| //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/CodeGen/BackendUtil.h" |
| #include "clang/Basic/Diagnostic.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "clang/Basic/TargetOptions.h" |
| #include "clang/Frontend/CodeGenOptions.h" |
| #include "clang/Frontend/FrontendDiagnostic.h" |
| #include "clang/Frontend/Utils.h" |
| #include "clang/Lex/HeaderSearchOptions.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Bitcode/BitcodeReader.h" |
| #include "llvm/Bitcode/BitcodeWriter.h" |
| #include "llvm/Bitcode/BitcodeWriterPass.h" |
| #include "llvm/CodeGen/RegAllocRegistry.h" |
| #include "llvm/CodeGen/SchedulerRegistry.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/IRPrintingPasses.h" |
| #include "llvm/IR/LegacyPassManager.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/ModuleSummaryIndex.h" |
| #include "llvm/IR/Verifier.h" |
| #include "llvm/LTO/LTOBackend.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/SubtargetFeature.h" |
| #include "llvm/Passes/PassBuilder.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include "llvm/Support/PrettyStackTrace.h" |
| #include "llvm/Support/TargetRegistry.h" |
| #include "llvm/Support/Timer.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Transforms/Coroutines.h" |
| #include "llvm/Transforms/IPO.h" |
| #include "llvm/Transforms/IPO/AlwaysInliner.h" |
| #include "llvm/Transforms/IPO/PassManagerBuilder.h" |
| #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" |
| #include "llvm/Transforms/InstCombine/InstCombine.h" |
| #include "llvm/Transforms/Instrumentation.h" |
| #include "llvm/Transforms/Instrumentation/BoundsChecking.h" |
| #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" |
| #include "llvm/Transforms/ObjCARC.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Scalar/GVN.h" |
| #include "llvm/Transforms/Utils.h" |
| #include "llvm/Transforms/Utils/NameAnonGlobals.h" |
| #include "llvm/Transforms/Utils/SymbolRewriter.h" |
| #include <memory> |
| using namespace clang; |
| using namespace llvm; |
| |
| namespace { |
| |
| // Default filename used for profile generation. |
| static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; |
| |
| class EmitAssemblyHelper { |
| DiagnosticsEngine &Diags; |
| const HeaderSearchOptions &HSOpts; |
| const CodeGenOptions &CodeGenOpts; |
| const clang::TargetOptions &TargetOpts; |
| const LangOptions &LangOpts; |
| Module *TheModule; |
| |
| Timer CodeGenerationTime; |
| |
| std::unique_ptr<raw_pwrite_stream> OS; |
| |
| TargetIRAnalysis getTargetIRAnalysis() const { |
| if (TM) |
| return TM->getTargetIRAnalysis(); |
| |
| return TargetIRAnalysis(); |
| } |
| |
| void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); |
| |
| /// Generates the TargetMachine. |
| /// Leaves TM unchanged if it is unable to create the target machine. |
| /// Some of our clang tests specify triples which are not built |
| /// into clang. This is okay because these tests check the generated |
| /// IR, and they require DataLayout which depends on the triple. |
| /// In this case, we allow this method to fail and not report an error. |
| /// When MustCreateTM is used, we print an error if we are unable to load |
| /// the requested target. |
| void CreateTargetMachine(bool MustCreateTM); |
| |
| /// Add passes necessary to emit assembly or LLVM IR. |
| /// |
| /// \return True on success. |
| bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, |
| raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); |
| |
| std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { |
| std::error_code EC; |
| auto F = llvm::make_unique<llvm::ToolOutputFile>(Path, EC, |
| llvm::sys::fs::F_None); |
| if (EC) { |
| Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); |
| F.reset(); |
| } |
| return F; |
| } |
| |
| public: |
| EmitAssemblyHelper(DiagnosticsEngine &_Diags, |
| const HeaderSearchOptions &HeaderSearchOpts, |
| const CodeGenOptions &CGOpts, |
| const clang::TargetOptions &TOpts, |
| const LangOptions &LOpts, Module *M) |
| : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), |
| TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), |
| CodeGenerationTime("codegen", "Code Generation Time") {} |
| |
| ~EmitAssemblyHelper() { |
| if (CodeGenOpts.DisableFree) |
| BuryPointer(std::move(TM)); |
| } |
| |
| std::unique_ptr<TargetMachine> TM; |
| |
| void EmitAssembly(BackendAction Action, |
| std::unique_ptr<raw_pwrite_stream> OS); |
| |
| void EmitAssemblyWithNewPassManager(BackendAction Action, |
| std::unique_ptr<raw_pwrite_stream> OS); |
| }; |
| |
| // We need this wrapper to access LangOpts and CGOpts from extension functions |
| // that we add to the PassManagerBuilder. |
| class PassManagerBuilderWrapper : public PassManagerBuilder { |
| public: |
| PassManagerBuilderWrapper(const Triple &TargetTriple, |
| const CodeGenOptions &CGOpts, |
| const LangOptions &LangOpts) |
| : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), |
| LangOpts(LangOpts) {} |
| const Triple &getTargetTriple() const { return TargetTriple; } |
| const CodeGenOptions &getCGOpts() const { return CGOpts; } |
| const LangOptions &getLangOpts() const { return LangOpts; } |
| |
| private: |
| const Triple &TargetTriple; |
| const CodeGenOptions &CGOpts; |
| const LangOptions &LangOpts; |
| }; |
| } |
| |
| static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { |
| if (Builder.OptLevel > 0) |
| PM.add(createObjCARCAPElimPass()); |
| } |
| |
| static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { |
| if (Builder.OptLevel > 0) |
| PM.add(createObjCARCExpandPass()); |
| } |
| |
| static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { |
| if (Builder.OptLevel > 0) |
| PM.add(createObjCARCOptPass()); |
| } |
| |
| static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, |
| legacy::PassManagerBase &PM) { |
| PM.add(createAddDiscriminatorsPass()); |
| } |
| |
| static void addBoundsCheckingPass(const PassManagerBuilder &Builder, |
| legacy::PassManagerBase &PM) { |
| PM.add(createBoundsCheckingLegacyPass()); |
| } |
| |
| static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, |
| legacy::PassManagerBase &PM) { |
| const PassManagerBuilderWrapper &BuilderWrapper = |
| static_cast<const PassManagerBuilderWrapper&>(Builder); |
| const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); |
| SanitizerCoverageOptions Opts; |
| Opts.CoverageType = |
| static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); |
| Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; |
| Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; |
| Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; |
| Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; |
| Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; |
| Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; |
| Opts.TracePC = CGOpts.SanitizeCoverageTracePC; |
| Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; |
| Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; |
| Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; |
| Opts.PCTable = CGOpts.SanitizeCoveragePCTable; |
| Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; |
| PM.add(createSanitizerCoverageModulePass(Opts)); |
| } |
| |
| // Check if ASan should use GC-friendly instrumentation for globals. |
| // First of all, there is no point if -fdata-sections is off (expect for MachO, |
| // where this is not a factor). Also, on ELF this feature requires an assembler |
| // extension that only works with -integrated-as at the moment. |
| static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { |
| if (!CGOpts.SanitizeAddressGlobalsDeadStripping) |
| return false; |
| switch (T.getObjectFormat()) { |
| case Triple::MachO: |
| case Triple::COFF: |
| return true; |
| case Triple::ELF: |
| return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; |
| default: |
| return false; |
| } |
| } |
| |
| static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, |
| legacy::PassManagerBase &PM) { |
| const PassManagerBuilderWrapper &BuilderWrapper = |
| static_cast<const PassManagerBuilderWrapper&>(Builder); |
| const Triple &T = BuilderWrapper.getTargetTriple(); |
| const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); |
| bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); |
| bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; |
| bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); |
| PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, |
| UseAfterScope)); |
| PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, |
| UseGlobalsGC)); |
| } |
| |
| static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, |
| legacy::PassManagerBase &PM) { |
| PM.add(createAddressSanitizerFunctionPass( |
| /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); |
| PM.add(createAddressSanitizerModulePass( |
| /*CompileKernel*/ true, /*Recover*/ true)); |
| } |
| |
| static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, |
| legacy::PassManagerBase &PM) { |
| const PassManagerBuilderWrapper &BuilderWrapper = |
| static_cast<const PassManagerBuilderWrapper &>(Builder); |
| const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); |
| bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); |
| PM.add(createHWAddressSanitizerPass(/*CompileKernel*/ false, Recover)); |
| } |
| |
| static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, |
| legacy::PassManagerBase &PM) { |
| PM.add(createHWAddressSanitizerPass( |
| /*CompileKernel*/ true, /*Recover*/ true)); |
| } |
| |
| static void addMemorySanitizerPass(const PassManagerBuilder &Builder, |
| legacy::PassManagerBase &PM) { |
| const PassManagerBuilderWrapper &BuilderWrapper = |
| static_cast<const PassManagerBuilderWrapper&>(Builder); |
| const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); |
| int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; |
| bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); |
| PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); |
| |
| // MemorySanitizer inserts complex instrumentation that mostly follows |
| // the logic of the original code, but operates on "shadow" values. |
| // It can benefit from re-running some general purpose optimization passes. |
| if (Builder.OptLevel > 0) { |
| PM.add(createEarlyCSEPass()); |
| PM.add(createReassociatePass()); |
| PM.add(createLICMPass()); |
| PM.add(createGVNPass()); |
| PM.add(createInstructionCombiningPass()); |
| PM.add(createDeadStoreEliminationPass()); |
| } |
| } |
| |
| static void addThreadSanitizerPass(const PassManagerBuilder &Builder, |
| legacy::PassManagerBase &PM) { |
| PM.add(createThreadSanitizerPass()); |
| } |
| |
| static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, |
| legacy::PassManagerBase &PM) { |
| const PassManagerBuilderWrapper &BuilderWrapper = |
| static_cast<const PassManagerBuilderWrapper&>(Builder); |
| const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); |
| PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); |
| } |
| |
| static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, |
| legacy::PassManagerBase &PM) { |
| const PassManagerBuilderWrapper &BuilderWrapper = |
| static_cast<const PassManagerBuilderWrapper&>(Builder); |
| const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); |
| EfficiencySanitizerOptions Opts; |
| if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) |
| Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; |
| else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) |
| Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; |
| PM.add(createEfficiencySanitizerPass(Opts)); |
| } |
| |
| static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, |
| const CodeGenOptions &CodeGenOpts) { |
| TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); |
| if (!CodeGenOpts.SimplifyLibCalls) |
| TLII->disableAllFunctions(); |
| else { |
| // Disable individual libc/libm calls in TargetLibraryInfo. |
| LibFunc F; |
| for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) |
| if (TLII->getLibFunc(FuncName, F)) |
| TLII->setUnavailable(F); |
| } |
| |
| switch (CodeGenOpts.getVecLib()) { |
| case CodeGenOptions::Accelerate: |
| TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); |
| break; |
| case CodeGenOptions::SVML: |
| TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); |
| break; |
| default: |
| break; |
| } |
| return TLII; |
| } |
| |
| static void addSymbolRewriterPass(const CodeGenOptions &Opts, |
| legacy::PassManager *MPM) { |
| llvm::SymbolRewriter::RewriteDescriptorList DL; |
| |
| llvm::SymbolRewriter::RewriteMapParser MapParser; |
| for (const auto &MapFile : Opts.RewriteMapFiles) |
| MapParser.parse(MapFile, &DL); |
| |
| MPM->add(createRewriteSymbolsPass(DL)); |
| } |
| |
| static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { |
| switch (CodeGenOpts.OptimizationLevel) { |
| default: |
| llvm_unreachable("Invalid optimization level!"); |
| case 0: |
| return CodeGenOpt::None; |
| case 1: |
| return CodeGenOpt::Less; |
| case 2: |
| return CodeGenOpt::Default; // O2/Os/Oz |
| case 3: |
| return CodeGenOpt::Aggressive; |
| } |
| } |
| |
| static Optional<llvm::CodeModel::Model> |
| getCodeModel(const CodeGenOptions &CodeGenOpts) { |
| unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) |
| .Case("small", llvm::CodeModel::Small) |
| .Case("kernel", llvm::CodeModel::Kernel) |
| .Case("medium", llvm::CodeModel::Medium) |
| .Case("large", llvm::CodeModel::Large) |
| .Case("default", ~1u) |
| .Default(~0u); |
| assert(CodeModel != ~0u && "invalid code model!"); |
| if (CodeModel == ~1u) |
| return None; |
| return static_cast<llvm::CodeModel::Model>(CodeModel); |
| } |
| |
| static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { |
| if (Action == Backend_EmitObj) |
| return TargetMachine::CGFT_ObjectFile; |
| else if (Action == Backend_EmitMCNull) |
| return TargetMachine::CGFT_Null; |
| else { |
| assert(Action == Backend_EmitAssembly && "Invalid action!"); |
| return TargetMachine::CGFT_AssemblyFile; |
| } |
| } |
| |
| static void initTargetOptions(llvm::TargetOptions &Options, |
| const CodeGenOptions &CodeGenOpts, |
| const clang::TargetOptions &TargetOpts, |
| const LangOptions &LangOpts, |
| const HeaderSearchOptions &HSOpts) { |
| Options.ThreadModel = |
| llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) |
| .Case("posix", llvm::ThreadModel::POSIX) |
| .Case("single", llvm::ThreadModel::Single); |
| |
| // Set float ABI type. |
| assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || |
| CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && |
| "Invalid Floating Point ABI!"); |
| Options.FloatABIType = |
| llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) |
| .Case("soft", llvm::FloatABI::Soft) |
| .Case("softfp", llvm::FloatABI::Soft) |
| .Case("hard", llvm::FloatABI::Hard) |
| .Default(llvm::FloatABI::Default); |
| |
| // Set FP fusion mode. |
| switch (LangOpts.getDefaultFPContractMode()) { |
| case LangOptions::FPC_Off: |
| // Preserve any contraction performed by the front-end. (Strict performs |
| // splitting of the muladd instrinsic in the backend.) |
| Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; |
| break; |
| case LangOptions::FPC_On: |
| Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; |
| break; |
| case LangOptions::FPC_Fast: |
| Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; |
| break; |
| } |
| |
| Options.UseInitArray = CodeGenOpts.UseInitArray; |
| Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; |
| Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); |
| Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; |
| |
| // Set EABI version. |
| Options.EABIVersion = TargetOpts.EABIVersion; |
| |
| if (LangOpts.SjLjExceptions) |
| Options.ExceptionModel = llvm::ExceptionHandling::SjLj; |
| if (LangOpts.SEHExceptions) |
| Options.ExceptionModel = llvm::ExceptionHandling::WinEH; |
| if (LangOpts.DWARFExceptions) |
| Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; |
| |
| Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; |
| Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; |
| Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; |
| Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; |
| Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; |
| Options.FunctionSections = CodeGenOpts.FunctionSections; |
| Options.DataSections = CodeGenOpts.DataSections; |
| Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; |
| Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; |
| Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; |
| Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); |
| Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; |
| Options.EmitAddrsig = CodeGenOpts.Addrsig; |
| |
| if (CodeGenOpts.EnableSplitDwarf) |
| Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; |
| Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; |
| Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; |
| Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; |
| Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; |
| Options.MCOptions.MCIncrementalLinkerCompatible = |
| CodeGenOpts.IncrementalLinkerCompatible; |
| Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; |
| Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; |
| Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; |
| Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; |
| Options.MCOptions.ABIName = TargetOpts.ABI; |
| for (const auto &Entry : HSOpts.UserEntries) |
| if (!Entry.IsFramework && |
| (Entry.Group == frontend::IncludeDirGroup::Quoted || |
| Entry.Group == frontend::IncludeDirGroup::Angled || |
| Entry.Group == frontend::IncludeDirGroup::System)) |
| Options.MCOptions.IASSearchPaths.push_back( |
| Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); |
| } |
| static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { |
| if (CodeGenOpts.DisableGCov) |
| return None; |
| if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) |
| return None; |
| // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if |
| // LLVM's -default-gcov-version flag is set to something invalid. |
| GCOVOptions Options; |
| Options.EmitNotes = CodeGenOpts.EmitGcovNotes; |
| Options.EmitData = CodeGenOpts.EmitGcovArcs; |
| llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); |
| Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; |
| Options.NoRedZone = CodeGenOpts.DisableRedZone; |
| Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; |
| Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; |
| return Options; |
| } |
| |
| void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, |
| legacy::FunctionPassManager &FPM) { |
| // Handle disabling of all LLVM passes, where we want to preserve the |
| // internal module before any optimization. |
| if (CodeGenOpts.DisableLLVMPasses) |
| return; |
| |
| // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM |
| // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) |
| // are inserted before PMBuilder ones - they'd get the default-constructed |
| // TLI with an unknown target otherwise. |
| Triple TargetTriple(TheModule->getTargetTriple()); |
| std::unique_ptr<TargetLibraryInfoImpl> TLII( |
| createTLII(TargetTriple, CodeGenOpts)); |
| |
| PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); |
| |
| // At O0 and O1 we only run the always inliner which is more efficient. At |
| // higher optimization levels we run the normal inliner. |
| if (CodeGenOpts.OptimizationLevel <= 1) { |
| bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && |
| !CodeGenOpts.DisableLifetimeMarkers); |
| PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); |
| } else { |
| // We do not want to inline hot callsites for SamplePGO module-summary build |
| // because profile annotation will happen again in ThinLTO backend, and we |
| // want the IR of the hot path to match the profile. |
| PMBuilder.Inliner = createFunctionInliningPass( |
| CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, |
| (!CodeGenOpts.SampleProfileFile.empty() && |
| CodeGenOpts.PrepareForThinLTO)); |
| } |
| |
| PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; |
| PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; |
| PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; |
| PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; |
| |
| PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; |
| PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; |
| PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; |
| PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; |
| PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; |
| |
| MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); |
| |
| if (TM) |
| TM->adjustPassManager(PMBuilder); |
| |
| if (CodeGenOpts.DebugInfoForProfiling || |
| !CodeGenOpts.SampleProfileFile.empty()) |
| PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, |
| addAddDiscriminatorsPass); |
| |
| // In ObjC ARC mode, add the main ARC optimization passes. |
| if (LangOpts.ObjCAutoRefCount) { |
| PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, |
| addObjCARCExpandPass); |
| PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, |
| addObjCARCAPElimPass); |
| PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, |
| addObjCARCOptPass); |
| } |
| |
| if (LangOpts.CoroutinesTS) |
| addCoroutinePassesToExtensionPoints(PMBuilder); |
| |
| if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { |
| PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, |
| addBoundsCheckingPass); |
| PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, |
| addBoundsCheckingPass); |
| } |
| |
| if (CodeGenOpts.SanitizeCoverageType || |
| CodeGenOpts.SanitizeCoverageIndirectCalls || |
| CodeGenOpts.SanitizeCoverageTraceCmp) { |
| PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, |
| addSanitizerCoveragePass); |
| PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, |
| addSanitizerCoveragePass); |
| } |
| |
| if (LangOpts.Sanitize.has(SanitizerKind::Address)) { |
| PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, |
| addAddressSanitizerPasses); |
| PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, |
| addAddressSanitizerPasses); |
| } |
| |
| if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { |
| PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, |
| addKernelAddressSanitizerPasses); |
| PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, |
| addKernelAddressSanitizerPasses); |
| } |
| |
| if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { |
| PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, |
| addHWAddressSanitizerPasses); |
| PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, |
| addHWAddressSanitizerPasses); |
| } |
| |
| if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { |
| PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, |
| addKernelHWAddressSanitizerPasses); |
| PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, |
| addKernelHWAddressSanitizerPasses); |
| } |
| |
| if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { |
| PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, |
| addMemorySanitizerPass); |
| PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, |
| addMemorySanitizerPass); |
| } |
| |
| if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { |
| PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, |
| addThreadSanitizerPass); |
| PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, |
| addThreadSanitizerPass); |
| } |
| |
| if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { |
| PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, |
| addDataFlowSanitizerPass); |
| PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, |
| addDataFlowSanitizerPass); |
| } |
| |
| if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { |
| PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, |
| addEfficiencySanitizerPass); |
| PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, |
| addEfficiencySanitizerPass); |
| } |
| |
| // Set up the per-function pass manager. |
| FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); |
| if (CodeGenOpts.VerifyModule) |
| FPM.add(createVerifierPass()); |
| |
| // Set up the per-module pass manager. |
| if (!CodeGenOpts.RewriteMapFiles.empty()) |
| addSymbolRewriterPass(CodeGenOpts, &MPM); |
| |
| if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { |
| MPM.add(createGCOVProfilerPass(*Options)); |
| if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) |
| MPM.add(createStripSymbolsPass(true)); |
| } |
| |
| if (CodeGenOpts.hasProfileClangInstr()) { |
| InstrProfOptions Options; |
| Options.NoRedZone = CodeGenOpts.DisableRedZone; |
| Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; |
| MPM.add(createInstrProfilingLegacyPass(Options)); |
| } |
| if (CodeGenOpts.hasProfileIRInstr()) { |
| PMBuilder.EnablePGOInstrGen = true; |
| if (!CodeGenOpts.InstrProfileOutput.empty()) |
| PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; |
| else |
| PMBuilder.PGOInstrGen = DefaultProfileGenName; |
| } |
| if (CodeGenOpts.hasProfileIRUse()) |
| PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; |
| |
| if (!CodeGenOpts.SampleProfileFile.empty()) |
| PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; |
| |
| PMBuilder.populateFunctionPassManager(FPM); |
| PMBuilder.populateModulePassManager(MPM); |
| } |
| |
| static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { |
| SmallVector<const char *, 16> BackendArgs; |
| BackendArgs.push_back("clang"); // Fake program name. |
| if (!CodeGenOpts.DebugPass.empty()) { |
| BackendArgs.push_back("-debug-pass"); |
| BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); |
| } |
| if (!CodeGenOpts.LimitFloatPrecision.empty()) { |
| BackendArgs.push_back("-limit-float-precision"); |
| BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); |
| } |
| BackendArgs.push_back(nullptr); |
| llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, |
| BackendArgs.data()); |
| } |
| |
| void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { |
| // Create the TargetMachine for generating code. |
| std::string Error; |
| std::string Triple = TheModule->getTargetTriple(); |
| const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); |
| if (!TheTarget) { |
| if (MustCreateTM) |
| Diags.Report(diag::err_fe_unable_to_create_target) << Error; |
| return; |
| } |
| |
| Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); |
| std::string FeaturesStr = |
| llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); |
| llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; |
| CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); |
| |
| llvm::TargetOptions Options; |
| initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); |
| TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, |
| Options, RM, CM, OptLevel)); |
| } |
| |
| bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, |
| BackendAction Action, |
| raw_pwrite_stream &OS, |
| raw_pwrite_stream *DwoOS) { |
| // Add LibraryInfo. |
| llvm::Triple TargetTriple(TheModule->getTargetTriple()); |
| std::unique_ptr<TargetLibraryInfoImpl> TLII( |
| createTLII(TargetTriple, CodeGenOpts)); |
| CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); |
| |
| // Normal mode, emit a .s or .o file by running the code generator. Note, |
| // this also adds codegenerator level optimization passes. |
| TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); |
| |
| // Add ObjC ARC final-cleanup optimizations. This is done as part of the |
| // "codegen" passes so that it isn't run multiple times when there is |
| // inlining happening. |
| if (CodeGenOpts.OptimizationLevel > 0) |
| CodeGenPasses.add(createObjCARCContractPass()); |
| |
| if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, |
| /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { |
| Diags.Report(diag::err_fe_unable_to_interface_with_target); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void EmitAssemblyHelper::EmitAssembly(BackendAction Action, |
| std::unique_ptr<raw_pwrite_stream> OS) { |
| TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); |
| |
| setCommandLineOpts(CodeGenOpts); |
| |
| bool UsesCodeGen = (Action != Backend_EmitNothing && |
| Action != Backend_EmitBC && |
| Action != Backend_EmitLL); |
| CreateTargetMachine(UsesCodeGen); |
| |
| if (UsesCodeGen && !TM) |
| return; |
| if (TM) |
| TheModule->setDataLayout(TM->createDataLayout()); |
| |
| legacy::PassManager PerModulePasses; |
| PerModulePasses.add( |
| createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); |
| |
| legacy::FunctionPassManager PerFunctionPasses(TheModule); |
| PerFunctionPasses.add( |
| createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); |
| |
| CreatePasses(PerModulePasses, PerFunctionPasses); |
| |
| legacy::PassManager CodeGenPasses; |
| CodeGenPasses.add( |
| createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); |
| |
| std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; |
| |
| switch (Action) { |
| case Backend_EmitNothing: |
| break; |
| |
| case Backend_EmitBC: |
| if (CodeGenOpts.PrepareForThinLTO) { |
| if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { |
| ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); |
| if (!ThinLinkOS) |
| return; |
| } |
| PerModulePasses.add(createWriteThinLTOBitcodePass( |
| *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); |
| } else { |
| // Emit a module summary by default for Regular LTO except for ld64 |
| // targets |
| bool EmitLTOSummary = |
| (CodeGenOpts.PrepareForLTO && |
| llvm::Triple(TheModule->getTargetTriple()).getVendor() != |
| llvm::Triple::Apple); |
| if (EmitLTOSummary && !TheModule->getModuleFlag("ThinLTO")) |
| TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); |
| |
| PerModulePasses.add( |
| createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, |
| EmitLTOSummary)); |
| } |
| break; |
| |
| case Backend_EmitLL: |
| PerModulePasses.add( |
| createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); |
| break; |
| |
| default: |
| if (!CodeGenOpts.SplitDwarfFile.empty()) { |
| DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); |
| if (!DwoOS) |
| return; |
| } |
| if (!AddEmitPasses(CodeGenPasses, Action, *OS, |
| DwoOS ? &DwoOS->os() : nullptr)) |
| return; |
| } |
| |
| // Before executing passes, print the final values of the LLVM options. |
| cl::PrintOptionValues(); |
| |
| // Run passes. For now we do all passes at once, but eventually we |
| // would like to have the option of streaming code generation. |
| |
| { |
| PrettyStackTraceString CrashInfo("Per-function optimization"); |
| |
| PerFunctionPasses.doInitialization(); |
| for (Function &F : *TheModule) |
| if (!F.isDeclaration()) |
| PerFunctionPasses.run(F); |
| PerFunctionPasses.doFinalization(); |
| } |
| |
| { |
| PrettyStackTraceString CrashInfo("Per-module optimization passes"); |
| PerModulePasses.run(*TheModule); |
| } |
| |
| { |
| PrettyStackTraceString CrashInfo("Code generation"); |
| CodeGenPasses.run(*TheModule); |
| } |
| |
| if (ThinLinkOS) |
| ThinLinkOS->keep(); |
| if (DwoOS) |
| DwoOS->keep(); |
| } |
| |
| static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { |
| switch (Opts.OptimizationLevel) { |
| default: |
| llvm_unreachable("Invalid optimization level!"); |
| |
| case 1: |
| return PassBuilder::O1; |
| |
| case 2: |
| switch (Opts.OptimizeSize) { |
| default: |
| llvm_unreachable("Invalid optimization level for size!"); |
| |
| case 0: |
| return PassBuilder::O2; |
| |
| case 1: |
| return PassBuilder::Os; |
| |
| case 2: |
| return PassBuilder::Oz; |
| } |
| |
| case 3: |
| return PassBuilder::O3; |
| } |
| } |
| |
| /// A clean version of `EmitAssembly` that uses the new pass manager. |
| /// |
| /// Not all features are currently supported in this system, but where |
| /// necessary it falls back to the legacy pass manager to at least provide |
| /// basic functionality. |
| /// |
| /// This API is planned to have its functionality finished and then to replace |
| /// `EmitAssembly` at some point in the future when the default switches. |
| void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( |
| BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { |
| TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); |
| setCommandLineOpts(CodeGenOpts); |
| |
| // The new pass manager always makes a target machine available to passes |
| // during construction. |
| CreateTargetMachine(/*MustCreateTM*/ true); |
| if (!TM) |
| // This will already be diagnosed, just bail. |
| return; |
| TheModule->setDataLayout(TM->createDataLayout()); |
| |
| Optional<PGOOptions> PGOOpt; |
| |
| if (CodeGenOpts.hasProfileIRInstr()) |
| // -fprofile-generate. |
| PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() |
| ? DefaultProfileGenName |
| : CodeGenOpts.InstrProfileOutput, |
| "", "", true, CodeGenOpts.DebugInfoForProfiling); |
| else if (CodeGenOpts.hasProfileIRUse()) |
| // -fprofile-use. |
| PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", false, |
| CodeGenOpts.DebugInfoForProfiling); |
| else if (!CodeGenOpts.SampleProfileFile.empty()) |
| // -fprofile-sample-use |
| PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, false, |
| CodeGenOpts.DebugInfoForProfiling); |
| else if (CodeGenOpts.DebugInfoForProfiling) |
| // -fdebug-info-for-profiling |
| PGOOpt = PGOOptions("", "", "", false, true); |
| |
| PassBuilder PB(TM.get(), PGOOpt); |
| |
| LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); |
| FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); |
| CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); |
| ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); |
| |
| // Register the AA manager first so that our version is the one used. |
| FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); |
| |
| // Register the target library analysis directly and give it a customized |
| // preset TLI. |
| Triple TargetTriple(TheModule->getTargetTriple()); |
| std::unique_ptr<TargetLibraryInfoImpl> TLII( |
| createTLII(TargetTriple, CodeGenOpts)); |
| FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); |
| MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); |
| |
| // Register all the basic analyses with the managers. |
| PB.registerModuleAnalyses(MAM); |
| PB.registerCGSCCAnalyses(CGAM); |
| PB.registerFunctionAnalyses(FAM); |
| PB.registerLoopAnalyses(LAM); |
| PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); |
| |
| ModulePassManager MPM(CodeGenOpts.DebugPassManager); |
| |
| if (!CodeGenOpts.DisableLLVMPasses) { |
| bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; |
| bool IsLTO = CodeGenOpts.PrepareForLTO; |
| |
| if (CodeGenOpts.OptimizationLevel == 0) { |
| if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) |
| MPM.addPass(GCOVProfilerPass(*Options)); |
| |
| // Build a minimal pipeline based on the semantics required by Clang, |
| // which is just that always inlining occurs. |
| MPM.addPass(AlwaysInlinerPass()); |
| |
| // At -O0 we directly run necessary sanitizer passes. |
| if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) |
| MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); |
| |
| // Lastly, add a semantically necessary pass for LTO. |
| if (IsLTO || IsThinLTO) |
| MPM.addPass(NameAnonGlobalPass()); |
| } else { |
| // Map our optimization levels into one of the distinct levels used to |
| // configure the pipeline. |
| PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); |
| |
| // Register callbacks to schedule sanitizer passes at the appropriate part of |
| // the pipeline. |
| if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) |
| PB.registerScalarOptimizerLateEPCallback( |
| [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { |
| FPM.addPass(BoundsCheckingPass()); |
| }); |
| if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) |
| PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { |
| MPM.addPass(GCOVProfilerPass(*Options)); |
| }); |
| |
| if (IsThinLTO) { |
| MPM = PB.buildThinLTOPreLinkDefaultPipeline( |
| Level, CodeGenOpts.DebugPassManager); |
| MPM.addPass(NameAnonGlobalPass()); |
| } else if (IsLTO) { |
| MPM = PB.buildLTOPreLinkDefaultPipeline(Level, |
| CodeGenOpts.DebugPassManager); |
| MPM.addPass(NameAnonGlobalPass()); |
| } else { |
| MPM = PB.buildPerModuleDefaultPipeline(Level, |
| CodeGenOpts.DebugPassManager); |
| } |
| } |
| } |
| |
| // FIXME: We still use the legacy pass manager to do code generation. We |
| // create that pass manager here and use it as needed below. |
| legacy::PassManager CodeGenPasses; |
| bool NeedCodeGen = false; |
| std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; |
| |
| // Append any output we need to the pass manager. |
| switch (Action) { |
| case Backend_EmitNothing: |
| break; |
| |
| case Backend_EmitBC: |
| if (CodeGenOpts.PrepareForThinLTO) { |
| if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { |
| ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); |
| if (!ThinLinkOS) |
| return; |
| } |
| MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() |
| : nullptr)); |
| } else { |
| // Emit a module summary by default for Regular LTO except for ld64 |
| // targets |
| bool EmitLTOSummary = |
| (CodeGenOpts.PrepareForLTO && |
| llvm::Triple(TheModule->getTargetTriple()).getVendor() != |
| llvm::Triple::Apple); |
| if (EmitLTOSummary && !TheModule->getModuleFlag("ThinLTO")) |
| TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); |
| |
| MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, |
| EmitLTOSummary)); |
| } |
| break; |
| |
| case Backend_EmitLL: |
| MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); |
| break; |
| |
| case Backend_EmitAssembly: |
| case Backend_EmitMCNull: |
| case Backend_EmitObj: |
| NeedCodeGen = true; |
| CodeGenPasses.add( |
| createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); |
| if (!CodeGenOpts.SplitDwarfFile.empty()) { |
| DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); |
| if (!DwoOS) |
| return; |
| } |
| if (!AddEmitPasses(CodeGenPasses, Action, *OS, |
| DwoOS ? &DwoOS->os() : nullptr)) |
| // FIXME: Should we handle this error differently? |
| return; |
| break; |
| } |
| |
| // Before executing passes, print the final values of the LLVM options. |
| cl::PrintOptionValues(); |
| |
| // Now that we have all of the passes ready, run them. |
| { |
| PrettyStackTraceString CrashInfo("Optimizer"); |
| MPM.run(*TheModule, MAM); |
| } |
| |
| // Now if needed, run the legacy PM for codegen. |
| if (NeedCodeGen) { |
| PrettyStackTraceString CrashInfo("Code generation"); |
| CodeGenPasses.run(*TheModule); |
| } |
| |
| if (ThinLinkOS) |
| ThinLinkOS->keep(); |
| if (DwoOS) |
| DwoOS->keep(); |
| } |
| |
| Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { |
| Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); |
| if (!BMsOrErr) |
| return BMsOrErr.takeError(); |
| |
| // The bitcode file may contain multiple modules, we want the one that is |
| // marked as being the ThinLTO module. |
| if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) |
| return *Bm; |
| |
| return make_error<StringError>("Could not find module summary", |
| inconvertibleErrorCode()); |
| } |
| |
| BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { |
| for (BitcodeModule &BM : BMs) { |
| Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); |
| if (LTOInfo && LTOInfo->IsThinLTO) |
| return &BM; |
| } |
| return nullptr; |
| } |
| |
| static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, |
| const HeaderSearchOptions &HeaderOpts, |
| const CodeGenOptions &CGOpts, |
| const clang::TargetOptions &TOpts, |
| const LangOptions &LOpts, |
| std::unique_ptr<raw_pwrite_stream> OS, |
| std::string SampleProfile, |
| BackendAction Action) { |
| StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> |
| ModuleToDefinedGVSummaries; |
| CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); |
| |
| setCommandLineOpts(CGOpts); |
| |
| // We can simply import the values mentioned in the combined index, since |
| // we should only invoke this using the individual indexes written out |
| // via a WriteIndexesThinBackend. |
| FunctionImporter::ImportMapTy ImportList; |
| for (auto &GlobalList : *CombinedIndex) { |
| // Ignore entries for undefined references. |
| if (GlobalList.second.SummaryList.empty()) |
| continue; |
| |
| auto GUID = GlobalList.first; |
| assert(GlobalList.second.SummaryList.size() == 1 && |
| "Expected individual combined index to have one summary per GUID"); |
| auto &Summary = GlobalList.second.SummaryList[0]; |
| // Skip the summaries for the importing module. These are included to |
| // e.g. record required linkage changes. |
| if (Summary->modulePath() == M->getModuleIdentifier()) |
| continue; |
| // Add an entry to provoke importing by thinBackend. |
| ImportList[Summary->modulePath()].insert(GUID); |
| } |
| |
| std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; |
| MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; |
| |
| for (auto &I : ImportList) { |
| ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = |
| llvm::MemoryBuffer::getFile(I.first()); |
| if (!MBOrErr) { |
| errs() << "Error loading imported file '" << I.first() |
| << "': " << MBOrErr.getError().message() << "\n"; |
| return; |
| } |
| |
| Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); |
| if (!BMOrErr) { |
| handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { |
| errs() << "Error loading imported file '" << I.first() |
| << "': " << EIB.message() << '\n'; |
| }); |
| return; |
| } |
| ModuleMap.insert({I.first(), *BMOrErr}); |
| |
| OwnedImports.push_back(std::move(*MBOrErr)); |
| } |
| auto AddStream = [&](size_t Task) { |
| return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); |
| }; |
| lto::Config Conf; |
| if (CGOpts.SaveTempsFilePrefix != "") { |
| if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", |
| /* UseInputModulePath */ false)) { |
| handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { |
| errs() << "Error setting up ThinLTO save-temps: " << EIB.message() |
| << '\n'; |
| }); |
| } |
| } |
| Conf.CPU = TOpts.CPU; |
| Conf.CodeModel = getCodeModel(CGOpts); |
| Conf.MAttrs = TOpts.Features; |
| Conf.RelocModel = CGOpts.RelocationModel; |
| Conf.CGOptLevel = getCGOptLevel(CGOpts); |
| initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); |
| Conf.SampleProfile = std::move(SampleProfile); |
| Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; |
| Conf.DebugPassManager = CGOpts.DebugPassManager; |
| Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; |
| Conf.RemarksFilename = CGOpts.OptRecordFile; |
| Conf.DwoPath = CGOpts.SplitDwarfFile; |
| switch (Action) { |
| case Backend_EmitNothing: |
| Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { |
| return false; |
| }; |
| break; |
| case Backend_EmitLL: |
| Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { |
| M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); |
| return false; |
| }; |
| break; |
| case Backend_EmitBC: |
| Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { |
| WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); |
| return false; |
| }; |
| break; |
| default: |
| Conf.CGFileType = getCodeGenFileType(Action); |
| break; |
| } |
| if (Error E = thinBackend( |
| Conf, -1, AddStream, *M, *CombinedIndex, ImportList, |
| ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { |
| handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { |
| errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; |
| }); |
| } |
| } |
| |
| void clang::EmitBackendOutput(DiagnosticsEngine &Diags, |
| const HeaderSearchOptions &HeaderOpts, |
| const CodeGenOptions &CGOpts, |
| const clang::TargetOptions &TOpts, |
| const LangOptions &LOpts, |
| const llvm::DataLayout &TDesc, Module *M, |
| BackendAction Action, |
| std::unique_ptr<raw_pwrite_stream> OS) { |
| std::unique_ptr<llvm::Module> EmptyModule; |
| if (!CGOpts.ThinLTOIndexFile.empty()) { |
| // If we are performing a ThinLTO importing compile, load the function index |
| // into memory and pass it into runThinLTOBackend, which will run the |
| // function importer and invoke LTO passes. |
| Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = |
| llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, |
| /*IgnoreEmptyThinLTOIndexFile*/true); |
| if (!IndexOrErr) { |
| logAllUnhandledErrors(IndexOrErr.takeError(), errs(), |
| "Error loading index file '" + |
| CGOpts.ThinLTOIndexFile + "': "); |
| return; |
| } |
| std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); |
| // A null CombinedIndex means we should skip ThinLTO compilation |
| // (LLVM will optionally ignore empty index files, returning null instead |
| // of an error). |
| if (CombinedIndex) { |
| if (!CombinedIndex->skipModuleByDistributedBackend()) { |
| runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, |
| LOpts, std::move(OS), CGOpts.SampleProfileFile, |
| Action); |
| return; |
| } |
| // Distributed indexing detected that nothing from the module is needed |
| // for the final linking. So we can skip the compilation. We sill need to |
| // output an empty object file to make sure that a linker does not fail |
| // trying to read it. Also for some features, like CFI, we must skip |
| // the compilation as CombinedIndex does not contain all required |
| // information. |
| EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext()); |
| EmptyModule->setTargetTriple(M->getTargetTriple()); |
| M = EmptyModule.get(); |
| } |
| } |
| |
| EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); |
| |
| if (CGOpts.ExperimentalNewPassManager) |
| AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); |
| else |
| AsmHelper.EmitAssembly(Action, std::move(OS)); |
| |
| // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's |
| // DataLayout. |
| if (AsmHelper.TM) { |
| std::string DLDesc = M->getDataLayout().getStringRepresentation(); |
| if (DLDesc != TDesc.getStringRepresentation()) { |
| unsigned DiagID = Diags.getCustomDiagID( |
| DiagnosticsEngine::Error, "backend data layout '%0' does not match " |
| "expected target description '%1'"); |
| Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); |
| } |
| } |
| } |
| |
| static const char* getSectionNameForBitcode(const Triple &T) { |
| switch (T.getObjectFormat()) { |
| case Triple::MachO: |
| return "__LLVM,__bitcode"; |
| case Triple::COFF: |
| case Triple::ELF: |
| case Triple::Wasm: |
| case Triple::UnknownObjectFormat: |
| return ".llvmbc"; |
| } |
| llvm_unreachable("Unimplemented ObjectFormatType"); |
| } |
| |
| static const char* getSectionNameForCommandline(const Triple &T) { |
| switch (T.getObjectFormat()) { |
| case Triple::MachO: |
| return "__LLVM,__cmdline"; |
| case Triple::COFF: |
| case Triple::ELF: |
| case Triple::Wasm: |
| case Triple::UnknownObjectFormat: |
| return ".llvmcmd"; |
| } |
| llvm_unreachable("Unimplemented ObjectFormatType"); |
| } |
| |
| // With -fembed-bitcode, save a copy of the llvm IR as data in the |
| // __LLVM,__bitcode section. |
| void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, |
| llvm::MemoryBufferRef Buf) { |
| if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) |
| return; |
| |
| // Save llvm.compiler.used and remote it. |
| SmallVector<Constant*, 2> UsedArray; |
| SmallPtrSet<GlobalValue*, 4> UsedGlobals; |
| Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); |
| GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); |
| for (auto *GV : UsedGlobals) { |
| if (GV->getName() != "llvm.embedded.module" && |
| GV->getName() != "llvm.cmdline") |
| UsedArray.push_back( |
| ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); |
| } |
| if (Used) |
| Used->eraseFromParent(); |
| |
| // Embed the bitcode for the llvm module. |
| std::string Data; |
| ArrayRef<uint8_t> ModuleData; |
| Triple T(M->getTargetTriple()); |
| // Create a constant that contains the bitcode. |
| // In case of embedding a marker, ignore the input Buf and use the empty |
| // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. |
| if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { |
| if (!isBitcode((const unsigned char *)Buf.getBufferStart(), |
| (const unsigned char *)Buf.getBufferEnd())) { |
| // If the input is LLVM Assembly, bitcode is produced by serializing |
| // the module. Use-lists order need to be perserved in this case. |
| llvm::raw_string_ostream OS(Data); |
| llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); |
| ModuleData = |
| ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); |
| } else |
| // If the input is LLVM bitcode, write the input byte stream directly. |
| ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), |
| Buf.getBufferSize()); |
| } |
| llvm::Constant *ModuleConstant = |
| llvm::ConstantDataArray::get(M->getContext(), ModuleData); |
| llvm::GlobalVariable *GV = new llvm::GlobalVariable( |
| *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, |
| ModuleConstant); |
| GV->setSection(getSectionNameForBitcode(T)); |
| UsedArray.push_back( |
| ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); |
| if (llvm::GlobalVariable *Old = |
| M->getGlobalVariable("llvm.embedded.module", true)) { |
| assert(Old->hasOneUse() && |
| "llvm.embedded.module can only be used once in llvm.compiler.used"); |
| GV->takeName(Old); |
| Old->eraseFromParent(); |
| } else { |
| GV->setName("llvm.embedded.module"); |
| } |
| |
| // Skip if only bitcode needs to be embedded. |
| if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { |
| // Embed command-line options. |
| ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), |
| CGOpts.CmdArgs.size()); |
| llvm::Constant *CmdConstant = |
| llvm::ConstantDataArray::get(M->getContext(), CmdData); |
| GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, |
| llvm::GlobalValue::PrivateLinkage, |
| CmdConstant); |
| GV->setSection(getSectionNameForCommandline(T)); |
| UsedArray.push_back( |
| ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); |
| if (llvm::GlobalVariable *Old = |
| M->getGlobalVariable("llvm.cmdline", true)) { |
| assert(Old->hasOneUse() && |
| "llvm.cmdline can only be used once in llvm.compiler.used"); |
| GV->takeName(Old); |
| Old->eraseFromParent(); |
| } else { |
| GV->setName("llvm.cmdline"); |
| } |
| } |
| |
| if (UsedArray.empty()) |
| return; |
| |
| // Recreate llvm.compiler.used. |
| ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); |
| auto *NewUsed = new GlobalVariable( |
| *M, ATy, false, llvm::GlobalValue::AppendingLinkage, |
| llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); |
| NewUsed->setSection("llvm.metadata"); |
| } |