| //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This contains code to emit Expr nodes with complex types as LLVM code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenFunction.h" |
| #include "CodeGenModule.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Metadata.h" |
| #include <algorithm> |
| using namespace clang; |
| using namespace CodeGen; |
| |
| //===----------------------------------------------------------------------===// |
| // Complex Expression Emitter |
| //===----------------------------------------------------------------------===// |
| |
| typedef CodeGenFunction::ComplexPairTy ComplexPairTy; |
| |
| /// Return the complex type that we are meant to emit. |
| static const ComplexType *getComplexType(QualType type) { |
| type = type.getCanonicalType(); |
| if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { |
| return comp; |
| } else { |
| return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); |
| } |
| } |
| |
| namespace { |
| class ComplexExprEmitter |
| : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { |
| CodeGenFunction &CGF; |
| CGBuilderTy &Builder; |
| bool IgnoreReal; |
| bool IgnoreImag; |
| public: |
| ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) |
| : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { |
| } |
| |
| |
| //===--------------------------------------------------------------------===// |
| // Utilities |
| //===--------------------------------------------------------------------===// |
| |
| bool TestAndClearIgnoreReal() { |
| bool I = IgnoreReal; |
| IgnoreReal = false; |
| return I; |
| } |
| bool TestAndClearIgnoreImag() { |
| bool I = IgnoreImag; |
| IgnoreImag = false; |
| return I; |
| } |
| |
| /// EmitLoadOfLValue - Given an expression with complex type that represents a |
| /// value l-value, this method emits the address of the l-value, then loads |
| /// and returns the result. |
| ComplexPairTy EmitLoadOfLValue(const Expr *E) { |
| return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); |
| } |
| |
| ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); |
| |
| /// EmitStoreOfComplex - Store the specified real/imag parts into the |
| /// specified value pointer. |
| void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); |
| |
| /// Emit a cast from complex value Val to DestType. |
| ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, |
| QualType DestType, SourceLocation Loc); |
| /// Emit a cast from scalar value Val to DestType. |
| ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, |
| QualType DestType, SourceLocation Loc); |
| |
| //===--------------------------------------------------------------------===// |
| // Visitor Methods |
| //===--------------------------------------------------------------------===// |
| |
| ComplexPairTy Visit(Expr *E) { |
| ApplyDebugLocation DL(CGF, E); |
| return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); |
| } |
| |
| ComplexPairTy VisitStmt(Stmt *S) { |
| S->dump(CGF.getContext().getSourceManager()); |
| llvm_unreachable("Stmt can't have complex result type!"); |
| } |
| ComplexPairTy VisitExpr(Expr *S); |
| ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} |
| ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { |
| return Visit(GE->getResultExpr()); |
| } |
| ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); |
| ComplexPairTy |
| VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { |
| return Visit(PE->getReplacement()); |
| } |
| ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) { |
| return CGF.EmitCoawaitExpr(*S).getComplexVal(); |
| } |
| ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) { |
| return CGF.EmitCoyieldExpr(*S).getComplexVal(); |
| } |
| ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) { |
| return Visit(E->getSubExpr()); |
| } |
| |
| ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant, |
| Expr *E) { |
| assert(Constant && "not a constant"); |
| if (Constant.isReference()) |
| return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), |
| E->getExprLoc()); |
| |
| llvm::Constant *pair = Constant.getValue(); |
| return ComplexPairTy(pair->getAggregateElement(0U), |
| pair->getAggregateElement(1U)); |
| } |
| |
| // l-values. |
| ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { |
| if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) |
| return emitConstant(Constant, E); |
| return EmitLoadOfLValue(E); |
| } |
| ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { |
| return EmitLoadOfLValue(E); |
| } |
| ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { |
| return CGF.EmitObjCMessageExpr(E).getComplexVal(); |
| } |
| ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } |
| ComplexPairTy VisitMemberExpr(MemberExpr *ME) { |
| if (CodeGenFunction::ConstantEmission Constant = |
| CGF.tryEmitAsConstant(ME)) { |
| CGF.EmitIgnoredExpr(ME->getBase()); |
| return emitConstant(Constant, ME); |
| } |
| return EmitLoadOfLValue(ME); |
| } |
| ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { |
| if (E->isGLValue()) |
| return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), |
| E->getExprLoc()); |
| return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal(); |
| } |
| |
| ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { |
| return CGF.EmitPseudoObjectRValue(E).getComplexVal(); |
| } |
| |
| // FIXME: CompoundLiteralExpr |
| |
| ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); |
| ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { |
| // Unlike for scalars, we don't have to worry about function->ptr demotion |
| // here. |
| return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); |
| } |
| ComplexPairTy VisitCastExpr(CastExpr *E) { |
| if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) |
| CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); |
| return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); |
| } |
| ComplexPairTy VisitCallExpr(const CallExpr *E); |
| ComplexPairTy VisitStmtExpr(const StmtExpr *E); |
| |
| // Operators. |
| ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, |
| bool isInc, bool isPre) { |
| LValue LV = CGF.EmitLValue(E->getSubExpr()); |
| return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); |
| } |
| ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { |
| return VisitPrePostIncDec(E, false, false); |
| } |
| ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { |
| return VisitPrePostIncDec(E, true, false); |
| } |
| ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { |
| return VisitPrePostIncDec(E, false, true); |
| } |
| ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { |
| return VisitPrePostIncDec(E, true, true); |
| } |
| ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } |
| ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { |
| TestAndClearIgnoreReal(); |
| TestAndClearIgnoreImag(); |
| return Visit(E->getSubExpr()); |
| } |
| ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); |
| ComplexPairTy VisitUnaryNot (const UnaryOperator *E); |
| // LNot,Real,Imag never return complex. |
| ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { |
| return Visit(E->getSubExpr()); |
| } |
| ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { |
| return Visit(DAE->getExpr()); |
| } |
| ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { |
| CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); |
| return Visit(DIE->getExpr()); |
| } |
| ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { |
| CGF.enterFullExpression(E); |
| CodeGenFunction::RunCleanupsScope Scope(CGF); |
| ComplexPairTy Vals = Visit(E->getSubExpr()); |
| // Defend against dominance problems caused by jumps out of expression |
| // evaluation through the shared cleanup block. |
| Scope.ForceCleanup({&Vals.first, &Vals.second}); |
| return Vals; |
| } |
| ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { |
| assert(E->getType()->isAnyComplexType() && "Expected complex type!"); |
| QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); |
| llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); |
| return ComplexPairTy(Null, Null); |
| } |
| ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { |
| assert(E->getType()->isAnyComplexType() && "Expected complex type!"); |
| QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); |
| llvm::Constant *Null = |
| llvm::Constant::getNullValue(CGF.ConvertType(Elem)); |
| return ComplexPairTy(Null, Null); |
| } |
| |
| struct BinOpInfo { |
| ComplexPairTy LHS; |
| ComplexPairTy RHS; |
| QualType Ty; // Computation Type. |
| }; |
| |
| BinOpInfo EmitBinOps(const BinaryOperator *E); |
| LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, |
| ComplexPairTy (ComplexExprEmitter::*Func) |
| (const BinOpInfo &), |
| RValue &Val); |
| ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, |
| ComplexPairTy (ComplexExprEmitter::*Func) |
| (const BinOpInfo &)); |
| |
| ComplexPairTy EmitBinAdd(const BinOpInfo &Op); |
| ComplexPairTy EmitBinSub(const BinOpInfo &Op); |
| ComplexPairTy EmitBinMul(const BinOpInfo &Op); |
| ComplexPairTy EmitBinDiv(const BinOpInfo &Op); |
| |
| ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, |
| const BinOpInfo &Op); |
| |
| ComplexPairTy VisitBinAdd(const BinaryOperator *E) { |
| return EmitBinAdd(EmitBinOps(E)); |
| } |
| ComplexPairTy VisitBinSub(const BinaryOperator *E) { |
| return EmitBinSub(EmitBinOps(E)); |
| } |
| ComplexPairTy VisitBinMul(const BinaryOperator *E) { |
| return EmitBinMul(EmitBinOps(E)); |
| } |
| ComplexPairTy VisitBinDiv(const BinaryOperator *E) { |
| return EmitBinDiv(EmitBinOps(E)); |
| } |
| |
| // Compound assignments. |
| ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { |
| return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); |
| } |
| ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { |
| return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); |
| } |
| ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { |
| return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); |
| } |
| ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { |
| return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); |
| } |
| |
| // GCC rejects rem/and/or/xor for integer complex. |
| // Logical and/or always return int, never complex. |
| |
| // No comparisons produce a complex result. |
| |
| LValue EmitBinAssignLValue(const BinaryOperator *E, |
| ComplexPairTy &Val); |
| ComplexPairTy VisitBinAssign (const BinaryOperator *E); |
| ComplexPairTy VisitBinComma (const BinaryOperator *E); |
| |
| |
| ComplexPairTy |
| VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); |
| ComplexPairTy VisitChooseExpr(ChooseExpr *CE); |
| |
| ComplexPairTy VisitInitListExpr(InitListExpr *E); |
| |
| ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { |
| return EmitLoadOfLValue(E); |
| } |
| |
| ComplexPairTy VisitVAArgExpr(VAArgExpr *E); |
| |
| ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { |
| return CGF.EmitAtomicExpr(E).getComplexVal(); |
| } |
| }; |
| } // end anonymous namespace. |
| |
| //===----------------------------------------------------------------------===// |
| // Utilities |
| //===----------------------------------------------------------------------===// |
| |
| Address CodeGenFunction::emitAddrOfRealComponent(Address addr, |
| QualType complexType) { |
| CharUnits offset = CharUnits::Zero(); |
| return Builder.CreateStructGEP(addr, 0, offset, addr.getName() + ".realp"); |
| } |
| |
| Address CodeGenFunction::emitAddrOfImagComponent(Address addr, |
| QualType complexType) { |
| QualType eltType = complexType->castAs<ComplexType>()->getElementType(); |
| CharUnits offset = getContext().getTypeSizeInChars(eltType); |
| return Builder.CreateStructGEP(addr, 1, offset, addr.getName() + ".imagp"); |
| } |
| |
| /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to |
| /// load the real and imaginary pieces, returning them as Real/Imag. |
| ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, |
| SourceLocation loc) { |
| assert(lvalue.isSimple() && "non-simple complex l-value?"); |
| if (lvalue.getType()->isAtomicType()) |
| return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); |
| |
| Address SrcPtr = lvalue.getAddress(); |
| bool isVolatile = lvalue.isVolatileQualified(); |
| |
| llvm::Value *Real = nullptr, *Imag = nullptr; |
| |
| if (!IgnoreReal || isVolatile) { |
| Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); |
| Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); |
| } |
| |
| if (!IgnoreImag || isVolatile) { |
| Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); |
| Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); |
| } |
| |
| return ComplexPairTy(Real, Imag); |
| } |
| |
| /// EmitStoreOfComplex - Store the specified real/imag parts into the |
| /// specified value pointer. |
| void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, |
| bool isInit) { |
| if (lvalue.getType()->isAtomicType() || |
| (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) |
| return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); |
| |
| Address Ptr = lvalue.getAddress(); |
| Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); |
| Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); |
| |
| Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); |
| Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Visitor Methods |
| //===----------------------------------------------------------------------===// |
| |
| ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { |
| CGF.ErrorUnsupported(E, "complex expression"); |
| llvm::Type *EltTy = |
| CGF.ConvertType(getComplexType(E->getType())->getElementType()); |
| llvm::Value *U = llvm::UndefValue::get(EltTy); |
| return ComplexPairTy(U, U); |
| } |
| |
| ComplexPairTy ComplexExprEmitter:: |
| VisitImaginaryLiteral(const ImaginaryLiteral *IL) { |
| llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); |
| return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); |
| } |
| |
| |
| ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { |
| if (E->getCallReturnType(CGF.getContext())->isReferenceType()) |
| return EmitLoadOfLValue(E); |
| |
| return CGF.EmitCallExpr(E).getComplexVal(); |
| } |
| |
| ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { |
| CodeGenFunction::StmtExprEvaluation eval(CGF); |
| Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); |
| assert(RetAlloca.isValid() && "Expected complex return value"); |
| return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), |
| E->getExprLoc()); |
| } |
| |
| /// Emit a cast from complex value Val to DestType. |
| ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, |
| QualType SrcType, |
| QualType DestType, |
| SourceLocation Loc) { |
| // Get the src/dest element type. |
| SrcType = SrcType->castAs<ComplexType>()->getElementType(); |
| DestType = DestType->castAs<ComplexType>()->getElementType(); |
| |
| // C99 6.3.1.6: When a value of complex type is converted to another |
| // complex type, both the real and imaginary parts follow the conversion |
| // rules for the corresponding real types. |
| Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); |
| Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); |
| return Val; |
| } |
| |
| ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, |
| QualType SrcType, |
| QualType DestType, |
| SourceLocation Loc) { |
| // Convert the input element to the element type of the complex. |
| DestType = DestType->castAs<ComplexType>()->getElementType(); |
| Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); |
| |
| // Return (realval, 0). |
| return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); |
| } |
| |
| ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, |
| QualType DestTy) { |
| switch (CK) { |
| case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); |
| |
| // Atomic to non-atomic casts may be more than a no-op for some platforms and |
| // for some types. |
| case CK_AtomicToNonAtomic: |
| case CK_NonAtomicToAtomic: |
| case CK_NoOp: |
| case CK_LValueToRValue: |
| case CK_UserDefinedConversion: |
| return Visit(Op); |
| |
| case CK_LValueBitCast: { |
| LValue origLV = CGF.EmitLValue(Op); |
| Address V = origLV.getAddress(); |
| V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy)); |
| return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); |
| } |
| |
| case CK_BitCast: |
| case CK_BaseToDerived: |
| case CK_DerivedToBase: |
| case CK_UncheckedDerivedToBase: |
| case CK_Dynamic: |
| case CK_ToUnion: |
| case CK_ArrayToPointerDecay: |
| case CK_FunctionToPointerDecay: |
| case CK_NullToPointer: |
| case CK_NullToMemberPointer: |
| case CK_BaseToDerivedMemberPointer: |
| case CK_DerivedToBaseMemberPointer: |
| case CK_MemberPointerToBoolean: |
| case CK_ReinterpretMemberPointer: |
| case CK_ConstructorConversion: |
| case CK_IntegralToPointer: |
| case CK_PointerToIntegral: |
| case CK_PointerToBoolean: |
| case CK_ToVoid: |
| case CK_VectorSplat: |
| case CK_IntegralCast: |
| case CK_BooleanToSignedIntegral: |
| case CK_IntegralToBoolean: |
| case CK_IntegralToFloating: |
| case CK_FloatingToIntegral: |
| case CK_FloatingToBoolean: |
| case CK_FloatingCast: |
| case CK_CPointerToObjCPointerCast: |
| case CK_BlockPointerToObjCPointerCast: |
| case CK_AnyPointerToBlockPointerCast: |
| case CK_ObjCObjectLValueCast: |
| case CK_FloatingComplexToReal: |
| case CK_FloatingComplexToBoolean: |
| case CK_IntegralComplexToReal: |
| case CK_IntegralComplexToBoolean: |
| case CK_ARCProduceObject: |
| case CK_ARCConsumeObject: |
| case CK_ARCReclaimReturnedObject: |
| case CK_ARCExtendBlockObject: |
| case CK_CopyAndAutoreleaseBlockObject: |
| case CK_BuiltinFnToFnPtr: |
| case CK_ZeroToOCLEvent: |
| case CK_ZeroToOCLQueue: |
| case CK_AddressSpaceConversion: |
| case CK_IntToOCLSampler: |
| llvm_unreachable("invalid cast kind for complex value"); |
| |
| case CK_FloatingRealToComplex: |
| case CK_IntegralRealToComplex: |
| return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), |
| DestTy, Op->getExprLoc()); |
| |
| case CK_FloatingComplexCast: |
| case CK_FloatingComplexToIntegralComplex: |
| case CK_IntegralComplexCast: |
| case CK_IntegralComplexToFloatingComplex: |
| return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, |
| Op->getExprLoc()); |
| } |
| |
| llvm_unreachable("unknown cast resulting in complex value"); |
| } |
| |
| ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { |
| TestAndClearIgnoreReal(); |
| TestAndClearIgnoreImag(); |
| ComplexPairTy Op = Visit(E->getSubExpr()); |
| |
| llvm::Value *ResR, *ResI; |
| if (Op.first->getType()->isFloatingPointTy()) { |
| ResR = Builder.CreateFNeg(Op.first, "neg.r"); |
| ResI = Builder.CreateFNeg(Op.second, "neg.i"); |
| } else { |
| ResR = Builder.CreateNeg(Op.first, "neg.r"); |
| ResI = Builder.CreateNeg(Op.second, "neg.i"); |
| } |
| return ComplexPairTy(ResR, ResI); |
| } |
| |
| ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { |
| TestAndClearIgnoreReal(); |
| TestAndClearIgnoreImag(); |
| // ~(a+ib) = a + i*-b |
| ComplexPairTy Op = Visit(E->getSubExpr()); |
| llvm::Value *ResI; |
| if (Op.second->getType()->isFloatingPointTy()) |
| ResI = Builder.CreateFNeg(Op.second, "conj.i"); |
| else |
| ResI = Builder.CreateNeg(Op.second, "conj.i"); |
| |
| return ComplexPairTy(Op.first, ResI); |
| } |
| |
| ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { |
| llvm::Value *ResR, *ResI; |
| |
| if (Op.LHS.first->getType()->isFloatingPointTy()) { |
| ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); |
| if (Op.LHS.second && Op.RHS.second) |
| ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); |
| else |
| ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; |
| assert(ResI && "Only one operand may be real!"); |
| } else { |
| ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); |
| assert(Op.LHS.second && Op.RHS.second && |
| "Both operands of integer complex operators must be complex!"); |
| ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); |
| } |
| return ComplexPairTy(ResR, ResI); |
| } |
| |
| ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { |
| llvm::Value *ResR, *ResI; |
| if (Op.LHS.first->getType()->isFloatingPointTy()) { |
| ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); |
| if (Op.LHS.second && Op.RHS.second) |
| ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); |
| else |
| ResI = Op.LHS.second ? Op.LHS.second |
| : Builder.CreateFNeg(Op.RHS.second, "sub.i"); |
| assert(ResI && "Only one operand may be real!"); |
| } else { |
| ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); |
| assert(Op.LHS.second && Op.RHS.second && |
| "Both operands of integer complex operators must be complex!"); |
| ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); |
| } |
| return ComplexPairTy(ResR, ResI); |
| } |
| |
| /// Emit a libcall for a binary operation on complex types. |
| ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, |
| const BinOpInfo &Op) { |
| CallArgList Args; |
| Args.add(RValue::get(Op.LHS.first), |
| Op.Ty->castAs<ComplexType>()->getElementType()); |
| Args.add(RValue::get(Op.LHS.second), |
| Op.Ty->castAs<ComplexType>()->getElementType()); |
| Args.add(RValue::get(Op.RHS.first), |
| Op.Ty->castAs<ComplexType>()->getElementType()); |
| Args.add(RValue::get(Op.RHS.second), |
| Op.Ty->castAs<ComplexType>()->getElementType()); |
| |
| // We *must* use the full CG function call building logic here because the |
| // complex type has special ABI handling. We also should not forget about |
| // special calling convention which may be used for compiler builtins. |
| |
| // We create a function qualified type to state that this call does not have |
| // any exceptions. |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI = EPI.withExceptionSpec( |
| FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); |
| SmallVector<QualType, 4> ArgsQTys( |
| 4, Op.Ty->castAs<ComplexType>()->getElementType()); |
| QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); |
| const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( |
| Args, cast<FunctionType>(FQTy.getTypePtr()), false); |
| |
| llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); |
| llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName); |
| CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>()); |
| |
| llvm::Instruction *Call; |
| RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call); |
| cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getRuntimeCC()); |
| return Res.getComplexVal(); |
| } |
| |
| /// Lookup the libcall name for a given floating point type complex |
| /// multiply. |
| static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { |
| switch (Ty->getTypeID()) { |
| default: |
| llvm_unreachable("Unsupported floating point type!"); |
| case llvm::Type::HalfTyID: |
| return "__mulhc3"; |
| case llvm::Type::FloatTyID: |
| return "__mulsc3"; |
| case llvm::Type::DoubleTyID: |
| return "__muldc3"; |
| case llvm::Type::PPC_FP128TyID: |
| return "__multc3"; |
| case llvm::Type::X86_FP80TyID: |
| return "__mulxc3"; |
| case llvm::Type::FP128TyID: |
| return "__multc3"; |
| } |
| } |
| |
| // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex |
| // typed values. |
| ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { |
| using llvm::Value; |
| Value *ResR, *ResI; |
| llvm::MDBuilder MDHelper(CGF.getLLVMContext()); |
| |
| if (Op.LHS.first->getType()->isFloatingPointTy()) { |
| // The general formulation is: |
| // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) |
| // |
| // But we can fold away components which would be zero due to a real |
| // operand according to C11 Annex G.5.1p2. |
| // FIXME: C11 also provides for imaginary types which would allow folding |
| // still more of this within the type system. |
| |
| if (Op.LHS.second && Op.RHS.second) { |
| // If both operands are complex, emit the core math directly, and then |
| // test for NaNs. If we find NaNs in the result, we delegate to a libcall |
| // to carefully re-compute the correct infinity representation if |
| // possible. The expectation is that the presence of NaNs here is |
| // *extremely* rare, and so the cost of the libcall is almost irrelevant. |
| // This is good, because the libcall re-computes the core multiplication |
| // exactly the same as we do here and re-tests for NaNs in order to be |
| // a generic complex*complex libcall. |
| |
| // First compute the four products. |
| Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); |
| Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); |
| Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); |
| Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); |
| |
| // The real part is the difference of the first two, the imaginary part is |
| // the sum of the second. |
| ResR = Builder.CreateFSub(AC, BD, "mul_r"); |
| ResI = Builder.CreateFAdd(AD, BC, "mul_i"); |
| |
| // Emit the test for the real part becoming NaN and create a branch to |
| // handle it. We test for NaN by comparing the number to itself. |
| Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); |
| llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); |
| llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); |
| llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); |
| llvm::BasicBlock *OrigBB = Branch->getParent(); |
| |
| // Give hint that we very much don't expect to see NaNs. |
| // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp |
| llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); |
| Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); |
| |
| // Now test the imaginary part and create its branch. |
| CGF.EmitBlock(INaNBB); |
| Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); |
| llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); |
| Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); |
| Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); |
| |
| // Now emit the libcall on this slowest of the slow paths. |
| CGF.EmitBlock(LibCallBB); |
| Value *LibCallR, *LibCallI; |
| std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( |
| getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); |
| Builder.CreateBr(ContBB); |
| |
| // Finally continue execution by phi-ing together the different |
| // computation paths. |
| CGF.EmitBlock(ContBB); |
| llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); |
| RealPHI->addIncoming(ResR, OrigBB); |
| RealPHI->addIncoming(ResR, INaNBB); |
| RealPHI->addIncoming(LibCallR, LibCallBB); |
| llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); |
| ImagPHI->addIncoming(ResI, OrigBB); |
| ImagPHI->addIncoming(ResI, INaNBB); |
| ImagPHI->addIncoming(LibCallI, LibCallBB); |
| return ComplexPairTy(RealPHI, ImagPHI); |
| } |
| assert((Op.LHS.second || Op.RHS.second) && |
| "At least one operand must be complex!"); |
| |
| // If either of the operands is a real rather than a complex, the |
| // imaginary component is ignored when computing the real component of the |
| // result. |
| ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); |
| |
| ResI = Op.LHS.second |
| ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") |
| : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); |
| } else { |
| assert(Op.LHS.second && Op.RHS.second && |
| "Both operands of integer complex operators must be complex!"); |
| Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); |
| Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); |
| ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); |
| |
| Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); |
| Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); |
| ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); |
| } |
| return ComplexPairTy(ResR, ResI); |
| } |
| |
| // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex |
| // typed values. |
| ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { |
| llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; |
| llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; |
| |
| llvm::Value *DSTr, *DSTi; |
| if (LHSr->getType()->isFloatingPointTy()) { |
| // If we have a complex operand on the RHS and FastMath is not allowed, we |
| // delegate to a libcall to handle all of the complexities and minimize |
| // underflow/overflow cases. When FastMath is allowed we construct the |
| // divide inline using the same algorithm as for integer operands. |
| // |
| // FIXME: We would be able to avoid the libcall in many places if we |
| // supported imaginary types in addition to complex types. |
| if (RHSi && !CGF.getLangOpts().FastMath) { |
| BinOpInfo LibCallOp = Op; |
| // If LHS was a real, supply a null imaginary part. |
| if (!LHSi) |
| LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); |
| |
| switch (LHSr->getType()->getTypeID()) { |
| default: |
| llvm_unreachable("Unsupported floating point type!"); |
| case llvm::Type::HalfTyID: |
| return EmitComplexBinOpLibCall("__divhc3", LibCallOp); |
| case llvm::Type::FloatTyID: |
| return EmitComplexBinOpLibCall("__divsc3", LibCallOp); |
| case llvm::Type::DoubleTyID: |
| return EmitComplexBinOpLibCall("__divdc3", LibCallOp); |
| case llvm::Type::PPC_FP128TyID: |
| return EmitComplexBinOpLibCall("__divtc3", LibCallOp); |
| case llvm::Type::X86_FP80TyID: |
| return EmitComplexBinOpLibCall("__divxc3", LibCallOp); |
| case llvm::Type::FP128TyID: |
| return EmitComplexBinOpLibCall("__divtc3", LibCallOp); |
| } |
| } else if (RHSi) { |
| if (!LHSi) |
| LHSi = llvm::Constant::getNullValue(RHSi->getType()); |
| |
| // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) |
| llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c |
| llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d |
| llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd |
| |
| llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c |
| llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d |
| llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd |
| |
| llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c |
| llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d |
| llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad |
| |
| DSTr = Builder.CreateFDiv(ACpBD, CCpDD); |
| DSTi = Builder.CreateFDiv(BCmAD, CCpDD); |
| } else { |
| assert(LHSi && "Can have at most one non-complex operand!"); |
| |
| DSTr = Builder.CreateFDiv(LHSr, RHSr); |
| DSTi = Builder.CreateFDiv(LHSi, RHSr); |
| } |
| } else { |
| assert(Op.LHS.second && Op.RHS.second && |
| "Both operands of integer complex operators must be complex!"); |
| // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) |
| llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c |
| llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d |
| llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd |
| |
| llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c |
| llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d |
| llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd |
| |
| llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c |
| llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d |
| llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad |
| |
| if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { |
| DSTr = Builder.CreateUDiv(Tmp3, Tmp6); |
| DSTi = Builder.CreateUDiv(Tmp9, Tmp6); |
| } else { |
| DSTr = Builder.CreateSDiv(Tmp3, Tmp6); |
| DSTi = Builder.CreateSDiv(Tmp9, Tmp6); |
| } |
| } |
| |
| return ComplexPairTy(DSTr, DSTi); |
| } |
| |
| ComplexExprEmitter::BinOpInfo |
| ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { |
| TestAndClearIgnoreReal(); |
| TestAndClearIgnoreImag(); |
| BinOpInfo Ops; |
| if (E->getLHS()->getType()->isRealFloatingType()) |
| Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); |
| else |
| Ops.LHS = Visit(E->getLHS()); |
| if (E->getRHS()->getType()->isRealFloatingType()) |
| Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); |
| else |
| Ops.RHS = Visit(E->getRHS()); |
| |
| Ops.Ty = E->getType(); |
| return Ops; |
| } |
| |
| |
| LValue ComplexExprEmitter:: |
| EmitCompoundAssignLValue(const CompoundAssignOperator *E, |
| ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), |
| RValue &Val) { |
| TestAndClearIgnoreReal(); |
| TestAndClearIgnoreImag(); |
| QualType LHSTy = E->getLHS()->getType(); |
| if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) |
| LHSTy = AT->getValueType(); |
| |
| BinOpInfo OpInfo; |
| |
| // Load the RHS and LHS operands. |
| // __block variables need to have the rhs evaluated first, plus this should |
| // improve codegen a little. |
| OpInfo.Ty = E->getComputationResultType(); |
| QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); |
| |
| // The RHS should have been converted to the computation type. |
| if (E->getRHS()->getType()->isRealFloatingType()) { |
| assert( |
| CGF.getContext() |
| .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); |
| OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); |
| } else { |
| assert(CGF.getContext() |
| .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); |
| OpInfo.RHS = Visit(E->getRHS()); |
| } |
| |
| LValue LHS = CGF.EmitLValue(E->getLHS()); |
| |
| // Load from the l-value and convert it. |
| SourceLocation Loc = E->getExprLoc(); |
| if (LHSTy->isAnyComplexType()) { |
| ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); |
| OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); |
| } else { |
| llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); |
| // For floating point real operands we can directly pass the scalar form |
| // to the binary operator emission and potentially get more efficient code. |
| if (LHSTy->isRealFloatingType()) { |
| if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) |
| LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); |
| OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); |
| } else { |
| OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); |
| } |
| } |
| |
| // Expand the binary operator. |
| ComplexPairTy Result = (this->*Func)(OpInfo); |
| |
| // Truncate the result and store it into the LHS lvalue. |
| if (LHSTy->isAnyComplexType()) { |
| ComplexPairTy ResVal = |
| EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); |
| EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); |
| Val = RValue::getComplex(ResVal); |
| } else { |
| llvm::Value *ResVal = |
| CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); |
| CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); |
| Val = RValue::get(ResVal); |
| } |
| |
| return LHS; |
| } |
| |
| // Compound assignments. |
| ComplexPairTy ComplexExprEmitter:: |
| EmitCompoundAssign(const CompoundAssignOperator *E, |
| ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ |
| RValue Val; |
| LValue LV = EmitCompoundAssignLValue(E, Func, Val); |
| |
| // The result of an assignment in C is the assigned r-value. |
| if (!CGF.getLangOpts().CPlusPlus) |
| return Val.getComplexVal(); |
| |
| // If the lvalue is non-volatile, return the computed value of the assignment. |
| if (!LV.isVolatileQualified()) |
| return Val.getComplexVal(); |
| |
| return EmitLoadOfLValue(LV, E->getExprLoc()); |
| } |
| |
| LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, |
| ComplexPairTy &Val) { |
| assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), |
| E->getRHS()->getType()) && |
| "Invalid assignment"); |
| TestAndClearIgnoreReal(); |
| TestAndClearIgnoreImag(); |
| |
| // Emit the RHS. __block variables need the RHS evaluated first. |
| Val = Visit(E->getRHS()); |
| |
| // Compute the address to store into. |
| LValue LHS = CGF.EmitLValue(E->getLHS()); |
| |
| // Store the result value into the LHS lvalue. |
| EmitStoreOfComplex(Val, LHS, /*isInit*/ false); |
| |
| return LHS; |
| } |
| |
| ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { |
| ComplexPairTy Val; |
| LValue LV = EmitBinAssignLValue(E, Val); |
| |
| // The result of an assignment in C is the assigned r-value. |
| if (!CGF.getLangOpts().CPlusPlus) |
| return Val; |
| |
| // If the lvalue is non-volatile, return the computed value of the assignment. |
| if (!LV.isVolatileQualified()) |
| return Val; |
| |
| return EmitLoadOfLValue(LV, E->getExprLoc()); |
| } |
| |
| ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { |
| CGF.EmitIgnoredExpr(E->getLHS()); |
| return Visit(E->getRHS()); |
| } |
| |
| ComplexPairTy ComplexExprEmitter:: |
| VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { |
| TestAndClearIgnoreReal(); |
| TestAndClearIgnoreImag(); |
| llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); |
| llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); |
| llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); |
| |
| // Bind the common expression if necessary. |
| CodeGenFunction::OpaqueValueMapping binding(CGF, E); |
| |
| |
| CodeGenFunction::ConditionalEvaluation eval(CGF); |
| CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, |
| CGF.getProfileCount(E)); |
| |
| eval.begin(CGF); |
| CGF.EmitBlock(LHSBlock); |
| CGF.incrementProfileCounter(E); |
| ComplexPairTy LHS = Visit(E->getTrueExpr()); |
| LHSBlock = Builder.GetInsertBlock(); |
| CGF.EmitBranch(ContBlock); |
| eval.end(CGF); |
| |
| eval.begin(CGF); |
| CGF.EmitBlock(RHSBlock); |
| ComplexPairTy RHS = Visit(E->getFalseExpr()); |
| RHSBlock = Builder.GetInsertBlock(); |
| CGF.EmitBlock(ContBlock); |
| eval.end(CGF); |
| |
| // Create a PHI node for the real part. |
| llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); |
| RealPN->addIncoming(LHS.first, LHSBlock); |
| RealPN->addIncoming(RHS.first, RHSBlock); |
| |
| // Create a PHI node for the imaginary part. |
| llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); |
| ImagPN->addIncoming(LHS.second, LHSBlock); |
| ImagPN->addIncoming(RHS.second, RHSBlock); |
| |
| return ComplexPairTy(RealPN, ImagPN); |
| } |
| |
| ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { |
| return Visit(E->getChosenSubExpr()); |
| } |
| |
| ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { |
| bool Ignore = TestAndClearIgnoreReal(); |
| (void)Ignore; |
| assert (Ignore == false && "init list ignored"); |
| Ignore = TestAndClearIgnoreImag(); |
| (void)Ignore; |
| assert (Ignore == false && "init list ignored"); |
| |
| if (E->getNumInits() == 2) { |
| llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); |
| llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); |
| return ComplexPairTy(Real, Imag); |
| } else if (E->getNumInits() == 1) { |
| return Visit(E->getInit(0)); |
| } |
| |
| // Empty init list initializes to null |
| assert(E->getNumInits() == 0 && "Unexpected number of inits"); |
| QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); |
| llvm::Type* LTy = CGF.ConvertType(Ty); |
| llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); |
| return ComplexPairTy(zeroConstant, zeroConstant); |
| } |
| |
| ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { |
| Address ArgValue = Address::invalid(); |
| Address ArgPtr = CGF.EmitVAArg(E, ArgValue); |
| |
| if (!ArgPtr.isValid()) { |
| CGF.ErrorUnsupported(E, "complex va_arg expression"); |
| llvm::Type *EltTy = |
| CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); |
| llvm::Value *U = llvm::UndefValue::get(EltTy); |
| return ComplexPairTy(U, U); |
| } |
| |
| return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), |
| E->getExprLoc()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Entry Point into this File |
| //===----------------------------------------------------------------------===// |
| |
| /// EmitComplexExpr - Emit the computation of the specified expression of |
| /// complex type, ignoring the result. |
| ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, |
| bool IgnoreImag) { |
| assert(E && getComplexType(E->getType()) && |
| "Invalid complex expression to emit"); |
| |
| return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) |
| .Visit(const_cast<Expr *>(E)); |
| } |
| |
| void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, |
| bool isInit) { |
| assert(E && getComplexType(E->getType()) && |
| "Invalid complex expression to emit"); |
| ComplexExprEmitter Emitter(*this); |
| ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); |
| Emitter.EmitStoreOfComplex(Val, dest, isInit); |
| } |
| |
| /// EmitStoreOfComplex - Store a complex number into the specified l-value. |
| void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, |
| bool isInit) { |
| ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); |
| } |
| |
| /// EmitLoadOfComplex - Load a complex number from the specified address. |
| ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, |
| SourceLocation loc) { |
| return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); |
| } |
| |
| LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { |
| assert(E->getOpcode() == BO_Assign); |
| ComplexPairTy Val; // ignored |
| return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); |
| } |
| |
| typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( |
| const ComplexExprEmitter::BinOpInfo &); |
| |
| static CompoundFunc getComplexOp(BinaryOperatorKind Op) { |
| switch (Op) { |
| case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; |
| case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; |
| case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; |
| case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; |
| default: |
| llvm_unreachable("unexpected complex compound assignment"); |
| } |
| } |
| |
| LValue CodeGenFunction:: |
| EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { |
| CompoundFunc Op = getComplexOp(E->getOpcode()); |
| RValue Val; |
| return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); |
| } |
| |
| LValue CodeGenFunction:: |
| EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, |
| llvm::Value *&Result) { |
| CompoundFunc Op = getComplexOp(E->getOpcode()); |
| RValue Val; |
| LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); |
| Result = Val.getScalarVal(); |
| return Ret; |
| } |