blob: c9e517dccbf9161712f0c064901a165a1090d084 [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/ic/accessor-assembler.h"
#include "src/ast/ast.h"
#include "src/base/optional.h"
#include "src/builtins/builtins-constructor-gen.h"
#include "src/codegen/code-factory.h"
#include "src/ic/handler-configuration.h"
#include "src/ic/ic.h"
#include "src/ic/keyed-store-generic.h"
#include "src/ic/stub-cache.h"
#include "src/logging/counters.h"
#include "src/objects/cell.h"
#include "src/objects/foreign.h"
#include "src/objects/heap-number.h"
#include "src/objects/module.h"
#include "src/objects/objects-inl.h"
#include "src/objects/property-details.h"
#include "src/objects/smi.h"
namespace v8 {
namespace internal {
using compiler::CodeAssemblerState;
using compiler::Node;
//////////////////// Private helpers.
// Loads dataX field from the DataHandler object.
TNode<MaybeObject> AccessorAssembler::LoadHandlerDataField(
TNode<DataHandler> handler, int data_index) {
#ifdef DEBUG
TNode<Map> handler_map = LoadMap(handler);
TNode<Uint16T> instance_type = LoadMapInstanceType(handler_map);
#endif
CSA_ASSERT(this,
Word32Or(InstanceTypeEqual(instance_type, LOAD_HANDLER_TYPE),
InstanceTypeEqual(instance_type, STORE_HANDLER_TYPE)));
int offset = 0;
int minimum_size = 0;
switch (data_index) {
case 1:
offset = DataHandler::kData1Offset;
minimum_size = DataHandler::kSizeWithData1;
break;
case 2:
offset = DataHandler::kData2Offset;
minimum_size = DataHandler::kSizeWithData2;
break;
case 3:
offset = DataHandler::kData3Offset;
minimum_size = DataHandler::kSizeWithData3;
break;
default:
UNREACHABLE();
}
USE(minimum_size);
CSA_ASSERT(this, UintPtrGreaterThanOrEqual(
LoadMapInstanceSizeInWords(handler_map),
IntPtrConstant(minimum_size / kTaggedSize)));
return LoadMaybeWeakObjectField(handler, offset);
}
TNode<MaybeObject> AccessorAssembler::TryMonomorphicCase(
TNode<TaggedIndex> slot, TNode<FeedbackVector> vector,
TNode<Map> lookup_start_object_map, Label* if_handler,
TVariable<MaybeObject>* var_handler, Label* if_miss) {
Comment("TryMonomorphicCase");
DCHECK_EQ(MachineRepresentation::kTagged, var_handler->rep());
// TODO(ishell): add helper class that hides offset computations for a series
// of loads.
int32_t header_size =
FeedbackVector::kRawFeedbackSlotsOffset - kHeapObjectTag;
// Adding |header_size| with a separate IntPtrAdd rather than passing it
// into ElementOffsetFromIndex() allows it to be folded into a single
// [base, index, offset] indirect memory access on x64.
TNode<IntPtrT> offset = ElementOffsetFromIndex(slot, HOLEY_ELEMENTS);
TNode<MaybeObject> feedback = ReinterpretCast<MaybeObject>(
Load(MachineType::AnyTagged(), vector,
IntPtrAdd(offset, IntPtrConstant(header_size))));
// Try to quickly handle the monomorphic case without knowing for sure
// if we have a weak reference in feedback.
GotoIfNot(IsWeakReferenceTo(feedback, lookup_start_object_map), if_miss);
TNode<MaybeObject> handler = UncheckedCast<MaybeObject>(
Load(MachineType::AnyTagged(), vector,
IntPtrAdd(offset, IntPtrConstant(header_size + kTaggedSize))));
*var_handler = handler;
Goto(if_handler);
return feedback;
}
void AccessorAssembler::HandlePolymorphicCase(
TNode<Map> lookup_start_object_map, TNode<WeakFixedArray> feedback,
Label* if_handler, TVariable<MaybeObject>* var_handler, Label* if_miss) {
Comment("HandlePolymorphicCase");
DCHECK_EQ(MachineRepresentation::kTagged, var_handler->rep());
// Iterate {feedback} array.
const int kEntrySize = 2;
// Load the {feedback} array length.
TNode<IntPtrT> length = LoadAndUntagWeakFixedArrayLength(feedback);
CSA_ASSERT(this, IntPtrLessThanOrEqual(IntPtrConstant(kEntrySize), length));
// This is a hand-crafted loop that iterates backwards and only compares
// against zero at the end, since we already know that we will have at least a
// single entry in the {feedback} array anyways.
TVARIABLE(IntPtrT, var_index, IntPtrSub(length, IntPtrConstant(kEntrySize)));
Label loop(this, &var_index), loop_next(this);
Goto(&loop);
BIND(&loop);
{
TNode<MaybeObject> maybe_cached_map =
LoadWeakFixedArrayElement(feedback, var_index.value());
CSA_ASSERT(this, IsWeakOrCleared(maybe_cached_map));
GotoIfNot(IsWeakReferenceTo(maybe_cached_map, lookup_start_object_map),
&loop_next);
// Found, now call handler.
TNode<MaybeObject> handler =
LoadWeakFixedArrayElement(feedback, var_index.value(), kTaggedSize);
*var_handler = handler;
Goto(if_handler);
BIND(&loop_next);
var_index =
Signed(IntPtrSub(var_index.value(), IntPtrConstant(kEntrySize)));
Branch(IntPtrGreaterThanOrEqual(var_index.value(), IntPtrConstant(0)),
&loop, if_miss);
}
}
void AccessorAssembler::HandleLoadICHandlerCase(
const LazyLoadICParameters* p, TNode<Object> handler, Label* miss,
ExitPoint* exit_point, ICMode ic_mode, OnNonExistent on_nonexistent,
ElementSupport support_elements, LoadAccessMode access_mode) {
Comment("have_handler");
TVARIABLE(Object, var_holder, p->lookup_start_object());
TVARIABLE(Object, var_smi_handler, handler);
Label if_smi_handler(this, {&var_holder, &var_smi_handler});
Label try_proto_handler(this, Label::kDeferred),
call_handler(this, Label::kDeferred);
Branch(TaggedIsSmi(handler), &if_smi_handler, &try_proto_handler);
BIND(&try_proto_handler);
{
GotoIf(IsCodeMap(LoadMap(CAST(handler))), &call_handler);
HandleLoadICProtoHandler(p, CAST(handler), &var_holder, &var_smi_handler,
&if_smi_handler, miss, exit_point, ic_mode,
access_mode);
}
// |handler| is a Smi, encoding what to do. See SmiHandler methods
// for the encoding format.
BIND(&if_smi_handler);
{
HandleLoadICSmiHandlerCase(
p, var_holder.value(), CAST(var_smi_handler.value()), handler, miss,
exit_point, ic_mode, on_nonexistent, support_elements, access_mode);
}
BIND(&call_handler);
{
exit_point->ReturnCallStub(LoadWithVectorDescriptor{}, CAST(handler),
p->context(), p->receiver(), p->name(),
p->slot(), p->vector());
}
}
void AccessorAssembler::HandleLoadCallbackProperty(
const LazyLoadICParameters* p, TNode<JSObject> holder,
TNode<WordT> handler_word, ExitPoint* exit_point) {
Comment("native_data_property_load");
TNode<IntPtrT> descriptor =
Signed(DecodeWord<LoadHandler::DescriptorBits>(handler_word));
Callable callable = CodeFactory::ApiGetter(isolate());
TNode<AccessorInfo> accessor_info =
CAST(LoadDescriptorValue(LoadMap(holder), descriptor));
exit_point->ReturnCallStub(callable, p->context(), p->receiver(), holder,
accessor_info);
}
void AccessorAssembler::HandleLoadAccessor(
const LazyLoadICParameters* p, TNode<CallHandlerInfo> call_handler_info,
TNode<WordT> handler_word, TNode<DataHandler> handler,
TNode<IntPtrT> handler_kind, ExitPoint* exit_point) {
Comment("api_getter");
// Context is stored either in data2 or data3 field depending on whether
// the access check is enabled for this handler or not.
TNode<MaybeObject> maybe_context = Select<MaybeObject>(
IsSetWord<LoadHandler::DoAccessCheckOnLookupStartObjectBits>(
handler_word),
[=] { return LoadHandlerDataField(handler, 3); },
[=] { return LoadHandlerDataField(handler, 2); });
CSA_ASSERT(this, IsWeakOrCleared(maybe_context));
CSA_CHECK(this, IsNotCleared(maybe_context));
TNode<HeapObject> context = GetHeapObjectAssumeWeak(maybe_context);
TNode<Foreign> foreign = LoadObjectField<Foreign>(
call_handler_info, CallHandlerInfo::kJsCallbackOffset);
TNode<RawPtrT> callback = LoadForeignForeignAddressPtr(foreign);
TNode<Object> data =
LoadObjectField(call_handler_info, CallHandlerInfo::kDataOffset);
TVARIABLE(HeapObject, api_holder, CAST(p->lookup_start_object()));
Label load(this);
GotoIf(WordEqual(handler_kind, IntPtrConstant(LoadHandler::kApiGetter)),
&load);
CSA_ASSERT(
this,
WordEqual(handler_kind,
IntPtrConstant(LoadHandler::kApiGetterHolderIsPrototype)));
api_holder = LoadMapPrototype(LoadMap(CAST(p->lookup_start_object())));
Goto(&load);
BIND(&load);
TNode<IntPtrT> argc = IntPtrConstant(0);
exit_point->Return(CallApiCallback(context, callback, argc, data,
api_holder.value(), p->receiver()));
}
void AccessorAssembler::HandleLoadField(TNode<JSObject> holder,
TNode<WordT> handler_word,
TVariable<Float64T>* var_double_value,
Label* rebox_double, Label* miss,
ExitPoint* exit_point) {
Comment("field_load");
TNode<IntPtrT> index =
Signed(DecodeWord<LoadHandler::FieldIndexBits>(handler_word));
TNode<IntPtrT> offset = IntPtrMul(index, IntPtrConstant(kTaggedSize));
Label inobject(this), out_of_object(this);
Branch(IsSetWord<LoadHandler::IsInobjectBits>(handler_word), &inobject,
&out_of_object);
BIND(&inobject);
{
Label is_double(this);
GotoIf(IsSetWord<LoadHandler::IsDoubleBits>(handler_word), &is_double);
exit_point->Return(LoadObjectField(holder, offset));
BIND(&is_double);
if (FLAG_unbox_double_fields) {
*var_double_value = LoadObjectField<Float64T>(holder, offset);
} else {
TNode<Object> heap_number = LoadObjectField(holder, offset);
// This is not an "old" Smi value from before a Smi->Double transition.
// Rather, it's possible that since the last update of this IC, the Double
// field transitioned to a Tagged field, and was then assigned a Smi.
GotoIf(TaggedIsSmi(heap_number), miss);
GotoIfNot(IsHeapNumber(CAST(heap_number)), miss);
*var_double_value = LoadHeapNumberValue(CAST(heap_number));
}
Goto(rebox_double);
}
BIND(&out_of_object);
{
Label is_double(this);
TNode<HeapObject> properties = LoadFastProperties(holder);
TNode<Object> value = LoadObjectField(properties, offset);
GotoIf(IsSetWord<LoadHandler::IsDoubleBits>(handler_word), &is_double);
exit_point->Return(value);
BIND(&is_double);
if (!FLAG_unbox_double_fields) {
// This is not an "old" Smi value from before a Smi->Double transition.
// Rather, it's possible that since the last update of this IC, the Double
// field transitioned to a Tagged field, and was then assigned a Smi.
GotoIf(TaggedIsSmi(value), miss);
GotoIfNot(IsHeapNumber(CAST(value)), miss);
}
*var_double_value = LoadHeapNumberValue(CAST(value));
Goto(rebox_double);
}
}
TNode<Object> AccessorAssembler::LoadDescriptorValue(
TNode<Map> map, TNode<IntPtrT> descriptor_entry) {
return CAST(LoadDescriptorValueOrFieldType(map, descriptor_entry));
}
TNode<MaybeObject> AccessorAssembler::LoadDescriptorValueOrFieldType(
TNode<Map> map, TNode<IntPtrT> descriptor_entry) {
TNode<DescriptorArray> descriptors = LoadMapDescriptors(map);
return LoadFieldTypeByDescriptorEntry(descriptors, descriptor_entry);
}
void AccessorAssembler::HandleLoadICSmiHandlerCase(
const LazyLoadICParameters* p, TNode<Object> holder, TNode<Smi> smi_handler,
TNode<Object> handler, Label* miss, ExitPoint* exit_point, ICMode ic_mode,
OnNonExistent on_nonexistent, ElementSupport support_elements,
LoadAccessMode access_mode) {
TVARIABLE(Float64T, var_double_value);
Label rebox_double(this, &var_double_value);
TNode<IntPtrT> handler_word = SmiUntag(smi_handler);
TNode<IntPtrT> handler_kind =
Signed(DecodeWord<LoadHandler::KindBits>(handler_word));
if (support_elements == kSupportElements) {
Label if_element(this), if_indexed_string(this), if_property(this),
if_hole(this), unimplemented_elements_kind(this),
if_oob(this, Label::kDeferred), try_string_to_array_index(this),
emit_element_load(this);
TVARIABLE(IntPtrT, var_intptr_index);
GotoIf(WordEqual(handler_kind, IntPtrConstant(LoadHandler::kElement)),
&if_element);
if (access_mode == LoadAccessMode::kHas) {
CSA_ASSERT(this,
WordNotEqual(handler_kind,
IntPtrConstant(LoadHandler::kIndexedString)));
Goto(&if_property);
} else {
Branch(
WordEqual(handler_kind, IntPtrConstant(LoadHandler::kIndexedString)),
&if_indexed_string, &if_property);
}
BIND(&if_element);
{
Comment("element_load");
TVARIABLE(Int32T, var_instance_type);
TNode<IntPtrT> intptr_index = TryToIntptr(
p->name(), &try_string_to_array_index, &var_instance_type);
var_intptr_index = intptr_index;
Goto(&emit_element_load);
BIND(&try_string_to_array_index);
{
GotoIfNot(IsStringInstanceType(var_instance_type.value()), miss);
TNode<ExternalReference> function = ExternalConstant(
ExternalReference::string_to_array_index_function());
TNode<Int32T> result = UncheckedCast<Int32T>(
CallCFunction(function, MachineType::Int32(),
std::make_pair(MachineType::AnyTagged(), p->name())));
GotoIf(Word32Equal(Int32Constant(-1), result), miss);
CSA_ASSERT(this, Int32GreaterThanOrEqual(result, Int32Constant(0)));
var_intptr_index = ChangeInt32ToIntPtr(result);
Goto(&emit_element_load);
}
BIND(&emit_element_load);
{
TNode<BoolT> is_jsarray_condition =
IsSetWord<LoadHandler::IsJsArrayBits>(handler_word);
TNode<Uint32T> elements_kind =
DecodeWord32FromWord<LoadHandler::ElementsKindBits>(handler_word);
EmitElementLoad(CAST(holder), elements_kind, var_intptr_index.value(),
is_jsarray_condition, &if_hole, &rebox_double,
&var_double_value, &unimplemented_elements_kind,
&if_oob, miss, exit_point, access_mode);
}
}
BIND(&unimplemented_elements_kind);
{
// Smi handlers should only be installed for supported elements kinds.
// Crash if we get here.
DebugBreak();
Goto(miss);
}
BIND(&if_oob);
{
Comment("out of bounds elements access");
Label return_undefined(this);
// Check if we're allowed to handle OOB accesses.
TNode<BoolT> allow_out_of_bounds =
IsSetWord<LoadHandler::AllowOutOfBoundsBits>(handler_word);
GotoIfNot(allow_out_of_bounds, miss);
// Negative indices aren't valid array indices (according to
// the ECMAScript specification), and are stored as properties
// in V8, not elements. So we cannot handle them here, except
// in case of typed arrays, where integer indexed properties
// aren't looked up in the prototype chain.
GotoIf(IsJSTypedArray(CAST(holder)), &return_undefined);
if (Is64()) {
GotoIfNot(
UintPtrLessThanOrEqual(var_intptr_index.value(),
IntPtrConstant(JSArray::kMaxArrayIndex)),
miss);
} else {
GotoIf(IntPtrLessThan(var_intptr_index.value(), IntPtrConstant(0)),
miss);
}
// For all other receivers we need to check that the prototype chain
// doesn't contain any elements.
BranchIfPrototypesHaveNoElements(LoadMap(CAST(holder)), &return_undefined,
miss);
BIND(&return_undefined);
exit_point->Return(access_mode == LoadAccessMode::kHas
? FalseConstant()
: UndefinedConstant());
}
BIND(&if_hole);
{
Comment("convert hole");
GotoIfNot(IsSetWord<LoadHandler::ConvertHoleBits>(handler_word), miss);
GotoIf(IsNoElementsProtectorCellInvalid(), miss);
exit_point->Return(access_mode == LoadAccessMode::kHas
? FalseConstant()
: UndefinedConstant());
}
if (access_mode != LoadAccessMode::kHas) {
BIND(&if_indexed_string);
{
Label if_oob(this, Label::kDeferred);
Comment("indexed string");
TNode<String> string_holder = CAST(holder);
TNode<UintPtrT> index = Unsigned(TryToIntptr(p->name(), miss));
TNode<UintPtrT> length =
Unsigned(LoadStringLengthAsWord(string_holder));
GotoIf(UintPtrGreaterThanOrEqual(index, length), &if_oob);
TNode<Int32T> code = StringCharCodeAt(string_holder, index);
TNode<String> result = StringFromSingleCharCode(code);
Return(result);
BIND(&if_oob);
TNode<BoolT> allow_out_of_bounds =
IsSetWord<LoadHandler::AllowOutOfBoundsBits>(handler_word);
GotoIfNot(allow_out_of_bounds, miss);
GotoIf(IsNoElementsProtectorCellInvalid(), miss);
Return(UndefinedConstant());
}
}
BIND(&if_property);
Comment("property_load");
}
if (access_mode == LoadAccessMode::kHas) {
HandleLoadICSmiHandlerHasNamedCase(p, holder, handler_kind, miss,
exit_point, ic_mode);
} else {
HandleLoadICSmiHandlerLoadNamedCase(
p, holder, handler_kind, handler_word, &rebox_double, &var_double_value,
handler, miss, exit_point, ic_mode, on_nonexistent, support_elements);
}
}
void AccessorAssembler::HandleLoadICSmiHandlerLoadNamedCase(
const LazyLoadICParameters* p, TNode<Object> holder,
TNode<IntPtrT> handler_kind, TNode<WordT> handler_word, Label* rebox_double,
TVariable<Float64T>* var_double_value, TNode<Object> handler, Label* miss,
ExitPoint* exit_point, ICMode ic_mode, OnNonExistent on_nonexistent,
ElementSupport support_elements) {
Label constant(this), field(this), normal(this, Label::kDeferred),
slow(this, Label::kDeferred), interceptor(this, Label::kDeferred),
nonexistent(this), accessor(this, Label::kDeferred),
global(this, Label::kDeferred), module_export(this, Label::kDeferred),
proxy(this, Label::kDeferred),
native_data_property(this, Label::kDeferred),
api_getter(this, Label::kDeferred);
GotoIf(WordEqual(handler_kind, IntPtrConstant(LoadHandler::kField)), &field);
GotoIf(WordEqual(handler_kind,
IntPtrConstant(LoadHandler::kConstantFromPrototype)),
&constant);
GotoIf(WordEqual(handler_kind, IntPtrConstant(LoadHandler::kNonExistent)),
&nonexistent);
GotoIf(WordEqual(handler_kind, IntPtrConstant(LoadHandler::kNormal)),
&normal);
GotoIf(WordEqual(handler_kind, IntPtrConstant(LoadHandler::kAccessor)),
&accessor);
GotoIf(
WordEqual(handler_kind, IntPtrConstant(LoadHandler::kNativeDataProperty)),
&native_data_property);
GotoIf(WordEqual(handler_kind, IntPtrConstant(LoadHandler::kApiGetter)),
&api_getter);
GotoIf(WordEqual(handler_kind,
IntPtrConstant(LoadHandler::kApiGetterHolderIsPrototype)),
&api_getter);
GotoIf(WordEqual(handler_kind, IntPtrConstant(LoadHandler::kGlobal)),
&global);
GotoIf(WordEqual(handler_kind, IntPtrConstant(LoadHandler::kSlow)), &slow);
GotoIf(WordEqual(handler_kind, IntPtrConstant(LoadHandler::kProxy)), &proxy);
Branch(WordEqual(handler_kind, IntPtrConstant(LoadHandler::kModuleExport)),
&module_export, &interceptor);
BIND(&field);
HandleLoadField(CAST(holder), handler_word, var_double_value, rebox_double,
miss, exit_point);
BIND(&nonexistent);
// This is a handler for a load of a non-existent value.
if (on_nonexistent == OnNonExistent::kThrowReferenceError) {
exit_point->ReturnCallRuntime(Runtime::kThrowReferenceError, p->context(),
p->name());
} else {
DCHECK_EQ(OnNonExistent::kReturnUndefined, on_nonexistent);
exit_point->Return(UndefinedConstant());
}
BIND(&constant);
{
Comment("constant_load");
exit_point->Return(holder);
}
BIND(&normal);
{
Comment("load_normal");
TNode<NameDictionary> properties = CAST(LoadSlowProperties(CAST(holder)));
TVARIABLE(IntPtrT, var_name_index);
Label found(this, &var_name_index);
NameDictionaryLookup<NameDictionary>(properties, CAST(p->name()), &found,
&var_name_index, miss);
BIND(&found);
{
TVARIABLE(Uint32T, var_details);
TVARIABLE(Object, var_value);
LoadPropertyFromNameDictionary(properties, var_name_index.value(),
&var_details, &var_value);
TNode<Object> value = CallGetterIfAccessor(
var_value.value(), CAST(holder), var_details.value(), p->context(),
p->receiver(), miss);
exit_point->Return(value);
}
}
BIND(&accessor);
{
Comment("accessor_load");
TNode<IntPtrT> descriptor =
Signed(DecodeWord<LoadHandler::DescriptorBits>(handler_word));
TNode<AccessorPair> accessor_pair =
CAST(LoadDescriptorValue(LoadMap(CAST(holder)), descriptor));
TNode<Object> getter =
LoadObjectField(accessor_pair, AccessorPair::kGetterOffset);
CSA_ASSERT(this, Word32BinaryNot(IsTheHole(getter)));
exit_point->Return(Call(p->context(), getter, p->receiver()));
}
BIND(&native_data_property);
HandleLoadCallbackProperty(p, CAST(holder), handler_word, exit_point);
BIND(&api_getter);
HandleLoadAccessor(p, CAST(holder), handler_word, CAST(handler), handler_kind,
exit_point);
BIND(&proxy);
{
// TODO(mythria): LoadGlobals don't use this path. LoadGlobals need special
// handling with proxies which is currently not supported by builtins. So
// for such cases, we should install a slow path and never reach here. Fix
// it to not generate this for LoadGlobals.
CSA_ASSERT(this,
WordNotEqual(IntPtrConstant(static_cast<int>(on_nonexistent)),
IntPtrConstant(static_cast<int>(
OnNonExistent::kThrowReferenceError))));
TVARIABLE(IntPtrT, var_index);
TVARIABLE(Name, var_unique);
Label if_index(this), if_unique_name(this),
to_name_failed(this, Label::kDeferred);
if (support_elements == kSupportElements) {
DCHECK_NE(on_nonexistent, OnNonExistent::kThrowReferenceError);
TryToName(p->name(), &if_index, &var_index, &if_unique_name, &var_unique,
&to_name_failed);
BIND(&if_unique_name);
exit_point->ReturnCallStub(
Builtins::CallableFor(isolate(), Builtins::kProxyGetProperty),
p->context(), holder, var_unique.value(), p->receiver(),
SmiConstant(on_nonexistent));
BIND(&if_index);
// TODO(mslekova): introduce TryToName that doesn't try to compute
// the intptr index value
Goto(&to_name_failed);
BIND(&to_name_failed);
// TODO(duongn): use GetPropertyWithReceiver builtin once
// |lookup_element_in_holder| supports elements.
exit_point->ReturnCallRuntime(Runtime::kGetPropertyWithReceiver,
p->context(), holder, p->name(),
p->receiver(), SmiConstant(on_nonexistent));
} else {
exit_point->ReturnCallStub(
Builtins::CallableFor(isolate(), Builtins::kProxyGetProperty),
p->context(), holder, p->name(), p->receiver(),
SmiConstant(on_nonexistent));
}
}
BIND(&global);
{
CSA_ASSERT(this, IsPropertyCell(CAST(holder)));
// Ensure the property cell doesn't contain the hole.
TNode<Object> value =
LoadObjectField(CAST(holder), PropertyCell::kValueOffset);
TNode<Uint32T> details = Unsigned(LoadAndUntagToWord32ObjectField(
CAST(holder), PropertyCell::kPropertyDetailsRawOffset));
GotoIf(IsTheHole(value), miss);
exit_point->Return(CallGetterIfAccessor(value, CAST(holder), details,
p->context(), p->receiver(), miss));
}
BIND(&interceptor);
{
Comment("load_interceptor");
exit_point->ReturnCallRuntime(Runtime::kLoadPropertyWithInterceptor,
p->context(), p->name(), p->receiver(),
holder, p->slot(), p->vector());
}
BIND(&slow);
{
Comment("load_slow");
if (ic_mode == ICMode::kGlobalIC) {
exit_point->ReturnCallRuntime(Runtime::kLoadGlobalIC_Slow, p->context(),
p->name(), p->slot(), p->vector());
} else {
exit_point->ReturnCallRuntime(Runtime::kGetProperty, p->context(), holder,
p->name(), p->receiver());
}
}
BIND(&module_export);
{
Comment("module export");
TNode<UintPtrT> index =
DecodeWord<LoadHandler::ExportsIndexBits>(handler_word);
TNode<Module> module = LoadObjectField<Module>(
CAST(p->receiver()), JSModuleNamespace::kModuleOffset);
TNode<ObjectHashTable> exports =
LoadObjectField<ObjectHashTable>(module, Module::kExportsOffset);
TNode<Cell> cell = CAST(LoadFixedArrayElement(exports, index));
// The handler is only installed for exports that exist.
TNode<Object> value = LoadCellValue(cell);
Label is_the_hole(this, Label::kDeferred);
GotoIf(IsTheHole(value), &is_the_hole);
exit_point->Return(value);
BIND(&is_the_hole);
{
TNode<Smi> message = SmiConstant(MessageTemplate::kNotDefined);
exit_point->ReturnCallRuntime(Runtime::kThrowReferenceError, p->context(),
message, p->name());
}
}
BIND(rebox_double);
exit_point->Return(AllocateHeapNumberWithValue(var_double_value->value()));
}
void AccessorAssembler::HandleLoadICSmiHandlerHasNamedCase(
const LazyLoadICParameters* p, TNode<Object> holder,
TNode<IntPtrT> handler_kind, Label* miss, ExitPoint* exit_point,
ICMode ic_mode) {
Label return_true(this), return_false(this), return_lookup(this),
normal(this), global(this), slow(this);
GotoIf(WordEqual(handler_kind, IntPtrConstant(LoadHandler::kField)),
&return_true);
GotoIf(WordEqual(handler_kind,
IntPtrConstant(LoadHandler::kConstantFromPrototype)),
&return_true);
GotoIf(WordEqual(handler_kind, IntPtrConstant(LoadHandler::kNonExistent)),
&return_false);
GotoIf(WordEqual(handler_kind, IntPtrConstant(LoadHandler::kNormal)),
&normal);
GotoIf(WordEqual(handler_kind, IntPtrConstant(LoadHandler::kAccessor)),
&return_true);
GotoIf(
WordEqual(handler_kind, IntPtrConstant(LoadHandler::kNativeDataProperty)),
&return_true);
GotoIf(WordEqual(handler_kind, IntPtrConstant(LoadHandler::kApiGetter)),
&return_true);
GotoIf(WordEqual(handler_kind,
IntPtrConstant(LoadHandler::kApiGetterHolderIsPrototype)),
&return_true);
GotoIf(WordEqual(handler_kind, IntPtrConstant(LoadHandler::kSlow)), &slow);
Branch(WordEqual(handler_kind, IntPtrConstant(LoadHandler::kGlobal)), &global,
&return_lookup);
BIND(&return_true);
exit_point->Return(TrueConstant());
BIND(&return_false);
exit_point->Return(FalseConstant());
BIND(&return_lookup);
{
CSA_ASSERT(
this,
Word32Or(
WordEqual(handler_kind, IntPtrConstant(LoadHandler::kInterceptor)),
Word32Or(
WordEqual(handler_kind, IntPtrConstant(LoadHandler::kProxy)),
WordEqual(handler_kind,
IntPtrConstant(LoadHandler::kModuleExport)))));
exit_point->ReturnCallStub(
Builtins::CallableFor(isolate(), Builtins::kHasProperty), p->context(),
p->receiver(), p->name());
}
BIND(&normal);
{
Comment("has_normal");
TNode<NameDictionary> properties = CAST(LoadSlowProperties(CAST(holder)));
TVARIABLE(IntPtrT, var_name_index);
Label found(this);
NameDictionaryLookup<NameDictionary>(properties, CAST(p->name()), &found,
&var_name_index, miss);
BIND(&found);
exit_point->Return(TrueConstant());
}
BIND(&global);
{
CSA_ASSERT(this, IsPropertyCell(CAST(holder)));
// Ensure the property cell doesn't contain the hole.
TNode<Object> value =
LoadObjectField(CAST(holder), PropertyCell::kValueOffset);
GotoIf(IsTheHole(value), miss);
exit_point->Return(TrueConstant());
}
BIND(&slow);
{
Comment("load_slow");
if (ic_mode == ICMode::kGlobalIC) {
exit_point->ReturnCallRuntime(Runtime::kLoadGlobalIC_Slow, p->context(),
p->name(), p->slot(), p->vector());
} else {
exit_point->ReturnCallRuntime(Runtime::kHasProperty, p->context(),
p->receiver(), p->name());
}
}
}
// Performs actions common to both load and store handlers:
// 1. Checks prototype validity cell.
// 2. If |on_code_handler| is provided, then it checks if the sub handler is
// a smi or code and if it's a code then it calls |on_code_handler| to
// generate a code that handles Code handlers.
// If |on_code_handler| is not provided, then only smi sub handler are
// expected.
// 3. Does access check on lookup start object if
// ICHandler::DoAccessCheckOnLookupStartObjectBits bit is set in the smi
// handler.
// 4. Does dictionary lookup on receiver if
// ICHandler::LookupOnLookupStartObjectBits bit is set in the smi handler. If
// |on_found_on_lookup_start_object| is provided then it calls it to
// generate a code that handles the "found on receiver case" or just misses
// if the |on_found_on_lookup_start_object| is not provided.
// 5. Falls through in a case of a smi handler which is returned from this
// function (tagged!).
// TODO(ishell): Remove templatezation once we move common bits from
// Load/StoreHandler to the base class.
template <typename ICHandler, typename ICParameters>
TNode<Object> AccessorAssembler::HandleProtoHandler(
const ICParameters* p, TNode<DataHandler> handler,
const OnCodeHandler& on_code_handler,
const OnFoundOnLookupStartObject& on_found_on_lookup_start_object,
Label* miss, ICMode ic_mode) {
//
// Check prototype validity cell.
//
{
TNode<Object> maybe_validity_cell =
LoadObjectField(handler, ICHandler::kValidityCellOffset);
CheckPrototypeValidityCell(maybe_validity_cell, miss);
}
//
// Check smi handler bits.
//
{
TNode<Object> smi_or_code_handler =
LoadObjectField(handler, ICHandler::kSmiHandlerOffset);
if (on_code_handler) {
Label if_smi_handler(this);
GotoIf(TaggedIsSmi(smi_or_code_handler), &if_smi_handler);
on_code_handler(CAST(smi_or_code_handler));
BIND(&if_smi_handler);
}
TNode<IntPtrT> handler_flags = SmiUntag(CAST(smi_or_code_handler));
// Lookup on receiver and access checks are not necessary for global ICs
// because in the former case the validity cell check guards modifications
// of the global object and the latter is not applicable to the global
// object.
int mask = ICHandler::LookupOnLookupStartObjectBits::kMask |
ICHandler::DoAccessCheckOnLookupStartObjectBits::kMask;
if (ic_mode == ICMode::kGlobalIC) {
CSA_ASSERT(this, IsClearWord(handler_flags, mask));
} else {
DCHECK_EQ(ICMode::kNonGlobalIC, ic_mode);
Label done(this), if_do_access_check(this),
if_lookup_on_lookup_start_object(this);
GotoIf(IsClearWord(handler_flags, mask), &done);
// Only one of the bits can be set at a time.
CSA_ASSERT(this,
WordNotEqual(WordAnd(handler_flags, IntPtrConstant(mask)),
IntPtrConstant(mask)));
Branch(
IsSetWord<typename ICHandler::DoAccessCheckOnLookupStartObjectBits>(
handler_flags),
&if_do_access_check, &if_lookup_on_lookup_start_object);
BIND(&if_do_access_check);
{
TNode<MaybeObject> data2 = LoadHandlerDataField(handler, 2);
CSA_ASSERT(this, IsWeakOrCleared(data2));
TNode<Context> expected_native_context =
CAST(GetHeapObjectAssumeWeak(data2, miss));
EmitAccessCheck(expected_native_context, p->context(),
p->lookup_start_object(), &done, miss);
}
BIND(&if_lookup_on_lookup_start_object);
{
// Dictionary lookup on lookup start object is not necessary for
// Load/StoreGlobalIC (which is the only case when the
// lookup_start_object can be a JSGlobalObject) because prototype
// validity cell check already guards modifications of the global
// object.
CSA_ASSERT(this,
Word32BinaryNot(HasInstanceType(
CAST(p->lookup_start_object()), JS_GLOBAL_OBJECT_TYPE)));
TNode<NameDictionary> properties =
CAST(LoadSlowProperties(CAST(p->lookup_start_object())));
TVARIABLE(IntPtrT, var_name_index);
Label found(this, &var_name_index);
NameDictionaryLookup<NameDictionary>(properties, CAST(p->name()),
&found, &var_name_index, &done);
BIND(&found);
{
if (on_found_on_lookup_start_object) {
on_found_on_lookup_start_object(properties, var_name_index.value());
} else {
Goto(miss);
}
}
}
BIND(&done);
}
return smi_or_code_handler;
}
}
void AccessorAssembler::HandleLoadICProtoHandler(
const LazyLoadICParameters* p, TNode<DataHandler> handler,
TVariable<Object>* var_holder, TVariable<Object>* var_smi_handler,
Label* if_smi_handler, Label* miss, ExitPoint* exit_point, ICMode ic_mode,
LoadAccessMode access_mode) {
TNode<Smi> smi_handler = CAST(HandleProtoHandler<LoadHandler>(
p, handler,
// Code sub-handlers are not expected in LoadICs, so no |on_code_handler|.
nullptr,
// on_found_on_lookup_start_object
[=](TNode<NameDictionary> properties, TNode<IntPtrT> name_index) {
if (access_mode == LoadAccessMode::kHas) {
exit_point->Return(TrueConstant());
} else {
TVARIABLE(Uint32T, var_details);
TVARIABLE(Object, var_value);
LoadPropertyFromNameDictionary(properties, name_index, &var_details,
&var_value);
TNode<Object> value = CallGetterIfAccessor(
var_value.value(), CAST(var_holder->value()), var_details.value(),
p->context(), p->receiver(), miss);
exit_point->Return(value);
}
},
miss, ic_mode));
TNode<MaybeObject> maybe_holder_or_constant =
LoadHandlerDataField(handler, 1);
Label load_from_cached_holder(this), is_smi(this), done(this);
GotoIf(TaggedIsSmi(maybe_holder_or_constant), &is_smi);
Branch(TaggedEqual(maybe_holder_or_constant, NullConstant()), &done,
&load_from_cached_holder);
BIND(&is_smi);
{
CSA_ASSERT(
this,
WordEqual(
Signed(DecodeWord<LoadHandler::KindBits>(SmiUntag(smi_handler))),
IntPtrConstant(LoadHandler::kConstantFromPrototype)));
if (access_mode == LoadAccessMode::kHas) {
exit_point->Return(TrueConstant());
} else {
exit_point->Return(CAST(maybe_holder_or_constant));
}
}
BIND(&load_from_cached_holder);
{
// For regular holders, having passed the receiver map check and
// the validity cell check implies that |holder| is
// alive. However, for global object receivers, |maybe_holder| may
// be cleared.
CSA_ASSERT(this, IsWeakOrCleared(maybe_holder_or_constant));
TNode<HeapObject> holder =
GetHeapObjectAssumeWeak(maybe_holder_or_constant, miss);
*var_holder = holder;
Goto(&done);
}
BIND(&done);
{
*var_smi_handler = smi_handler;
Goto(if_smi_handler);
}
}
void AccessorAssembler::EmitAccessCheck(TNode<Context> expected_native_context,
TNode<Context> context,
TNode<Object> receiver,
Label* can_access, Label* miss) {
CSA_ASSERT(this, IsNativeContext(expected_native_context));
TNode<NativeContext> native_context = LoadNativeContext(context);
GotoIf(TaggedEqual(expected_native_context, native_context), can_access);
// If the receiver is not a JSGlobalProxy then we miss.
GotoIfNot(IsJSGlobalProxy(CAST(receiver)), miss);
// For JSGlobalProxy receiver try to compare security tokens of current
// and expected native contexts.
TNode<Object> expected_token = LoadContextElement(
expected_native_context, Context::SECURITY_TOKEN_INDEX);
TNode<Object> current_token =
LoadContextElement(native_context, Context::SECURITY_TOKEN_INDEX);
Branch(TaggedEqual(expected_token, current_token), can_access, miss);
}
void AccessorAssembler::JumpIfDataProperty(TNode<Uint32T> details,
Label* writable, Label* readonly) {
if (readonly) {
// Accessor properties never have the READ_ONLY attribute set.
GotoIf(IsSetWord32(details, PropertyDetails::kAttributesReadOnlyMask),
readonly);
} else {
CSA_ASSERT(this, IsNotSetWord32(details,
PropertyDetails::kAttributesReadOnlyMask));
}
TNode<Uint32T> kind = DecodeWord32<PropertyDetails::KindField>(details);
GotoIf(Word32Equal(kind, Int32Constant(kData)), writable);
// Fall through if it's an accessor property.
}
void AccessorAssembler::HandleStoreICNativeDataProperty(
const StoreICParameters* p, TNode<HeapObject> holder,
TNode<Word32T> handler_word) {
Comment("native_data_property_store");
TNode<IntPtrT> descriptor =
Signed(DecodeWordFromWord32<StoreHandler::DescriptorBits>(handler_word));
TNode<AccessorInfo> accessor_info =
CAST(LoadDescriptorValue(LoadMap(holder), descriptor));
TailCallRuntime(Runtime::kStoreCallbackProperty, p->context(), p->receiver(),
holder, accessor_info, p->name(), p->value());
}
void AccessorAssembler::HandleStoreICHandlerCase(
const StoreICParameters* p, TNode<MaybeObject> handler, Label* miss,
ICMode ic_mode, ElementSupport support_elements) {
Label if_smi_handler(this), if_nonsmi_handler(this);
Label if_proto_handler(this), call_handler(this),
store_transition_or_global(this);
Branch(TaggedIsSmi(handler), &if_smi_handler, &if_nonsmi_handler);
// |handler| is a Smi, encoding what to do. See SmiHandler methods
// for the encoding format.
BIND(&if_smi_handler);
{
TNode<Object> holder = p->receiver();
TNode<Int32T> handler_word = SmiToInt32(CAST(handler));
Label if_fast_smi(this), if_proxy(this), if_interceptor(this),
if_slow(this);
STATIC_ASSERT(StoreHandler::kGlobalProxy + 1 == StoreHandler::kNormal);
STATIC_ASSERT(StoreHandler::kNormal + 1 == StoreHandler::kInterceptor);
STATIC_ASSERT(StoreHandler::kInterceptor + 1 == StoreHandler::kSlow);
STATIC_ASSERT(StoreHandler::kSlow + 1 == StoreHandler::kProxy);
STATIC_ASSERT(StoreHandler::kProxy + 1 == StoreHandler::kKindsNumber);
TNode<Uint32T> handler_kind =
DecodeWord32<StoreHandler::KindBits>(handler_word);
GotoIf(
Int32LessThan(handler_kind, Int32Constant(StoreHandler::kGlobalProxy)),
&if_fast_smi);
GotoIf(Word32Equal(handler_kind, Int32Constant(StoreHandler::kProxy)),
&if_proxy);
GotoIf(Word32Equal(handler_kind, Int32Constant(StoreHandler::kInterceptor)),
&if_interceptor);
GotoIf(Word32Equal(handler_kind, Int32Constant(StoreHandler::kSlow)),
&if_slow);
CSA_ASSERT(this,
Word32Equal(handler_kind, Int32Constant(StoreHandler::kNormal)));
TNode<NameDictionary> properties = CAST(LoadSlowProperties(CAST(holder)));
TVARIABLE(IntPtrT, var_name_index);
Label dictionary_found(this, &var_name_index);
NameDictionaryLookup<NameDictionary>(
properties, CAST(p->name()), &dictionary_found, &var_name_index, miss);
BIND(&dictionary_found);
{
TNode<Uint32T> details =
LoadDetailsByKeyIndex(properties, var_name_index.value());
// Check that the property is a writable data property (no accessor).
const int kTypeAndReadOnlyMask = PropertyDetails::KindField::kMask |
PropertyDetails::kAttributesReadOnlyMask;
STATIC_ASSERT(kData == 0);
GotoIf(IsSetWord32(details, kTypeAndReadOnlyMask), miss);
StoreValueByKeyIndex<NameDictionary>(properties, var_name_index.value(),
p->value());
Return(p->value());
}
BIND(&if_fast_smi);
{
TNode<Uint32T> handler_kind =
DecodeWord32<StoreHandler::KindBits>(handler_word);
Label data(this), accessor(this), native_data_property(this);
GotoIf(Word32Equal(handler_kind, Int32Constant(StoreHandler::kAccessor)),
&accessor);
Branch(Word32Equal(handler_kind,
Int32Constant(StoreHandler::kNativeDataProperty)),
&native_data_property, &data);
BIND(&accessor);
HandleStoreAccessor(p, CAST(holder), handler_word);
BIND(&native_data_property);
HandleStoreICNativeDataProperty(p, CAST(holder), handler_word);
BIND(&data);
// Handle non-transitioning field stores.
HandleStoreICSmiHandlerCase(handler_word, CAST(holder), p->value(), miss);
}
BIND(&if_proxy);
HandleStoreToProxy(p, CAST(holder), miss, support_elements);
BIND(&if_interceptor);
{
Comment("store_interceptor");
TailCallRuntime(Runtime::kStorePropertyWithInterceptor, p->context(),
p->value(), p->receiver(), p->name());
}
BIND(&if_slow);
{
Comment("store_slow");
// The slow case calls into the runtime to complete the store without
// causing an IC miss that would otherwise cause a transition to the
// generic stub.
if (ic_mode == ICMode::kGlobalIC) {
TailCallRuntime(Runtime::kStoreGlobalIC_Slow, p->context(), p->value(),
p->slot(), p->vector(), p->receiver(), p->name());
} else {
TailCallRuntime(Runtime::kKeyedStoreIC_Slow, p->context(), p->value(),
p->receiver(), p->name());
}
}
}
BIND(&if_nonsmi_handler);
{
GotoIf(IsWeakOrCleared(handler), &store_transition_or_global);
TNode<HeapObject> strong_handler = CAST(handler);
TNode<Map> handler_map = LoadMap(strong_handler);
Branch(IsCodeMap(handler_map), &call_handler, &if_proto_handler);
BIND(&if_proto_handler);
{
HandleStoreICProtoHandler(p, CAST(strong_handler), miss, ic_mode,
support_elements);
}
// |handler| is a heap object. Must be code, call it.
BIND(&call_handler);
{
TailCallStub(StoreWithVectorDescriptor{}, CAST(strong_handler),
p->context(), p->receiver(), p->name(), p->value(),
p->slot(), p->vector());
}
}
BIND(&store_transition_or_global);
{
// Load value or miss if the {handler} weak cell is cleared.
CSA_ASSERT(this, IsWeakOrCleared(handler));
TNode<HeapObject> map_or_property_cell =
GetHeapObjectAssumeWeak(handler, miss);
Label store_global(this), store_transition(this);
Branch(IsMap(map_or_property_cell), &store_transition, &store_global);
BIND(&store_global);
{
TNode<PropertyCell> property_cell = CAST(map_or_property_cell);
ExitPoint direct_exit(this);
StoreGlobalIC_PropertyCellCase(property_cell, p->value(), &direct_exit,
miss);
}
BIND(&store_transition);
{
TNode<Map> map = CAST(map_or_property_cell);
HandleStoreICTransitionMapHandlerCase(p, map, miss,
kCheckPrototypeValidity);
Return(p->value());
}
}
}
void AccessorAssembler::HandleStoreICTransitionMapHandlerCase(
const StoreICParameters* p, TNode<Map> transition_map, Label* miss,
StoreTransitionMapFlags flags) {
DCHECK_EQ(0, flags & ~kStoreTransitionMapFlagsMask);
if (flags & kCheckPrototypeValidity) {
TNode<Object> maybe_validity_cell =
LoadObjectField(transition_map, Map::kPrototypeValidityCellOffset);
CheckPrototypeValidityCell(maybe_validity_cell, miss);
}
TNode<Uint32T> bitfield3 = LoadMapBitField3(transition_map);
CSA_ASSERT(this, IsClearWord32<Map::Bits3::IsDictionaryMapBit>(bitfield3));
GotoIf(IsSetWord32<Map::Bits3::IsDeprecatedBit>(bitfield3), miss);
// Load last descriptor details.
TNode<UintPtrT> nof =
DecodeWordFromWord32<Map::Bits3::NumberOfOwnDescriptorsBits>(bitfield3);
CSA_ASSERT(this, WordNotEqual(nof, IntPtrConstant(0)));
TNode<DescriptorArray> descriptors = LoadMapDescriptors(transition_map);
TNode<IntPtrT> factor = IntPtrConstant(DescriptorArray::kEntrySize);
TNode<IntPtrT> last_key_index = UncheckedCast<IntPtrT>(IntPtrAdd(
IntPtrConstant(DescriptorArray::ToKeyIndex(-1)), IntPtrMul(nof, factor)));
if (flags & kValidateTransitionHandler) {
TNode<Name> key = LoadKeyByKeyIndex(descriptors, last_key_index);
GotoIf(TaggedNotEqual(key, p->name()), miss);
} else {
CSA_ASSERT(this, TaggedEqual(LoadKeyByKeyIndex(descriptors, last_key_index),
p->name()));
}
TNode<Uint32T> details = LoadDetailsByKeyIndex(descriptors, last_key_index);
if (flags & kValidateTransitionHandler) {
// Follow transitions only in the following cases:
// 1) name is a non-private symbol and attributes equal to NONE,
// 2) name is a private symbol and attributes equal to DONT_ENUM.
Label attributes_ok(this);
const int kKindAndAttributesDontDeleteReadOnlyMask =
PropertyDetails::KindField::kMask |
PropertyDetails::kAttributesDontDeleteMask |
PropertyDetails::kAttributesReadOnlyMask;
STATIC_ASSERT(kData == 0);
// Both DontDelete and ReadOnly attributes must not be set and it has to be
// a kData property.
GotoIf(IsSetWord32(details, kKindAndAttributesDontDeleteReadOnlyMask),
miss);
// DontEnum attribute is allowed only for private symbols and vice versa.
Branch(Word32Equal(
IsSetWord32(details, PropertyDetails::kAttributesDontEnumMask),
IsPrivateSymbol(CAST(p->name()))),
&attributes_ok, miss);
BIND(&attributes_ok);
}
OverwriteExistingFastDataProperty(CAST(p->receiver()), transition_map,
descriptors, last_key_index, details,
p->value(), miss, true);
}
void AccessorAssembler::CheckFieldType(TNode<DescriptorArray> descriptors,
TNode<IntPtrT> name_index,
TNode<Word32T> representation,
TNode<Object> value, Label* bailout) {
Label r_smi(this), r_double(this), r_heapobject(this), all_fine(this);
// Ignore FLAG_track_fields etc. and always emit code for all checks,
// because this builtin is part of the snapshot and therefore should
// be flag independent.
GotoIf(Word32Equal(representation, Int32Constant(Representation::kSmi)),
&r_smi);
GotoIf(Word32Equal(representation, Int32Constant(Representation::kDouble)),
&r_double);
GotoIf(
Word32Equal(representation, Int32Constant(Representation::kHeapObject)),
&r_heapobject);
GotoIf(Word32Equal(representation, Int32Constant(Representation::kNone)),
bailout);
CSA_ASSERT(this, Word32Equal(representation,
Int32Constant(Representation::kTagged)));
Goto(&all_fine);
BIND(&r_smi);
{ Branch(TaggedIsSmi(value), &all_fine, bailout); }
BIND(&r_double);
{
GotoIf(TaggedIsSmi(value), &all_fine);
Branch(IsHeapNumber(CAST(value)), &all_fine, bailout);
}
BIND(&r_heapobject);
{
GotoIf(TaggedIsSmi(value), bailout);
TNode<MaybeObject> field_type =
LoadFieldTypeByKeyIndex(descriptors, name_index);
const Address kNoneType = FieldType::None().ptr();
const Address kAnyType = FieldType::Any().ptr();
DCHECK_NE(static_cast<uint32_t>(kNoneType), kClearedWeakHeapObjectLower32);
DCHECK_NE(static_cast<uint32_t>(kAnyType), kClearedWeakHeapObjectLower32);
// FieldType::None can't hold any value.
GotoIf(
TaggedEqual(field_type, BitcastWordToTagged(IntPtrConstant(kNoneType))),
bailout);
// FieldType::Any can hold any value.
GotoIf(
TaggedEqual(field_type, BitcastWordToTagged(IntPtrConstant(kAnyType))),
&all_fine);
// Cleared weak references count as FieldType::None, which can't hold any
// value.
TNode<Map> field_type_map =
CAST(GetHeapObjectAssumeWeak(field_type, bailout));
// FieldType::Class(...) performs a map check.
Branch(TaggedEqual(LoadMap(CAST(value)), field_type_map), &all_fine,
bailout);
}
BIND(&all_fine);
}
TNode<BoolT> AccessorAssembler::IsPropertyDetailsConst(TNode<Uint32T> details) {
return Word32Equal(DecodeWord32<PropertyDetails::ConstnessField>(details),
Int32Constant(static_cast<int32_t>(VariableMode::kConst)));
}
void AccessorAssembler::OverwriteExistingFastDataProperty(
TNode<HeapObject> object, TNode<Map> object_map,
TNode<DescriptorArray> descriptors, TNode<IntPtrT> descriptor_name_index,
TNode<Uint32T> details, TNode<Object> value, Label* slow,
bool do_transitioning_store) {
Label done(this), if_field(this), if_descriptor(this);
CSA_ASSERT(this,
Word32Equal(DecodeWord32<PropertyDetails::KindField>(details),
Int32Constant(kData)));
Branch(Word32Equal(DecodeWord32<PropertyDetails::LocationField>(details),
Int32Constant(kField)),
&if_field, &if_descriptor);
BIND(&if_field);
{
TNode<Uint32T> representation =
DecodeWord32<PropertyDetails::RepresentationField>(details);
CheckFieldType(descriptors, descriptor_name_index, representation, value,
slow);
TNode<UintPtrT> field_index =
DecodeWordFromWord32<PropertyDetails::FieldIndexField>(details);
field_index = Unsigned(
IntPtrAdd(field_index,
Unsigned(LoadMapInobjectPropertiesStartInWords(object_map))));
TNode<IntPtrT> instance_size_in_words =
LoadMapInstanceSizeInWords(object_map);
Label inobject(this), backing_store(this);
Branch(UintPtrLessThan(field_index, instance_size_in_words), &inobject,
&backing_store);
BIND(&inobject);
{
TNode<IntPtrT> field_offset = Signed(TimesTaggedSize(field_index));
Label tagged_rep(this), double_rep(this);
Branch(
Word32Equal(representation, Int32Constant(Representation::kDouble)),
&double_rep, &tagged_rep);
BIND(&double_rep);
{
TNode<Float64T> double_value = ChangeNumberToFloat64(CAST(value));
if (FLAG_unbox_double_fields) {
if (do_transitioning_store) {
StoreMap(object, object_map);
} else {
Label store_value(this);
GotoIfNot(IsPropertyDetailsConst(details), &store_value);
TNode<Float64T> current_value =
LoadObjectField<Float64T>(object, field_offset);
BranchIfSameNumberValue(current_value, double_value, &store_value,
slow);
BIND(&store_value);
}
StoreObjectFieldNoWriteBarrier(object, field_offset, double_value);
} else {
if (do_transitioning_store) {
TNode<HeapNumber> heap_number =
AllocateHeapNumberWithValue(double_value);
StoreMap(object, object_map);
StoreObjectField(object, field_offset, heap_number);
} else {
TNode<HeapNumber> heap_number =
CAST(LoadObjectField(object, field_offset));
Label store_value(this);
GotoIfNot(IsPropertyDetailsConst(details), &store_value);
TNode<Float64T> current_value = LoadHeapNumberValue(heap_number);
BranchIfSameNumberValue(current_value, double_value, &store_value,
slow);
BIND(&store_value);
StoreHeapNumberValue(heap_number, double_value);
}
}
Goto(&done);
}
BIND(&tagged_rep);
{
if (do_transitioning_store) {
StoreMap(object, object_map);
} else {
Label if_mutable(this);
GotoIfNot(IsPropertyDetailsConst(details), &if_mutable);
TNode<Object> current_value = LoadObjectField(object, field_offset);
BranchIfSameValue(current_value, value, &done, slow,
SameValueMode::kNumbersOnly);
BIND(&if_mutable);
}
StoreObjectField(object, field_offset, value);
Goto(&done);
}
}
BIND(&backing_store);
{
TNode<IntPtrT> backing_store_index =
Signed(IntPtrSub(field_index, instance_size_in_words));
if (do_transitioning_store) {
// Allocate mutable heap number before extending properties backing
// store to ensure that heap verifier will not see the heap in
// inconsistent state.
TVARIABLE(Object, var_value, value);
{
Label cont(this);
GotoIf(Word32NotEqual(representation,
Int32Constant(Representation::kDouble)),
&cont);
{
TNode<Float64T> double_value = ChangeNumberToFloat64(CAST(value));
TNode<HeapNumber> heap_number =
AllocateHeapNumberWithValue(double_value);
var_value = heap_number;
Goto(&cont);
}
BIND(&cont);
}
TNode<PropertyArray> properties =
ExtendPropertiesBackingStore(object, backing_store_index);
StorePropertyArrayElement(properties, backing_store_index,
var_value.value());
StoreMap(object, object_map);
Goto(&done);
} else {
Label tagged_rep(this), double_rep(this);
TNode<PropertyArray> properties =
CAST(LoadFastProperties(CAST(object)));
Branch(
Word32Equal(representation, Int32Constant(Representation::kDouble)),
&double_rep, &tagged_rep);
BIND(&double_rep);
{
TNode<HeapNumber> heap_number =
CAST(LoadPropertyArrayElement(properties, backing_store_index));
TNode<Float64T> double_value = ChangeNumberToFloat64(CAST(value));
Label if_mutable(this);
GotoIfNot(IsPropertyDetailsConst(details), &if_mutable);
TNode<Float64T> current_value = LoadHeapNumberValue(heap_number);
BranchIfSameNumberValue(current_value, double_value, &done, slow);
BIND(&if_mutable);
StoreHeapNumberValue(heap_number, double_value);
Goto(&done);
}
BIND(&tagged_rep);
{
Label if_mutable(this);
GotoIfNot(IsPropertyDetailsConst(details), &if_mutable);
TNode<Object> current_value =
LoadPropertyArrayElement(properties, backing_store_index);
BranchIfSameValue(current_value, value, &done, slow,
SameValueMode::kNumbersOnly);
BIND(&if_mutable);
StorePropertyArrayElement(properties, backing_store_index, value);
Goto(&done);
}
}
}
}
BIND(&if_descriptor);
{
// Check that constant matches value.
TNode<Object> constant =
LoadValueByKeyIndex(descriptors, descriptor_name_index);
GotoIf(TaggedNotEqual(value, constant), slow);
if (do_transitioning_store) {
StoreMap(object, object_map);
}
Goto(&done);
}
BIND(&done);
}
void AccessorAssembler::CheckPrototypeValidityCell(
TNode<Object> maybe_validity_cell, Label* miss) {
Label done(this);
GotoIf(
TaggedEqual(maybe_validity_cell, SmiConstant(Map::kPrototypeChainValid)),
&done);
CSA_ASSERT(this, TaggedIsNotSmi(maybe_validity_cell));
TNode<Object> cell_value =
LoadObjectField(CAST(maybe_validity_cell), Cell::kValueOffset);
Branch(TaggedEqual(cell_value, SmiConstant(Map::kPrototypeChainValid)), &done,
miss);
BIND(&done);
}
void AccessorAssembler::HandleStoreAccessor(const StoreICParameters* p,
TNode<HeapObject> holder,
TNode<Word32T> handler_word) {
Comment("accessor_store");
TNode<IntPtrT> descriptor =
Signed(DecodeWordFromWord32<StoreHandler::DescriptorBits>(handler_word));
TNode<HeapObject> accessor_pair =
CAST(LoadDescriptorValue(LoadMap(holder), descriptor));
CSA_ASSERT(this, IsAccessorPair(accessor_pair));
TNode<Object> setter =
LoadObjectField(accessor_pair, AccessorPair::kSetterOffset);
CSA_ASSERT(this, Word32BinaryNot(IsTheHole(setter)));
Callable callable = CodeFactory::Call(isolate());
Return(Call(p->context(), setter, p->receiver(), p->value()));
}
void AccessorAssembler::HandleStoreICProtoHandler(
const StoreICParameters* p, TNode<StoreHandler> handler, Label* miss,
ICMode ic_mode, ElementSupport support_elements) {
Comment("HandleStoreICProtoHandler");
OnCodeHandler on_code_handler;
if (support_elements == kSupportElements) {
// Code sub-handlers are expected only in KeyedStoreICs.
on_code_handler = [=](TNode<Code> code_handler) {
// This is either element store or transitioning element store.
Label if_element_store(this), if_transitioning_element_store(this);
Branch(IsStoreHandler0Map(LoadMap(handler)), &if_element_store,
&if_transitioning_element_store);
BIND(&if_element_store);
{
TailCallStub(StoreWithVectorDescriptor{}, code_handler, p->context(),
p->receiver(), p->name(), p->value(), p->slot(),
p->vector());
}
BIND(&if_transitioning_element_store);
{
TNode<MaybeObject> maybe_transition_map =
LoadHandlerDataField(handler, 1);
TNode<Map> transition_map =
CAST(GetHeapObjectAssumeWeak(maybe_transition_map, miss));
GotoIf(IsDeprecatedMap(transition_map), miss);
TailCallStub(StoreTransitionDescriptor{}, code_handler, p->context(),
p->receiver(), p->name(), transition_map, p->value(),
p->slot(), p->vector());
}
};
}
TNode<Object> smi_handler = HandleProtoHandler<StoreHandler>(
p, handler, on_code_handler,
// on_found_on_lookup_start_object
[=](TNode<NameDictionary> properties, TNode<IntPtrT> name_index) {
TNode<Uint32T> details = LoadDetailsByKeyIndex(properties, name_index);
// Check that the property is a writable data property (no accessor).
const int kTypeAndReadOnlyMask =
PropertyDetails::KindField::kMask |
PropertyDetails::kAttributesReadOnlyMask;
STATIC_ASSERT(kData == 0);
GotoIf(IsSetWord32(details, kTypeAndReadOnlyMask), miss);
StoreValueByKeyIndex<NameDictionary>(properties, name_index,
p->value());
Return(p->value());
},
miss, ic_mode);
{
Label if_add_normal(this), if_store_global_proxy(this), if_api_setter(this),
if_accessor(this), if_native_data_property(this), if_slow(this);
CSA_ASSERT(this, TaggedIsSmi(smi_handler));
TNode<Int32T> handler_word = SmiToInt32(CAST(smi_handler));
TNode<Uint32T> handler_kind =
DecodeWord32<StoreHandler::KindBits>(handler_word);
GotoIf(Word32Equal(handler_kind, Int32Constant(StoreHandler::kNormal)),
&if_add_normal);
GotoIf(Word32Equal(handler_kind, Int32Constant(StoreHandler::kSlow)),
&if_slow);
TNode<MaybeObject> maybe_holder = LoadHandlerDataField(handler, 1);
CSA_ASSERT(this, IsWeakOrCleared(maybe_holder));
TNode<HeapObject> holder = GetHeapObjectAssumeWeak(maybe_holder, miss);
GotoIf(Word32Equal(handler_kind, Int32Constant(StoreHandler::kGlobalProxy)),
&if_store_global_proxy);
GotoIf(Word32Equal(handler_kind, Int32Constant(StoreHandler::kAccessor)),
&if_accessor);
GotoIf(Word32Equal(handler_kind,
Int32Constant(StoreHandler::kNativeDataProperty)),
&if_native_data_property);
GotoIf(Word32Equal(handler_kind, Int32Constant(StoreHandler::kApiSetter)),
&if_api_setter);
GotoIf(
Word32Equal(handler_kind,
Int32Constant(StoreHandler::kApiSetterHolderIsPrototype)),
&if_api_setter);
CSA_ASSERT(this,
Word32Equal(handler_kind, Int32Constant(StoreHandler::kProxy)));
HandleStoreToProxy(p, CAST(holder), miss, support_elements);
BIND(&if_slow);
{
Comment("store_slow");
// The slow case calls into the runtime to complete the store without
// causing an IC miss that would otherwise cause a transition to the
// generic stub.
if (ic_mode == ICMode::kGlobalIC) {
TailCallRuntime(Runtime::kStoreGlobalIC_Slow, p->context(), p->value(),
p->slot(), p->vector(), p->receiver(), p->name());
} else {
TailCallRuntime(Runtime::kKeyedStoreIC_Slow, p->context(), p->value(),
p->receiver(), p->name());
}
}
BIND(&if_add_normal);
{
// This is a case of "transitioning store" to a dictionary mode object
// when the property does not exist. The "existing property" case is
// covered above by LookupOnLookupStartObject bit handling of the smi
// handler.
Label slow(this);
TNode<Map> receiver_map = LoadMap(CAST(p->receiver()));
InvalidateValidityCellIfPrototype(receiver_map);
TNode<NameDictionary> properties =
CAST(LoadSlowProperties(CAST(p->receiver())));
Add<NameDictionary>(properties, CAST(p->name()), p->value(), &slow);
Return(p->value());
BIND(&slow);
TailCallRuntime(Runtime::kAddDictionaryProperty, p->context(),
p->receiver(), p->name(), p->value());
}
BIND(&if_accessor);
HandleStoreAccessor(p, holder, handler_word);
BIND(&if_native_data_property);
HandleStoreICNativeDataProperty(p, holder, handler_word);
BIND(&if_api_setter);
{
Comment("api_setter");
CSA_ASSERT(this, TaggedIsNotSmi(handler));
TNode<CallHandlerInfo> call_handler_info = CAST(holder);
// Context is stored either in data2 or data3 field depending on whether
// the access check is enabled for this handler or not.
TNode<MaybeObject> maybe_context = Select<MaybeObject>(
IsSetWord32<StoreHandler::DoAccessCheckOnLookupStartObjectBits>(
handler_word),
[=] { return LoadHandlerDataField(handler, 3); },
[=] { return LoadHandlerDataField(handler, 2); });
CSA_ASSERT(this, IsWeakOrCleared(maybe_context));
TNode<Object> context = Select<Object>(
IsCleared(maybe_context), [=] { return SmiConstant(0); },
[=] { return GetHeapObjectAssumeWeak(maybe_context); });
TNode<Foreign> foreign = LoadObjectField<Foreign>(
call_handler_info, CallHandlerInfo::kJsCallbackOffset);
TNode<RawPtrT> callback = LoadForeignForeignAddressPtr(foreign);
TNode<Object> data =
LoadObjectField(call_handler_info, CallHandlerInfo::kDataOffset);
TVARIABLE(Object, api_holder, p->receiver());
Label store(this);
GotoIf(Word32Equal(handler_kind, Int32Constant(StoreHandler::kApiSetter)),
&store);
CSA_ASSERT(this,
Word32Equal(
handler_kind,
Int32Constant(StoreHandler::kApiSetterHolderIsPrototype)));
api_holder = LoadMapPrototype(LoadMap(CAST(p->receiver())));
Goto(&store);
BIND(&store);
TNode<IntPtrT> argc = IntPtrConstant(1);
Return(CallApiCallback(context, callback, argc, data, api_holder.value(),
p->receiver(), p->value()));
}
BIND(&if_store_global_proxy);
{
ExitPoint direct_exit(this);
StoreGlobalIC_PropertyCellCase(CAST(holder), p->value(), &direct_exit,
miss);
}
}
}
void AccessorAssembler::HandleStoreToProxy(const StoreICParameters* p,
TNode<JSProxy> proxy, Label* miss,
ElementSupport support_elements) {
TVARIABLE(IntPtrT, var_index);
TVARIABLE(Name, var_unique);
Label if_index(this), if_unique_name(this),
to_name_failed(this, Label::kDeferred);
if (support_elements == kSupportElements) {
TryToName(p->name(), &if_index, &var_index, &if_unique_name, &var_unique,
&to_name_failed);
BIND(&if_unique_name);
CallBuiltin(Builtins::kProxySetProperty, p->context(), proxy,
var_unique.value(), p->value(), p->receiver());
Return(p->value());
// The index case is handled earlier by the runtime.
BIND(&if_index);
// TODO(mslekova): introduce TryToName that doesn't try to compute
// the intptr index value
Goto(&to_name_failed);
BIND(&to_name_failed);
TailCallRuntime(Runtime::kSetPropertyWithReceiver, p->context(), proxy,
p->name(), p->value(), p->receiver());
} else {
TNode<Object> name =
CallBuiltin(Builtins::kToName, p->context(), p->name());
TailCallBuiltin(Builtins::kProxySetProperty, p->context(), proxy, name,
p->value(), p->receiver());
}
}
void AccessorAssembler::HandleStoreICSmiHandlerCase(TNode<Word32T> handler_word,
TNode<JSObject> holder,
TNode<Object> value,
Label* miss) {
Comment("field store");
#ifdef DEBUG
TNode<Uint32T> handler_kind =
DecodeWord32<StoreHandler::KindBits>(handler_word);
CSA_ASSERT(
this,
Word32Or(
Word32Equal(handler_kind, Int32Constant(StoreHandler::kField)),
Word32Equal(handler_kind, Int32Constant(StoreHandler::kConstField))));
#endif
TNode<Uint32T> field_representation =
DecodeWord32<StoreHandler::RepresentationBits>(handler_word);
Label if_smi_field(this), if_double_field(this), if_heap_object_field(this),
if_tagged_field(this);
int32_t case_values[] = {Representation::kTagged, Representation::kHeapObject,
Representation::kSmi};
Label* case_labels[] = {&if_tagged_field, &if_heap_object_field,
&if_smi_field};
Switch(field_representation, &if_double_field, case_values, case_labels, 3);
BIND(&if_tagged_field);
{
Comment("store tagged field");
HandleStoreFieldAndReturn(handler_word, holder, value, base::nullopt,
Representation::Tagged(), miss);
}
BIND(&if_heap_object_field);
{
Comment("heap object field checks");
CheckHeapObjectTypeMatchesDescriptor(handler_word, holder, value, miss);
Comment("store heap object field");
HandleStoreFieldAndReturn(handler_word, holder, value, base::nullopt,
Representation::HeapObject(), miss);
}
BIND(&if_smi_field);
{
Comment("smi field checks");
GotoIfNot(TaggedIsSmi(value), miss);
Comment("store smi field");
HandleStoreFieldAndReturn(handler_word, holder, value, base::nullopt,
Representation::Smi(), miss);
}
BIND(&if_double_field);
{
CSA_ASSERT(this, Word32Equal(field_representation,
Int32Constant(Representation::kDouble)));
Comment("double field checks");
TNode<Float64T> double_value = TryTaggedToFloat64(value, miss);
CheckDescriptorConsidersNumbersMutable(handler_word, holder, miss);
Comment("store double field");
HandleStoreFieldAndReturn(handler_word, holder, value, double_value,
Representation::Double(), miss);
}
}
void AccessorAssembler::CheckHeapObjectTypeMatchesDescriptor(
TNode<Word32T> handler_word, TNode<JSObject> holder, TNode<Object> value,
Label* bailout) {
GotoIf(TaggedIsSmi(value), bailout);
Label done(this);
// Skip field type check in favor of constant value check when storing
// to constant field.
GotoIf(Word32Equal(DecodeWord32<StoreHandler::KindBits>(handler_word),
Int32Constant(StoreHandler::kConstField)),
&done);
TNode<IntPtrT> descriptor =
Signed(DecodeWordFromWord32<StoreHandler::DescriptorBits>(handler_word));
TNode<MaybeObject> maybe_field_type =
LoadDescriptorValueOrFieldType(LoadMap(holder), descriptor);
GotoIf(TaggedIsSmi(maybe_field_type), &done);
// Check that value type matches the field type.
{
TNode<HeapObject> field_type =
GetHeapObjectAssumeWeak(maybe_field_type, bailout);
Branch(TaggedEqual(LoadMap(CAST(value)), field_type), &done, bailout);
}
BIND(&done);
}
void AccessorAssembler::CheckDescriptorConsidersNumbersMutable(
TNode<Word32T> handler_word, TNode<JSObject> holder, Label* bailout) {
// We have to check that the representation is Double. Checking the value
// (either in the field or being assigned) is not enough, as we could have
// transitioned to Tagged but still be holding a HeapNumber, which would no
// longer be allowed to be mutable.
// TODO(leszeks): We could skip the representation check in favor of a
// constant value check in HandleStoreFieldAndReturn here, but then
// HandleStoreFieldAndReturn would need an IsHeapNumber check in case both the
// representation changed and the value is no longer a HeapNumber.
TNode<IntPtrT> descriptor_entry =
Signed(DecodeWordFromWord32<StoreHandler::DescriptorBits>(handler_word));
TNode<DescriptorArray> descriptors = LoadMapDescriptors(LoadMap(holder));
TNode<Uint32T> details =
LoadDetailsByDescriptorEntry(descriptors, descriptor_entry);
GotoIfNot(IsEqualInWord32<PropertyDetails::RepresentationField>(
details, Representation::kDouble),
bailout);
}
void AccessorAssembler::HandleStoreFieldAndReturn(
TNode<Word32T> handler_word, TNode<JSObject> holder, TNode<Object> value,
base::Optional<TNode<Float64T>> double_value, Representation representation,
Label* miss) {
Label done(this);
bool store_value_as_double = representation.IsDouble();
TNode<BoolT> is_inobject =
IsSetWord32<StoreHandler::IsInobjectBits>(handler_word);
TNode<HeapObject> property_storage = Select<HeapObject>(
is_inobject, [&]() { return holder; },
[&]() { return LoadFastProperties(holder); });
TNode<UintPtrT> index =
DecodeWordFromWord32<StoreHandler::FieldIndexBits>(handler_word);
TNode<IntPtrT> offset = Signed(TimesTaggedSize(index));
// For Double fields, we want to mutate the current double-value
// field rather than changing it to point at a new HeapNumber.
if (store_value_as_double) {
TVARIABLE(HeapObject, actual_property_storage, property_storage);
TVARIABLE(IntPtrT, actual_offset, offset);
Label property_and_offset_ready(this);
// If we are unboxing double fields, and this is an in-object field, the
// property_storage and offset are already pointing to the double-valued
// field.
if (FLAG_unbox_double_fields) {
GotoIf(is_inobject, &property_and_offset_ready);
}
// Store the double value directly into the mutable HeapNumber.
TNode<Object> field = LoadObjectField(property_storage, offset);
CSA_ASSERT(this, IsHeapNumber(CAST(field)));
actual_property_storage = CAST(field);
actual_offset = IntPtrConstant(HeapNumber::kValueOffset);
Goto(&property_and_offset_ready);
BIND(&property_and_offset_ready);
property_storage = actual_property_storage.value();
offset = actual_offset.value();
}
// Do constant value check if necessary.
Label do_store(this);
GotoIfNot(Word32Equal(DecodeWord32<StoreHandler::KindBits>(handler_word),
Int32Constant(StoreHandler::kConstField)),
&do_store);
{
if (store_value_as_double) {
Label done(this);
TNode<Float64T> current_value =
LoadObjectField<Float64T>(property_storage, offset);
BranchIfSameNumberValue(current_value, *double_value, &done, miss);
BIND(&done);
Return(value);
} else {
TNode<Object> current_value = LoadObjectField(property_storage, offset);
GotoIfNot(TaggedEqual(current_value, value), miss);
Return(value);
}
}
BIND(&do_store);
// Do the store.
if (store_value_as_double) {
StoreObjectFieldNoWriteBarrier(property_storage, offset, *double_value);
} else if (representation.IsSmi()) {
TNode<Smi> value_smi = CAST(value);
StoreObjectFieldNoWriteBarrier(property_storage, offset, value_smi);
} else {
StoreObjectField(property_storage, offset, value);
}
Return(value);
}
TNode<PropertyArray> AccessorAssembler::ExtendPropertiesBackingStore(
TNode<HeapObject> object, TNode<IntPtrT> index) {
Comment("[ Extend storage");
TVARIABLE(HeapObject, var_properties);
TVARIABLE(Int32T, var_encoded_hash);
TVARIABLE(IntPtrT, var_length);
TNode<Object> properties =
LoadObjectField(object, JSObject::kPropertiesOrHashOffset);
Label if_smi_hash(this), if_property_array(this), extend_store(this);
Branch(TaggedIsSmi(properties), &if_smi_hash, &if_property_array);
BIND(&if_smi_hash);
{
TNode<Int32T> hash = SmiToInt32(CAST(properties));
TNode<Int32T> encoded_hash =
Word32Shl(hash, Int32Constant(PropertyArray::HashField::kShift));
var_encoded_hash = encoded_hash;
var_length = IntPtrConstant(0);
var_properties = EmptyFixedArrayConstant();
Goto(&extend_store);
}
BIND(&if_property_array);
{
var_properties = CAST(properties);
TNode<Int32T> length_and_hash_int32 = LoadAndUntagToWord32ObjectField(
var_properties.value(), PropertyArray::kLengthAndHashOffset);
var_encoded_hash = Word32And(
length_and_hash_int32, Int32Constant(PropertyArray::HashField::kMask));
var_length = ChangeInt32ToIntPtr(
Word32And(length_and_hash_int32,
Int32Constant(PropertyArray::LengthField::kMask)));
Goto(&extend_store);
}
BIND(&extend_store);
{
TVARIABLE(HeapObject, var_new_properties, var_properties.value());
Label done(this);
// Previous property deletion could have left behind unused backing store
// capacity even for a map that think it doesn't have any unused fields.
// Perform a bounds check to see if we actually have to grow the array.
GotoIf(UintPtrLessThan(index, ParameterToIntPtr(var_length.value())),
&done);
TNode<IntPtrT> delta = IntPtrConstant(JSObject::kFieldsAdded);
TNode<IntPtrT> new_capacity = IntPtrAdd(var_length.value(), delta);
// Grow properties array.
DCHECK(kMaxNumberOfDescriptors + JSObject::kFieldsAdded <
FixedArrayBase::GetMaxLengthForNewSpaceAllocation(PACKED_ELEMENTS));
// The size of a new properties backing store is guaranteed to be small
// enough that the new backing store will be allocated in new space.
CSA_ASSERT(this, IntPtrLessThan(new_capacity,
IntPtrConstant(kMaxNumberOfDescriptors +
JSObject::kFieldsAdded)));
TNode<PropertyArray> new_properties = AllocatePropertyArray(new_capacity);
var_new_properties = new_properties;
FillPropertyArrayWithUndefined(new_properties, var_length.value(),
new_capacity);
// |new_properties| is guaranteed to be in new space, so we can skip
// the write barrier.
CopyPropertyArrayValues(var_properties.value(), new_properties,
var_length.value(), SKIP_WRITE_BARRIER,
DestroySource::kYes);
TNode<Int32T> new_capacity_int32 = TruncateIntPtrToInt32(new_capacity);
TNode<Int32T> new_length_and_hash_int32 =
Word32Or(var_encoded_hash.value(), new_capacity_int32);
StoreObjectField(new_properties, PropertyArray::kLengthAndHashOffset,
SmiFromInt32(new_length_and_hash_int32));
StoreObjectField(object, JSObject::kPropertiesOrHashOffset, new_properties);
Comment("] Extend storage");
Goto(&done);
BIND(&done);
return CAST(var_new_properties.value());
}
}
void AccessorAssembler::EmitFastElementsBoundsCheck(
TNode<JSObject> object, TNode<FixedArrayBase> elements,
TNode<IntPtrT> intptr_index, TNode<BoolT> is_jsarray_condition,
Label* miss) {
TVARIABLE(IntPtrT, var_length);
Comment("Fast elements bounds check");
Label if_array(this), length_loaded(this, &var_length);
GotoIf(is_jsarray_condition, &if_array);
{
var_length = SmiUntag(LoadFixedArrayBaseLength(elements));
Goto(&length_loaded);
}
BIND(&if_array);
{
var_length = SmiUntag(LoadFastJSArrayLength(CAST(object)));
Goto(&length_loaded);
}
BIND(&length_loaded);
GotoIfNot(UintPtrLessThan(intptr_index, var_length.value()), miss);
}
void AccessorAssembler::EmitElementLoad(
TNode<HeapObject> object, TNode<Word32T> elements_kind,
TNode<IntPtrT> intptr_index, TNode<BoolT> is_jsarray_condition,
Label* if_hole, Label* rebox_double, TVariable<Float64T>* var_double_value,
Label* unimplemented_elements_kind, Label* out_of_bounds, Label* miss,
ExitPoint* exit_point, LoadAccessMode access_mode) {
Label if_typed_array(this), if_fast(this), if_fast_packed(this),
if_fast_holey(this), if_fast_double(this), if_fast_holey_double(this),
if_nonfast(this), if_dictionary(this);
Branch(Int32GreaterThan(elements_kind,
Int32Constant(LAST_ANY_NONEXTENSIBLE_ELEMENTS_KIND)),
&if_nonfast, &if_fast);
BIND(&if_fast);
{
TNode<FixedArrayBase> elements = LoadJSObjectElements(CAST(object));
EmitFastElementsBoundsCheck(CAST(object), elements, intptr_index,
is_jsarray_condition, out_of_bounds);
int32_t kinds[] = {
// Handled by if_fast_packed.
PACKED_SMI_ELEMENTS, PACKED_ELEMENTS, PACKED_NONEXTENSIBLE_ELEMENTS,
PACKED_SEALED_ELEMENTS, PACKED_FROZEN_ELEMENTS,
// Handled by if_fast_holey.
HOLEY_SMI_ELEMENTS, HOLEY_ELEMENTS, HOLEY_NONEXTENSIBLE_ELEMENTS,
HOLEY_FROZEN_ELEMENTS, HOLEY_SEALED_ELEMENTS,
// Handled by if_fast_double.
PACKED_DOUBLE_ELEMENTS,
// Handled by if_fast_holey_double.
HOLEY_DOUBLE_ELEMENTS};
Label* labels[] = {// FAST_{SMI,}_ELEMENTS
&if_fast_packed, &if_fast_packed, &if_fast_packed,
&if_fast_packed, &if_fast_packed,
// FAST_HOLEY_{SMI,}_ELEMENTS
&if_fast_holey, &if_fast_holey, &if_fast_holey,
&if_fast_holey, &if_fast_holey,
// PACKED_DOUBLE_ELEMENTS
&if_fast_double,
// HOLEY_DOUBLE_ELEMENTS
&if_fast_holey_double};
Switch(elements_kind, unimplemented_elements_kind, kinds, labels,
arraysize(kinds));
BIND(&if_fast_packed);
{
Comment("fast packed elements");
exit_point->Return(
access_mode == LoadAccessMode::kHas
? TrueConstant()
: UnsafeLoadFixedArrayElement(CAST(elements), intptr_index));
}
BIND(&if_fast_holey);
{
Comment("fast holey elements");
TNode<Object> element =
UnsafeLoadFixedArrayElement(CAST(elements), intptr_index);
GotoIf(TaggedEqual(element, TheHoleConstant()), if_hole);
exit_point->Return(access_mode == LoadAccessMode::kHas ? TrueConstant()
: element);
}
BIND(&if_fast_double);
{
Comment("packed double elements");
if (access_mode == LoadAccessMode::kHas) {
exit_point->Return(TrueConstant());
} else {
*var_double_value =
LoadFixedDoubleArrayElement(CAST(elements), intptr_index);
Goto(rebox_double);
}
}
BIND(&if_fast_holey_double);
{
Comment("holey double elements");
TNode<Float64T> value =
LoadFixedDoubleArrayElement(CAST(elements), intptr_index, if_hole);
if (access_mode == LoadAccessMode::kHas) {
exit_point->Return(TrueConstant());
} else {
*var_double_value = value;
Goto(rebox_double);
}
}
}
BIND(&if_nonfast);
{
STATIC_ASSERT(LAST_ELEMENTS_KIND == LAST_FIXED_TYPED_ARRAY_ELEMENTS_KIND);
GotoIf(Int32GreaterThanOrEqual(
elements_kind,
Int32Constant(FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND)),
&if_typed_array);
GotoIf(Word32Equal(elements_kind, Int32Constant(DICTIONARY_ELEMENTS)),
&if_dictionary);
Goto(unimplemented_elements_kind);
BIND(&if_dictionary);
{
Comment("dictionary elements");
if (Is64()) {
GotoIf(UintPtrLessThan(IntPtrConstant(JSArray::kMaxArrayIndex),
intptr_index),
out_of_bounds);
} else {
GotoIf(IntPtrLessThan(intptr_index, IntPtrConstant(0)), out_of_bounds);
}
TNode<FixedArrayBase> elements = LoadJSObjectElements(CAST(object));
TNode<Object> value = BasicLoadNumberDictionaryElement(
CAST(elements), intptr_index, miss, if_hole);
exit_point->Return(access_mode == LoadAccessMode::kHas ? TrueConstant()
: value);
}
BIND(&if_typed_array);
{
Comment("typed elements");
// Check if buffer has been detached.
TNode<JSArrayBuffer> buffer = LoadJSArrayBufferViewBuffer(CAST(object));
GotoIf(IsDetachedBuffer(buffer), miss);
// Bounds check.
TNode<UintPtrT> length = LoadJSTypedArrayLength(CAST(object));
GotoIfNot(UintPtrLessThan(intptr_index, length), out_of_bounds);
if (access_mode == LoadAccessMode::kHas) {
exit_point->Return(TrueConstant());
} else {
TNode<RawPtrT> data_ptr = LoadJSTypedArrayDataPtr(CAST(object));
Label uint8_elements(this), int8_elements(this), uint16_elements(this),
int16_elements(this), uint32_elements(this), int32_elements(this),
float32_elements(this), float64_elements(this),
bigint64_elements(this), biguint64_elements(this);
Label* elements_kind_labels[] = {
&uint8_elements, &uint8_elements, &int8_elements,
&uint16_elements, &int16_elements, &uint32_elements,
&int32_elements, &float32_elements, &float64_elements,
&bigint64_elements, &biguint64_elements};
int32_t elements_kinds[] = {
UINT8_ELEMENTS, UINT8_CLAMPED_ELEMENTS, INT8_ELEMENTS,
UINT16_ELEMENTS, INT16_ELEMENTS, UINT32_ELEMENTS,
INT32_ELEMENTS, FLOAT32_ELEMENTS, FLOAT64_ELEMENTS,
BIGINT64_ELEMENTS, BIGUINT64_ELEMENTS};
const size_t kTypedElementsKindCount =
LAST_FIXED_TYPED_ARRAY_ELEMENTS_KIND -
FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND + 1;
DCHECK_EQ(kTypedElementsKindCount, arraysize(elements_kinds));
DCHECK_EQ(kTypedElementsKindCount, arraysize(elements_kind_labels));
Switch(elements_kind, miss, elements_kinds, elements_kind_labels,
kTypedElementsKindCount);
BIND(&uint8_elements);
{
Comment("UINT8_ELEMENTS"); // Handles UINT8_CLAMPED_ELEMENTS too.
TNode<Int32T> element = Load<Uint8T>(data_ptr, intptr_index);
exit_point->Return(SmiFromInt32(element));
}
BIND(&int8_elements);
{
Comment("INT8_ELEMENTS");
TNode<Int32T> element = Load<Int8T>(data_ptr, intptr_index);
exit_point->Return(SmiFromInt32(element));
}
BIND(&uint16_elements);
{
Comment("UINT16_ELEMENTS");
TNode<IntPtrT> index = WordShl(intptr_index, IntPtrConstant(1));
TNode<Int32T> element = Load<Uint16T>(data_ptr, index);
exit_point->Return(SmiFromInt32(element));
}
BIND(&int16_elements);
{
Comment("INT16_ELEMENTS");
TNode<IntPtrT> index = WordShl(intptr_index, IntPtrConstant(1));
TNode<Int32T> element = Load<Int16T>(data_ptr, index);
exit_point->Return(SmiFromInt32(element));
}
BIND(&uint32_elements);
{
Comment("UINT32_ELEMENTS");
TNode<IntPtrT> index = WordShl(intptr_index, IntPtrConstant(2));
TNode<Uint32T> element = Load<Uint32T>(data_ptr, index);
exit_point->Return(ChangeUint32ToTagged(element));
}
BIND(&int32_elements);
{
Comment("INT32_ELEMENTS");
TNode<IntPtrT> index = WordShl(intptr_index, IntPtrConstant(2));
TNode<Int32T> element = Load<Int32T>(data_ptr, index);
exit_point->Return(ChangeInt32ToTagged(element));
}
BIND(&float32_elements);
{
Comment("FLOAT32_ELEMENTS");
TNode<IntPtrT> index = WordShl(intptr_index, IntPtrConstant(2));
TNode<Float32T> element = Load<Float32T>(data_ptr, index);
*var_double_value = ChangeFloat32ToFloat64(element);
Goto(rebox_double);
}
BIND(&float64_elements);
{
Comment("FLOAT64_ELEMENTS");
TNode<IntPtrT> index = WordShl(intptr_index, IntPtrConstant(3));
TNode<Float64T> element = Load<Float64T>(data_ptr, index);
*var_double_value = element;
Goto(rebox_double);
}
BIND(&bigint64_elements);
{
Comment("BIGINT64_ELEMENTS");
exit_point->Return(LoadFixedTypedArrayElementAsTagged(
data_ptr, Unsigned(intptr_index), BIGINT64_ELEMENTS));
}
BIND(&biguint64_elements);
{
Comment("BIGUINT64_ELEMENTS");
exit_point->Return(LoadFixedTypedArrayElementAsTagged(
data_ptr, Unsigned(intptr_index), BIGUINT64_ELEMENTS));
}
}
}
}
}
void AccessorAssembler::InvalidateValidityCellIfPrototype(
TNode<Map> map, base::Optional<TNode<Uint32T>> maybe_bitfield3) {
Label is_prototype(this), cont(this);
TNode<Uint32T> bitfield3;
if (bitfield3) {
bitfield3 = maybe_bitfield3.value();
} else {
bitfield3 = LoadMapBitField3(map);
}
Branch(IsSetWord32(bitfield3, Map::Bits3::IsPrototypeMapBit::kMask),
&is_prototype, &cont);
BIND(&is_prototype);
{
TNode<Object> maybe_prototype_info =
LoadObjectField(map, Map::kTransitionsOrPrototypeInfoOffset);
// If there's no prototype info then there's nothing to invalidate.
GotoIf(TaggedIsSmi(maybe_prototype_info), &cont);
TNode<ExternalReference> function = ExternalConstant(
ExternalReference::invalidate_prototype_chains_function());
CallCFunction(function, MachineType::AnyTagged(),
std::make_pair(MachineType::AnyTagged(), map));
Goto(&cont);
}
BIND(&cont);
}
void AccessorAssembler::GenericElementLoad(
TNode<HeapObject> lookup_start_object, TNode<Map> lookup_start_object_map,
TNode<Int32T> lookup_start_object_instance_type, TNode<IntPtrT> index,
Label* slow) {
Comment("integer index");
ExitPoint direct_exit(this);
Label if_custom(this), if_element_hole(this), if_oob(this);
Label return_undefined(this);
// Receivers requiring non-standard element accesses (interceptors, access
// checks, strings and string wrappers, proxies) are handled in the runtime.
GotoIf(
IsCustomElementsReceiverInstanceType(lookup_start_object_instance_type),
&if_custom);
TNode<Int32T> elements_kind = LoadMapElementsKind(lookup_start_object_map);
TNode<BoolT> is_jsarray_condition =
IsJSArrayInstanceType(lookup_start_object_instance_type);
TVARIABLE(Float64T, var_double_value);
Label rebox_double(this, &var_double_value);
// Unimplemented elements kinds fall back to a runtime call.
Label* unimplemented_elements_kind = slow;
IncrementCounter(isolate()->counters()->ic_keyed_load_generic_smi(), 1);
EmitElementLoad(lookup_start_object, elements_kind, index,
is_jsarray_condition, &if_element_hole, &rebox_double,
&var_double_value, unimplemented_elements_kind, &if_oob, slow,
&direct_exit);
BIND(&rebox_double);
Return(AllocateHeapNumberWithValue(var_double_value.value()));
BIND(&if_oob);
{
Comment("out of bounds");
// On TypedArrays, all OOB loads (positive and negative) return undefined
// without ever checking the prototype chain.
GotoIf(IsJSTypedArrayInstanceType(lookup_start_object_instance_type),
&return_undefined);
// Positive OOB indices within JSArray index range are effectively the same
// as hole loads. Larger keys and negative keys are named loads.
if (Is64()) {
Branch(UintPtrLessThanOrEqual(index,
IntPtrConstant(JSArray::kMaxArrayIndex)),
&if_element_hole, slow);
} else {
Branch(IntPtrLessThan(index, IntPtrConstant(0)), slow, &if_element_hole);
}
}
BIND(&if_element_hole);
{
Comment("found the hole");
BranchIfPrototypesHaveNoElements(lookup_start_object_map, &return_undefined,
slow);
}
BIND(&if_custom);
{
Comment("check if string");
GotoIfNot(IsStringInstanceType(lookup_start_object_instance_type), slow);
Comment("load string character");
TNode<IntPtrT> length = LoadStringLengthAsWord(CAST(lookup_start_object));
GotoIfNot(UintPtrLessThan(index, length), slow);
IncrementCounter(isolate()->counters()->ic_keyed_load_generic_smi(), 1);
TailCallBuiltin(Builtins::kStringCharAt, NoContextConstant(),
lookup_start_object, index);
}
BIND(&return_undefined);
Return(UndefinedConstant());
}
void AccessorAssembler::GenericPropertyLoad(
TNode<HeapObject> lookup_start_object, TNode<Map> lookup_start_object_map,
TNode<Int32T> lookup_start_object_instance_type, const LoadICParameters* p,
Label* slow, UseStubCache use_stub_cache) {
DCHECK_EQ(lookup_start_object, p->lookup_start_object());
ExitPoint direct_exit(this);
Comment("key is unique name");
Label if_found_on_lookup_start_object(this), if_property_dictionary(this),
lookup_prototype_chain(this), special_receiver(this);
TVARIABLE(Uint32T, var_details);
TVARIABLE(Object, var_value);
TNode<Name> name = CAST(p->name());
// Receivers requiring non-standard accesses (interceptors, access
// checks, strings and string wrappers) are handled in the runtime.
GotoIf(IsSpecialReceiverInstanceType(lookup_start_object_instance_type),
&special_receiver);
// Check if the lookup_start_object has fast or slow properties.
TNode<Uint32T> bitfield3 = LoadMapBitField3(lookup_start_object_map);
GotoIf(IsSetWord32<Map::Bits3::IsDictionaryMapBit>(bitfield3),
&if_property_dictionary);
// Try looking up the property on the lookup_start_object; if unsuccessful,
// look for a handler in the stub cache.
TNode<DescriptorArray> descriptors =
LoadMapDescriptors(lookup_start_object_map);
Label if_descriptor_found(this), try_stub_cache(this);
TVARIABLE(IntPtrT, var_name_index);
Label* notfound = use_stub_cache == kUseStubCache ? &try_stub_cache
: &lookup_prototype_chain;
DescriptorLookup(name, descriptors, bitfield3, &if_descriptor_found,
&var_name_index, notfound);
BIND(&if_descriptor_found);
{
LoadPropertyFromFastObject(lookup_start_object, lookup_start_object_map,
descriptors, var_name_index.value(),
&var_details, &var_value);
Goto(&if_found_on_lookup_start_object);
}
if (use_stub_cache == kUseStubCache) {
DCHECK_EQ(lookup_start_object, p->receiver_and_lookup_start_object());
Label stub_cache(this);
BIND(&try_stub_cache);
// When there is no feedback vector don't use stub cache.
GotoIfNot(IsUndefined(p->vector()), &stub_cache);
// Fall back to the slow path for private symbols.
Branch(IsPrivateSymbol(name), slow, &lookup_prototype_chain);
BIND(&stub_cache);
Comment("stub cache probe for fast property load");
TVARIABLE(MaybeObject, var_handler);
Label found_handler(this, &var_handler), stub_cache_miss(this);
TryProbeStubCache(isolate()->load_stub_cache(), lookup_start_object, name,
&found_handler, &var_handler, &stub_cache_miss);
BIND(&found_handler);
{
LazyLoadICParameters lazy_p(p);
HandleLoadICHandlerCase(&lazy_p, CAST(var_handler.value()),
&stub_cache_miss, &direct_exit);
}
BIND(&stub_cache_miss);
{
// TODO(jkummerow): Check if the property exists on the prototype
// chain. If it doesn't, then there's no point in missing.
Comment("KeyedLoadGeneric_miss");
TailCallRuntime(Runtime::kKeyedLoadIC_Miss, p->context(),
p->receiver_and_lookup_start_object(), name, p->slot(),
p->vector());
}
}
BIND(&if_property_dictionary);
{
Comment("dictionary property load");
// We checked for LAST_CUSTOM_ELEMENTS_RECEIVER before, which rules out
// seeing global objects here (which would need special handling).
TVARIABLE(IntPtrT, var_name_index);
Label dictionary_found(this, &var_name_index);
TNode<NameDictionary> properties =
CAST(LoadSlowProperties(CAST(lookup_start_object)));
NameDictionaryLookup<NameDictionary>(properties, name, &dictionary_found,
&var_name_index,
&lookup_prototype_chain);
BIND(&dictionary_found);
{
LoadPropertyFromNameDictionary(properties, var_name_index.value(),
&var_details, &var_value);
Goto(&if_found_on_lookup_start_object);
}
}
BIND(&if_found_on_lookup_start_object);
{
TNode<Object> value = CallGetterIfAccessor(
var_value.value(), lookup_start_object, var_details.value(),
p->context(), p->receiver(), slow);
IncrementCounter(isolate()->counters()->ic_keyed_load_generic_symbol(), 1);
Return(value);
}
BIND(&lookup_prototype_chain);
{
TVARIABLE(Map, var_holder_map);
TVARIABLE(Int32T, var_holder_instance_type);
Label return_undefined(this), is_private_symbol(this);
Label loop(this, {&var_holder_map, &var_holder_instance_type});
var_holder_map = lookup_start_object_map;
var_holder_instance_type = lookup_start_object_instance_type;
GotoIf(IsPrivateSymbol(name), &is_private_symbol);
Goto(&loop);
BIND(&loop);
{
// Bailout if it can be an integer indexed exotic case.
GotoIf(InstanceTypeEqual(var_holder_instance_type.value(),
JS_TYPED_ARRAY_TYPE),
slow);
TNode<HeapObject> proto = LoadMapPrototype(var_holder_map.value());
GotoIf(TaggedEqual(proto, NullConstant()), &return_undefined);
TNode<Map> proto_map = LoadMap(proto);
TNode<Uint16T> proto_instance_type = LoadMapInstanceType(proto_map);
var_holder_map = proto_map;
var_holder_instance_type = proto_instance_type;
Label next_proto(this), return_value(this, &var_value), goto_slow(this);
TryGetOwnProperty(p->context(), p->receiver(), CAST(proto), proto_map,
proto_instance_type, name, &return_value, &var_value,
&next_proto, &goto_slow);
// This trampoline and the next are required to appease Turbofan's
// variable merging.
BIND(&next_proto);
Goto(&loop);
BIND(&goto_slow);
Goto(slow);
BIND(&return_value);
Return(var_value.value());
}
BIND(&is_private_symbol);
{
CSA_ASSERT(this, IsPrivateSymbol(name));
// For private names that don't exist on the receiver, we bail
// to the runtime to throw. For private symbols, we just return
// undefined.
Branch(IsPrivateName(CAST(name)), slow, &return_undefined);
}
BIND(&return_undefined);
Return(UndefinedConstant());
}
BIND(&special_receiver);
{
// TODO(jkummerow): Consider supporting JSModuleNamespace.
GotoIfNot(
InstanceTypeEqual(lookup_start_object_instance_type, JS_PROXY_TYPE),
slow);
// Private field/symbol lookup is not supported.
GotoIf(IsPrivateSymbol(name), slow);
direct_exit.ReturnCallStub(
Builtins::CallableFor(isolate(), Builtins::kProxyGetProperty),
p->context(), lookup_start_object, name, p->receiver(),
SmiConstant(OnNonExistent::kReturnUndefined));
}
}
//////////////////// Stub cache access helpers.
enum AccessorAssembler::StubCacheTable : int {
kPrimary = static_cast<int>(StubCache::kPrimary),
kSecondary = static_cast<int>(StubCache::kSecondary)
};
TNode<IntPtrT> AccessorAssembler::StubCachePrimaryOffset(TNode<Name> name,
TNode<Map> map) {
// Compute the hash of the name (use entire hash field).
TNode<Uint32T> hash_field = LoadNameHashField(name);
CSA_ASSERT(this,
Word32Equal(Word32And(hash_field,
Int32Constant(Name::kHashNotComputedMask)),
Int32Constant(0)));
// Using only the low bits in 64-bit mode is unlikely to increase the
// risk of collision even if the heap is spread over an area larger than
// 4Gb (and not at all if it isn't).
TNode<IntPtrT> map_word = BitcastTaggedToWord(map);
TNode<Int32T> map32 = TruncateIntPtrToInt32(UncheckedCast<IntPtrT>(
WordXor(map_word, WordShr(map_word, StubCache::kMapKeyShift))));
// Base the offset on a simple combination of name and map.
TNode<Word32T> hash = Int32Add(hash_field, map32);
uint32_t mask = (StubCache::kPrimaryTableSize - 1)
<< StubCache::kCacheIndexShift;
TNode<UintPtrT> result =
ChangeUint32ToWord(Word32And(hash, Int32Constant(mask)));
return Signed(result);
}
TNode<IntPtrT> AccessorAssembler::StubCacheSecondaryOffset(
TNode<Name> name, TNode<IntPtrT> seed) {
// See v8::internal::StubCache::SecondaryOffset().
// Use the seed from the primary cache in the secondary cache.
TNode<Int32T> name32 = TruncateIntPtrToInt32(BitcastTaggedToWord(name));
TNode<Int32T> hash = Int32Sub(TruncateIntPtrToInt32(seed), name32);
hash = Int32Add(hash, Int32Constant(StubCache::kSecondaryMagic));
int32_t mask = (StubCache::kSecondaryTableSize - 1)
<< StubCache::kCacheIndexShift;
TNode<UintPtrT> result =
ChangeUint32ToWord(Word32And(hash, Int32Constant(mask)));
return Signed(result);
}
void AccessorAssembler::TryProbeStubCacheTable(
StubCache* stub_cache, StubCacheTable table_id, TNode<IntPtrT> entry_offset,
TNode<Object> name, TNode<Map> map, Label* if_handler,
TVariable<MaybeObject>* var_handler, Label* if_miss) {
StubCache::Table table = static_cast<StubCache::Table>(table_id);
// The {table_offset} holds the entry offset times four (due to masking
// and shifting optimizations).
const int kMultiplier =
sizeof(StubCache::Entry) >> StubCache::kCacheIndexShift;
entry_offset = IntPtrMul(entry_offset, IntPtrConstant(kMultiplier));
TNode<ExternalReference> key_base = ExternalConstant(
ExternalReference::Create(stub_cache->key_reference(table)));
// Check that the key in the entry matches the name.
DCHECK_EQ(0, offsetof(StubCache::Entry, key));
TNode<HeapObject> cached_key =
CAST(Load(MachineType::TaggedPointer(), key_base, entry_offset));
GotoIf(TaggedNotEqual(name, cached_key), if_miss);
// Check that the map in the entry matches.
TNode<Object> cached_map = Load<Object>(
key_base,
IntPtrAdd(entry_offset, IntPtrConstant(offsetof(StubCache::Entry, map))));
GotoIf(TaggedNotEqual(map, cached_map), if_miss);
TNode<MaybeObject> handler = ReinterpretCast<MaybeObject>(
Load(MachineType::AnyTagged(), key_base,
IntPtrAdd(entry_offset,
IntPtrConstant(offsetof(StubCache::Entry, value)))));
// We found the handler.
*var_handler = handler;
Goto(if_handler);
}
void AccessorAssembler::TryProbeStubCache(StubCache* stub_cache,
TNode<Object> lookup_start_object,
TNode<Name> name, Label* if_handler,
TVariable<MaybeObject>* var_handler,
Label* if_miss) {
Label try_secondary(this), miss(this);
Counters* counters = isolate()->counters();
IncrementCounter(counters->megamorphic_stub_cache_probes(), 1);
// Check that the {lookup_start_object} isn't a smi.
GotoIf(TaggedIsSmi(lookup_start_object), &miss);
TNode<Map> lookup_start_object_map = LoadMap(CAST(lookup_start_object));
// Probe the primary table.
TNode<IntPtrT> primary_offset =
StubCachePrimaryOffset(name, lookup_start_object_map);
TryProbeStubCacheTable(stub_cache, kPrimary, primary_offset, name,
lookup_start_object_map, if_handler, var_handler,
&try_secondary);
BIND(&try_secondary);
{
// Probe the secondary table.
TNode<IntPtrT> secondary_offset =
StubCacheSecondaryOffset(name, primary_offset);
TryProbeStubCacheTable(stub_cache, kSecondary, secondary_offset, name,
lookup_start_object_map, if_handler, var_handler,
&miss);
}
BIND(&miss);
{
IncrementCounter(counters->megamorphic_stub_cache_misses(), 1);
Goto(if_miss);
}
}
//////////////////// Entry points into private implementation (one per stub).
void AccessorAssembler::LoadIC_BytecodeHandler(const LazyLoadICParameters* p,
ExitPoint* exit_point) {
// Must be kept in sync with LoadIC.
// This function is hand-tuned to omit frame construction for common cases,
// e.g.: monomorphic field and constant loads through smi handlers.
// Polymorphic ICs with a hit in the first two entries also omit frames.
// TODO(jgruber): Frame omission is fragile and can be affected by minor
// changes in control flow and logic. We currently have no way of ensuring
// that no frame is constructed, so it's easy to break this optimization by
// accident.
Label stub_call(this, Label::kDeferred), miss(this, Label::kDeferred),
no_feedback(this, Label::kDeferred);
GotoIf(IsUndefined(p->vector()), &no_feedback);
TNode<Map> lookup_start_object_map =
LoadReceiverMap(p->receiver_and_lookup_start_object());
GotoIf(IsDeprecatedMap(lookup_start_object_map), &miss);
// Inlined fast path.
{
Comment("LoadIC_BytecodeHandler_fast");
TVARIABLE(MaybeObject, var_handler);
Label try_polymorphic(this), if_handler(this, &var_handler);
TNode<MaybeObject> feedback = TryMonomorphicCase(
p->slot(), CAST(p->vector()), lookup_start_object_map, &if_handler,
&var_handler, &try_polymorphic);
BIND(&if_handler);
HandleLoadICHandlerCase(p, CAST(var_handler.value()), &miss, exit_point);
BIND(&try_polymorphic);
{
TNode<HeapObject> strong_feedback =
GetHeapObjectIfStrong(feedback, &miss);
GotoIfNot(IsWeakFixedArrayMap(LoadMap(strong_feedback)), &stub_call);
HandlePolymorphicCase(lookup_start_object_map, CAST(strong_feedback),
&if_handler, &var_handler, &miss);
}
}
BIND(&stub_call);
{
Comment("LoadIC_BytecodeHandler_noninlined");
// Call into the stub that implements the non-inlined parts of LoadIC.
Callable ic =
Builtins::CallableFor(isolate(), Builtins::kLoadIC_Noninlined);
TNode<Code> code_target = HeapConstant(ic.code());
exit_point->ReturnCallStub(ic.descriptor(), code_target, p->context(),
p->receiver_and_lookup_start_object(), p->name(),
p->slot(), p->vector());
}
BIND(&no_feedback);
{
Comment("LoadIC_BytecodeHandler_nofeedback");
// Call into the stub that implements the non-inlined parts of LoadIC.
exit_point->ReturnCallStub(
Builtins::CallableFor(isolate(), Builtins::kLoadIC_NoFeedback),
p->context(), p->receiver(), p->name(),
SmiConstant(FeedbackSlotKind::kLoadProperty));
}
BIND(&miss);
{
Comment("LoadIC_BytecodeHandler_miss");
exit_point->ReturnCallRuntime(Runtime::kLoadIC_Miss, p->context(),
p->receiver(), p->name(), p->slot(),
p->vector());
}
}
void AccessorAssembler::LoadIC(const LoadICParameters* p) {
// Must be kept in sync with LoadIC_BytecodeHandler.
ExitPoint direct_exit(this);
TVARIABLE(MaybeObject, var_handler);
Label if_handler(this, &var_handler), non_inlined(this, Label::kDeferred),
try_polymorphic(this), miss(this, Label::kDeferred);
TNode<Map> lookup_start_object_map =
LoadReceiverMap(p->receiver_and_lookup_start_object());
GotoIf(IsDeprecatedMap(lookup_start_object_map), &miss);
// Check monomorphic case.
TNode<MaybeObject> feedback =
TryMonomorphicCase(p->slot(), CAST(p->vector()), lookup_start_object_map,
&if_handler, &var_handler, &try_polymorphic);
BIND(&if_handler);
{
LazyLoadICParameters lazy_p(p);
HandleLoadICHandlerCase(&lazy_p, CAST(var_handler.value()), &miss,
&direct_exit);
}
BIND(&try_polymorphic);
TNode<HeapObject> strong_feedback = GetHeapObjectIfStrong(feedback, &miss);
{
// Check polymorphic case.
Comment("LoadIC_try_polymorphic");
GotoIfNot(IsWeakFixedArrayMap(LoadMap(strong_feedback)), &non_inlined);
HandlePolymorphicCase(lookup_start_object_map, CAST(strong_feedback),
&if_handler, &var_handler, &miss);
}
BIND(&non_inlined);
{
LoadIC_Noninlined(p, lookup_start_object_map, strong_feedback, &var_handler,
&if_handler, &miss, &direct_exit);
}
BIND(&miss);
direct_exit.ReturnCallRuntime(Runtime::kLoadIC_Miss, p->context(),
p->receiver_and_lookup_start_object(),
p->name(), p->slot(), p->vector());
}
void AccessorAssembler::LoadSuperIC(const LoadICParameters* p) {
ExitPoint direct_exit(this);
TVARIABLE(MaybeObject, var_handler);
Label if_handler(this, &var_handler), no_feedback(this),
non_inlined(this, Label::kDeferred), try_polymorphic(this),
miss(this, Label::kDeferred);
GotoIf(IsUndefined(p->vector()), &no_feedback);
// The lookup start object cannot be a SMI, since it's the home object's
// prototype, and it's not possible to set SMIs as prototypes.
TNode<Map> lookup_start_object_map =
LoadReceiverMap(p->lookup_start_object());
GotoIf(IsDeprecatedMap(lookup_start_object_map), &miss);
TNode<MaybeObject> feedback =
TryMonomorphicCase(p->slot(), CAST(p->vector()), lookup_start_object_map,
&if_handler, &var_handler, &try_polymorphic);
BIND(&if_handler);
{
LazyLoadICParameters lazy_p(p);
HandleLoadICHandlerCase(&lazy_p, CAST(var_handler.value()), &miss,
&direct_exit);
}
BIND(&no_feedback);
{ LoadSuperIC_NoFeedback(p); }
BIND(&try_polymorphic);
TNode<HeapObject> strong_feedback = GetHeapObjectIfStrong(feedback, &miss);
{
Comment("LoadSuperIC_try_polymorphic");
GotoIfNot(IsWeakFixedArrayMap(LoadMap(strong_feedback)), &non_inlined);
HandlePolymorphicCase(lookup_start_object_map, CAST(strong_feedback),
&if_handler, &var_handler, &miss);
}
BIND(&non_inlined);
{
// LoadIC_Noninlined can be used here, since it handles the
// lookup_start_object != receiver case gracefully.
LoadIC_Noninlined(p, lookup_start_object_map, strong_feedback, &var_handler,
&if_handler, &miss, &direct_exit);
}
BIND(&miss);
direct_exit.ReturnCallRuntime(Runtime::kLoadWithReceiverIC_Miss, p->context(),
p->receiver(), p->lookup_start_object(),
p->name(), p->slot(), p->vector());
}
void AccessorAssembler::LoadIC_Noninlined(const LoadICParameters* p,
TNode<Map> lookup_start_object_map,
TNode<HeapObject> feedback,
TVariable<MaybeObject>* var_handler,
Label* if_handler, Label* miss,
ExitPoint* exit_point) {
// Neither deprecated map nor monomorphic. These cases are handled in the
// bytecode handler.
CSA_ASSERT(this, Word32BinaryNot(IsDeprecatedMap(lookup_start_object_map)));
CSA_ASSERT(this, TaggedNotEqual(lookup_start_object_map, feedback));
CSA_ASSERT(this, Word32BinaryNot(IsWeakFixedArrayMap(LoadMap(feedback))));
DCHECK_EQ(MachineRepresentation::kTagged, var_handler->rep());
{
// Check megamorphic case.
GotoIfNot(TaggedEqual(feedback, MegamorphicSymbolConstant()), miss);
TryProbeStubCache(isolate()->load_stub_cache(), p->lookup_start_object(),
CAST(p->name()), if_handler, var_handler, miss);
}
}
void AccessorAssembler::LoadIC_NoFeedback(const LoadICParameters* p,
TNode<Smi> ic_kind) {
Label miss(this, Label::kDeferred);
TNode<Object> lookup_start_object = p->receiver_and_lookup_start_object();
GotoIf(TaggedIsSmi(lookup_start_object), &miss);
TNode<Map> lookup_start_object_map = LoadMap(CAST(lookup_start_object));
GotoIf(IsDeprecatedMap(lookup_start_object_map), &miss);
TNode<Uint16T> instance_type = LoadMapInstanceType(lookup_start_object_map);
{
// Special case for Function.prototype load, because it's very common
// for ICs that are only executed once (MyFunc.prototype.foo = ...).
Label not_function_prototype(this, Label::kDeferred);
GotoIfNot(InstanceTypeEqual(instance_type, JS_FUNCTION_TYPE),
&not_function_prototype);
GotoIfNot(IsPrototypeString(p->name()), &not_function_prototype);
GotoIfPrototypeRequiresRuntimeLookup(CAST(lookup_start_object),
lookup_start_object_map,
&not_function_prototype);
Return(LoadJSFunctionPrototype(CAST(lookup_start_object), &miss));
BIND(&not_function_prototype);
}
GenericPropertyLoad(CAST(lookup_start_object), lookup_start_object_map,
instance_type, p, &miss, kDontUseStubCache);
BIND(&miss);
{
TailCallRuntime(Runtime::kLoadNoFeedbackIC_Miss, p->context(),
p->receiver(), p->name(), ic_kind);
}
}
void AccessorAssembler::LoadSuperIC_NoFeedback(const LoadICParameters* p) {
Label miss(this, Label::kDeferred);
TNode<Object> lookup_start_object = p->lookup_start_object();
// The lookup start object cannot be a SMI, since it's the home object's
// prototype, and it's not possible to set SMIs as prototypes.
TNode<Map> lookup_start_object_map = LoadMap(CAST(lookup_start_object));
GotoIf(IsDeprecatedMap(lookup_start_object_map), &miss);
TNode<Uint16T> instance_type = LoadMapInstanceType(lookup_start_object_map);
GenericPropertyLoad(CAST(lookup_start_object), lookup_start_object_map,
instance_type, p, &miss, kDontUseStubCache);
BIND(&miss);
{
TailCallRuntime(Runtime::kLoadWithReceiverNoFeedbackIC_Miss, p->context(),
p->receiver(), p->lookup_start_object(), p->name());
}
}
void AccessorAssembler::LoadGlobalIC(TNode<HeapObject> maybe_feedback_vector,
const LazyNode<TaggedIndex>& lazy_slot,
const LazyNode<Context>& lazy_context,
const LazyNode<Name>& lazy_name,
TypeofMode typeof_mode,
ExitPoint* exit_point) {
Label try_handler(this, Label::kDeferred), miss(this, Label::kDeferred),
no_feedback(this, Label::kDeferred);
GotoIf(IsUndefined(maybe_feedback_vector), &no_feedback);
{
TNode<TaggedIndex> slot = lazy_slot();
{
TNode<FeedbackVector> vector = CAST(maybe_feedback_vector);
LoadGlobalIC_TryPropertyCellCase(vector, slot, lazy_context, exit_point,
&try_handler, &miss);
BIND(&try_handler);
LoadGlobalIC_TryHandlerCase(vector, slot, lazy_context, lazy_name,
typeof_mode, exit_point, &miss);
}
BIND(&miss);
{
Comment("LoadGlobalIC_MissCase");
TNode<Context> context = lazy_context();
TNode<Name> name = lazy_name();
exit_point->ReturnCallRuntime(Runtime::kLoadGlobalIC_Miss, context, name,
slot, maybe_feedback_vector,
SmiConstant(typeof_mode));
}
}
BIND(&no_feedback);
{
int ic_kind =
static_cast<int>((typeof_mode == INSIDE_TYPEOF)
? FeedbackSlotKind::kLoadGlobalInsideTypeof
: FeedbackSlotKind::kLoadGlobalNotInsideTypeof);
exit_point->ReturnCallStub(
Builtins::CallableFor(isolate(), Builtins::kLoadGlobalIC_NoFeedback),
lazy_context(), lazy_name(), SmiConstant(ic_kind));
}
}
void AccessorAssembler::LoadGlobalIC_TryPropertyCellCase(
TNode<FeedbackVector> vector, TNode<TaggedIndex> slot,
const LazyNode<Context>& lazy_context, ExitPoint* exit_point,
Label* try_handler, Label* miss) {
Comment("LoadGlobalIC_TryPropertyCellCase");
Label if_lexical_var(this), if_property_cell(this);
TNode<MaybeObject> maybe_weak_ref = LoadFeedbackVectorSlot(vector, slot);
Branch(TaggedIsSmi(maybe_weak_ref), &if_lexical_var, &if_property_cell);
BIND(&if_property_cell);
{
// Load value or try handler case if the weak reference is cleared.
CSA_ASSERT(this, IsWeakOrCleared(maybe_weak_ref));
TNode<PropertyCell> property_cell =
CAST(GetHeapObjectAssumeWeak(maybe_weak_ref, try_handler));
TNode<Object> value =
LoadObjectField(property_cell, PropertyCell::kValueOffset);
GotoIf(TaggedEqual(value, TheHoleConstant()), miss);
exit_point->Return(value);
}
BIND(&if_lexical_var);
{
Comment("Load lexical variable");
TNode<IntPtrT> lexical_handler = SmiUntag(CAST(maybe_weak_ref));
TNode<IntPtrT> context_index =
Signed(DecodeWord<FeedbackNexus::ContextIndexBits>(lexical_handler));
TNode<IntPtrT> slot_index =
Signed(DecodeWord<FeedbackNexus::SlotIndexBits>(lexical_handler));
TNode<Context> context = lazy_context();
TNode<Context> script_context = LoadScriptContext(context, context_index);
TNode<Object> result = LoadContextElement(script_context, slot_index);
exit_point->Return(result);
}
}
void AccessorAssembler::LoadGlobalIC_TryHandlerCase(
TNode<FeedbackVector> vector, TNode<TaggedIndex> slot,
const LazyNode<Context>& lazy_context, const LazyNode<Name>& lazy_name,
TypeofMode typeof_mode, ExitPoint* exit_point, Label* miss) {
Comment("LoadGlobalIC_TryHandlerCase");
Label call_handler(this), non_smi(this);
TNode<MaybeObject> feedback_element =
LoadFeedbackVectorSlot(vector, slot, kTaggedSize);
TNode<Object> handler = CAST(feedback_element);
GotoIf(TaggedEqual(handler, UninitializedSymbolConstant()), miss);
OnNonExistent on_nonexistent = typeof_mode == NOT_INSIDE_TYPEOF
? OnNonExistent::kThrowReferenceError
: OnNonExistent::kReturnUndefined;
TNode<Context> context = lazy_context();
TNode<NativeContext> native_context = LoadNativeContext(context);
TNode<JSGlobalProxy> receiver =
CAST(LoadContextElement(native_context, Context::GLOBAL_PROXY_INDEX));
TNode<Object> global =
LoadContextElement(native_context, Context::EXTENSION_INDEX);
LazyLoadICParameters p([=] { return context; }, receiver, lazy_name,
[=] { return slot; }, vector, global);
HandleLoadICHandlerCase(&p, handler, miss, exit_point, ICMode::kGlobalIC,
on_nonexistent);
}
void AccessorAssembler::ScriptContextTableLookup(
TNode<Name> name, TNode<NativeContext> native_context, Label* found_hole,
Label* not_found) {
TNode<ScriptContextTable> script_context_table = CAST(
LoadContextElement(native_context, Context::SCRIPT_CONTEXT_TABLE_INDEX));
TVARIABLE(IntPtrT, context_index, IntPtrConstant(-1));
Label loop(this, &context_index);
TNode<IntPtrT> num_script_contexts = SmiUntag(CAST(LoadFixedArrayElement(
script_context_table, ScriptContextTable::kUsedSlotIndex)));
Goto(&loop);
BIND(&loop);
{
context_index = IntPtrAdd(context_index.value(), IntPtrConstant(1));
GotoIf(IntPtrGreaterThanOrEqual(context_index.value(), num_script_contexts),
not_found);
TNode<Context> script_context = CAST(LoadFixedArrayElement(
script_context_table, context_index.value(),
ScriptContextTable::kFirstContextSlotIndex * kTaggedSize));
TNode<ScopeInfo> scope_info =
CAST(LoadContextElement(script_context, Context::SCOPE_INFO_INDEX));
TNode<IntPtrT> length = LoadAndUntagFixedArrayBaseLength(scope_info);
GotoIf(IntPtrLessThanOrEqual(length, IntPtrConstant(0)), &loop);
TVARIABLE(IntPtrT, scope_var_index,
IntPtrConstant(ScopeInfo::kVariablePartIndex - 1));
TNode<IntPtrT> num_scope_vars = SmiUntag(CAST(LoadFixedArrayElement(
scope_info, IntPtrConstant(ScopeInfo::Fields::kContextLocalCount))));
TNode<IntPtrT> end_index = IntPtrAdd(
num_scope_vars, IntPtrConstant(ScopeInfo::kVariablePartIndex));
Label loop_scope_info(this, &scope_var_index);
Goto(&loop_scope_info);
BIND(&loop_scope_info);
{
scope_var_index = IntPtrAdd(scope_var_index.value(), IntPtrConstant(1));
GotoIf(IntPtrGreaterThanOrEqual(scope_var_index.value(), end_index),
&loop);
TNode<Object> var_name =
LoadFixedArrayElement(scope_info, scope_var_index.value(), 0);
GotoIf(TaggedNotEqual(var_name, name), &loop_scope_info);
TNode<IntPtrT> var_index =
IntPtrAdd(IntPtrConstant(Context::MIN_CONTEXT_SLOTS),
IntPtrSub(scope_var_index.value(),
IntPtrConstant(ScopeInfo::kVariablePartIndex)));
TNode<Object> result = LoadContextElement(script_context, var_index);
GotoIf(IsTheHole(result), found_hole);
Return(result);
}
}
}
void AccessorAssembler::LoadGlobalIC_NoFeedback(TNode<Context> context,
TNode<Object> name,
TNode<Smi> smi_typeof_mode) {
TNode<NativeContext> native_context = LoadNativeContext(context);
Label regular_load(this), throw_reference_error(this, Label::kDeferred);
GotoIfNot(IsString(CAST(name)), &regular_load);
ScriptContextTableLookup(CAST(name), native_context, &throw_reference_error,
&regular_load);
BIND(&throw_reference_error);
Return(CallRuntime(Runtime::kThrowReferenceError, context, name));
BIND(&regular_load);
TNode<JSGlobalObject> global_object =
CAST(LoadContextElement(native_context, Context::EXTENSION_INDEX));
TailCallStub(Builtins::CallableFor(isolate(), Builtins::kLoadIC_NoFeedback),
context, global_object, name, smi_typeof_mode);
}
void AccessorAssembler::KeyedLoadIC(const LoadICParameters* p,
LoadAccessMode access_mode) {
ExitPoint direct_exit(this);
TVARIABLE(MaybeObject, var_handler);
Label if_handler(this, &var_handler), try_polymorphic(this, Label::kDeferred),
try_megamorphic(this, Label::kDeferred),
try_uninitialized(this, Label::kDeferred),
try_polymorphic_name(this, Label::kDeferred),
miss(this, Label::kDeferred), generic(this, Label::kDeferred);
TNode<Map> lookup_start_object_map =
LoadReceiverMap(p->receiver_and_lookup_start_object());
GotoIf(IsDeprecatedMap(lookup_start_object_map), &miss);
GotoIf(IsUndefined(p->vector()), &generic);
// Check monomorphic case.
TNode<MaybeObject> feedback =
TryMonomorphicCase(p->slot(), CAST(p->vector()), lookup_start_object_map,
&if_handler, &var_handler, &try_polymorphic);
BIND(&if_handler);
{
LazyLoadICParameters lazy_p(p);
HandleLoadICHandlerCase(&lazy_p, CAST(var_handler.value()), &miss,
&direct_exit, ICMode::kNonGlobalIC,
OnNonExistent::kReturnUndefined, kSupportElements,
access_mode);
}
BIND(&try_polymorphic);
TNode<HeapObject> strong_feedback = GetHeapObjectIfStrong(feedback, &miss);
{
// Check polymorphic case.
Comment("KeyedLoadIC_try_polymorphic");
GotoIfNot(IsWeakFixedArrayMap(LoadMap(strong_feedback)), &try_megamorphic);
HandlePolymorphicCase(lookup_start_object_map, CAST(strong_feedback),
&if_handler, &var_handler, &miss);
}
BIND(&try_megamorphic);
{
// Check megamorphic case.
Comment("KeyedLoadIC_try_megamorphic");
Branch(TaggedEqual(strong_feedback, MegamorphicSymbolConstant()), &generic,
&try_uninitialized);
}
BIND(&generic);
{
// TODO(jkummerow): Inline this? Or some of it?
TailCallBuiltin(access_mode == LoadAccessMode::kLoad
? Builtins::kKeyedLoadIC_Megamorphic
: Builtins::kKeyedHasIC_Megamorphic,
p->context(), p->receiver(), p->name(), p->slot(),
p->vector());
}
BIND(&try_uninitialized);
{
// Check uninitialized case.
Comment("KeyedLoadIC_try_uninitialized");
Branch(TaggedEqual(strong_feedback, UninitializedSymbolConstant()), &miss,
&try_polymorphic_name);
}
BIND(&try_polymorphic_name);
{
// We might have a name in feedback, and a weak fixed array in the next
// slot.
Comment("KeyedLoadIC_try_polymorphic_name");
TVARIABLE(Name, var_name);
TVARIABLE(IntPtrT, var_index);
Label if_polymorphic_name(this), feedback_matches(this),
if_internalized(this), if_notinternalized(this, Label::kDeferred);
// Fast-case: The recorded {feedback} matches the {name}.
GotoIf(TaggedEqual(strong_feedback, p->name()), &feedback_matches);
// Try to internalize the {name} if it isn't already.
TryToName(p->name(), &miss, &var_index, &if_internalized, &var_name, &miss,
&if_notinternalized);
BIND(&if_internalized);
{
// The {var_name} now contains a unique name.
Branch(TaggedEqual(strong_feedback, var_name.value()),
&if_polymorphic_name, &miss);
}
BIND(&if_notinternalized);
{
TVARIABLE(IntPtrT, var_index);
TryInternalizeString(CAST(p->name()), &miss, &var_index, &if_internalized,
&var_name, &miss, &miss);
}
BIND(&feedback_matches);
{
var_name = CAST(p->name());
Goto(&if_polymorphic_name);
}
BIND(&if_polymorphic_name);
{
// If the name comparison succeeded, we know we have a weak fixed array
// with at least one map/handler pair.
TailCallBuiltin(access_mode == LoadAccessMode::kLoad
? Builtins::kKeyedLoadIC_PolymorphicName
: Builtins::kKeyedHasIC_PolymorphicName,
p->context(), p->receiver(), var_name.value(), p->slot(),
p->vector());
}
}
BIND(&miss);
{
Comment("KeyedLoadIC_miss");
TailCallRuntime(
access_mode == LoadAccessMode::kLoad ? Runtime::kKeyedLoadIC_Miss
: Runtime::kKeyedHasIC_Miss,
p->context(), p->receiver(), p->name(), p->slot(), p->vector());
}
}
void AccessorAssembler::KeyedLoadICGeneric(const LoadICParameters* p) {
TVARIABLE(Object, var_name, p->name());
Label if_runtime(this, Label::kDeferred);
TNode<Object> lookup_start_object = p->lookup_start_object();
GotoIf(TaggedIsSmi(lookup_start_object), &if_runtime);
GotoIf(IsNullOrUndefined(lookup_start_object), &if_runtime);
{
TVARIABLE(IntPtrT, var_index);
TVARIABLE(Name, var_unique);
Label if_index(this), if_unique_name(this, &var_name), if_notunique(this),
if_other(this, Label::kDeferred);
TryToName(var_name.value(), &if_index, &var_index, &if_unique_name,
&var_unique, &if_other, &if_notunique);
BIND(&if_unique_name);
{
LoadICParameters pp(p, var_unique.value());
TNode<Map> lookup_start_object_map = LoadMap(CAST(lookup_start_object));
GenericPropertyLoad(CAST(lookup_start_object), lookup_start_object_map,
LoadMapInstanceType(lookup_start_object_map), &pp,
&if_runtime);
}
BIND(&if_other);
{
var_name = CallBuiltin(Builtins::kToName, p->context(), var_name.value());
TryToName(var_name.value(), &if_index, &var_index, &if_unique_name,
&var_unique, &if_runtime, &if_notunique);
}
BIND(&if_notunique);
{
if (FLAG_internalize_on_the_fly) {
// Ideally we could return undefined directly here if the name is not
// found in the string table, i.e. it was never internalized, but that
// invariant doesn't hold with named property interceptors (at this
// point), so we take the {if_runtime} path instead.
Label if_in_string_table(this);
TryInternalizeString(CAST(var_name.value()), &if_index, &var_index,
&if_in_string_table, &var_unique, &if_runtime,
&if_runtime);
BIND(&if_in_string_table);
{
// TODO(bmeurer): We currently use a version of GenericPropertyLoad
// here, where we don't try to probe the megamorphic stub cache
// after successfully internalizing the incoming string. Past
// experiments with this have shown that it causes too much traffic
// on the stub cache. We may want to re-evaluate that in the future.
LoadICParameters pp(p, var_unique.value());
TNode<Map> lookup_start_object_map =
LoadMap(CAST(lookup_start_object));
GenericPropertyLoad(CAST(lookup_start_object),
lookup_start_object_map,
LoadMapInstanceType(lookup_start_object_map), &pp,
&if_runtime, kDontUseStubCache);
}
} else {
Goto(&if_runtime);
}
}
BIND(&if_index);
{
TNode<Map> lookup_start_object_map = LoadMap(CAST(lookup_start_object));
GenericElementLoad(CAST(lookup_start_object), lookup_start_object_map,
LoadMapInstanceType(lookup_start_object_map),
var_index.value(), &if_runtime);
}
}
BIND(&if_runtime);
{
Comment("KeyedLoadGeneric_slow");
IncrementCounter(isolate()->counters()->ic_keyed_load_generic_slow(), 1);
// TODO(jkummerow): Should we use the GetProperty TF stub instead?
TailCallRuntime(Runtime::kGetProperty, p->context(),
p->receiver_and_lookup_start_object(), var_name.value());
}
}
void AccessorAssembler::KeyedLoadICPolymorphicName(const LoadICParameters* p,
LoadAccessMode access_mode) {
TVARIABLE(MaybeObject, var_handler);
Label if_handler(this, &var_handler), miss(this, Label::kDeferred);
TNode<Object> lookup_start_object = p->lookup_start_object();
TNode<Map> lookup_start_object_map = LoadReceiverMap(lookup_start_object);
TNode<Name> name = CAST(p->name());
TNode<FeedbackVector> vector = CAST(p->vector());
TNode<TaggedIndex> slot = p->slot();
TNode<Context> context = p->context();
// When we get here, we know that the {name} matches the recorded
// feedback name in the {vector} and can safely be used for the
// LoadIC handler logic below.
CSA_ASSERT(this, Word32BinaryNot(IsDeprecatedMap(lookup_start_object_map)));
CSA_ASSERT(this, TaggedEqual(name, LoadFeedbackVectorSlot(vector, slot)),
name, vector);
// Check if we have a matching handler for the {lookup_start_object_map}.
TNode<MaybeObject> feedback_element =
LoadFeedbackVectorSlot(vector, slot, kTaggedSize);
TNode<WeakFixedArray> array = CAST(feedback_element);
HandlePolymorphicCase(lookup_start_object_map, array, &if_handler,
&var_handler, &miss);
BIND(&if_handler);
{
ExitPoint direct_exit(this);
LazyLoadICParameters lazy_p(p);
HandleLoadICHandlerCase(&lazy_p, CAST(var_handler.value()), &miss,
&direct_exit, ICMode::kNonGlobalIC,
OnNonExistent::kReturnUndefined, kOnlyProperties,
access_mode);
}
BIND(&miss);
{
Comment("KeyedLoadIC_miss");
TailCallRuntime(
access_mode == LoadAccessMode::kLoad ? Runtime::kKeyedLoadIC_Miss
: Runtime::kKeyedHasIC_Miss,
context, p->receiver_and_lookup_start_object(), name, slot, vector);
}
}
void AccessorAssembler::StoreIC(const StoreICParameters* p) {
TVARIABLE(MaybeObject, var_handler,
ReinterpretCast<MaybeObject>(SmiConstant(0)));
Label if_handler(this, &var_handler),
if_handler_from_stub_cache(this, &var_handler, Label::kDeferred),
try_polymorphic(this, Label::kDeferred),
try_megamorphic(this, Label::kDeferred), miss(this, Label::kDeferred),
no_feedback(this, Label::kDeferred);
TNode<Map> receiver_map = LoadReceiverMap(p->receiver());
GotoIf(IsDeprecatedMap(receiver_map), &miss);
GotoIf(IsUndefined(p->vector()), &no_feedback);
// Check monomorphic case.
TNode<MaybeObject> feedback =
TryMonomorphicCase(p->slot(), CAST(p->vector()), receiver_map,
&if_handler, &var_handler, &try_polymorphic);
BIND(&if_handler);
{
Comment("StoreIC_if_handler");
HandleStoreICHandlerCase(p, var_handler.value(), &miss,
ICMode::kNonGlobalIC);
}
BIND(&try_polymorphic);
TNode<HeapObject> strong_feedback = GetHeapObjectIfStrong(feedback, &miss);
{
// Check polymorphic case.
Comment("StoreIC_try_polymorphic");
GotoIfNot(IsWeakFixedArrayMap(LoadMap(strong_feedback)), &try_megamorphic);
HandlePolymorphicCase(receiver_map, CAST(strong_feedback), &if_handler,
&var_handler, &miss);
}
BIND(&try_megamorphic);
{
// Check megamorphic case.
GotoIfNot(TaggedEqual(strong_feedback, MegamorphicSymbolConstant()), &miss);
TryProbeStubCache(isolate()->store_stub_cache(), p->receiver(),
CAST(p->name()), &if_handler, &var_handler, &miss);
}
BIND(&no_feedback);
{
TailCallBuiltin(Builtins::kStoreIC_NoFeedback, p->context(), p->receiver(),
p->name(), p->value(), p->slot());
}
BIND(&miss);
{
TailCallRuntime(Runtime::kStoreIC_Miss, p->context(), p->value(), p->slot(),
p->vector(), p->receiver(), p->name());
}
}
void AccessorAssembler::StoreGlobalIC(const StoreICParameters* pp) {
Label if_lexical_var(this), if_heapobject(this);
TNode<MaybeObject> maybe_weak_ref =
LoadFeedbackVectorSlot(CAST(pp->vector()), pp->slot());
Branch(TaggedIsSmi(maybe_weak_ref), &if_lexical_var, &if_heapobject);
BIND(&if_heapobject);
{
Label try_handler(this), miss(this, Label::kDeferred);
CSA_ASSERT(this, IsWeakOrCleared(maybe_weak_ref));
TNode<PropertyCell> property_cell =
CAST(GetHeapObjectAssumeWeak(maybe_weak_ref, &try_handler));
ExitPoint direct_exit(this);
StoreGlobalIC_PropertyCellCase(property_cell, pp->value(), &direct_exit,
&miss);
BIND(&try_handler);
{
Comment("StoreGlobalIC_try_handler");
TNode<MaybeObject> handler =
LoadFeedbackVectorSlot(CAST(pp->vector()), pp->slot(), kTaggedSize);
GotoIf(TaggedEqual(handler, UninitializedSymbolConstant()), &miss);
DCHECK(pp->receiver_is_null());
TNode<NativeContext> native_context = LoadNativeContext(pp->context());
StoreICParameters p(
pp->context(),
LoadContextElement(native_context, Context::GLOBAL_PROXY_INDEX),
pp->name(), pp->value(), pp->slot(), pp->vector());
HandleStoreICHandlerCase(&p, handler, &miss, ICMode::kGlobalIC);
}
BIND(&miss);
{
TailCallRuntime(Runtime::kStoreGlobalIC_Miss, pp->context(), pp->value(),
pp->slot(), pp->vector(), pp->name());
}
}
BIND(&if_lexical_var);
{
Comment("Store lexical variable");
TNode<IntPtrT> lexical_handler = SmiUntag(CAST(maybe_weak_ref));
TNode<IntPtrT> context_index =
Signed(DecodeWord<FeedbackNexus::ContextIndexBits>(lexical_handler));
TNode<IntPtrT> slot_index =
Signed(DecodeWord<FeedbackNexus::SlotIndexBits>(lexical_handler));
TNode<Context> script_context =
LoadScriptContext(pp->context(), context_index);
StoreContextElement(script_context, slot_index, pp->value());
Return(pp->value());
}
}
void AccessorAssembler::StoreGlobalIC_PropertyCellCase(
TNode<PropertyCell> property_cell, TNode<Object> value,
ExitPoint* exit_point, Label* miss) {
Comment("StoreGlobalIC_TryPropertyCellCase");
// Load the payload of the global parameter cell. A hole indicates that
// the cell has been invalidated and that the store must be handled by the
// runtime.
TNode<Object> cell_contents =
LoadObjectField(property_cell, PropertyCell::kValueOffset);
TNode<Int32T> details = LoadAndUntagToWord32ObjectField(
property_cell, PropertyCell::kPropertyDetailsRawOffset);
GotoIf(IsSetWord32(details, PropertyDetails::kAttributesReadOnlyMask), miss);
CSA_ASSERT(this,
Word32Equal(DecodeWord32<PropertyDetails::KindField>(details),
Int32Constant(kData)));
TNode<Uint32T> type =
DecodeWord32<PropertyDetails::PropertyCellTypeField>(details);
Label constant(this), store(this), not_smi(this);
GotoIf(Word32Equal(type, Int32Constant(
static_cast<int>(PropertyCellType::kConstant))),
&constant);
GotoIf(IsTheHole(cell_contents), miss);
GotoIf(Word32Equal(
type, Int32Constant(static_cast<int>(PropertyCellType::kMutable))),
&store);
CSA_ASSERT(this,
Word32Or(Word32Equal(type, Int32Constant(static_cast<int>(
PropertyCellType::kConstantType))),
Word32Equal(type, Int32Constant(static_cast<int>(
PropertyCellType::kUndefined)))));
GotoIfNot(TaggedIsSmi(cell_contents), &not_smi);
GotoIfNot(TaggedIsSmi(value), miss);
Goto(&store);
BIND(&not_smi);
{
GotoIf(TaggedIsSmi(value), miss);
TNode<Map> expected_map = LoadMap(CAST(cell_contents));
TNode<Map> map = LoadMap(CAST(value));
GotoIfNot(TaggedEqual(expected_map, map), miss);
Goto(&store);
}
BIND(&store);
{
StoreObjectField(property_cell, PropertyCell::kValueOffset, value);
exit_point->Return(value);
}
BIND(&constant);
{
GotoIfNot(TaggedEqual(cell_contents, value), miss);
exit_point->Return(value);
}
}
void AccessorAssembler::KeyedStoreIC(const StoreICParameters* p) {
Label miss(this, Label::kDeferred);
{
TVARIABLE(MaybeObject, var_handler);
Label if_handler(this, &var_handler),
try_polymorphic(this, Label::kDeferred),
try_megamorphic(this, Label::kDeferred),
no_feedback(this, Label::kDeferred),
try_polymorphic_name(this, Label::kDeferred);
TNode<Map> receiver_map = LoadReceiverMap(p->receiver());
GotoIf(IsDeprecatedMap(receiver_map), &miss);
GotoIf(IsUndefined(p->vector()), &no_feedback);
// Check monomorphic case.
TNode<MaybeObject> feedback =
TryMonomorphicCase(p->slot(), CAST(p->vector()), receiver_map,
&if_handler, &var_handler, &try_polymorphic);
BIND(&if_handler);
{
Comment("KeyedStoreIC_if_handler");
HandleStoreICHandlerCase(p, var_handler.value(), &miss,
ICMode::kNonGlobalIC, kSupportElements);
}
BIND(&try_polymorphic);
TNode<HeapObject> strong_feedback = GetHeapObjectIfStrong(feedback, &miss);
{
// CheckPolymorphic case.
Comment("KeyedStoreIC_try_polymorphic");
GotoIfNot(IsWeakFixedArrayMap(LoadMap(strong_feedback)),
&try_megamorphic);
HandlePolymorphicCase(receiver_map, CAST(strong_feedback), &if_handler,
&var_handler, &miss);
}
BIND(&try_megamorphic);
{
// Check megamorphic case.
Comment("KeyedStoreIC_try_megamorphic");
Branch(TaggedEqual(strong_feedback, MegamorphicSymbolConstant()),
&no_feedback, &try_polymorphic_name);
}
BIND(&no_feedback);
{
TailCallBuiltin(Builtins::kKeyedStoreIC_Megamorphic, p->context(),
p->receiver(), p->name(), p->value(), p->slot());
}
BIND(&try_polymorphic_name);
{
// We might have a name in feedback, and a fixed array in the next slot.
Comment("KeyedStoreIC_try_polymorphic_name");
GotoIfNot(TaggedEqual(strong_feedback, p->name()), &miss);
// If the name comparison succeeded, we know we have a feedback vector
// with at least one map/handler pair.
TNode<MaybeObject> feedback_element =
LoadFeedbackVectorSlot(CAST(p->vector()), p->slot(), kTaggedSize);
TNode<WeakFixedArray> array = CAST(feedback_element);
HandlePolymorphicCase(receiver_map, array, &if_handler, &var_handler,
&miss);
}
}
BIND(&miss);
{
Comment("KeyedStoreIC_miss");
TailCallRuntime(Runtime::kKeyedStoreIC_Miss, p->context(), p->value(),
p->slot(), p->vector(), p->receiver(), p->name());
}
}
void AccessorAssembler::StoreInArrayLiteralIC(const StoreICParameters* p) {
Label miss(this, Label::kDeferred), no_feedback(this, Label::kDeferred);
{
TVARIABLE(MaybeObject, var_handler);
Label if_handler(this, &var_handler),
try_polymorphic(this, Label::kDeferred),
try_megamorphic(this, Label::kDeferred);
TNode<Map> array_map = LoadReceiverMap(p->receiver());
GotoIf(IsDeprecatedMap(array_map), &miss);
GotoIf(IsUndefined(p->vector()), &no_feedback);
TNode<MaybeObject> feedback =
TryMonomorphicCase(p->slot(), CAST(p->vector()), array_map, &if_handler,
&var_handler, &try_polymorphic);
BIND(&if_handler);
{
Comment("StoreInArrayLiteralIC_if_handler");
// This is a stripped-down version of HandleStoreICHandlerCase.
Label if_transitioning_element_store(this), if_smi_handler(this);
// Check used to identify the Slow case.
// Currently only the Slow case uses a Smi handler.
GotoIf(TaggedIsSmi(var_handler.value()), &if_smi_handler);
TNode<HeapObject> handler = CAST(var_handler.value());
GotoIfNot(IsCode(handler), &if_transitioning_element_store);
TailCallStub(StoreWithVectorDescriptor{}, CAST(handler), p->context(),
p->receiver(), p->name(), p->value(), p->slot(),
p->vector());
BIND(&if_transitioning_element_store);
{
TNode<MaybeObject> maybe_transition_map =
LoadHandlerDataField(CAST(handler), 1);
TNode<Map> transition_map =
CAST(GetHeapObjectAssumeWeak(maybe_transition_map, &miss));
GotoIf(IsDeprecatedMap(transition_map), &miss);
TNode<Code> code =
CAST(LoadObjectField(handler, StoreHandler::kSmiHandlerOffset));
TailCallStub(StoreTransitionDescriptor{}, code, p->context(),
p->receiver(), p->name(), transition_map, p->value(),
p->slot(), p->vector());
}
BIND(&if_smi_handler);
{
#ifdef DEBUG
// A check to ensure that no other Smi handler uses this path.
TNode<Int32T> handler_word = SmiToInt32(CAST(var_handler.value()));
TNode<Uint32T> handler_kind =
DecodeWord32<StoreHandler::KindBits>(handler_word);
CSA_ASSERT(this, Word32Equal(handler_kind,
Int32Constant(StoreHandler::kSlow)));
#endif
Comment("StoreInArrayLiteralIC_Slow");
TailCallRuntime(Runtime::kStoreInArrayLiteralIC_Slow, p->context(),
p->value(), p->receiver(), p->name());
}
}
BIND(&try_polymorphic);
TNode<HeapObject> strong_feedback = GetHeapObjectIfStrong(feedback, &miss);
{
Comment("StoreInArrayLiteralIC_try_polymorphic");
GotoIfNot(IsWeakFixedArrayMap(LoadMap(strong_feedback)),
&try_megamorphic);
HandlePolymorphicCase(array_map, CAST(strong_feedback), &if_handler,
&var_handler, &miss);
}
BIND(&try_megamorphic);
{
Comment("StoreInArrayLiteralIC_try_megamorphic");
CSA_ASSERT(
this,
Word32Or(TaggedEqual(strong_feedback, UninitializedSymbolConstant()),
TaggedEqual(strong_feedback, MegamorphicSymbolConstant())));
GotoIfNot(TaggedEqual(strong_feedback, MegamorphicSymbolConstant()),
&miss);
TailCallRuntime(Runtime::kStoreInArrayLiteralIC_Slow, p->context(),
p->value(), p->receiver(), p->name());
}
}
BIND(&no_feedback);
{
Comment("StoreInArrayLiteralIC_NoFeedback");
TailCallBuiltin(Builtins::kSetPropertyInLiteral, p->context(),
p->receiver(), p->name(), p->value());
}
BIND(&miss);
{
Comment("StoreInArrayLiteralIC_miss");
TailCallRuntime(Runtime::kStoreInArrayLiteralIC_Miss, p->context(),
p->value(), p->slot(), p->vector(), p->receiver(),
p->name());
}
}
//////////////////// Public methods.
void AccessorAssembler::GenerateLoadIC() {
using Descriptor = LoadWithVectorDescriptor;
auto receiver = Parameter<Object>(Descriptor::kReceiver);
auto name = Parameter<Object>(Descriptor::kName);
auto slot = Parameter<TaggedIndex>(Descriptor::kSlot);
auto vector = Parameter<HeapObject>(Descriptor::kVector);
auto context = Parameter<Context>(Descriptor::kContext);
LoadICParameters p(context, receiver, name, slot, vector);
LoadIC(&p);
}
void AccessorAssembler::GenerateLoadIC_Megamorphic() {
using Descriptor = LoadWithVectorDescriptor;
auto receiver = Parameter<Object>(Descriptor::kReceiver);
auto name = Parameter<Object>(Descriptor::kName);
auto slot = Parameter<TaggedIndex>(Descriptor::kSlot);
auto vector = Parameter<HeapObject>(Descriptor::kVector);
auto context = Parameter<Context>(Descriptor::kContext);
ExitPoint direct_exit(this);
TVARIABLE(MaybeObject, var_handler);
Label if_handler(this, &var_handler), miss(this, Label::kDeferred);
CSA_ASSERT(this, TaggedEqual(LoadFeedbackVectorSlot(CAST(vector), slot),
MegamorphicSymbolConstant()));
TryProbeStubCache(isolate()->load_stub_cache(), receiver, CAST(name),
&if_handler, &var_handler, &miss);
BIND(&if_handler);
LazyLoadICParameters p(
// lazy_context
[=] { return context; }, receiver,
// lazy_name
[=] { return name; },
// lazy_slot
[=] { return slot; }, vector);
HandleLoadICHandlerCase(&p, CAST(var_handler.value()), &miss, &direct_exit);
BIND(&miss);
direct_exit.ReturnCallRuntime(Runtime::kLoadIC_Miss, context, receiver, name,
slot, vector);
}
void AccessorAssembler::GenerateLoadIC_Noninlined() {
using Descriptor = LoadWithVectorDescriptor;
auto receiver = Parameter<Object>(Descriptor::kReceiver);
auto name = Parameter<Object>(Descriptor::kName);
auto slot = Parameter<TaggedIndex>(Descriptor::kSlot);
auto vector = Parameter<FeedbackVector>(Descriptor::kVector);
auto context = Parameter<Context>(Descriptor::kContext);
ExitPoint direct_exit(this);
TVARIABLE(MaybeObject, var_handler);
Label if_handler(this, &var_handler), miss(this, Label::kDeferred);
TNode<MaybeObject> feedback_element = LoadFeedbackVectorSlot(vector, slot);
TNode<HeapObject> feedback = CAST(feedback_element);
LoadICParameters p(context, receiver, name, slot, vector);
TNode<Map> lookup_start_object_map = LoadReceiverMap(p.lookup_start_object());
LoadIC_Noninlined(&p, lookup_start_object_map, feedback, &var_handler,
&if_handler, &miss, &direct_exit);
BIND(&if_handler);
{
LazyLoadICParameters lazy_p(&p);
HandleLoadICHandlerCase(&lazy_p, CAST(var_handler.value()), &miss,
&direct_exit);
}
BIND(&miss);
direct_exit.ReturnCallRuntime(Runtime::kLoadIC_Miss, context, receiver, name,
slot, vector);
}
void AccessorAssembler::GenerateLoadIC_NoFeedback() {
using Descriptor = LoadNoFeedbackDescriptor;
auto receiver = Parameter<Object>(Descriptor::kReceiver);
auto name = Parameter<Object>(Descriptor::kName);
auto context = Parameter<Context>(Descriptor::kContext);
auto ic_kind = Parameter<Smi>(Descriptor::kICKind);
LoadICParameters p(context, receiver, name,
TaggedIndexConstant(FeedbackSlot::Invalid().ToInt()),
UndefinedConstant());
LoadIC_NoFeedback(&p, ic_kind);
}
void AccessorAssembler::GenerateLoadICTrampoline() {
using Descriptor = LoadDescriptor;
auto receiver = Parameter<Object>(Descriptor::kReceiver);
auto name = Parameter<Object>(Descriptor::kName);
auto slot = Parameter<TaggedIndex>(Descriptor::kSlot);
auto context = Parameter<Context>(Descriptor::kContext);
TNode<FeedbackVector> vector = LoadFeedbackVectorForStub();
TailCallBuiltin(Builtins::kLoadIC, context, receiver, name, slot, vector);
}
void AccessorAssembler::GenerateLoadICTrampoline_Megamorphic() {
using Descriptor = LoadDescriptor;
auto receiver = Parameter<Object>(Descriptor::kReceiver);
auto name = Parameter<Object>(Descriptor::kName);
auto slot = Parameter<TaggedIndex>(Descriptor::kSlot);
auto context = Parameter<Context>(Descriptor::kContext);
TNode<FeedbackVector> vector = LoadFeedbackVectorForStub();
TailCallBuiltin(Builtins::kLoadIC_Megamorphic, context, receiver, name, slot,
vector);
}
void AccessorAssembler::GenerateLoadSuperIC() {
using Descriptor = LoadWithReceiverAndVectorDescriptor;
auto receiver = Parameter<Object>(Descriptor::kReceiver);
auto lookup_start_object = Parameter<Object>(Descriptor::kLookupStartObject);
auto name = Parameter<Object>(Descriptor::kName);
auto slot = Parameter<TaggedIndex>(Descriptor::kSlot);
auto vector = Parameter<HeapObject>(Descriptor::kVector);
auto context = Parameter<Context>(Descriptor::kContext);
LoadICParameters p(context, receiver, name, slot, vector,
lookup_start_object);
LoadSuperIC(&p);
}
void AccessorAssembler::GenerateLoadGlobalIC_NoFeedback() {
using Descriptor = LoadGlobalNoFeedbackDescriptor;
auto name = Parameter<Object>(Descriptor::kName);
auto context = Parameter<Context>(Descriptor::kContext);
auto ic_kind = Parameter<Smi>(Descriptor::kICKind);
LoadGlobalIC_NoFeedback(context, name, ic_kind);
}
void AccessorAssembler::GenerateLoadGlobalIC(TypeofMode typeof_mode) {
using Descriptor = LoadGlobalWithVectorDescriptor;
auto name = Parameter<Name>(Descriptor::kName);
auto slot = Parameter<TaggedIndex>(Descriptor::kSlot);
auto vector = Parameter<HeapObject>(Descriptor::kVector);
auto context = Parameter<Context>(Descriptor::kContext);
ExitPoint direct_exit(this);
LoadGlobalIC(
vector,
// lazy_slot
[=] { return slot; },
// lazy_context
[=] { return context; },
// lazy_name
[=] { return name; }, typeof_mode, &direct_exit);
}
void AccessorAssembler::GenerateLoadGlobalICTrampoline(TypeofMode typeof_mode) {
using Descriptor = LoadGlobalDescriptor;
auto name = Parameter<Object>(Descriptor::kName);
auto slot = Parameter<TaggedIndex>(Descriptor::kSlot);
auto context = Parameter<Context>(Descriptor::kContext);
TNode<FeedbackVector> vector = LoadFeedbackVectorForStub();
Callable callable =
CodeFactory::LoadGlobalICInOptimizedCode(isolate(), typeof_mode);
TailCallStub(callable, context, name, slot, vector);
}
void AccessorAssembler::GenerateKeyedLoadIC() {
using Descriptor = LoadWithVectorDescriptor;
auto receiver = Parameter<Object>(Descriptor::kReceiver);
auto name = Parameter<Object>(Descriptor::kName);
auto slot = Parameter<TaggedIndex>(Descriptor::kSlot);
auto vector = Parameter<HeapObject>(Descriptor::kVector);
auto context = Parameter<Context>(Descriptor::kContext);
LoadICParameters p(context, receiver, name, slot, vector);
KeyedLoadIC(&p, LoadAccessMode::kLoad);
}
void AccessorAssembler::GenerateKeyedLoadIC_Megamorphic() {
using Descriptor = LoadWithVectorDescriptor;
auto receiver = Parameter<Object>(Descriptor::kReceiver);
auto name = Parameter<Object>(Descriptor::kName);
auto slot = Parameter<TaggedIndex>(Descriptor::kSlot);
auto vector = Parameter<HeapObject>(Descriptor::kVector);
auto context = Parameter<Context>(Descriptor::kContext);
LoadICParameters p(context, receiver, name, slot, vector);
KeyedLoadICGeneric(&p);
}
void AccessorAssembler::GenerateKeyedLoadICTrampoline() {
using Descriptor = LoadDescriptor;
auto receiver = Parameter<Object>(Descriptor::kReceiver);
auto name = Parameter<Object>(Descriptor::kName);
auto slot = Parameter<TaggedIndex>(Descriptor::kSlot);
auto context = Parameter<Context>(Descriptor::kContext);
TNode<FeedbackVector> vector = LoadFeedbackVectorForStub();
TailCallBuiltin(Builtins::kKeyedLoadIC, context, receiver, name, slot,
vector);
}
void AccessorAssembler::GenerateKeyedLoadICTrampoline_Megamorphic() {
using Descriptor = LoadDescriptor;
auto receiver = Parameter<Object>(Descriptor::kReceiver);
auto name = Parameter<Object>(Descriptor::kName);
auto slot = Parameter<TaggedIndex>(Descriptor::kSlot);
auto context = Parameter<Context>(Descriptor::kContext);
TNode<FeedbackVector> vector = LoadFeedbackVectorForStub();
TailCallBuiltin(Builtins::kKeyedLoadIC_Megamorphic, context, receiver, name,
slot, vector);
}
void AccessorAssembler::GenerateKeyedLoadIC_PolymorphicName() {
using Descriptor = LoadWithVectorDescriptor;
auto receiver = Parameter<Object>(Descriptor::kReceiver);
auto name = Parameter<Object>(Descriptor::kName);
auto slot = Parameter<TaggedIndex>(Descriptor::kSlot);
auto vector = Parameter<FeedbackVector>(Descriptor::kVector);
auto context = Parameter<Context>(Descriptor::kContext);
LoadICParameters p(context, receiver, name, slot, vector);
KeyedLoadICPolymorphicName(&p, LoadAccessMode::kLoad);
}
void AccessorAssembler::GenerateStoreGlobalIC() {
using Descriptor = StoreGlobalWithVectorDescriptor;
auto name = Parameter<Object>(Descriptor::kName);
auto value = Parameter<Object>(Descriptor::kValue);
auto slot = Parameter<TaggedIndex>(Descriptor::kSlot);
auto vector = Parameter<HeapObject>(Descriptor::kVector);
auto context = Parameter<Context>(Descriptor::kContext);
StoreICParameters p(context, base::nullopt, name, value, slot, vector);
StoreGlobalIC(&p);
}
void AccessorAssembler::GenerateStoreGlobalICTrampoline() {
using Descriptor = StoreGlobalDescriptor;
auto name = Parameter<Object>(Descriptor::kName);
auto value = Parameter<Object>(Descriptor::kValue);
auto slot = Parameter<TaggedIndex>(Descriptor::kSlot);
auto context = Parameter<Context>(Descriptor::kContext);
TNode<FeedbackVector> vector = LoadFeedbackVectorForStub();
TailCallBuiltin(Builtins::kStoreGlobalIC, context, name, value, slot, vector);
}
void AccessorAssembler::GenerateStoreIC() {
using Descriptor = StoreWithVectorDescriptor;
auto receiver = Parameter<Object>(Descriptor::kReceiver);
auto name = Parameter<Object>(Descriptor::kName);
auto value = Parameter<Object>(Descriptor::kValue);
auto slot = Parameter<TaggedIndex>(Descriptor::kSlot);
auto vector = Parameter<HeapObject>(Descriptor::kVector);
auto context = Parameter<Context>(Descriptor::kContext);
StoreICParameters p(context, receiver, name, value, slot, vector);
StoreIC(&p);
}
void AccessorAssembler::GenerateStoreICTrampoline() {
using Descriptor = StoreDescriptor;
auto receiver = Parameter<Object>(Descriptor::kReceiver);
auto name = Parameter<Object>(Descriptor::kName);
auto value = Parameter<Object>(Descriptor::kValue);
auto slot = Parameter<TaggedIndex>(Descriptor::kSlot);
auto context = Parameter<Context>(Descriptor::kContext);
TNode<FeedbackVector> vector = LoadFeedbackVectorForStub();
TailCallBuiltin(Builtins::kStoreIC, context, receiver, name, value, slot,
vector);
}
void AccessorAssembler::GenerateKeyedStoreIC() {
using Descriptor = StoreWithVectorDescriptor;
auto receiver = Parameter<Object>(Descriptor::kReceiver);
auto name = Parameter<Object>(Descriptor::kName);
auto value = Parameter<Object>(Descriptor::kValue);
auto slot = Parameter<TaggedIndex>(Descriptor::kSlot);
auto vector = Parameter<HeapObject>(Descriptor::kVector);
auto context = Parameter<Context>(Descriptor::kContext);
StoreICParameters p(context, receiver, name, value, slot, vector);
KeyedStoreIC(&p);
}
void AccessorAssembler::GenerateKeyedStoreICTrampoline() {
using Descriptor = StoreDescriptor;
auto receiver = Parameter<Object>(Descriptor::kReceiver);
auto name = Parameter<Object>(Descriptor::kName);
auto value = Parameter<Object>(Descriptor::kValue);
auto slot = Parameter<TaggedIndex>(Descriptor::kSlot);
auto context = Parameter<Context>(Descriptor::kContext);
TNode<FeedbackVector> vector = LoadFeedbackVectorForStub();
TailCallBuiltin(Builtins::kKeyedStoreIC, context, receiver, name, value, slot,
vector);
}
void AccessorAssembler::GenerateStoreInArrayLiteralIC() {
using Descriptor = StoreWithVectorDescriptor;
auto array = Parameter<Object>(Descriptor::kReceiver);
auto index = Parameter<Object>(Descriptor::kName);
auto value = Parameter<Object>(Descriptor::kValue);
auto slot = Parameter<TaggedIndex>(Descriptor::kSlot);
auto vector = Parameter<HeapObject>(Descriptor::kVector);
auto context = Parameter<Context>(Descriptor::kContext);
StoreICParameters p(context, array, index, value, slot, vector);
StoreInArrayLiteralIC(&p);
}
void AccessorAssembler::GenerateCloneObjectIC_Slow() {
using Descriptor = CloneObjectWithVectorDescriptor;
auto source = Parameter<Object>(Descriptor::kSource);
auto flags = Parameter<Smi>(Descriptor::kFlags);
auto context = Parameter<Context>(Descriptor::kContext);
// The Slow case uses the same call interface as CloneObjectIC, so that it
// can be tail called from it. However, the feedback slot and vector are not
// used.
TNode<NativeContext> native_context = LoadNativeContext(context);
TNode<Map> initial_map = LoadObjectFunctionInitialMap(native_context);
TNode<JSObject> result = AllocateJSObjectFromMap(initial_map);
{
Label did_set_proto_if_needed(this);
TNode<BoolT> is_null_proto = SmiNotEqual(
SmiAnd(flags, SmiConstant(ObjectLiteral::kHasNullPrototype)),
SmiConstant(Smi::zero()));
GotoIfNot(is_null_proto, &did_set_proto_if_needed);
CallRuntime(Runtime::kInternalSetPrototype, context, result,
NullConstant());
Goto(&did_set_proto_if_needed);
BIND(&did_set_proto_if_needed);
}
ReturnIf(IsNullOrUndefined(source), result);
source = ToObject_Inline(context, source);
Label call_runtime(this, Label::kDeferred), done(this);
TNode<Map> source_map = LoadMap(CAST(source));
GotoIfNot(IsJSObjectMap(source_map), &call_runtime);
GotoIfNot(IsEmptyFixedArray(LoadElements(CAST(source))), &call_runtime);
ForEachEnumerableOwnProperty(
context, source_map, CAST(source), kPropertyAdditionOrder,
[=](TNode<Name> key, TNode<Object> value) {
SetPropertyInLiteral(context, result, key, value);
},
&call_runtime);
Goto(&done);
BIND(&call_runtime);
CallRuntime(Runtime::kCopyDataProperties, context, result, source);
Goto(&done);
BIND(&done);
Return(result);
}
void AccessorAssembler::GenerateCloneObjectIC() {
using Descriptor = CloneObjectWithVectorDescriptor;
auto source = Parameter<Object>(Descriptor::kSource);
auto flags = Parameter<Smi>(Descriptor::kFlags);
auto slot = Parameter<TaggedIndex>(Descriptor::kSlot);
auto maybe_vector = Parameter<HeapObject>(Descriptor::kVector);
auto context = Parameter<Context>(Descriptor::kContext);
TVARIABLE(MaybeObject, var_handler);
Label if_handler(this, &var_handler), miss(this, Label::kDeferred),
try_polymorphic(this, Label::kDeferred),
try_megamorphic(this, Label::kDeferred), slow(this, Label::kDeferred);
TNode<Map> source_map = LoadReceiverMap(source);
GotoIf(IsDeprecatedMap(source_map), &miss);
GotoIf(IsUndefined(maybe_vector), &slow);
TNode<MaybeObject> feedback =
TryMonomorphicCase(slot, CAST(maybe_vector), source_map, &if_handler,
&var_handler, &try_polymorphic);
BIND(&if_handler);
{
Comment("CloneObjectIC_if_handler");
// Handlers for the CloneObjectIC stub are weak references to the Map of
// a result object.
TNode<Map> result_map = CAST(var_handler.value());
TVARIABLE(HeapObject, var_properties, EmptyFixedArrayConstant());
TVARIABLE(FixedArray, var_elements, EmptyFixedArrayConstant());
Label allocate_object(this);
GotoIf(IsNullOrUndefined(source), &allocate_object);
CSA_SLOW_ASSERT(this, IsJSObjectMap(source_map));
CSA_SLOW_ASSERT(this, IsJSObjectMap(result_map));
// The IC fast case should only be taken if the result map a compatible
// elements kind with the source object.
TNode<FixedArrayBase> source_elements = LoadElements(CAST(source));
auto flags = ExtractFixedArrayFlag::kAllFixedArraysDontCopyCOW;
var_elements = CAST(CloneFixedArray(source_elements, flags));
// Copy the PropertyArray backing store. The source PropertyArray must be
// either an Smi, or a PropertyArray.
// FIXME: Make a CSA macro for this
TNode<Object> source_properties =
LoadObjectField(CAST(source), JSObject::kPropertiesOrHashOffset);
{
GotoIf(TaggedIsSmi(source_properties), &allocate_object);
GotoIf(IsEmptyFixedArray(source_properties), &allocate_object);
// This IC requires that the source object has fast properties.
TNode<PropertyArray> source_property_array = CAST(source_properties);
TNode<IntPtrT> length = LoadPropertyArrayLength(source_property_array);
GotoIf(IntPtrEqual(length, IntPtrConstant(0)), &allocate_object);
TNode<PropertyArray> property_array = AllocatePropertyArray(length);
FillPropertyArrayWithUndefined(property_array, IntPtrConstant(0), length);
CopyPropertyArrayValues(source_property_array, property_array, length,
SKIP_WRITE_BARRIER, DestroySource::kNo);
var_properties = property_array;
}
Goto(&allocate_object);
BIND(&allocate_object);
TNode<JSObject> object = UncheckedCast<JSObject>(AllocateJSObjectFromMap(
result_map, var_properties.value(), var_elements.value()));
ReturnIf(IsNullOrUndefined(source), object);
// Lastly, clone any in-object properties.
TNode<IntPtrT> source_start =
LoadMapInobjectPropertiesStartInWords(source_map);
TNode<IntPtrT> source_size = LoadMapInstanceSizeInWords(source_map);
TNode<IntPtrT> result_start =
LoadMapInobjectPropertiesStartInWords(result_map);
TNode<IntPtrT> field_offset_difference =
TimesTaggedSize(IntPtrSub(result_start, source_start));
// Just copy the fields as raw data (pretending that there are no mutable
// HeapNumbers). This doesn't need write barriers.
BuildFastLoop<IntPtrT>(
source_start, source_size,
[=](TNode<IntPtrT> field_index) {
TNode<IntPtrT> field_offset = TimesTaggedSize(field_index);
TNode<TaggedT> field =
LoadObjectField<TaggedT>(CAST(source), field_offset);
TNode<IntPtrT> result_offset =
IntPtrAdd(field_offset, field_offset_difference);
StoreObjectFieldNoWriteBarrier(object, result_offset, field);
},
1, IndexAdvanceMode::kPost);
// If mutable HeapNumbers can occur, we need to go through the {object}
// again here and properly clone them. We use a second loop here to
// ensure that the GC (and heap verifier) always sees properly initialized
// objects, i.e. never hits undefined values in double fields.
if (!FLAG_unbox_double_fields) {
TNode<IntPtrT> start_offset = TimesTaggedSize(result_start);
TNode<IntPtrT> end_offset =
IntPtrAdd(TimesTaggedSize(source_size), field_offset_difference);
ConstructorBuiltinsAssembler(state()).CopyMutableHeapNumbersInObject(
object, start_offset, end_offset);
}
Return(object);
}
BIND(&try_polymorphic);
TNode<HeapObject> strong_feedback = GetHeapObjectIfStrong(feedback, &miss);
{
Comment("CloneObjectIC_try_polymorphic");
GotoIfNot(IsWeakFixedArrayMap(LoadMap(strong_feedback)), &try_megamorphic);
HandlePolymorphicCase(source_map, CAST(strong_feedback), &if_handler,
&var_handler, &miss);
}
BIND(&try_megamorphic);
{
Comment("CloneObjectIC_try_megamorphic");
CSA_ASSERT(
this,
Word32Or(TaggedEqual(strong_feedback, UninitializedSymbolConstant()),
TaggedEqual(strong_feedback, MegamorphicSymbolConstant())));
GotoIfNot(TaggedEqual(strong_feedback, MegamorphicSymbolConstant()), &miss);
Goto(&slow);
}
BIND(&slow);
{
TailCallBuiltin(Builtins::kCloneObjectIC_Slow, context, source, flags, slot,
maybe_vector);
}
BIND(&miss);
{
Comment("CloneObjectIC_miss");
TNode<HeapObject> map_or_result =
CAST(CallRuntime(Runtime::kCloneObjectIC_Miss, context, source, flags,
slot, maybe_vector));
var_handler = UncheckedCast<MaybeObject>(map_or_result);
GotoIf(IsMap(map_or_result), &if_handler);
CSA_ASSERT(this, IsJSObject(map_or_result));
Return(map_or_result);
}
}
void AccessorAssembler::GenerateKeyedHasIC() {
using Descriptor = LoadWithVectorDescriptor;
auto receiver = Parameter<Object>(Descriptor::kReceiver);
auto name = Parameter<Object>(Descriptor::kName);
auto slot = Parameter<TaggedIndex>(Descriptor::kSlot);
auto vector = Parameter<HeapObject>(Descriptor::kVector);
auto context = Parameter<Context>(Descriptor::kContext);
LoadICParameters p(context, receiver, name, slot, vector);
KeyedLoadIC(&p, LoadAccessMode::kHas);
}
void AccessorAssembler::GenerateKeyedHasIC_Megamorphic() {
using Descriptor = LoadWithVectorDescriptor;
auto receiver = Parameter<Object>(Descriptor::kReceiver);
auto name = Parameter<Object>(Descriptor::kName);
auto context = Parameter<Context>(Descriptor::kContext);
// TODO(magardn): implement HasProperty handling in KeyedLoadICGeneric
Return(HasProperty(context, receiver, name,
HasPropertyLookupMode::kHasProperty));
}
void AccessorAssembler::GenerateKeyedHasIC_PolymorphicName() {
using Descriptor = LoadWithVectorDescriptor;
auto receiver = Parameter<Object>(Descriptor::kReceiver);
auto name = Parameter<Object>(Descriptor::kName);
auto slot = Parameter<TaggedIndex>(Descriptor::kSlot);
auto vector = Parameter<HeapObject>(Descriptor::kVector);
auto context = Parameter<Context>(Descriptor::kContext);
LoadICParameters p(context, receiver, name, slot, vector);
KeyedLoadICPolymorphicName(&p, LoadAccessMode::kHas);
}
void AccessorAssembler::BranchIfPrototypesHaveNoElements(
TNode<Map> receiver_map, Label* definitely_no_elements,
Label* possibly_elements) {
TVARIABLE(Map, var_map, receiver_map);
Label loop_body(this, &var_map);
TNode<FixedArray> empty_fixed_array = EmptyFixedArrayConstant();
TNode<NumberDictionary> empty_slow_element_dictionary =
EmptySlowElementDictionaryConstant();
Goto(&loop_body);
BIND(&loop_body);
{
TNode<Map> map = var_map.value();
TNode<HeapObject> prototype = LoadMapPrototype(map);
GotoIf(IsNull(prototype), definitely_no_elements);
TNode<Map> prototype_map = LoadMap(prototype);
TNode<Uint16T> prototype_instance_type = LoadMapInstanceType(prototype_map);
// Pessimistically assume elements if a Proxy, Special API Object,
// or JSPrimitiveWrapper wrapper is found on the prototype chain. After this
// instance type check, it's not necessary to check for interceptors or
// access checks.
Label if_custom(this, Label::kDeferred), if_notcustom(this);
Branch(IsCustomElementsReceiverInstanceType(prototype_instance_type),
&if_custom, &if_notcustom);
BIND(&if_custom);
{
// For string JSPrimitiveWrapper wrappers we still support the checks as
// long as they wrap the empty string.
GotoIfNot(
InstanceTypeEqual(prototype_instance_type, JS_PRIMITIVE_WRAPPER_TYPE),
possibly_elements);
TNode<Object> prototype_value =
LoadJSPrimitiveWrapperValue(CAST(prototype));
Branch(IsEmptyString(prototype_value), &if_notcustom, possibly_elements);
}
BIND(&if_notcustom);
{
TNode<FixedArrayBase> prototype_elements = LoadElements(CAST(prototype));
var_map = prototype_map;
GotoIf(TaggedEqual(prototype_elements, empty_fixed_array), &loop_body);
Branch(TaggedEqual(prototype_elements, empty_slow_element_dictionary),
&loop_body, possibly_elements);
}
}
}
} // namespace internal
} // namespace v8