | int_fast32_t aExp;                                                          \ | 
|  | aSign = EXTRACT_FLOAT16_SIGN(element);                                      \ | 
|  | aExp = EXTRACT_FLOAT16_EXP(element);                                        \ | 
|  | aFrac = EXTRACT_FLOAT16_FRAC(element);                                      \ | 
|  | if (V8_LIKELY(aExp && aExp != 0x1F)) {                                      \ | 
|  | return PACK_FLOAT32(aSign, aExp + 0x70, aFrac << 13);                     \ | 
|  | } else if (aExp == 0x1F) {                                                  \ | 
|  | if (aFrac) {                                                              \ | 
|  | return bit_cast<int32_t>(std::numeric_limits<float>::quiet_NaN());      \ | 
|  | } else {                                                                  \ | 
|  | return bit_cast<uint32_t>(std::numeric_limits<float>::infinity()) |     \ | 
|  | static_cast<uint32_t>(aSign) << 31;                              \ | 
|  | }                                                                         \ | 
|  | } else {                                                                    \ | 
|  | if (aFrac == 0) {                                                         \ | 
|  | return PACK_FLOAT32(aSign, 0, 0);                                       \ | 
|  | } else {                                                                  \ | 
|  | int_fast16_t shiftCount =                                               \ | 
|  | base::bits::CountLeadingZeros32(static_cast<uint32_t>(aFrac)) - 21; \ | 
|  | aFrac <<= shiftCount;                                                   \ | 
|  | aExp = -shiftCount;                                                     \ | 
|  | return PACK_FLOAT32(aSign, aExp + 0x70, aFrac << 13);                   \ | 
|  | }                                                                         \ | 
|  | } | 
|  | case FEXUPL: | 
|  | if (std::is_same<int32_t, T_int>::value) { | 
|  | FEXUP_DF(i + kMSALanesWord) | 
|  | } else { | 
|  | return bit_cast<int64_t>( | 
|  | static_cast<double>(bit_cast<float>(ws.w[i + kMSALanesDword]))); | 
|  | } | 
|  | case FEXUPR: | 
|  | if (std::is_same<int32_t, T_int>::value) { | 
|  | FEXUP_DF(i) | 
|  | } else { | 
|  | return bit_cast<int64_t>(static_cast<double>(bit_cast<float>(ws.w[i]))); | 
|  | } | 
|  | case FFQL: { | 
|  | if (std::is_same<int32_t, T_int>::value) { | 
|  | return bit_cast<int32_t>(static_cast<float>(ws.h[i + kMSALanesWord]) / | 
|  | (1U << 15)); | 
|  | } else { | 
|  | return bit_cast<int64_t>(static_cast<double>(ws.w[i + kMSALanesDword]) / | 
|  | (1U << 31)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case FFQR: { | 
|  | if (std::is_same<int32_t, T_int>::value) { | 
|  | return bit_cast<int32_t>(static_cast<float>(ws.h[i]) / (1U << 15)); | 
|  | } else { | 
|  | return bit_cast<int64_t>(static_cast<double>(ws.w[i]) / (1U << 31)); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  | #undef EXTRACT_FLOAT16_SIGN | 
|  | #undef EXTRACT_FLOAT16_EXP | 
|  | #undef EXTRACT_FLOAT16_FRAC | 
|  | #undef PACK_FLOAT32 | 
|  | #undef FEXUP_DF | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeTypeMsa2RF() { | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); | 
|  | uint32_t opcode = instr_.InstructionBits() & kMsa2RFMask; | 
|  | msa_reg_t wd, ws; | 
|  | get_msa_register(ws_reg(), &ws); | 
|  | if (opcode == FEXUPL || opcode == FEXUPR || opcode == FFQL || | 
|  | opcode == FFQR) { | 
|  | switch (DecodeMsaDataFormat()) { | 
|  | case MSA_WORD: | 
|  | for (int i = 0; i < kMSALanesWord; i++) { | 
|  | wd.w[i] = Msa2RFInstrHelper2<int32_t, float>(opcode, ws, i); | 
|  | } | 
|  | break; | 
|  | case MSA_DWORD: | 
|  | for (int i = 0; i < kMSALanesDword; i++) { | 
|  | wd.d[i] = Msa2RFInstrHelper2<int64_t, double>(opcode, ws, i); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } else { | 
|  | switch (DecodeMsaDataFormat()) { | 
|  | case MSA_WORD: | 
|  | for (int i = 0; i < kMSALanesWord; i++) { | 
|  | Msa2RFInstrHelper<int32_t, float>(opcode, ws.w[i], &wd.w[i], this); | 
|  | } | 
|  | break; | 
|  | case MSA_DWORD: | 
|  | for (int i = 0; i < kMSALanesDword; i++) { | 
|  | Msa2RFInstrHelper<int64_t, double>(opcode, ws.d[i], &wd.d[i], this); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  | set_msa_register(wd_reg(), &wd); | 
|  | TraceMSARegWr(&wd); | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeTypeRegister() { | 
|  | // ---------- Execution. | 
|  | switch (instr_.OpcodeFieldRaw()) { | 
|  | case COP1: | 
|  | DecodeTypeRegisterCOP1(); | 
|  | break; | 
|  | case COP1X: | 
|  | DecodeTypeRegisterCOP1X(); | 
|  | break; | 
|  | case SPECIAL: | 
|  | DecodeTypeRegisterSPECIAL(); | 
|  | break; | 
|  | case SPECIAL2: | 
|  | DecodeTypeRegisterSPECIAL2(); | 
|  | break; | 
|  | case SPECIAL3: | 
|  | DecodeTypeRegisterSPECIAL3(); | 
|  | break; | 
|  | case MSA: | 
|  | switch (instr_.MSAMinorOpcodeField()) { | 
|  | case kMsaMinor3R: | 
|  | DecodeTypeMsa3R(); | 
|  | break; | 
|  | case kMsaMinor3RF: | 
|  | DecodeTypeMsa3RF(); | 
|  | break; | 
|  | case kMsaMinorVEC: | 
|  | DecodeTypeMsaVec(); | 
|  | break; | 
|  | case kMsaMinor2R: | 
|  | DecodeTypeMsa2R(); | 
|  | break; | 
|  | case kMsaMinor2RF: | 
|  | DecodeTypeMsa2RF(); | 
|  | break; | 
|  | case kMsaMinorELM: | 
|  | DecodeTypeMsaELM(); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Type 2: instructions using a 16, 21 or 26 bits immediate. (e.g. beq, beqc). | 
|  | void Simulator::DecodeTypeImmediate() { | 
|  | // Instruction fields. | 
|  | Opcode op = instr_.OpcodeFieldRaw(); | 
|  | int32_t rs_reg = instr_.RsValue(); | 
|  | int32_t rs = get_register(instr_.RsValue()); | 
|  | uint32_t rs_u = static_cast<uint32_t>(rs); | 
|  | int32_t rt_reg = instr_.RtValue();  // Destination register. | 
|  | int32_t rt = get_register(rt_reg); | 
|  | int16_t imm16 = instr_.Imm16Value(); | 
|  |  | 
|  | int32_t ft_reg = instr_.FtValue();  // Destination register. | 
|  |  | 
|  | // Zero extended immediate. | 
|  | uint32_t oe_imm16 = 0xFFFF & imm16; | 
|  | // Sign extended immediate. | 
|  | int32_t se_imm16 = imm16; | 
|  |  | 
|  | // Next pc. | 
|  | int32_t next_pc = bad_ra; | 
|  |  | 
|  | // Used for conditional branch instructions. | 
|  | bool execute_branch_delay_instruction = false; | 
|  |  | 
|  | // Used for arithmetic instructions. | 
|  | int32_t alu_out = 0; | 
|  |  | 
|  | // Used for memory instructions. | 
|  | int32_t addr = 0x0; | 
|  |  | 
|  | // Branch instructions common part. | 
|  | auto BranchAndLinkHelper = | 
|  | [this, &next_pc, &execute_branch_delay_instruction](bool do_branch) { | 
|  | execute_branch_delay_instruction = true; | 
|  | int32_t current_pc = get_pc(); | 
|  | set_register(31, current_pc + 2 * kInstrSize); | 
|  | if (do_branch) { | 
|  | int16_t imm16 = this->instr_.Imm16Value(); | 
|  | next_pc = current_pc + (imm16 << 2) + kInstrSize; | 
|  | } else { | 
|  | next_pc = current_pc + 2 * kInstrSize; | 
|  | } | 
|  | }; | 
|  |  | 
|  | auto BranchHelper = [this, &next_pc, | 
|  | &execute_branch_delay_instruction](bool do_branch) { | 
|  | execute_branch_delay_instruction = true; | 
|  | int32_t current_pc = get_pc(); | 
|  | if (do_branch) { | 
|  | int16_t imm16 = this->instr_.Imm16Value(); | 
|  | next_pc = current_pc + (imm16 << 2) + kInstrSize; | 
|  | } else { | 
|  | next_pc = current_pc + 2 * kInstrSize; | 
|  | } | 
|  | }; | 
|  |  | 
|  | auto BranchHelper_MSA = [this, &next_pc, imm16, | 
|  | &execute_branch_delay_instruction](bool do_branch) { | 
|  | execute_branch_delay_instruction = true; | 
|  | int32_t current_pc = get_pc(); | 
|  | const int32_t bitsIn16Int = sizeof(int16_t) * kBitsPerByte; | 
|  | if (do_branch) { | 
|  | if (FLAG_debug_code) { | 
|  | int16_t bits = imm16 & 0xFC; | 
|  | if (imm16 >= 0) { | 
|  | CHECK_EQ(bits, 0); | 
|  | } else { | 
|  | CHECK_EQ(bits ^ 0xFC, 0); | 
|  | } | 
|  | } | 
|  | // jump range :[pc + kInstrSize - 512 * kInstrSize, | 
|  | //              pc + kInstrSize + 511 * kInstrSize] | 
|  | int16_t offset = static_cast<int16_t>(imm16 << (bitsIn16Int - 10)) >> | 
|  | (bitsIn16Int - 12); | 
|  | next_pc = current_pc + offset + kInstrSize; | 
|  | } else { | 
|  | next_pc = current_pc + 2 * kInstrSize; | 
|  | } | 
|  | }; | 
|  |  | 
|  | auto BranchAndLinkCompactHelper = [this, &next_pc](bool do_branch, int bits) { | 
|  | int32_t current_pc = get_pc(); | 
|  | CheckForbiddenSlot(current_pc); | 
|  | if (do_branch) { | 
|  | int32_t imm = this->instr_.ImmValue(bits); | 
|  | imm <<= 32 - bits; | 
|  | imm >>= 32 - bits; | 
|  | next_pc = current_pc + (imm << 2) + kInstrSize; | 
|  | set_register(31, current_pc + kInstrSize); | 
|  | } | 
|  | }; | 
|  |  | 
|  | auto BranchCompactHelper = [this, &next_pc](bool do_branch, int bits) { | 
|  | int32_t current_pc = get_pc(); | 
|  | CheckForbiddenSlot(current_pc); | 
|  | if (do_branch) { | 
|  | int32_t imm = this->instr_.ImmValue(bits); | 
|  | imm <<= 32 - bits; | 
|  | imm >>= 32 - bits; | 
|  | next_pc = get_pc() + (imm << 2) + kInstrSize; | 
|  | } | 
|  | }; | 
|  |  | 
|  | switch (op) { | 
|  | // ------------- COP1. Coprocessor instructions. | 
|  | case COP1: | 
|  | switch (instr_.RsFieldRaw()) { | 
|  | case BC1: {  // Branch on coprocessor condition. | 
|  | // Floating point. | 
|  | uint32_t cc = instr_.FBccValue(); | 
|  | uint32_t fcsr_cc = get_fcsr_condition_bit(cc); | 
|  | uint32_t cc_value = test_fcsr_bit(fcsr_cc); | 
|  | bool do_branch = (instr_.FBtrueValue()) ? cc_value : !cc_value; | 
|  | BranchHelper(do_branch); | 
|  | break; | 
|  | } | 
|  | case BC1EQZ: | 
|  | BranchHelper(!(get_fpu_register(ft_reg) & 0x1)); | 
|  | break; | 
|  | case BC1NEZ: | 
|  | BranchHelper(get_fpu_register(ft_reg) & 0x1); | 
|  | break; | 
|  | case BZ_V: { | 
|  | msa_reg_t wt; | 
|  | get_msa_register(wt_reg(), &wt); | 
|  | BranchHelper_MSA(wt.d[0] == 0 && wt.d[1] == 0); | 
|  | } break; | 
|  | #define BZ_DF(witdh, lanes)          \ | 
|  | {                                  \ | 
|  | msa_reg_t wt;                    \ | 
|  | get_msa_register(wt_reg(), &wt); \ | 
|  | int i;                           \ | 
|  | for (i = 0; i < lanes; ++i) {    \ | 
|  | if (wt.witdh[i] == 0) {        \ | 
|  | break;                       \ | 
|  | }                              \ | 
|  | }                                \ | 
|  | BranchHelper_MSA(i != lanes);    \ | 
|  | } | 
|  | case BZ_B: | 
|  | BZ_DF(b, kMSALanesByte) | 
|  | break; | 
|  | case BZ_H: | 
|  | BZ_DF(h, kMSALanesHalf) | 
|  | break; | 
|  | case BZ_W: | 
|  | BZ_DF(w, kMSALanesWord) | 
|  | break; | 
|  | case BZ_D: | 
|  | BZ_DF(d, kMSALanesDword) | 
|  | break; | 
|  | #undef BZ_DF | 
|  | case BNZ_V: { | 
|  | msa_reg_t wt; | 
|  | get_msa_register(wt_reg(), &wt); | 
|  | BranchHelper_MSA(wt.d[0] != 0 || wt.d[1] != 0); | 
|  | } break; | 
|  | #define BNZ_DF(witdh, lanes)         \ | 
|  | {                                  \ | 
|  | msa_reg_t wt;                    \ | 
|  | get_msa_register(wt_reg(), &wt); \ | 
|  | int i;                           \ | 
|  | for (i = 0; i < lanes; ++i) {    \ | 
|  | if (wt.witdh[i] == 0) {        \ | 
|  | break;                       \ | 
|  | }                              \ | 
|  | }                                \ | 
|  | BranchHelper_MSA(i == lanes);    \ | 
|  | } | 
|  | case BNZ_B: | 
|  | BNZ_DF(b, kMSALanesByte) | 
|  | break; | 
|  | case BNZ_H: | 
|  | BNZ_DF(h, kMSALanesHalf) | 
|  | break; | 
|  | case BNZ_W: | 
|  | BNZ_DF(w, kMSALanesWord) | 
|  | break; | 
|  | case BNZ_D: | 
|  | BNZ_DF(d, kMSALanesDword) | 
|  | break; | 
|  | #undef BNZ_DF | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | break; | 
|  | // ------------- REGIMM class. | 
|  | case REGIMM: | 
|  | switch (instr_.RtFieldRaw()) { | 
|  | case BLTZ: | 
|  | BranchHelper(rs < 0); | 
|  | break; | 
|  | case BGEZ: | 
|  | BranchHelper(rs >= 0); | 
|  | break; | 
|  | case BLTZAL: | 
|  | BranchAndLinkHelper(rs < 0); | 
|  | break; | 
|  | case BGEZAL: | 
|  | BranchAndLinkHelper(rs >= 0); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | break;  // case REGIMM. | 
|  | // ------------- Branch instructions. | 
|  | // When comparing to zero, the encoding of rt field is always 0, so we don't | 
|  | // need to replace rt with zero. | 
|  | case BEQ: | 
|  | BranchHelper(rs == rt); | 
|  | break; | 
|  | case BNE: | 
|  | BranchHelper(rs != rt); | 
|  | break; | 
|  | case POP06:  // BLEZALC, BGEZALC, BGEUC, BLEZ (pre-r6) | 
|  | if (IsMipsArchVariant(kMips32r6)) { | 
|  | if (rt_reg != 0) { | 
|  | if (rs_reg == 0) {  // BLEZALC | 
|  | BranchAndLinkCompactHelper(rt <= 0, 16); | 
|  | } else { | 
|  | if (rs_reg == rt_reg) {  // BGEZALC | 
|  | BranchAndLinkCompactHelper(rt >= 0, 16); | 
|  | } else {  // BGEUC | 
|  | BranchCompactHelper( | 
|  | static_cast<uint32_t>(rs) >= static_cast<uint32_t>(rt), 16); | 
|  | } | 
|  | } | 
|  | } else {  // BLEZ | 
|  | BranchHelper(rs <= 0); | 
|  | } | 
|  | } else {  // BLEZ | 
|  | BranchHelper(rs <= 0); | 
|  | } | 
|  | break; | 
|  | case POP07:  // BGTZALC, BLTZALC, BLTUC, BGTZ (pre-r6) | 
|  | if (IsMipsArchVariant(kMips32r6)) { | 
|  | if (rt_reg != 0) { | 
|  | if (rs_reg == 0) {  // BGTZALC | 
|  | BranchAndLinkCompactHelper(rt > 0, 16); | 
|  | } else { | 
|  | if (rt_reg == rs_reg) {  // BLTZALC | 
|  | BranchAndLinkCompactHelper(rt < 0, 16); | 
|  | } else {  // BLTUC | 
|  | BranchCompactHelper( | 
|  | static_cast<uint32_t>(rs) < static_cast<uint32_t>(rt), 16); | 
|  | } | 
|  | } | 
|  | } else {  // BGTZ | 
|  | BranchHelper(rs > 0); | 
|  | } | 
|  | } else {  // BGTZ | 
|  | BranchHelper(rs > 0); | 
|  | } | 
|  | break; | 
|  | case POP26:  // BLEZC, BGEZC, BGEC/BLEC / BLEZL (pre-r6) | 
|  | if (IsMipsArchVariant(kMips32r6)) { | 
|  | if (rt_reg != 0) { | 
|  | if (rs_reg == 0) {  // BLEZC | 
|  | BranchCompactHelper(rt <= 0, 16); | 
|  | } else { | 
|  | if (rs_reg == rt_reg) {  // BGEZC | 
|  | BranchCompactHelper(rt >= 0, 16); | 
|  | } else {  // BGEC/BLEC | 
|  | BranchCompactHelper(rs >= rt, 16); | 
|  | } | 
|  | } | 
|  | } | 
|  | } else {  // BLEZL | 
|  | BranchAndLinkHelper(rs <= 0); | 
|  | } | 
|  | break; | 
|  | case POP27:  // BGTZC, BLTZC, BLTC/BGTC / BGTZL (pre-r6) | 
|  | if (IsMipsArchVariant(kMips32r6)) { | 
|  | if (rt_reg != 0) { | 
|  | if (rs_reg == 0) {  // BGTZC | 
|  | BranchCompactHelper(rt > 0, 16); | 
|  | } else { | 
|  | if (rs_reg == rt_reg) {  // BLTZC | 
|  | BranchCompactHelper(rt < 0, 16); | 
|  | } else {  // BLTC/BGTC | 
|  | BranchCompactHelper(rs < rt, 16); | 
|  | } | 
|  | } | 
|  | } | 
|  | } else {  // BGTZL | 
|  | BranchAndLinkHelper(rs > 0); | 
|  | } | 
|  | break; | 
|  | case POP66:           // BEQZC, JIC | 
|  | if (rs_reg != 0) {  // BEQZC | 
|  | BranchCompactHelper(rs == 0, 21); | 
|  | } else {  // JIC | 
|  | next_pc = rt + imm16; | 
|  | } | 
|  | break; | 
|  | case POP76:           // BNEZC, JIALC | 
|  | if (rs_reg != 0) {  // BNEZC | 
|  | BranchCompactHelper(rs != 0, 21); | 
|  | } else {  // JIALC | 
|  | set_register(31, get_pc() + kInstrSize); | 
|  | next_pc = rt + imm16; | 
|  | } | 
|  | break; | 
|  | case BC: | 
|  | BranchCompactHelper(true, 26); | 
|  | break; | 
|  | case BALC: | 
|  | BranchAndLinkCompactHelper(true, 26); | 
|  | break; | 
|  | case POP10:  // BOVC, BEQZALC, BEQC / ADDI (pre-r6) | 
|  | if (IsMipsArchVariant(kMips32r6)) { | 
|  | if (rs_reg >= rt_reg) {  // BOVC | 
|  | if (HaveSameSign(rs, rt)) { | 
|  | if (rs > 0) { | 
|  | BranchCompactHelper(rs > Registers::kMaxValue - rt, 16); | 
|  | } else if (rs < 0) { | 
|  | BranchCompactHelper(rs < Registers::kMinValue - rt, 16); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (rs_reg == 0) {  // BEQZALC | 
|  | BranchAndLinkCompactHelper(rt == 0, 16); | 
|  | } else {  // BEQC | 
|  | BranchCompactHelper(rt == rs, 16); | 
|  | } | 
|  | } | 
|  | } else {  // ADDI | 
|  | if (HaveSameSign(rs, se_imm16)) { | 
|  | if (rs > 0) { | 
|  | if (rs <= Registers::kMaxValue - se_imm16) { | 
|  | SignalException(kIntegerOverflow); | 
|  | } | 
|  | } else if (rs < 0) { | 
|  | if (rs >= Registers::kMinValue - se_imm16) { | 
|  | SignalException(kIntegerUnderflow); | 
|  | } | 
|  | } | 
|  | } | 
|  | SetResult(rt_reg, rs + se_imm16); | 
|  | } | 
|  | break; | 
|  | case POP30:  // BNVC, BNEZALC, BNEC / DADDI (pre-r6) | 
|  | if (IsMipsArchVariant(kMips32r6)) { | 
|  | if (rs_reg >= rt_reg) {  // BNVC | 
|  | if (!HaveSameSign(rs, rt) || rs == 0 || rt == 0) { | 
|  | BranchCompactHelper(true, 16); | 
|  | } else { | 
|  | if (rs > 0) { | 
|  | BranchCompactHelper(rs <= Registers::kMaxValue - rt, 16); | 
|  | } else if (rs < 0) { | 
|  | BranchCompactHelper(rs >= Registers::kMinValue - rt, 16); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (rs_reg == 0) {  // BNEZALC | 
|  | BranchAndLinkCompactHelper(rt != 0, 16); | 
|  | } else {  // BNEC | 
|  | BranchCompactHelper(rt != rs, 16); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | // ------------- Arithmetic instructions. | 
|  | case ADDIU: | 
|  | SetResult(rt_reg, rs + se_imm16); | 
|  | break; | 
|  | case SLTI: | 
|  | SetResult(rt_reg, rs < se_imm16 ? 1 : 0); | 
|  | break; | 
|  | case SLTIU: | 
|  | SetResult(rt_reg, rs_u < static_cast<uint32_t>(se_imm16) ? 1 : 0); | 
|  | break; | 
|  | case ANDI: | 
|  | SetResult(rt_reg, rs & oe_imm16); | 
|  | break; | 
|  | case ORI: | 
|  | SetResult(rt_reg, rs | oe_imm16); | 
|  | break; | 
|  | case XORI: | 
|  | SetResult(rt_reg, rs ^ oe_imm16); | 
|  | break; | 
|  | case LUI: | 
|  | if (rs_reg != 0) { | 
|  | // AUI | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | SetResult(rt_reg, rs + (se_imm16 << 16)); | 
|  | } else { | 
|  | // LUI | 
|  | SetResult(rt_reg, oe_imm16 << 16); | 
|  | } | 
|  | break; | 
|  | // ------------- Memory instructions. | 
|  | case LB: | 
|  | set_register(rt_reg, ReadB(rs + se_imm16)); | 
|  | break; | 
|  | case LH: | 
|  | set_register(rt_reg, ReadH(rs + se_imm16, instr_.instr())); | 
|  | break; | 
|  | case LWL: { | 
|  | // al_offset is offset of the effective address within an aligned word. | 
|  | uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask; | 
|  | uint8_t byte_shift = kPointerAlignmentMask - al_offset; | 
|  | uint32_t mask = (1 << byte_shift * 8) - 1; | 
|  | addr = rs + se_imm16 - al_offset; | 
|  | alu_out = ReadW(addr, instr_.instr()); | 
|  | alu_out <<= byte_shift * 8; | 
|  | alu_out |= rt & mask; | 
|  | set_register(rt_reg, alu_out); | 
|  | break; | 
|  | } | 
|  | case LW: | 
|  | set_register(rt_reg, ReadW(rs + se_imm16, instr_.instr())); | 
|  | break; | 
|  | case LBU: | 
|  | set_register(rt_reg, ReadBU(rs + se_imm16)); | 
|  | break; | 
|  | case LHU: | 
|  | set_register(rt_reg, ReadHU(rs + se_imm16, instr_.instr())); | 
|  | break; | 
|  | case LWR: { | 
|  | // al_offset is offset of the effective address within an aligned word. | 
|  | uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask; | 
|  | uint8_t byte_shift = kPointerAlignmentMask - al_offset; | 
|  | uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0; | 
|  | addr = rs + se_imm16 - al_offset; | 
|  | alu_out = ReadW(addr, instr_.instr()); | 
|  | alu_out = static_cast<uint32_t>(alu_out) >> al_offset * 8; | 
|  | alu_out |= rt & mask; | 
|  | set_register(rt_reg, alu_out); | 
|  | break; | 
|  | } | 
|  | case SB: | 
|  | WriteB(rs + se_imm16, static_cast<int8_t>(rt)); | 
|  | break; | 
|  | case SH: | 
|  | WriteH(rs + se_imm16, static_cast<uint16_t>(rt), instr_.instr()); | 
|  | break; | 
|  | case SWL: { | 
|  | uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask; | 
|  | uint8_t byte_shift = kPointerAlignmentMask - al_offset; | 
|  | uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0; | 
|  | addr = rs + se_imm16 - al_offset; | 
|  | // Value to be written in memory. | 
|  | uint32_t mem_value = ReadW(addr, instr_.instr()) & mask; | 
|  | mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8; | 
|  | WriteW(addr, mem_value, instr_.instr()); | 
|  | break; | 
|  | } | 
|  | case SW: | 
|  | WriteW(rs + se_imm16, rt, instr_.instr()); | 
|  | break; | 
|  | case SWR: { | 
|  | uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask; | 
|  | uint32_t mask = (1 << al_offset * 8) - 1; | 
|  | addr = rs + se_imm16 - al_offset; | 
|  | uint32_t mem_value = ReadW(addr, instr_.instr()); | 
|  | mem_value = (rt << al_offset * 8) | (mem_value & mask); | 
|  | WriteW(addr, mem_value, instr_.instr()); | 
|  | break; | 
|  | } | 
|  | case LL: { | 
|  | DCHECK(!IsMipsArchVariant(kMips32r6)); | 
|  | base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); | 
|  | addr = rs + se_imm16; | 
|  | set_register(rt_reg, ReadW(addr, instr_.instr())); | 
|  | local_monitor_.NotifyLoadLinked(addr, TransactionSize::Word); | 
|  | GlobalMonitor::Get()->NotifyLoadLinked_Locked(addr, | 
|  | &global_monitor_thread_); | 
|  | break; | 
|  | } | 
|  | case SC: { | 
|  | DCHECK(!IsMipsArchVariant(kMips32r6)); | 
|  | addr = rs + se_imm16; | 
|  | WriteConditionalW(addr, rt, instr_.instr(), rt_reg); | 
|  | break; | 
|  | } | 
|  | case LWC1: | 
|  | set_fpu_register_hi_word(ft_reg, 0); | 
|  | set_fpu_register_word(ft_reg, | 
|  | ReadW(rs + se_imm16, instr_.instr(), FLOAT)); | 
|  | if (ft_reg % 2) { | 
|  | TraceMemRd(rs + se_imm16, get_fpu_register(ft_reg - 1), FLOAT_DOUBLE); | 
|  | } else { | 
|  | TraceMemRd(rs + se_imm16, get_fpu_register_word(ft_reg), FLOAT); | 
|  | } | 
|  | break; | 
|  | case LDC1: | 
|  | set_fpu_register_double(ft_reg, ReadD(rs + se_imm16, instr_.instr())); | 
|  | TraceMemRd(rs + se_imm16, get_fpu_register(ft_reg), DOUBLE); | 
|  | break; | 
|  | case SWC1: | 
|  | WriteW(rs + se_imm16, get_fpu_register_word(ft_reg), instr_.instr()); | 
|  | TraceMemWr(rs + se_imm16, get_fpu_register_word(ft_reg)); | 
|  | break; | 
|  | case SDC1: | 
|  | WriteD(rs + se_imm16, get_fpu_register_double(ft_reg), instr_.instr()); | 
|  | TraceMemWr(rs + se_imm16, get_fpu_register(ft_reg)); | 
|  | break; | 
|  | // ------------- PC-Relative instructions. | 
|  | case PCREL: { | 
|  | // rt field: checking 5-bits. | 
|  | int32_t imm21 = instr_.Imm21Value(); | 
|  | int32_t current_pc = get_pc(); | 
|  | uint8_t rt = (imm21 >> kImm16Bits); | 
|  | switch (rt) { | 
|  | case ALUIPC: | 
|  | addr = current_pc + (se_imm16 << 16); | 
|  | alu_out = static_cast<int64_t>(~0x0FFFF) & addr; | 
|  | break; | 
|  | case AUIPC: | 
|  | alu_out = current_pc + (se_imm16 << 16); | 
|  | break; | 
|  | default: { | 
|  | int32_t imm19 = instr_.Imm19Value(); | 
|  | // rt field: checking the most significant 2-bits. | 
|  | rt = (imm21 >> kImm19Bits); | 
|  | switch (rt) { | 
|  | case LWPC: { | 
|  | // Set sign. | 
|  | imm19 <<= (kOpcodeBits + kRsBits + 2); | 
|  | imm19 >>= (kOpcodeBits + kRsBits + 2); | 
|  | addr = current_pc + (imm19 << 2); | 
|  | uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); | 
|  | alu_out = *ptr; | 
|  | break; | 
|  | } | 
|  | case ADDIUPC: { | 
|  | int32_t se_imm19 = imm19 | ((imm19 & 0x40000) ? 0xFFF80000 : 0); | 
|  | alu_out = current_pc + (se_imm19 << 2); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | SetResult(rs_reg, alu_out); | 
|  | break; | 
|  | } | 
|  | case SPECIAL3: { | 
|  | switch (instr_.FunctionFieldRaw()) { | 
|  | case LL_R6: { | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); | 
|  | int32_t base = get_register(instr_.BaseValue()); | 
|  | int32_t offset9 = instr_.Imm9Value(); | 
|  | addr = base + offset9; | 
|  | DCHECK_EQ(addr & kPointerAlignmentMask, 0); | 
|  | set_register(rt_reg, ReadW(base + offset9, instr_.instr())); | 
|  | local_monitor_.NotifyLoadLinked(addr, TransactionSize::Word); | 
|  | GlobalMonitor::Get()->NotifyLoadLinked_Locked( | 
|  | addr, &global_monitor_thread_); | 
|  | break; | 
|  | } | 
|  | case SC_R6: { | 
|  | DCHECK(IsMipsArchVariant(kMips32r6)); | 
|  | int32_t base = get_register(instr_.BaseValue()); | 
|  | int32_t offset9 = instr_.Imm9Value(); | 
|  | addr = base + offset9; | 
|  | DCHECK_EQ(addr & kPointerAlignmentMask, 0); | 
|  | WriteConditionalW(addr, rt, instr_.instr(), rt_reg); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case MSA: | 
|  | switch (instr_.MSAMinorOpcodeField()) { | 
|  | case kMsaMinorI8: | 
|  | DecodeTypeMsaI8(); | 
|  | break; | 
|  | case kMsaMinorI5: | 
|  | DecodeTypeMsaI5(); | 
|  | break; | 
|  | case kMsaMinorI10: | 
|  | DecodeTypeMsaI10(); | 
|  | break; | 
|  | case kMsaMinorELM: | 
|  | DecodeTypeMsaELM(); | 
|  | break; | 
|  | case kMsaMinorBIT: | 
|  | DecodeTypeMsaBIT(); | 
|  | break; | 
|  | case kMsaMinorMI10: | 
|  | DecodeTypeMsaMI10(); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | if (execute_branch_delay_instruction) { | 
|  | // Execute branch delay slot | 
|  | // We don't check for end_sim_pc. First it should not be met as the current | 
|  | // pc is valid. Secondly a jump should always execute its branch delay slot. | 
|  | Instruction* branch_delay_instr = | 
|  | reinterpret_cast<Instruction*>(get_pc() + kInstrSize); | 
|  | BranchDelayInstructionDecode(branch_delay_instr); | 
|  | } | 
|  |  | 
|  | // If needed update pc after the branch delay execution. | 
|  | if (next_pc != bad_ra) { | 
|  | set_pc(next_pc); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Type 3: instructions using a 26 bytes immediate. (e.g. j, jal). | 
|  | void Simulator::DecodeTypeJump() { | 
|  | SimInstruction simInstr = instr_; | 
|  | // Get current pc. | 
|  | int32_t current_pc = get_pc(); | 
|  | // Get unchanged bits of pc. | 
|  | int32_t pc_high_bits = current_pc & 0xF0000000; | 
|  | // Next pc. | 
|  |  | 
|  | int32_t next_pc = pc_high_bits | (simInstr.Imm26Value() << 2); | 
|  |  | 
|  | // Execute branch delay slot. | 
|  | // We don't check for end_sim_pc. First it should not be met as the current pc | 
|  | // is valid. Secondly a jump should always execute its branch delay slot. | 
|  | Instruction* branch_delay_instr = | 
|  | reinterpret_cast<Instruction*>(current_pc + kInstrSize); | 
|  | BranchDelayInstructionDecode(branch_delay_instr); | 
|  |  | 
|  | // Update pc and ra if necessary. | 
|  | // Do this after the branch delay execution. | 
|  | if (simInstr.IsLinkingInstruction()) { | 
|  | set_register(31, current_pc + 2 * kInstrSize); | 
|  | } | 
|  | set_pc(next_pc); | 
|  | pc_modified_ = true; | 
|  | } | 
|  |  | 
|  | // Executes the current instruction. | 
|  | void Simulator::InstructionDecode(Instruction* instr) { | 
|  | if (v8::internal::FLAG_check_icache) { | 
|  | CheckICache(i_cache(), instr); | 
|  | } | 
|  | pc_modified_ = false; | 
|  | v8::internal::EmbeddedVector<char, 256> buffer; | 
|  | if (::v8::internal::FLAG_trace_sim) { | 
|  | SNPrintF(trace_buf_, "%s", ""); | 
|  | disasm::NameConverter converter; | 
|  | disasm::Disassembler dasm(converter); | 
|  | dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr)); | 
|  | } | 
|  |  | 
|  | instr_ = instr; | 
|  | switch (instr_.InstructionType()) { | 
|  | case Instruction::kRegisterType: | 
|  | DecodeTypeRegister(); | 
|  | break; | 
|  | case Instruction::kImmediateType: | 
|  | DecodeTypeImmediate(); | 
|  | break; | 
|  | case Instruction::kJumpType: | 
|  | DecodeTypeJump(); | 
|  | break; | 
|  | default: | 
|  | UNSUPPORTED(); | 
|  | } | 
|  | if (::v8::internal::FLAG_trace_sim) { | 
|  | PrintF("  0x%08" PRIxPTR "  %-44s   %s\n", | 
|  | reinterpret_cast<intptr_t>(instr), buffer.begin(), | 
|  | trace_buf_.begin()); | 
|  | } | 
|  | if (!pc_modified_) { | 
|  | set_register(pc, reinterpret_cast<int32_t>(instr) + kInstrSize); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::Execute() { | 
|  | // Get the PC to simulate. Cannot use the accessor here as we need the | 
|  | // raw PC value and not the one used as input to arithmetic instructions. | 
|  | int program_counter = get_pc(); | 
|  | if (::v8::internal::FLAG_stop_sim_at == 0) { | 
|  | // Fast version of the dispatch loop without checking whether the simulator | 
|  | // should be stopping at a particular executed instruction. | 
|  | while (program_counter != end_sim_pc) { | 
|  | Instruction* instr = reinterpret_cast<Instruction*>(program_counter); | 
|  | icount_++; | 
|  | InstructionDecode(instr); | 
|  | program_counter = get_pc(); | 
|  | } | 
|  | } else { | 
|  | // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when | 
|  | // we reach the particular instruction count. | 
|  | while (program_counter != end_sim_pc) { | 
|  | Instruction* instr = reinterpret_cast<Instruction*>(program_counter); | 
|  | icount_++; | 
|  | if (icount_ == static_cast<uint64_t>(::v8::internal::FLAG_stop_sim_at)) { | 
|  | MipsDebugger dbg(this); | 
|  | dbg.Debug(); | 
|  | } else { | 
|  | InstructionDecode(instr); | 
|  | } | 
|  | program_counter = get_pc(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::CallInternal(Address entry) { | 
|  | // Adjust JS-based stack limit to C-based stack limit. | 
|  | isolate_->stack_guard()->AdjustStackLimitForSimulator(); | 
|  |  | 
|  | // Prepare to execute the code at entry. | 
|  | set_register(pc, static_cast<int32_t>(entry)); | 
|  | // Put down marker for end of simulation. The simulator will stop simulation | 
|  | // when the PC reaches this value. By saving the "end simulation" value into | 
|  | // the LR the simulation stops when returning to this call point. | 
|  | set_register(ra, end_sim_pc); | 
|  |  | 
|  | // Remember the values of callee-saved registers. | 
|  | // The code below assumes that r9 is not used as sb (static base) in | 
|  | // simulator code and therefore is regarded as a callee-saved register. | 
|  | int32_t s0_val = get_register(s0); | 
|  | int32_t s1_val = get_register(s1); | 
|  | int32_t s2_val = get_register(s2); | 
|  | int32_t s3_val = get_register(s3); | 
|  | int32_t s4_val = get_register(s4); | 
|  | int32_t s5_val = get_register(s5); | 
|  | int32_t s6_val = get_register(s6); | 
|  | int32_t s7_val = get_register(s7); | 
|  | int32_t gp_val = get_register(gp); | 
|  | int32_t sp_val = get_register(sp); | 
|  | int32_t fp_val = get_register(fp); | 
|  |  | 
|  | // Set up the callee-saved registers with a known value. To be able to check | 
|  | // that they are preserved properly across JS execution. | 
|  | int32_t callee_saved_value = static_cast<int32_t>(icount_); | 
|  | set_register(s0, callee_saved_value); | 
|  | set_register(s1, callee_saved_value); | 
|  | set_register(s2, callee_saved_value); | 
|  | set_register(s3, callee_saved_value); | 
|  | set_register(s4, callee_saved_value); | 
|  | set_register(s5, callee_saved_value); | 
|  | set_register(s6, callee_saved_value); | 
|  | set_register(s7, callee_saved_value); | 
|  | set_register(gp, callee_saved_value); | 
|  | set_register(fp, callee_saved_value); | 
|  |  | 
|  | // Start the simulation. | 
|  | Execute(); | 
|  |  | 
|  | // Check that the callee-saved registers have been preserved. | 
|  | CHECK_EQ(callee_saved_value, get_register(s0)); | 
|  | CHECK_EQ(callee_saved_value, get_register(s1)); | 
|  | CHECK_EQ(callee_saved_value, get_register(s2)); | 
|  | CHECK_EQ(callee_saved_value, get_register(s3)); | 
|  | CHECK_EQ(callee_saved_value, get_register(s4)); | 
|  | CHECK_EQ(callee_saved_value, get_register(s5)); | 
|  | CHECK_EQ(callee_saved_value, get_register(s6)); | 
|  | CHECK_EQ(callee_saved_value, get_register(s7)); | 
|  | CHECK_EQ(callee_saved_value, get_register(gp)); | 
|  | CHECK_EQ(callee_saved_value, get_register(fp)); | 
|  |  | 
|  | // Restore callee-saved registers with the original value. | 
|  | set_register(s0, s0_val); | 
|  | set_register(s1, s1_val); | 
|  | set_register(s2, s2_val); | 
|  | set_register(s3, s3_val); | 
|  | set_register(s4, s4_val); | 
|  | set_register(s5, s5_val); | 
|  | set_register(s6, s6_val); | 
|  | set_register(s7, s7_val); | 
|  | set_register(gp, gp_val); | 
|  | set_register(sp, sp_val); | 
|  | set_register(fp, fp_val); | 
|  | } | 
|  |  | 
|  | intptr_t Simulator::CallImpl(Address entry, int argument_count, | 
|  | const intptr_t* arguments) { | 
|  | // Set up arguments. | 
|  |  | 
|  | // First four arguments passed in registers. | 
|  | int reg_arg_count = std::min(4, argument_count); | 
|  | if (reg_arg_count > 0) set_register(a0, arguments[0]); | 
|  | if (reg_arg_count > 1) set_register(a1, arguments[1]); | 
|  | if (reg_arg_count > 2) set_register(a2, arguments[2]); | 
|  | if (reg_arg_count > 3) set_register(a3, arguments[3]); | 
|  |  | 
|  | // Remaining arguments passed on stack. | 
|  | int original_stack = get_register(sp); | 
|  | // Compute position of stack on entry to generated code. | 
|  | int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t) - | 
|  | kCArgsSlotsSize); | 
|  | if (base::OS::ActivationFrameAlignment() != 0) { | 
|  | entry_stack &= -base::OS::ActivationFrameAlignment(); | 
|  | } | 
|  | // Store remaining arguments on stack, from low to high memory. | 
|  | intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack); | 
|  | memcpy(stack_argument + kCArgSlotCount, arguments + reg_arg_count, | 
|  | (argument_count - reg_arg_count) * sizeof(*arguments)); | 
|  | set_register(sp, entry_stack); | 
|  |  | 
|  | CallInternal(entry); | 
|  |  | 
|  | // Pop stack passed arguments. | 
|  | CHECK_EQ(entry_stack, get_register(sp)); | 
|  | set_register(sp, original_stack); | 
|  |  | 
|  | return get_register(v0); | 
|  | } | 
|  |  | 
|  | double Simulator::CallFP(Address entry, double d0, double d1) { | 
|  | if (!IsMipsSoftFloatABI) { | 
|  | set_fpu_register_double(f12, d0); | 
|  | set_fpu_register_double(f14, d1); | 
|  | } else { | 
|  | int buffer[2]; | 
|  | DCHECK(sizeof(buffer[0]) * 2 == sizeof(d0)); | 
|  | memcpy(buffer, &d0, sizeof(d0)); | 
|  | set_dw_register(a0, buffer); | 
|  | memcpy(buffer, &d1, sizeof(d1)); | 
|  | set_dw_register(a2, buffer); | 
|  | } | 
|  | CallInternal(entry); | 
|  | if (!IsMipsSoftFloatABI) { | 
|  | return get_fpu_register_double(f0); | 
|  | } else { | 
|  | return get_double_from_register_pair(v0); | 
|  | } | 
|  | } | 
|  |  | 
|  | uintptr_t Simulator::PushAddress(uintptr_t address) { | 
|  | int new_sp = get_register(sp) - sizeof(uintptr_t); | 
|  | uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); | 
|  | *stack_slot = address; | 
|  | set_register(sp, new_sp); | 
|  | return new_sp; | 
|  | } | 
|  |  | 
|  | uintptr_t Simulator::PopAddress() { | 
|  | int current_sp = get_register(sp); | 
|  | uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); | 
|  | uintptr_t address = *stack_slot; | 
|  | set_register(sp, current_sp + sizeof(uintptr_t)); | 
|  | return address; | 
|  | } | 
|  |  | 
|  | Simulator::LocalMonitor::LocalMonitor() | 
|  | : access_state_(MonitorAccess::Open), | 
|  | tagged_addr_(0), | 
|  | size_(TransactionSize::None) {} | 
|  |  | 
|  | void Simulator::LocalMonitor::Clear() { | 
|  | access_state_ = MonitorAccess::Open; | 
|  | tagged_addr_ = 0; | 
|  | size_ = TransactionSize::None; | 
|  | } | 
|  |  | 
|  | void Simulator::LocalMonitor::NotifyLoad() { | 
|  | if (access_state_ == MonitorAccess::RMW) { | 
|  | // A non linked load could clear the local monitor. As a result, it's | 
|  | // most strict to unconditionally clear the local monitor on load. | 
|  | Clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::LocalMonitor::NotifyLoadLinked(uintptr_t addr, | 
|  | TransactionSize size) { | 
|  | access_state_ = MonitorAccess::RMW; | 
|  | tagged_addr_ = addr; | 
|  | size_ = size; | 
|  | } | 
|  |  | 
|  | void Simulator::LocalMonitor::NotifyStore() { | 
|  | if (access_state_ == MonitorAccess::RMW) { | 
|  | // A non exclusive store could clear the local monitor. As a result, it's | 
|  | // most strict to unconditionally clear the local monitor on store. | 
|  | Clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Simulator::LocalMonitor::NotifyStoreConditional(uintptr_t addr, | 
|  | TransactionSize size) { | 
|  | if (access_state_ == MonitorAccess::RMW) { | 
|  | if (addr == tagged_addr_ && size_ == size) { | 
|  | Clear(); | 
|  | return true; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | DCHECK(access_state_ == MonitorAccess::Open); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | Simulator::GlobalMonitor::LinkedAddress::LinkedAddress() | 
|  | : access_state_(MonitorAccess::Open), | 
|  | tagged_addr_(0), | 
|  | next_(nullptr), | 
|  | prev_(nullptr), | 
|  | failure_counter_(0) {} | 
|  |  | 
|  | void Simulator::GlobalMonitor::LinkedAddress::Clear_Locked() { | 
|  | access_state_ = MonitorAccess::Open; | 
|  | tagged_addr_ = 0; | 
|  | } | 
|  |  | 
|  | void Simulator::GlobalMonitor::LinkedAddress::NotifyLoadLinked_Locked( | 
|  | uintptr_t addr) { | 
|  | access_state_ = MonitorAccess::RMW; | 
|  | tagged_addr_ = addr; | 
|  | } | 
|  |  | 
|  | void Simulator::GlobalMonitor::LinkedAddress::NotifyStore_Locked() { | 
|  | if (access_state_ == MonitorAccess::RMW) { | 
|  | // A non exclusive store could clear the global monitor. As a result, it's | 
|  | // most strict to unconditionally clear global monitors on store. | 
|  | Clear_Locked(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Simulator::GlobalMonitor::LinkedAddress::NotifyStoreConditional_Locked( | 
|  | uintptr_t addr, bool is_requesting_processor) { | 
|  | if (access_state_ == MonitorAccess::RMW) { | 
|  | if (is_requesting_processor) { | 
|  | if (addr == tagged_addr_) { | 
|  | Clear_Locked(); | 
|  | // Introduce occasional sc/scd failures. This is to simulate the | 
|  | // behavior of hardware, which can randomly fail due to background | 
|  | // cache evictions. | 
|  | if (failure_counter_++ >= kMaxFailureCounter) { | 
|  | failure_counter_ = 0; | 
|  | return false; | 
|  | } else { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } else if ((addr & kExclusiveTaggedAddrMask) == | 
|  | (tagged_addr_ & kExclusiveTaggedAddrMask)) { | 
|  | // Check the masked addresses when responding to a successful lock by | 
|  | // another thread so the implementation is more conservative (i.e. the | 
|  | // granularity of locking is as large as possible.) | 
|  | Clear_Locked(); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Simulator::GlobalMonitor::NotifyLoadLinked_Locked( | 
|  | uintptr_t addr, LinkedAddress* linked_address) { | 
|  | linked_address->NotifyLoadLinked_Locked(addr); | 
|  | PrependProcessor_Locked(linked_address); | 
|  | } | 
|  |  | 
|  | void Simulator::GlobalMonitor::NotifyStore_Locked( | 
|  | LinkedAddress* linked_address) { | 
|  | // Notify each thread of the store operation. | 
|  | for (LinkedAddress* iter = head_; iter; iter = iter->next_) { | 
|  | iter->NotifyStore_Locked(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Simulator::GlobalMonitor::NotifyStoreConditional_Locked( | 
|  | uintptr_t addr, LinkedAddress* linked_address) { | 
|  | DCHECK(IsProcessorInLinkedList_Locked(linked_address)); | 
|  | if (linked_address->NotifyStoreConditional_Locked(addr, true)) { | 
|  | // Notify the other processors that this StoreConditional succeeded. | 
|  | for (LinkedAddress* iter = head_; iter; iter = iter->next_) { | 
|  | if (iter != linked_address) { | 
|  | iter->NotifyStoreConditional_Locked(addr, false); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Simulator::GlobalMonitor::IsProcessorInLinkedList_Locked( | 
|  | LinkedAddress* linked_address) const { | 
|  | return head_ == linked_address || linked_address->next_ || | 
|  | linked_address->prev_; | 
|  | } | 
|  |  | 
|  | void Simulator::GlobalMonitor::PrependProcessor_Locked( | 
|  | LinkedAddress* linked_address) { | 
|  | if (IsProcessorInLinkedList_Locked(linked_address)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (head_) { | 
|  | head_->prev_ = linked_address; | 
|  | } | 
|  | linked_address->prev_ = nullptr; | 
|  | linked_address->next_ = head_; | 
|  | head_ = linked_address; | 
|  | } | 
|  |  | 
|  | void Simulator::GlobalMonitor::RemoveLinkedAddress( | 
|  | LinkedAddress* linked_address) { | 
|  | base::MutexGuard lock_guard(&mutex); | 
|  | if (!IsProcessorInLinkedList_Locked(linked_address)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (linked_address->prev_) { | 
|  | linked_address->prev_->next_ = linked_address->next_; | 
|  | } else { | 
|  | head_ = linked_address->next_; | 
|  | } | 
|  | if (linked_address->next_) { | 
|  | linked_address->next_->prev_ = linked_address->prev_; | 
|  | } | 
|  | linked_address->prev_ = nullptr; | 
|  | linked_address->next_ = nullptr; | 
|  | } | 
|  |  | 
|  | #undef UNSUPPORTED | 
|  | #undef SScanF | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace v8 | 
|  |  | 
|  | #endif  // USE_SIMULATOR |