| //===--- NewDeleteOverloadsCheck.cpp - clang-tidy--------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "NewDeleteOverloadsCheck.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/ASTMatchers/ASTMatchFinder.h" |
| |
| using namespace clang::ast_matchers; |
| |
| namespace clang { |
| namespace tidy { |
| namespace misc { |
| |
| namespace { |
| |
| AST_MATCHER(FunctionDecl, isPlacementOverload) { |
| bool New; |
| switch (Node.getOverloadedOperator()) { |
| default: |
| return false; |
| case OO_New: |
| case OO_Array_New: |
| New = true; |
| break; |
| case OO_Delete: |
| case OO_Array_Delete: |
| New = false; |
| break; |
| } |
| |
| // Variadic functions are always placement functions. |
| if (Node.isVariadic()) |
| return true; |
| |
| // Placement new is easy: it always has more than one parameter (the first |
| // parameter is always the size). If it's an overload of delete or delete[] |
| // that has only one parameter, it's never a placement delete. |
| if (New) |
| return Node.getNumParams() > 1; |
| if (Node.getNumParams() == 1) |
| return false; |
| |
| // Placement delete is a little more challenging. They always have more than |
| // one parameter with the first parameter being a pointer. However, the |
| // second parameter can be a size_t for sized deallocation, and that is never |
| // a placement delete operator. |
| if (Node.getNumParams() <= 1 || Node.getNumParams() > 2) |
| return true; |
| |
| const auto *FPT = Node.getType()->castAs<FunctionProtoType>(); |
| ASTContext &Ctx = Node.getASTContext(); |
| if (Ctx.getLangOpts().SizedDeallocation && |
| Ctx.hasSameType(FPT->getParamType(1), Ctx.getSizeType())) |
| return false; |
| |
| return true; |
| } |
| |
| OverloadedOperatorKind getCorrespondingOverload(const FunctionDecl *FD) { |
| switch (FD->getOverloadedOperator()) { |
| default: |
| break; |
| case OO_New: |
| return OO_Delete; |
| case OO_Delete: |
| return OO_New; |
| case OO_Array_New: |
| return OO_Array_Delete; |
| case OO_Array_Delete: |
| return OO_Array_New; |
| } |
| llvm_unreachable("Not an overloaded allocation operator"); |
| } |
| |
| const char *getOperatorName(OverloadedOperatorKind K) { |
| switch (K) { |
| default: |
| break; |
| case OO_New: |
| return "operator new"; |
| case OO_Delete: |
| return "operator delete"; |
| case OO_Array_New: |
| return "operator new[]"; |
| case OO_Array_Delete: |
| return "operator delete[]"; |
| } |
| llvm_unreachable("Not an overloaded allocation operator"); |
| } |
| |
| bool areCorrespondingOverloads(const FunctionDecl *LHS, |
| const FunctionDecl *RHS) { |
| return RHS->getOverloadedOperator() == getCorrespondingOverload(LHS); |
| } |
| |
| bool hasCorrespondingOverloadInBaseClass(const CXXMethodDecl *MD, |
| const CXXRecordDecl *RD = nullptr) { |
| if (RD) { |
| // Check the methods in the given class and accessible to derived classes. |
| for (const auto *BMD : RD->methods()) |
| if (BMD->isOverloadedOperator() && BMD->getAccess() != AS_private && |
| areCorrespondingOverloads(MD, BMD)) |
| return true; |
| } else { |
| // Get the parent class of the method; we do not need to care about checking |
| // the methods in this class as the caller has already done that by looking |
| // at the declaration contexts. |
| RD = MD->getParent(); |
| } |
| |
| for (const auto &BS : RD->bases()) { |
| // We can't say much about a dependent base class, but to avoid false |
| // positives assume it can have a corresponding overload. |
| if (BS.getType()->isDependentType()) |
| return true; |
| if (const auto *BaseRD = BS.getType()->getAsCXXRecordDecl()) |
| if (hasCorrespondingOverloadInBaseClass(MD, BaseRD)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| } // anonymous namespace |
| |
| void NewDeleteOverloadsCheck::registerMatchers(MatchFinder *Finder) { |
| if (!getLangOpts().CPlusPlus) |
| return; |
| |
| // Match all operator new and operator delete overloads (including the array |
| // forms). Do not match implicit operators, placement operators, or |
| // deleted/private operators. |
| // |
| // Technically, trivially-defined operator delete seems like a reasonable |
| // thing to also skip. e.g., void operator delete(void *) {} |
| // However, I think it's more reasonable to warn in this case as the user |
| // should really be writing that as a deleted function. |
| Finder->addMatcher( |
| functionDecl(unless(anyOf(isImplicit(), isPlacementOverload(), |
| isDeleted(), cxxMethodDecl(isPrivate()))), |
| anyOf(hasOverloadedOperatorName("new"), |
| hasOverloadedOperatorName("new[]"), |
| hasOverloadedOperatorName("delete"), |
| hasOverloadedOperatorName("delete[]"))) |
| .bind("func"), |
| this); |
| } |
| |
| void NewDeleteOverloadsCheck::check(const MatchFinder::MatchResult &Result) { |
| // Add any matches we locate to the list of things to be checked at the |
| // end of the translation unit. |
| const auto *FD = Result.Nodes.getNodeAs<FunctionDecl>("func"); |
| const CXXRecordDecl *RD = nullptr; |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) |
| RD = MD->getParent(); |
| Overloads[RD].push_back(FD); |
| } |
| |
| void NewDeleteOverloadsCheck::onEndOfTranslationUnit() { |
| // Walk over the list of declarations we've found to see if there is a |
| // corresponding overload at the same declaration context or within a base |
| // class. If there is not, add the element to the list of declarations to |
| // diagnose. |
| SmallVector<const FunctionDecl *, 4> Diagnose; |
| for (const auto &RP : Overloads) { |
| // We don't care about the CXXRecordDecl key in the map; we use it as a way |
| // to shard the overloads by declaration context to reduce the algorithmic |
| // complexity when searching for corresponding free store functions. |
| for (const auto *Overload : RP.second) { |
| const auto *Match = |
| std::find_if(RP.second.begin(), RP.second.end(), |
| [&Overload](const FunctionDecl *FD) { |
| if (FD == Overload) |
| return false; |
| // If the declaration contexts don't match, we don't |
| // need to check any further. |
| if (FD->getDeclContext() != Overload->getDeclContext()) |
| return false; |
| |
| // Since the declaration contexts match, see whether |
| // the current element is the corresponding operator. |
| if (!areCorrespondingOverloads(Overload, FD)) |
| return false; |
| |
| return true; |
| }); |
| |
| if (Match == RP.second.end()) { |
| // Check to see if there is a corresponding overload in a base class |
| // context. If there isn't, or if the overload is not a class member |
| // function, then we should diagnose. |
| const auto *MD = dyn_cast<CXXMethodDecl>(Overload); |
| if (!MD || !hasCorrespondingOverloadInBaseClass(MD)) |
| Diagnose.push_back(Overload); |
| } |
| } |
| } |
| |
| for (const auto *FD : Diagnose) |
| diag(FD->getLocation(), "declaration of %0 has no matching declaration " |
| "of '%1' at the same scope") |
| << FD << getOperatorName(getCorrespondingOverload(FD)); |
| } |
| |
| } // namespace misc |
| } // namespace tidy |
| } // namespace clang |