| //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenFunction.h" |
| #include "CGCleanup.h" |
| #include "CGCXXABI.h" |
| #include "CGDebugInfo.h" |
| #include "CGObjCRuntime.h" |
| #include "CodeGenModule.h" |
| #include "TargetInfo.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Frontend/CodeGenOptions.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Module.h" |
| #include <cstdarg> |
| |
| using namespace clang; |
| using namespace CodeGen; |
| using llvm::Value; |
| |
| //===----------------------------------------------------------------------===// |
| // Scalar Expression Emitter |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| /// Determine whether the given binary operation may overflow. |
| /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, |
| /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, |
| /// the returned overflow check is precise. The returned value is 'true' for |
| /// all other opcodes, to be conservative. |
| bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, |
| BinaryOperator::Opcode Opcode, bool Signed, |
| llvm::APInt &Result) { |
| // Assume overflow is possible, unless we can prove otherwise. |
| bool Overflow = true; |
| const auto &LHSAP = LHS->getValue(); |
| const auto &RHSAP = RHS->getValue(); |
| if (Opcode == BO_Add) { |
| if (Signed) |
| Result = LHSAP.sadd_ov(RHSAP, Overflow); |
| else |
| Result = LHSAP.uadd_ov(RHSAP, Overflow); |
| } else if (Opcode == BO_Sub) { |
| if (Signed) |
| Result = LHSAP.ssub_ov(RHSAP, Overflow); |
| else |
| Result = LHSAP.usub_ov(RHSAP, Overflow); |
| } else if (Opcode == BO_Mul) { |
| if (Signed) |
| Result = LHSAP.smul_ov(RHSAP, Overflow); |
| else |
| Result = LHSAP.umul_ov(RHSAP, Overflow); |
| } else if (Opcode == BO_Div || Opcode == BO_Rem) { |
| if (Signed && !RHS->isZero()) |
| Result = LHSAP.sdiv_ov(RHSAP, Overflow); |
| else |
| return false; |
| } |
| return Overflow; |
| } |
| |
| struct BinOpInfo { |
| Value *LHS; |
| Value *RHS; |
| QualType Ty; // Computation Type. |
| BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform |
| FPOptions FPFeatures; |
| const Expr *E; // Entire expr, for error unsupported. May not be binop. |
| |
| /// Check if the binop can result in integer overflow. |
| bool mayHaveIntegerOverflow() const { |
| // Without constant input, we can't rule out overflow. |
| auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); |
| auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); |
| if (!LHSCI || !RHSCI) |
| return true; |
| |
| llvm::APInt Result; |
| return ::mayHaveIntegerOverflow( |
| LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); |
| } |
| |
| /// Check if the binop computes a division or a remainder. |
| bool isDivremOp() const { |
| return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || |
| Opcode == BO_RemAssign; |
| } |
| |
| /// Check if the binop can result in an integer division by zero. |
| bool mayHaveIntegerDivisionByZero() const { |
| if (isDivremOp()) |
| if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) |
| return CI->isZero(); |
| return true; |
| } |
| |
| /// Check if the binop can result in a float division by zero. |
| bool mayHaveFloatDivisionByZero() const { |
| if (isDivremOp()) |
| if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) |
| return CFP->isZero(); |
| return true; |
| } |
| }; |
| |
| static bool MustVisitNullValue(const Expr *E) { |
| // If a null pointer expression's type is the C++0x nullptr_t, then |
| // it's not necessarily a simple constant and it must be evaluated |
| // for its potential side effects. |
| return E->getType()->isNullPtrType(); |
| } |
| |
| /// If \p E is a widened promoted integer, get its base (unpromoted) type. |
| static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, |
| const Expr *E) { |
| const Expr *Base = E->IgnoreImpCasts(); |
| if (E == Base) |
| return llvm::None; |
| |
| QualType BaseTy = Base->getType(); |
| if (!BaseTy->isPromotableIntegerType() || |
| Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) |
| return llvm::None; |
| |
| return BaseTy; |
| } |
| |
| /// Check if \p E is a widened promoted integer. |
| static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { |
| return getUnwidenedIntegerType(Ctx, E).hasValue(); |
| } |
| |
| /// Check if we can skip the overflow check for \p Op. |
| static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { |
| assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && |
| "Expected a unary or binary operator"); |
| |
| // If the binop has constant inputs and we can prove there is no overflow, |
| // we can elide the overflow check. |
| if (!Op.mayHaveIntegerOverflow()) |
| return true; |
| |
| // If a unary op has a widened operand, the op cannot overflow. |
| if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) |
| return !UO->canOverflow(); |
| |
| // We usually don't need overflow checks for binops with widened operands. |
| // Multiplication with promoted unsigned operands is a special case. |
| const auto *BO = cast<BinaryOperator>(Op.E); |
| auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); |
| if (!OptionalLHSTy) |
| return false; |
| |
| auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); |
| if (!OptionalRHSTy) |
| return false; |
| |
| QualType LHSTy = *OptionalLHSTy; |
| QualType RHSTy = *OptionalRHSTy; |
| |
| // This is the simple case: binops without unsigned multiplication, and with |
| // widened operands. No overflow check is needed here. |
| if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || |
| !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) |
| return true; |
| |
| // For unsigned multiplication the overflow check can be elided if either one |
| // of the unpromoted types are less than half the size of the promoted type. |
| unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); |
| return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || |
| (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; |
| } |
| |
| /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. |
| static void updateFastMathFlags(llvm::FastMathFlags &FMF, |
| FPOptions FPFeatures) { |
| FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); |
| } |
| |
| /// Propagate fast-math flags from \p Op to the instruction in \p V. |
| static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { |
| if (auto *I = dyn_cast<llvm::Instruction>(V)) { |
| llvm::FastMathFlags FMF = I->getFastMathFlags(); |
| updateFastMathFlags(FMF, Op.FPFeatures); |
| I->setFastMathFlags(FMF); |
| } |
| return V; |
| } |
| |
| class ScalarExprEmitter |
| : public StmtVisitor<ScalarExprEmitter, Value*> { |
| CodeGenFunction &CGF; |
| CGBuilderTy &Builder; |
| bool IgnoreResultAssign; |
| llvm::LLVMContext &VMContext; |
| public: |
| |
| ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) |
| : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), |
| VMContext(cgf.getLLVMContext()) { |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Utilities |
| //===--------------------------------------------------------------------===// |
| |
| bool TestAndClearIgnoreResultAssign() { |
| bool I = IgnoreResultAssign; |
| IgnoreResultAssign = false; |
| return I; |
| } |
| |
| llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } |
| LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } |
| LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { |
| return CGF.EmitCheckedLValue(E, TCK); |
| } |
| |
| void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, |
| const BinOpInfo &Info); |
| |
| Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { |
| return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); |
| } |
| |
| void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { |
| const AlignValueAttr *AVAttr = nullptr; |
| if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { |
| const ValueDecl *VD = DRE->getDecl(); |
| |
| if (VD->getType()->isReferenceType()) { |
| if (const auto *TTy = |
| dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) |
| AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); |
| } else { |
| // Assumptions for function parameters are emitted at the start of the |
| // function, so there is no need to repeat that here. |
| if (isa<ParmVarDecl>(VD)) |
| return; |
| |
| AVAttr = VD->getAttr<AlignValueAttr>(); |
| } |
| } |
| |
| if (!AVAttr) |
| if (const auto *TTy = |
| dyn_cast<TypedefType>(E->getType())) |
| AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); |
| |
| if (!AVAttr) |
| return; |
| |
| Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); |
| llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); |
| CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); |
| } |
| |
| /// EmitLoadOfLValue - Given an expression with complex type that represents a |
| /// value l-value, this method emits the address of the l-value, then loads |
| /// and returns the result. |
| Value *EmitLoadOfLValue(const Expr *E) { |
| Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), |
| E->getExprLoc()); |
| |
| EmitLValueAlignmentAssumption(E, V); |
| return V; |
| } |
| |
| /// EmitConversionToBool - Convert the specified expression value to a |
| /// boolean (i1) truth value. This is equivalent to "Val != 0". |
| Value *EmitConversionToBool(Value *Src, QualType DstTy); |
| |
| /// Emit a check that a conversion to or from a floating-point type does not |
| /// overflow. |
| void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, |
| Value *Src, QualType SrcType, QualType DstType, |
| llvm::Type *DstTy, SourceLocation Loc); |
| |
| /// Known implicit conversion check kinds. |
| /// Keep in sync with the enum of the same name in ubsan_handlers.h |
| enum ImplicitConversionCheckKind : unsigned char { |
| ICCK_IntegerTruncation = 0, |
| }; |
| |
| /// Emit a check that an [implicit] truncation of an integer does not |
| /// discard any bits. It is not UB, so we use the value after truncation. |
| void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, |
| QualType DstType, SourceLocation Loc); |
| |
| /// Emit a conversion from the specified type to the specified destination |
| /// type, both of which are LLVM scalar types. |
| struct ScalarConversionOpts { |
| bool TreatBooleanAsSigned; |
| bool EmitImplicitIntegerTruncationChecks; |
| |
| ScalarConversionOpts() |
| : TreatBooleanAsSigned(false), |
| EmitImplicitIntegerTruncationChecks(false) {} |
| }; |
| Value * |
| EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, |
| SourceLocation Loc, |
| ScalarConversionOpts Opts = ScalarConversionOpts()); |
| |
| /// Emit a conversion from the specified complex type to the specified |
| /// destination type, where the destination type is an LLVM scalar type. |
| Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, |
| QualType SrcTy, QualType DstTy, |
| SourceLocation Loc); |
| |
| /// EmitNullValue - Emit a value that corresponds to null for the given type. |
| Value *EmitNullValue(QualType Ty); |
| |
| /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. |
| Value *EmitFloatToBoolConversion(Value *V) { |
| // Compare against 0.0 for fp scalars. |
| llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); |
| return Builder.CreateFCmpUNE(V, Zero, "tobool"); |
| } |
| |
| /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. |
| Value *EmitPointerToBoolConversion(Value *V, QualType QT) { |
| Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); |
| |
| return Builder.CreateICmpNE(V, Zero, "tobool"); |
| } |
| |
| Value *EmitIntToBoolConversion(Value *V) { |
| // Because of the type rules of C, we often end up computing a |
| // logical value, then zero extending it to int, then wanting it |
| // as a logical value again. Optimize this common case. |
| if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { |
| if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { |
| Value *Result = ZI->getOperand(0); |
| // If there aren't any more uses, zap the instruction to save space. |
| // Note that there can be more uses, for example if this |
| // is the result of an assignment. |
| if (ZI->use_empty()) |
| ZI->eraseFromParent(); |
| return Result; |
| } |
| } |
| |
| return Builder.CreateIsNotNull(V, "tobool"); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Visitor Methods |
| //===--------------------------------------------------------------------===// |
| |
| Value *Visit(Expr *E) { |
| ApplyDebugLocation DL(CGF, E); |
| return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); |
| } |
| |
| Value *VisitStmt(Stmt *S) { |
| S->dump(CGF.getContext().getSourceManager()); |
| llvm_unreachable("Stmt can't have complex result type!"); |
| } |
| Value *VisitExpr(Expr *S); |
| |
| Value *VisitParenExpr(ParenExpr *PE) { |
| return Visit(PE->getSubExpr()); |
| } |
| Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { |
| return Visit(E->getReplacement()); |
| } |
| Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { |
| return Visit(GE->getResultExpr()); |
| } |
| Value *VisitCoawaitExpr(CoawaitExpr *S) { |
| return CGF.EmitCoawaitExpr(*S).getScalarVal(); |
| } |
| Value *VisitCoyieldExpr(CoyieldExpr *S) { |
| return CGF.EmitCoyieldExpr(*S).getScalarVal(); |
| } |
| Value *VisitUnaryCoawait(const UnaryOperator *E) { |
| return Visit(E->getSubExpr()); |
| } |
| |
| // Leaves. |
| Value *VisitIntegerLiteral(const IntegerLiteral *E) { |
| return Builder.getInt(E->getValue()); |
| } |
| Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { |
| return Builder.getInt(E->getValue()); |
| } |
| Value *VisitFloatingLiteral(const FloatingLiteral *E) { |
| return llvm::ConstantFP::get(VMContext, E->getValue()); |
| } |
| Value *VisitCharacterLiteral(const CharacterLiteral *E) { |
| return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); |
| } |
| Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { |
| return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); |
| } |
| Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { |
| return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); |
| } |
| Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { |
| return EmitNullValue(E->getType()); |
| } |
| Value *VisitGNUNullExpr(const GNUNullExpr *E) { |
| return EmitNullValue(E->getType()); |
| } |
| Value *VisitOffsetOfExpr(OffsetOfExpr *E); |
| Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); |
| Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { |
| llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); |
| return Builder.CreateBitCast(V, ConvertType(E->getType())); |
| } |
| |
| Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { |
| return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); |
| } |
| |
| Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { |
| return CGF.EmitPseudoObjectRValue(E).getScalarVal(); |
| } |
| |
| Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { |
| if (E->isGLValue()) |
| return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), |
| E->getExprLoc()); |
| |
| // Otherwise, assume the mapping is the scalar directly. |
| return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); |
| } |
| |
| Value *emitConstant(const CodeGenFunction::ConstantEmission &Constant, |
| Expr *E) { |
| assert(Constant && "not a constant"); |
| if (Constant.isReference()) |
| return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), |
| E->getExprLoc()); |
| return Constant.getValue(); |
| } |
| |
| // l-values. |
| Value *VisitDeclRefExpr(DeclRefExpr *E) { |
| if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) |
| return emitConstant(Constant, E); |
| return EmitLoadOfLValue(E); |
| } |
| |
| Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { |
| return CGF.EmitObjCSelectorExpr(E); |
| } |
| Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { |
| return CGF.EmitObjCProtocolExpr(E); |
| } |
| Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { |
| return EmitLoadOfLValue(E); |
| } |
| Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { |
| if (E->getMethodDecl() && |
| E->getMethodDecl()->getReturnType()->isReferenceType()) |
| return EmitLoadOfLValue(E); |
| return CGF.EmitObjCMessageExpr(E).getScalarVal(); |
| } |
| |
| Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { |
| LValue LV = CGF.EmitObjCIsaExpr(E); |
| Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); |
| return V; |
| } |
| |
| Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { |
| VersionTuple Version = E->getVersion(); |
| |
| // If we're checking for a platform older than our minimum deployment |
| // target, we can fold the check away. |
| if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) |
| return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); |
| |
| Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); |
| llvm::Value *Args[] = { |
| llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), |
| llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), |
| llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), |
| }; |
| |
| return CGF.EmitBuiltinAvailable(Args); |
| } |
| |
| Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); |
| Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); |
| Value *VisitConvertVectorExpr(ConvertVectorExpr *E); |
| Value *VisitMemberExpr(MemberExpr *E); |
| Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } |
| Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { |
| return EmitLoadOfLValue(E); |
| } |
| |
| Value *VisitInitListExpr(InitListExpr *E); |
| |
| Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { |
| assert(CGF.getArrayInitIndex() && |
| "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); |
| return CGF.getArrayInitIndex(); |
| } |
| |
| Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { |
| return EmitNullValue(E->getType()); |
| } |
| Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { |
| CGF.CGM.EmitExplicitCastExprType(E, &CGF); |
| return VisitCastExpr(E); |
| } |
| Value *VisitCastExpr(CastExpr *E); |
| |
| Value *VisitCallExpr(const CallExpr *E) { |
| if (E->getCallReturnType(CGF.getContext())->isReferenceType()) |
| return EmitLoadOfLValue(E); |
| |
| Value *V = CGF.EmitCallExpr(E).getScalarVal(); |
| |
| EmitLValueAlignmentAssumption(E, V); |
| return V; |
| } |
| |
| Value *VisitStmtExpr(const StmtExpr *E); |
| |
| // Unary Operators. |
| Value *VisitUnaryPostDec(const UnaryOperator *E) { |
| LValue LV = EmitLValue(E->getSubExpr()); |
| return EmitScalarPrePostIncDec(E, LV, false, false); |
| } |
| Value *VisitUnaryPostInc(const UnaryOperator *E) { |
| LValue LV = EmitLValue(E->getSubExpr()); |
| return EmitScalarPrePostIncDec(E, LV, true, false); |
| } |
| Value *VisitUnaryPreDec(const UnaryOperator *E) { |
| LValue LV = EmitLValue(E->getSubExpr()); |
| return EmitScalarPrePostIncDec(E, LV, false, true); |
| } |
| Value *VisitUnaryPreInc(const UnaryOperator *E) { |
| LValue LV = EmitLValue(E->getSubExpr()); |
| return EmitScalarPrePostIncDec(E, LV, true, true); |
| } |
| |
| llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, |
| llvm::Value *InVal, |
| bool IsInc); |
| |
| llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, |
| bool isInc, bool isPre); |
| |
| |
| Value *VisitUnaryAddrOf(const UnaryOperator *E) { |
| if (isa<MemberPointerType>(E->getType())) // never sugared |
| return CGF.CGM.getMemberPointerConstant(E); |
| |
| return EmitLValue(E->getSubExpr()).getPointer(); |
| } |
| Value *VisitUnaryDeref(const UnaryOperator *E) { |
| if (E->getType()->isVoidType()) |
| return Visit(E->getSubExpr()); // the actual value should be unused |
| return EmitLoadOfLValue(E); |
| } |
| Value *VisitUnaryPlus(const UnaryOperator *E) { |
| // This differs from gcc, though, most likely due to a bug in gcc. |
| TestAndClearIgnoreResultAssign(); |
| return Visit(E->getSubExpr()); |
| } |
| Value *VisitUnaryMinus (const UnaryOperator *E); |
| Value *VisitUnaryNot (const UnaryOperator *E); |
| Value *VisitUnaryLNot (const UnaryOperator *E); |
| Value *VisitUnaryReal (const UnaryOperator *E); |
| Value *VisitUnaryImag (const UnaryOperator *E); |
| Value *VisitUnaryExtension(const UnaryOperator *E) { |
| return Visit(E->getSubExpr()); |
| } |
| |
| // C++ |
| Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { |
| return EmitLoadOfLValue(E); |
| } |
| |
| Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { |
| return Visit(DAE->getExpr()); |
| } |
| Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { |
| CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); |
| return Visit(DIE->getExpr()); |
| } |
| Value *VisitCXXThisExpr(CXXThisExpr *TE) { |
| return CGF.LoadCXXThis(); |
| } |
| |
| Value *VisitExprWithCleanups(ExprWithCleanups *E); |
| Value *VisitCXXNewExpr(const CXXNewExpr *E) { |
| return CGF.EmitCXXNewExpr(E); |
| } |
| Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { |
| CGF.EmitCXXDeleteExpr(E); |
| return nullptr; |
| } |
| |
| Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { |
| return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); |
| } |
| |
| Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { |
| return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); |
| } |
| |
| Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { |
| return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); |
| } |
| |
| Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { |
| // C++ [expr.pseudo]p1: |
| // The result shall only be used as the operand for the function call |
| // operator (), and the result of such a call has type void. The only |
| // effect is the evaluation of the postfix-expression before the dot or |
| // arrow. |
| CGF.EmitScalarExpr(E->getBase()); |
| return nullptr; |
| } |
| |
| Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { |
| return EmitNullValue(E->getType()); |
| } |
| |
| Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { |
| CGF.EmitCXXThrowExpr(E); |
| return nullptr; |
| } |
| |
| Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { |
| return Builder.getInt1(E->getValue()); |
| } |
| |
| // Binary Operators. |
| Value *EmitMul(const BinOpInfo &Ops) { |
| if (Ops.Ty->isSignedIntegerOrEnumerationType()) { |
| switch (CGF.getLangOpts().getSignedOverflowBehavior()) { |
| case LangOptions::SOB_Defined: |
| return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); |
| case LangOptions::SOB_Undefined: |
| if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) |
| return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); |
| // Fall through. |
| case LangOptions::SOB_Trapping: |
| if (CanElideOverflowCheck(CGF.getContext(), Ops)) |
| return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); |
| return EmitOverflowCheckedBinOp(Ops); |
| } |
| } |
| |
| if (Ops.Ty->isUnsignedIntegerType() && |
| CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && |
| !CanElideOverflowCheck(CGF.getContext(), Ops)) |
| return EmitOverflowCheckedBinOp(Ops); |
| |
| if (Ops.LHS->getType()->isFPOrFPVectorTy()) { |
| Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); |
| return propagateFMFlags(V, Ops); |
| } |
| return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); |
| } |
| /// Create a binary op that checks for overflow. |
| /// Currently only supports +, - and *. |
| Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); |
| |
| // Check for undefined division and modulus behaviors. |
| void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, |
| llvm::Value *Zero,bool isDiv); |
| // Common helper for getting how wide LHS of shift is. |
| static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); |
| Value *EmitDiv(const BinOpInfo &Ops); |
| Value *EmitRem(const BinOpInfo &Ops); |
| Value *EmitAdd(const BinOpInfo &Ops); |
| Value *EmitSub(const BinOpInfo &Ops); |
| Value *EmitShl(const BinOpInfo &Ops); |
| Value *EmitShr(const BinOpInfo &Ops); |
| Value *EmitAnd(const BinOpInfo &Ops) { |
| return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); |
| } |
| Value *EmitXor(const BinOpInfo &Ops) { |
| return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); |
| } |
| Value *EmitOr (const BinOpInfo &Ops) { |
| return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); |
| } |
| |
| BinOpInfo EmitBinOps(const BinaryOperator *E); |
| LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, |
| Value *(ScalarExprEmitter::*F)(const BinOpInfo &), |
| Value *&Result); |
| |
| Value *EmitCompoundAssign(const CompoundAssignOperator *E, |
| Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); |
| |
| // Binary operators and binary compound assignment operators. |
| #define HANDLEBINOP(OP) \ |
| Value *VisitBin ## OP(const BinaryOperator *E) { \ |
| return Emit ## OP(EmitBinOps(E)); \ |
| } \ |
| Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ |
| return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ |
| } |
| HANDLEBINOP(Mul) |
| HANDLEBINOP(Div) |
| HANDLEBINOP(Rem) |
| HANDLEBINOP(Add) |
| HANDLEBINOP(Sub) |
| HANDLEBINOP(Shl) |
| HANDLEBINOP(Shr) |
| HANDLEBINOP(And) |
| HANDLEBINOP(Xor) |
| HANDLEBINOP(Or) |
| #undef HANDLEBINOP |
| |
| // Comparisons. |
| Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, |
| llvm::CmpInst::Predicate SICmpOpc, |
| llvm::CmpInst::Predicate FCmpOpc); |
| #define VISITCOMP(CODE, UI, SI, FP) \ |
| Value *VisitBin##CODE(const BinaryOperator *E) { \ |
| return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ |
| llvm::FCmpInst::FP); } |
| VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) |
| VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) |
| VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) |
| VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) |
| VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) |
| VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) |
| #undef VISITCOMP |
| |
| Value *VisitBinAssign (const BinaryOperator *E); |
| |
| Value *VisitBinLAnd (const BinaryOperator *E); |
| Value *VisitBinLOr (const BinaryOperator *E); |
| Value *VisitBinComma (const BinaryOperator *E); |
| |
| Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } |
| Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } |
| |
| // Other Operators. |
| Value *VisitBlockExpr(const BlockExpr *BE); |
| Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); |
| Value *VisitChooseExpr(ChooseExpr *CE); |
| Value *VisitVAArgExpr(VAArgExpr *VE); |
| Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { |
| return CGF.EmitObjCStringLiteral(E); |
| } |
| Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { |
| return CGF.EmitObjCBoxedExpr(E); |
| } |
| Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { |
| return CGF.EmitObjCArrayLiteral(E); |
| } |
| Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { |
| return CGF.EmitObjCDictionaryLiteral(E); |
| } |
| Value *VisitAsTypeExpr(AsTypeExpr *CE); |
| Value *VisitAtomicExpr(AtomicExpr *AE); |
| }; |
| } // end anonymous namespace. |
| |
| //===----------------------------------------------------------------------===// |
| // Utilities |
| //===----------------------------------------------------------------------===// |
| |
| /// EmitConversionToBool - Convert the specified expression value to a |
| /// boolean (i1) truth value. This is equivalent to "Val != 0". |
| Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { |
| assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); |
| |
| if (SrcType->isRealFloatingType()) |
| return EmitFloatToBoolConversion(Src); |
| |
| if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) |
| return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); |
| |
| assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && |
| "Unknown scalar type to convert"); |
| |
| if (isa<llvm::IntegerType>(Src->getType())) |
| return EmitIntToBoolConversion(Src); |
| |
| assert(isa<llvm::PointerType>(Src->getType())); |
| return EmitPointerToBoolConversion(Src, SrcType); |
| } |
| |
| void ScalarExprEmitter::EmitFloatConversionCheck( |
| Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, |
| QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { |
| CodeGenFunction::SanitizerScope SanScope(&CGF); |
| using llvm::APFloat; |
| using llvm::APSInt; |
| |
| llvm::Type *SrcTy = Src->getType(); |
| |
| llvm::Value *Check = nullptr; |
| if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { |
| // Integer to floating-point. This can fail for unsigned short -> __half |
| // or unsigned __int128 -> float. |
| assert(DstType->isFloatingType()); |
| bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); |
| |
| APFloat LargestFloat = |
| APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); |
| APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); |
| |
| bool IsExact; |
| if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, |
| &IsExact) != APFloat::opOK) |
| // The range of representable values of this floating point type includes |
| // all values of this integer type. Don't need an overflow check. |
| return; |
| |
| llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); |
| if (SrcIsUnsigned) |
| Check = Builder.CreateICmpULE(Src, Max); |
| else { |
| llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); |
| llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); |
| llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); |
| Check = Builder.CreateAnd(GE, LE); |
| } |
| } else { |
| const llvm::fltSemantics &SrcSema = |
| CGF.getContext().getFloatTypeSemantics(OrigSrcType); |
| if (isa<llvm::IntegerType>(DstTy)) { |
| // Floating-point to integer. This has undefined behavior if the source is |
| // +-Inf, NaN, or doesn't fit into the destination type (after truncation |
| // to an integer). |
| unsigned Width = CGF.getContext().getIntWidth(DstType); |
| bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); |
| |
| APSInt Min = APSInt::getMinValue(Width, Unsigned); |
| APFloat MinSrc(SrcSema, APFloat::uninitialized); |
| if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & |
| APFloat::opOverflow) |
| // Don't need an overflow check for lower bound. Just check for |
| // -Inf/NaN. |
| MinSrc = APFloat::getInf(SrcSema, true); |
| else |
| // Find the largest value which is too small to represent (before |
| // truncation toward zero). |
| MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); |
| |
| APSInt Max = APSInt::getMaxValue(Width, Unsigned); |
| APFloat MaxSrc(SrcSema, APFloat::uninitialized); |
| if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & |
| APFloat::opOverflow) |
| // Don't need an overflow check for upper bound. Just check for |
| // +Inf/NaN. |
| MaxSrc = APFloat::getInf(SrcSema, false); |
| else |
| // Find the smallest value which is too large to represent (before |
| // truncation toward zero). |
| MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); |
| |
| // If we're converting from __half, convert the range to float to match |
| // the type of src. |
| if (OrigSrcType->isHalfType()) { |
| const llvm::fltSemantics &Sema = |
| CGF.getContext().getFloatTypeSemantics(SrcType); |
| bool IsInexact; |
| MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); |
| MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); |
| } |
| |
| llvm::Value *GE = |
| Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); |
| llvm::Value *LE = |
| Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); |
| Check = Builder.CreateAnd(GE, LE); |
| } else { |
| // FIXME: Maybe split this sanitizer out from float-cast-overflow. |
| // |
| // Floating-point to floating-point. This has undefined behavior if the |
| // source is not in the range of representable values of the destination |
| // type. The C and C++ standards are spectacularly unclear here. We |
| // diagnose finite out-of-range conversions, but allow infinities and NaNs |
| // to convert to the corresponding value in the smaller type. |
| // |
| // C11 Annex F gives all such conversions defined behavior for IEC 60559 |
| // conforming implementations. Unfortunately, LLVM's fptrunc instruction |
| // does not. |
| |
| // Converting from a lower rank to a higher rank can never have |
| // undefined behavior, since higher-rank types must have a superset |
| // of values of lower-rank types. |
| if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) |
| return; |
| |
| assert(!OrigSrcType->isHalfType() && |
| "should not check conversion from __half, it has the lowest rank"); |
| |
| const llvm::fltSemantics &DstSema = |
| CGF.getContext().getFloatTypeSemantics(DstType); |
| APFloat MinBad = APFloat::getLargest(DstSema, false); |
| APFloat MaxBad = APFloat::getInf(DstSema, false); |
| |
| bool IsInexact; |
| MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); |
| MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); |
| |
| Value *AbsSrc = CGF.EmitNounwindRuntimeCall( |
| CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); |
| llvm::Value *GE = |
| Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); |
| llvm::Value *LE = |
| Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); |
| Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); |
| } |
| } |
| |
| llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), |
| CGF.EmitCheckTypeDescriptor(OrigSrcType), |
| CGF.EmitCheckTypeDescriptor(DstType)}; |
| CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), |
| SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); |
| } |
| |
| void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, |
| Value *Dst, QualType DstType, |
| SourceLocation Loc) { |
| if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerTruncation)) |
| return; |
| |
| llvm::Type *SrcTy = Src->getType(); |
| llvm::Type *DstTy = Dst->getType(); |
| |
| // We only care about int->int conversions here. |
| // We ignore conversions to/from pointer and/or bool. |
| if (!(SrcType->isIntegerType() && DstType->isIntegerType())) |
| return; |
| |
| assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && |
| "clang integer type lowered to non-integer llvm type"); |
| |
| unsigned SrcBits = SrcTy->getScalarSizeInBits(); |
| unsigned DstBits = DstTy->getScalarSizeInBits(); |
| // This must be truncation. Else we do not care. |
| if (SrcBits <= DstBits) |
| return; |
| |
| assert(!DstType->isBooleanType() && "we should not get here with booleans."); |
| |
| CodeGenFunction::SanitizerScope SanScope(&CGF); |
| |
| llvm::Value *Check = nullptr; |
| |
| // 1. Extend the truncated value back to the same width as the Src. |
| bool InputSigned = DstType->isSignedIntegerOrEnumerationType(); |
| Check = Builder.CreateIntCast(Dst, SrcTy, InputSigned, "anyext"); |
| // 2. Equality-compare with the original source value |
| Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); |
| // If the comparison result is 'i1 false', then the truncation was lossy. |
| |
| llvm::Constant *StaticArgs[] = { |
| CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), |
| CGF.EmitCheckTypeDescriptor(DstType), |
| llvm::ConstantInt::get(Builder.getInt8Ty(), ICCK_IntegerTruncation)}; |
| CGF.EmitCheck(std::make_pair(Check, SanitizerKind::ImplicitIntegerTruncation), |
| SanitizerHandler::ImplicitConversion, StaticArgs, {Src, Dst}); |
| } |
| |
| /// Emit a conversion from the specified type to the specified destination type, |
| /// both of which are LLVM scalar types. |
| Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, |
| QualType DstType, |
| SourceLocation Loc, |
| ScalarConversionOpts Opts) { |
| QualType NoncanonicalSrcType = SrcType; |
| QualType NoncanonicalDstType = DstType; |
| |
| SrcType = CGF.getContext().getCanonicalType(SrcType); |
| DstType = CGF.getContext().getCanonicalType(DstType); |
| if (SrcType == DstType) return Src; |
| |
| if (DstType->isVoidType()) return nullptr; |
| |
| llvm::Value *OrigSrc = Src; |
| QualType OrigSrcType = SrcType; |
| llvm::Type *SrcTy = Src->getType(); |
| |
| // Handle conversions to bool first, they are special: comparisons against 0. |
| if (DstType->isBooleanType()) |
| return EmitConversionToBool(Src, SrcType); |
| |
| llvm::Type *DstTy = ConvertType(DstType); |
| |
| // Cast from half through float if half isn't a native type. |
| if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { |
| // Cast to FP using the intrinsic if the half type itself isn't supported. |
| if (DstTy->isFloatingPointTy()) { |
| if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) |
| return Builder.CreateCall( |
| CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), |
| Src); |
| } else { |
| // Cast to other types through float, using either the intrinsic or FPExt, |
| // depending on whether the half type itself is supported |
| // (as opposed to operations on half, available with NativeHalfType). |
| if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { |
| Src = Builder.CreateCall( |
| CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, |
| CGF.CGM.FloatTy), |
| Src); |
| } else { |
| Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); |
| } |
| SrcType = CGF.getContext().FloatTy; |
| SrcTy = CGF.FloatTy; |
| } |
| } |
| |
| // Ignore conversions like int -> uint. |
| if (SrcTy == DstTy) |
| return Src; |
| |
| // Handle pointer conversions next: pointers can only be converted to/from |
| // other pointers and integers. Check for pointer types in terms of LLVM, as |
| // some native types (like Obj-C id) may map to a pointer type. |
| if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { |
| // The source value may be an integer, or a pointer. |
| if (isa<llvm::PointerType>(SrcTy)) |
| return Builder.CreateBitCast(Src, DstTy, "conv"); |
| |
| assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); |
| // First, convert to the correct width so that we control the kind of |
| // extension. |
| llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); |
| bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); |
| llvm::Value* IntResult = |
| Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); |
| // Then, cast to pointer. |
| return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); |
| } |
| |
| if (isa<llvm::PointerType>(SrcTy)) { |
| // Must be an ptr to int cast. |
| assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); |
| return Builder.CreatePtrToInt(Src, DstTy, "conv"); |
| } |
| |
| // A scalar can be splatted to an extended vector of the same element type |
| if (DstType->isExtVectorType() && !SrcType->isVectorType()) { |
| // Sema should add casts to make sure that the source expression's type is |
| // the same as the vector's element type (sans qualifiers) |
| assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == |
| SrcType.getTypePtr() && |
| "Splatted expr doesn't match with vector element type?"); |
| |
| // Splat the element across to all elements |
| unsigned NumElements = DstTy->getVectorNumElements(); |
| return Builder.CreateVectorSplat(NumElements, Src, "splat"); |
| } |
| |
| if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { |
| // Allow bitcast from vector to integer/fp of the same size. |
| unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); |
| unsigned DstSize = DstTy->getPrimitiveSizeInBits(); |
| if (SrcSize == DstSize) |
| return Builder.CreateBitCast(Src, DstTy, "conv"); |
| |
| // Conversions between vectors of different sizes are not allowed except |
| // when vectors of half are involved. Operations on storage-only half |
| // vectors require promoting half vector operands to float vectors and |
| // truncating the result, which is either an int or float vector, to a |
| // short or half vector. |
| |
| // Source and destination are both expected to be vectors. |
| llvm::Type *SrcElementTy = SrcTy->getVectorElementType(); |
| llvm::Type *DstElementTy = DstTy->getVectorElementType(); |
| (void)DstElementTy; |
| |
| assert(((SrcElementTy->isIntegerTy() && |
| DstElementTy->isIntegerTy()) || |
| (SrcElementTy->isFloatingPointTy() && |
| DstElementTy->isFloatingPointTy())) && |
| "unexpected conversion between a floating-point vector and an " |
| "integer vector"); |
| |
| // Truncate an i32 vector to an i16 vector. |
| if (SrcElementTy->isIntegerTy()) |
| return Builder.CreateIntCast(Src, DstTy, false, "conv"); |
| |
| // Truncate a float vector to a half vector. |
| if (SrcSize > DstSize) |
| return Builder.CreateFPTrunc(Src, DstTy, "conv"); |
| |
| // Promote a half vector to a float vector. |
| return Builder.CreateFPExt(Src, DstTy, "conv"); |
| } |
| |
| // Finally, we have the arithmetic types: real int/float. |
| Value *Res = nullptr; |
| llvm::Type *ResTy = DstTy; |
| |
| // An overflowing conversion has undefined behavior if either the source type |
| // or the destination type is a floating-point type. |
| if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && |
| (OrigSrcType->isFloatingType() || DstType->isFloatingType())) |
| EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, |
| Loc); |
| |
| // Cast to half through float if half isn't a native type. |
| if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { |
| // Make sure we cast in a single step if from another FP type. |
| if (SrcTy->isFloatingPointTy()) { |
| // Use the intrinsic if the half type itself isn't supported |
| // (as opposed to operations on half, available with NativeHalfType). |
| if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) |
| return Builder.CreateCall( |
| CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); |
| // If the half type is supported, just use an fptrunc. |
| return Builder.CreateFPTrunc(Src, DstTy); |
| } |
| DstTy = CGF.FloatTy; |
| } |
| |
| if (isa<llvm::IntegerType>(SrcTy)) { |
| bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); |
| if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { |
| InputSigned = true; |
| } |
| if (isa<llvm::IntegerType>(DstTy)) |
| Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); |
| else if (InputSigned) |
| Res = Builder.CreateSIToFP(Src, DstTy, "conv"); |
| else |
| Res = Builder.CreateUIToFP(Src, DstTy, "conv"); |
| } else if (isa<llvm::IntegerType>(DstTy)) { |
| assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); |
| if (DstType->isSignedIntegerOrEnumerationType()) |
| Res = Builder.CreateFPToSI(Src, DstTy, "conv"); |
| else |
| Res = Builder.CreateFPToUI(Src, DstTy, "conv"); |
| } else { |
| assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && |
| "Unknown real conversion"); |
| if (DstTy->getTypeID() < SrcTy->getTypeID()) |
| Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); |
| else |
| Res = Builder.CreateFPExt(Src, DstTy, "conv"); |
| } |
| |
| if (DstTy != ResTy) { |
| if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { |
| assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); |
| Res = Builder.CreateCall( |
| CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), |
| Res); |
| } else { |
| Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); |
| } |
| } |
| |
| if (Opts.EmitImplicitIntegerTruncationChecks) |
| EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, |
| NoncanonicalDstType, Loc); |
| |
| return Res; |
| } |
| |
| /// Emit a conversion from the specified complex type to the specified |
| /// destination type, where the destination type is an LLVM scalar type. |
| Value *ScalarExprEmitter::EmitComplexToScalarConversion( |
| CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, |
| SourceLocation Loc) { |
| // Get the source element type. |
| SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); |
| |
| // Handle conversions to bool first, they are special: comparisons against 0. |
| if (DstTy->isBooleanType()) { |
| // Complex != 0 -> (Real != 0) | (Imag != 0) |
| Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); |
| Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); |
| return Builder.CreateOr(Src.first, Src.second, "tobool"); |
| } |
| |
| // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, |
| // the imaginary part of the complex value is discarded and the value of the |
| // real part is converted according to the conversion rules for the |
| // corresponding real type. |
| return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); |
| } |
| |
| Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { |
| return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); |
| } |
| |
| /// Emit a sanitization check for the given "binary" operation (which |
| /// might actually be a unary increment which has been lowered to a binary |
| /// operation). The check passes if all values in \p Checks (which are \c i1), |
| /// are \c true. |
| void ScalarExprEmitter::EmitBinOpCheck( |
| ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { |
| assert(CGF.IsSanitizerScope); |
| SanitizerHandler Check; |
| SmallVector<llvm::Constant *, 4> StaticData; |
| SmallVector<llvm::Value *, 2> DynamicData; |
| |
| BinaryOperatorKind Opcode = Info.Opcode; |
| if (BinaryOperator::isCompoundAssignmentOp(Opcode)) |
| Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); |
| |
| StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); |
| const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); |
| if (UO && UO->getOpcode() == UO_Minus) { |
| Check = SanitizerHandler::NegateOverflow; |
| StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); |
| DynamicData.push_back(Info.RHS); |
| } else { |
| if (BinaryOperator::isShiftOp(Opcode)) { |
| // Shift LHS negative or too large, or RHS out of bounds. |
| Check = SanitizerHandler::ShiftOutOfBounds; |
| const BinaryOperator *BO = cast<BinaryOperator>(Info.E); |
| StaticData.push_back( |
| CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); |
| StaticData.push_back( |
| CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); |
| } else if (Opcode == BO_Div || Opcode == BO_Rem) { |
| // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). |
| Check = SanitizerHandler::DivremOverflow; |
| StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); |
| } else { |
| // Arithmetic overflow (+, -, *). |
| switch (Opcode) { |
| case BO_Add: Check = SanitizerHandler::AddOverflow; break; |
| case BO_Sub: Check = SanitizerHandler::SubOverflow; break; |
| case BO_Mul: Check = SanitizerHandler::MulOverflow; break; |
| default: llvm_unreachable("unexpected opcode for bin op check"); |
| } |
| StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); |
| } |
| DynamicData.push_back(Info.LHS); |
| DynamicData.push_back(Info.RHS); |
| } |
| |
| CGF.EmitCheck(Checks, Check, StaticData, DynamicData); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Visitor Methods |
| //===----------------------------------------------------------------------===// |
| |
| Value *ScalarExprEmitter::VisitExpr(Expr *E) { |
| CGF.ErrorUnsupported(E, "scalar expression"); |
| if (E->getType()->isVoidType()) |
| return nullptr; |
| return llvm::UndefValue::get(CGF.ConvertType(E->getType())); |
| } |
| |
| Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { |
| // Vector Mask Case |
| if (E->getNumSubExprs() == 2) { |
| Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); |
| Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); |
| Value *Mask; |
| |
| llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); |
| unsigned LHSElts = LTy->getNumElements(); |
| |
| Mask = RHS; |
| |
| llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); |
| |
| // Mask off the high bits of each shuffle index. |
| Value *MaskBits = |
| llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); |
| Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); |
| |
| // newv = undef |
| // mask = mask & maskbits |
| // for each elt |
| // n = extract mask i |
| // x = extract val n |
| // newv = insert newv, x, i |
| llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), |
| MTy->getNumElements()); |
| Value* NewV = llvm::UndefValue::get(RTy); |
| for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { |
| Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); |
| Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); |
| |
| Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); |
| NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); |
| } |
| return NewV; |
| } |
| |
| Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); |
| Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); |
| |
| SmallVector<llvm::Constant*, 32> indices; |
| for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { |
| llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); |
| // Check for -1 and output it as undef in the IR. |
| if (Idx.isSigned() && Idx.isAllOnesValue()) |
| indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); |
| else |
| indices.push_back(Builder.getInt32(Idx.getZExtValue())); |
| } |
| |
| Value *SV = llvm::ConstantVector::get(indices); |
| return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); |
| } |
| |
| Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { |
| QualType SrcType = E->getSrcExpr()->getType(), |
| DstType = E->getType(); |
| |
| Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); |
| |
| SrcType = CGF.getContext().getCanonicalType(SrcType); |
| DstType = CGF.getContext().getCanonicalType(DstType); |
| if (SrcType == DstType) return Src; |
| |
| assert(SrcType->isVectorType() && |
| "ConvertVector source type must be a vector"); |
| assert(DstType->isVectorType() && |
| "ConvertVector destination type must be a vector"); |
| |
| llvm::Type *SrcTy = Src->getType(); |
| llvm::Type *DstTy = ConvertType(DstType); |
| |
| // Ignore conversions like int -> uint. |
| if (SrcTy == DstTy) |
| return Src; |
| |
| QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), |
| DstEltType = DstType->getAs<VectorType>()->getElementType(); |
| |
| assert(SrcTy->isVectorTy() && |
| "ConvertVector source IR type must be a vector"); |
| assert(DstTy->isVectorTy() && |
| "ConvertVector destination IR type must be a vector"); |
| |
| llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), |
| *DstEltTy = DstTy->getVectorElementType(); |
| |
| if (DstEltType->isBooleanType()) { |
| assert((SrcEltTy->isFloatingPointTy() || |
| isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); |
| |
| llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); |
| if (SrcEltTy->isFloatingPointTy()) { |
| return Builder.CreateFCmpUNE(Src, Zero, "tobool"); |
| } else { |
| return Builder.CreateICmpNE(Src, Zero, "tobool"); |
| } |
| } |
| |
| // We have the arithmetic types: real int/float. |
| Value *Res = nullptr; |
| |
| if (isa<llvm::IntegerType>(SrcEltTy)) { |
| bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); |
| if (isa<llvm::IntegerType>(DstEltTy)) |
| Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); |
| else if (InputSigned) |
| Res = Builder.CreateSIToFP(Src, DstTy, "conv"); |
| else |
| Res = Builder.CreateUIToFP(Src, DstTy, "conv"); |
| } else if (isa<llvm::IntegerType>(DstEltTy)) { |
| assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); |
| if (DstEltType->isSignedIntegerOrEnumerationType()) |
| Res = Builder.CreateFPToSI(Src, DstTy, "conv"); |
| else |
| Res = Builder.CreateFPToUI(Src, DstTy, "conv"); |
| } else { |
| assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && |
| "Unknown real conversion"); |
| if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) |
| Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); |
| else |
| Res = Builder.CreateFPExt(Src, DstTy, "conv"); |
| } |
| |
| return Res; |
| } |
| |
| Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { |
| if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { |
| CGF.EmitIgnoredExpr(E->getBase()); |
| return emitConstant(Constant, E); |
| } else { |
| llvm::APSInt Value; |
| if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { |
| CGF.EmitIgnoredExpr(E->getBase()); |
| return Builder.getInt(Value); |
| } |
| } |
| |
| return EmitLoadOfLValue(E); |
| } |
| |
| Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { |
| TestAndClearIgnoreResultAssign(); |
| |
| // Emit subscript expressions in rvalue context's. For most cases, this just |
| // loads the lvalue formed by the subscript expr. However, we have to be |
| // careful, because the base of a vector subscript is occasionally an rvalue, |
| // so we can't get it as an lvalue. |
| if (!E->getBase()->getType()->isVectorType()) |
| return EmitLoadOfLValue(E); |
| |
| // Handle the vector case. The base must be a vector, the index must be an |
| // integer value. |
| Value *Base = Visit(E->getBase()); |
| Value *Idx = Visit(E->getIdx()); |
| QualType IdxTy = E->getIdx()->getType(); |
| |
| if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) |
| CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); |
| |
| return Builder.CreateExtractElement(Base, Idx, "vecext"); |
| } |
| |
| static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, |
| unsigned Off, llvm::Type *I32Ty) { |
| int MV = SVI->getMaskValue(Idx); |
| if (MV == -1) |
| return llvm::UndefValue::get(I32Ty); |
| return llvm::ConstantInt::get(I32Ty, Off+MV); |
| } |
| |
| static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { |
| if (C->getBitWidth() != 32) { |
| assert(llvm::ConstantInt::isValueValidForType(I32Ty, |
| C->getZExtValue()) && |
| "Index operand too large for shufflevector mask!"); |
| return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); |
| } |
| return C; |
| } |
| |
| Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { |
| bool Ignore = TestAndClearIgnoreResultAssign(); |
| (void)Ignore; |
| assert (Ignore == false && "init list ignored"); |
| unsigned NumInitElements = E->getNumInits(); |
| |
| if (E->hadArrayRangeDesignator()) |
| CGF.ErrorUnsupported(E, "GNU array range designator extension"); |
| |
| llvm::VectorType *VType = |
| dyn_cast<llvm::VectorType>(ConvertType(E->getType())); |
| |
| if (!VType) { |
| if (NumInitElements == 0) { |
| // C++11 value-initialization for the scalar. |
| return EmitNullValue(E->getType()); |
| } |
| // We have a scalar in braces. Just use the first element. |
| return Visit(E->getInit(0)); |
| } |
| |
| unsigned ResElts = VType->getNumElements(); |
| |
| // Loop over initializers collecting the Value for each, and remembering |
| // whether the source was swizzle (ExtVectorElementExpr). This will allow |
| // us to fold the shuffle for the swizzle into the shuffle for the vector |
| // initializer, since LLVM optimizers generally do not want to touch |
| // shuffles. |
| unsigned CurIdx = 0; |
| bool VIsUndefShuffle = false; |
| llvm::Value *V = llvm::UndefValue::get(VType); |
| for (unsigned i = 0; i != NumInitElements; ++i) { |
| Expr *IE = E->getInit(i); |
| Value *Init = Visit(IE); |
| SmallVector<llvm::Constant*, 16> Args; |
| |
| llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); |
| |
| // Handle scalar elements. If the scalar initializer is actually one |
| // element of a different vector of the same width, use shuffle instead of |
| // extract+insert. |
| if (!VVT) { |
| if (isa<ExtVectorElementExpr>(IE)) { |
| llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); |
| |
| if (EI->getVectorOperandType()->getNumElements() == ResElts) { |
| llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); |
| Value *LHS = nullptr, *RHS = nullptr; |
| if (CurIdx == 0) { |
| // insert into undef -> shuffle (src, undef) |
| // shufflemask must use an i32 |
| Args.push_back(getAsInt32(C, CGF.Int32Ty)); |
| Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); |
| |
| LHS = EI->getVectorOperand(); |
| RHS = V; |
| VIsUndefShuffle = true; |
| } else if (VIsUndefShuffle) { |
| // insert into undefshuffle && size match -> shuffle (v, src) |
| llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); |
| for (unsigned j = 0; j != CurIdx; ++j) |
| Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); |
| Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); |
| Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); |
| |
| LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); |
| RHS = EI->getVectorOperand(); |
| VIsUndefShuffle = false; |
| } |
| if (!Args.empty()) { |
| llvm::Constant *Mask = llvm::ConstantVector::get(Args); |
| V = Builder.CreateShuffleVector(LHS, RHS, Mask); |
| ++CurIdx; |
| continue; |
| } |
| } |
| } |
| V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), |
| "vecinit"); |
| VIsUndefShuffle = false; |
| ++CurIdx; |
| continue; |
| } |
| |
| unsigned InitElts = VVT->getNumElements(); |
| |
| // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's |
| // input is the same width as the vector being constructed, generate an |
| // optimized shuffle of the swizzle input into the result. |
| unsigned Offset = (CurIdx == 0) ? 0 : ResElts; |
| if (isa<ExtVectorElementExpr>(IE)) { |
| llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); |
| Value *SVOp = SVI->getOperand(0); |
| llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); |
| |
| if (OpTy->getNumElements() == ResElts) { |
| for (unsigned j = 0; j != CurIdx; ++j) { |
| // If the current vector initializer is a shuffle with undef, merge |
| // this shuffle directly into it. |
| if (VIsUndefShuffle) { |
| Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, |
| CGF.Int32Ty)); |
| } else { |
| Args.push_back(Builder.getInt32(j)); |
| } |
| } |
| for (unsigned j = 0, je = InitElts; j != je; ++j) |
| Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); |
| Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); |
| |
| if (VIsUndefShuffle) |
| V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); |
| |
| Init = SVOp; |
| } |
| } |
| |
| // Extend init to result vector length, and then shuffle its contribution |
| // to the vector initializer into V. |
| if (Args.empty()) { |
| for (unsigned j = 0; j != InitElts; ++j) |
| Args.push_back(Builder.getInt32(j)); |
| Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); |
| llvm::Constant *Mask = llvm::ConstantVector::get(Args); |
| Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), |
| Mask, "vext"); |
| |
| Args.clear(); |
| for (unsigned j = 0; j != CurIdx; ++j) |
| Args.push_back(Builder.getInt32(j)); |
| for (unsigned j = 0; j != InitElts; ++j) |
| Args.push_back(Builder.getInt32(j+Offset)); |
| Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); |
| } |
| |
| // If V is undef, make sure it ends up on the RHS of the shuffle to aid |
| // merging subsequent shuffles into this one. |
| if (CurIdx == 0) |
| std::swap(V, Init); |
| llvm::Constant *Mask = llvm::ConstantVector::get(Args); |
| V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); |
| VIsUndefShuffle = isa<llvm::UndefValue>(Init); |
| CurIdx += InitElts; |
| } |
| |
| // FIXME: evaluate codegen vs. shuffling against constant null vector. |
| // Emit remaining default initializers. |
| llvm::Type *EltTy = VType->getElementType(); |
| |
| // Emit remaining default initializers |
| for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { |
| Value *Idx = Builder.getInt32(CurIdx); |
| llvm::Value *Init = llvm::Constant::getNullValue(EltTy); |
| V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); |
| } |
| return V; |
| } |
| |
| bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { |
| const Expr *E = CE->getSubExpr(); |
| |
| if (CE->getCastKind() == CK_UncheckedDerivedToBase) |
| return false; |
| |
| if (isa<CXXThisExpr>(E->IgnoreParens())) { |
| // We always assume that 'this' is never null. |
| return false; |
| } |
| |
| if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { |
| // And that glvalue casts are never null. |
| if (ICE->getValueKind() != VK_RValue) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts |
| // have to handle a more broad range of conversions than explicit casts, as they |
| // handle things like function to ptr-to-function decay etc. |
| Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { |
| Expr *E = CE->getSubExpr(); |
| QualType DestTy = CE->getType(); |
| CastKind Kind = CE->getCastKind(); |
| |
| // These cases are generally not written to ignore the result of |
| // evaluating their sub-expressions, so we clear this now. |
| bool Ignored = TestAndClearIgnoreResultAssign(); |
| |
| // Since almost all cast kinds apply to scalars, this switch doesn't have |
| // a default case, so the compiler will warn on a missing case. The cases |
| // are in the same order as in the CastKind enum. |
| switch (Kind) { |
| case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); |
| case CK_BuiltinFnToFnPtr: |
| llvm_unreachable("builtin functions are handled elsewhere"); |
| |
| case CK_LValueBitCast: |
| case CK_ObjCObjectLValueCast: { |
| Address Addr = EmitLValue(E).getAddress(); |
| Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); |
| LValue LV = CGF.MakeAddrLValue(Addr, DestTy); |
| return EmitLoadOfLValue(LV, CE->getExprLoc()); |
| } |
| |
| case CK_CPointerToObjCPointerCast: |
| case CK_BlockPointerToObjCPointerCast: |
| case CK_AnyPointerToBlockPointerCast: |
| case CK_BitCast: { |
| Value *Src = Visit(const_cast<Expr*>(E)); |
| llvm::Type *SrcTy = Src->getType(); |
| llvm::Type *DstTy = ConvertType(DestTy); |
| if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && |
| SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { |
| llvm_unreachable("wrong cast for pointers in different address spaces" |
| "(must be an address space cast)!"); |
| } |
| |
| if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { |
| if (auto PT = DestTy->getAs<PointerType>()) |
| CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, |
| /*MayBeNull=*/true, |
| CodeGenFunction::CFITCK_UnrelatedCast, |
| CE->getLocStart()); |
| } |
| |
| if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { |
| const QualType SrcType = E->getType(); |
| |
| if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { |
| // Casting to pointer that could carry dynamic information (provided by |
| // invariant.group) requires launder. |
| Src = Builder.CreateLaunderInvariantGroup(Src); |
| } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { |
| // Casting to pointer that does not carry dynamic information (provided |
| // by invariant.group) requires stripping it. Note that we don't do it |
| // if the source could not be dynamic type and destination could be |
| // dynamic because dynamic information is already laundered. It is |
| // because launder(strip(src)) == launder(src), so there is no need to |
| // add extra strip before launder. |
| Src = Builder.CreateStripInvariantGroup(Src); |
| } |
| } |
| |
| return Builder.CreateBitCast(Src, DstTy); |
| } |
| case CK_AddressSpaceConversion: { |
| Expr::EvalResult Result; |
| if (E->EvaluateAsRValue(Result, CGF.getContext()) && |
| Result.Val.isNullPointer()) { |
| // If E has side effect, it is emitted even if its final result is a |
| // null pointer. In that case, a DCE pass should be able to |
| // eliminate the useless instructions emitted during translating E. |
| if (Result.HasSideEffects) |
| Visit(E); |
| return CGF.CGM.getNullPointer(cast<llvm::PointerType>( |
| ConvertType(DestTy)), DestTy); |
| } |
| // Since target may map different address spaces in AST to the same address |
| // space, an address space conversion may end up as a bitcast. |
| return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( |
| CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), |
| DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); |
| } |
| case CK_AtomicToNonAtomic: |
| case CK_NonAtomicToAtomic: |
| case CK_NoOp: |
| case CK_UserDefinedConversion: |
| return Visit(const_cast<Expr*>(E)); |
| |
| case CK_BaseToDerived: { |
| const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); |
| assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); |
| |
| Address Base = CGF.EmitPointerWithAlignment(E); |
| Address Derived = |
| CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, |
| CE->path_begin(), CE->path_end(), |
| CGF.ShouldNullCheckClassCastValue(CE)); |
| |
| // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is |
| // performed and the object is not of the derived type. |
| if (CGF.sanitizePerformTypeCheck()) |
| CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), |
| Derived.getPointer(), DestTy->getPointeeType()); |
| |
| if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) |
| CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), |
| Derived.getPointer(), |
| /*MayBeNull=*/true, |
| CodeGenFunction::CFITCK_DerivedCast, |
| CE->getLocStart()); |
| |
| return Derived.getPointer(); |
| } |
| case CK_UncheckedDerivedToBase: |
| case CK_DerivedToBase: { |
| // The EmitPointerWithAlignment path does this fine; just discard |
| // the alignment. |
| return CGF.EmitPointerWithAlignment(CE).getPointer(); |
| } |
| |
| case CK_Dynamic: { |
| Address V = CGF.EmitPointerWithAlignment(E); |
| const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); |
| return CGF.EmitDynamicCast(V, DCE); |
| } |
| |
| case CK_ArrayToPointerDecay: |
| return CGF.EmitArrayToPointerDecay(E).getPointer(); |
| case CK_FunctionToPointerDecay: |
| return EmitLValue(E).getPointer(); |
| |
| case CK_NullToPointer: |
| if (MustVisitNullValue(E)) |
| (void) Visit(E); |
| |
| return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), |
| DestTy); |
| |
| case CK_NullToMemberPointer: { |
| if (MustVisitNullValue(E)) |
| (void) Visit(E); |
| |
| const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); |
| return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); |
| } |
| |
| case CK_ReinterpretMemberPointer: |
| case CK_BaseToDerivedMemberPointer: |
| case CK_DerivedToBaseMemberPointer: { |
| Value *Src = Visit(E); |
| |
| // Note that the AST doesn't distinguish between checked and |
| // unchecked member pointer conversions, so we always have to |
| // implement checked conversions here. This is inefficient when |
| // actual control flow may be required in order to perform the |
| // check, which it is for data member pointers (but not member |
| // function pointers on Itanium and ARM). |
| return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); |
| } |
| |
| case CK_ARCProduceObject: |
| return CGF.EmitARCRetainScalarExpr(E); |
| case CK_ARCConsumeObject: |
| return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); |
| case CK_ARCReclaimReturnedObject: |
| return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); |
| case CK_ARCExtendBlockObject: |
| return CGF.EmitARCExtendBlockObject(E); |
| |
| case CK_CopyAndAutoreleaseBlockObject: |
| return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); |
| |
| case CK_FloatingRealToComplex: |
| case CK_FloatingComplexCast: |
| case CK_IntegralRealToComplex: |
| case CK_IntegralComplexCast: |
| case CK_IntegralComplexToFloatingComplex: |
| case CK_FloatingComplexToIntegralComplex: |
| case CK_ConstructorConversion: |
| case CK_ToUnion: |
| llvm_unreachable("scalar cast to non-scalar value"); |
| |
| case CK_LValueToRValue: |
| assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); |
| assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); |
| return Visit(const_cast<Expr*>(E)); |
| |
| case CK_IntegralToPointer: { |
| Value *Src = Visit(const_cast<Expr*>(E)); |
| |
| // First, convert to the correct width so that we control the kind of |
| // extension. |
| auto DestLLVMTy = ConvertType(DestTy); |
| llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); |
| bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); |
| llvm::Value* IntResult = |
| Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); |
| |
| auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); |
| |
| if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { |
| // Going from integer to pointer that could be dynamic requires reloading |
| // dynamic information from invariant.group. |
| if (DestTy.mayBeDynamicClass()) |
| IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); |
| } |
| return IntToPtr; |
| } |
| case CK_PointerToIntegral: { |
| assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); |
| auto *PtrExpr = Visit(E); |
| |
| if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { |
| const QualType SrcType = E->getType(); |
| |
| // Casting to integer requires stripping dynamic information as it does |
| // not carries it. |
| if (SrcType.mayBeDynamicClass()) |
| PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); |
| } |
| |
| return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); |
| } |
| case CK_ToVoid: { |
| CGF.EmitIgnoredExpr(E); |
| return nullptr; |
| } |
| case CK_VectorSplat: { |
| llvm::Type *DstTy = ConvertType(DestTy); |
| Value *Elt = Visit(const_cast<Expr*>(E)); |
| // Splat the element across to all elements |
| unsigned NumElements = DstTy->getVectorNumElements(); |
| return Builder.CreateVectorSplat(NumElements, Elt, "splat"); |
| } |
| |
| case CK_IntegralCast: { |
| ScalarConversionOpts Opts; |
| if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerTruncation)) { |
| if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) |
| Opts.EmitImplicitIntegerTruncationChecks = !ICE->isPartOfExplicitCast(); |
| } |
| return EmitScalarConversion(Visit(E), E->getType(), DestTy, |
| CE->getExprLoc(), Opts); |
| } |
| case CK_IntegralToFloating: |
| case CK_FloatingToIntegral: |
| case CK_FloatingCast: |
| return EmitScalarConversion(Visit(E), E->getType(), DestTy, |
| CE->getExprLoc()); |
| case CK_BooleanToSignedIntegral: { |
| ScalarConversionOpts Opts; |
| Opts.TreatBooleanAsSigned = true; |
| return EmitScalarConversion(Visit(E), E->getType(), DestTy, |
| CE->getExprLoc(), Opts); |
| } |
| case CK_IntegralToBoolean: |
| return EmitIntToBoolConversion(Visit(E)); |
| case CK_PointerToBoolean: |
| return EmitPointerToBoolConversion(Visit(E), E->getType()); |
| case CK_FloatingToBoolean: |
| return EmitFloatToBoolConversion(Visit(E)); |
| case CK_MemberPointerToBoolean: { |
| llvm::Value *MemPtr = Visit(E); |
| const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); |
| return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); |
| } |
| |
| case CK_FloatingComplexToReal: |
| case CK_IntegralComplexToReal: |
| return CGF.EmitComplexExpr(E, false, true).first; |
| |
| case CK_FloatingComplexToBoolean: |
| case CK_IntegralComplexToBoolean: { |
| CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); |
| |
| // TODO: kill this function off, inline appropriate case here |
| return EmitComplexToScalarConversion(V, E->getType(), DestTy, |
| CE->getExprLoc()); |
| } |
| |
| case CK_ZeroToOCLEvent: { |
| assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); |
| return llvm::Constant::getNullValue(ConvertType(DestTy)); |
| } |
| |
| case CK_ZeroToOCLQueue: { |
| assert(DestTy->isQueueT() && "CK_ZeroToOCLQueue cast on non queue_t type"); |
| return llvm::Constant::getNullValue(ConvertType(DestTy)); |
| } |
| |
| case CK_IntToOCLSampler: |
| return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); |
| |
| } // end of switch |
| |
| llvm_unreachable("unknown scalar cast"); |
| } |
| |
| Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { |
| CodeGenFunction::StmtExprEvaluation eval(CGF); |
| Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), |
| !E->getType()->isVoidType()); |
| if (!RetAlloca.isValid()) |
| return nullptr; |
| return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), |
| E->getExprLoc()); |
| } |
| |
| Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { |
| CGF.enterFullExpression(E); |
| CodeGenFunction::RunCleanupsScope Scope(CGF); |
| Value *V = Visit(E->getSubExpr()); |
| // Defend against dominance problems caused by jumps out of expression |
| // evaluation through the shared cleanup block. |
| Scope.ForceCleanup({&V}); |
| return V; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Unary Operators |
| //===----------------------------------------------------------------------===// |
| |
| static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, |
| llvm::Value *InVal, bool IsInc) { |
| BinOpInfo BinOp; |
| BinOp.LHS = InVal; |
| BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); |
| BinOp.Ty = E->getType(); |
| BinOp.Opcode = IsInc ? BO_Add : BO_Sub; |
| // FIXME: once UnaryOperator carries FPFeatures, copy it here. |
| BinOp.E = E; |
| return BinOp; |
| } |
| |
| llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( |
| const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { |
| llvm::Value *Amount = |
| llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); |
| StringRef Name = IsInc ? "inc" : "dec"; |
| switch (CGF.getLangOpts().getSignedOverflowBehavior()) { |
| case LangOptions::SOB_Defined: |
| return Builder.CreateAdd(InVal, Amount, Name); |
| case LangOptions::SOB_Undefined: |
| if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) |
| return Builder.CreateNSWAdd(InVal, Amount, Name); |
| // Fall through. |
| case LangOptions::SOB_Trapping: |
| if (!E->canOverflow()) |
| return Builder.CreateNSWAdd(InVal, Amount, Name); |
| return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); |
| } |
| llvm_unreachable("Unknown SignedOverflowBehaviorTy"); |
| } |
| |
| llvm::Value * |
| ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, |
| bool isInc, bool isPre) { |
| |
| QualType type = E->getSubExpr()->getType(); |
| llvm::PHINode *atomicPHI = nullptr; |
| llvm::Value *value; |
| llvm::Value *input; |
| |
| int amount = (isInc ? 1 : -1); |
| bool isSubtraction = !isInc; |
| |
| if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { |
| type = atomicTy->getValueType(); |
| if (isInc && type->isBooleanType()) { |
| llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); |
| if (isPre) { |
| Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) |
| ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); |
| return Builder.getTrue(); |
| } |
| // For atomic bool increment, we just store true and return it for |
| // preincrement, do an atomic swap with true for postincrement |
| return Builder.CreateAtomicRMW( |
| llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, |
| llvm::AtomicOrdering::SequentiallyConsistent); |
| } |
| // Special case for atomic increment / decrement on integers, emit |
| // atomicrmw instructions. We skip this if we want to be doing overflow |
| // checking, and fall into the slow path with the atomic cmpxchg loop. |
| if (!type->isBooleanType() && type->isIntegerType() && |
| !(type->isUnsignedIntegerType() && |
| CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && |
| CGF.getLangOpts().getSignedOverflowBehavior() != |
| LangOptions::SOB_Trapping) { |
| llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : |
| llvm::AtomicRMWInst::Sub; |
| llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : |
| llvm::Instruction::Sub; |
| llvm::Value *amt = CGF.EmitToMemory( |
| llvm::ConstantInt::get(ConvertType(type), 1, true), type); |
| llvm::Value *old = Builder.CreateAtomicRMW(aop, |
| LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); |
| return isPre ? Builder.CreateBinOp(op, old, amt) : old; |
| } |
| value = EmitLoadOfLValue(LV, E->getExprLoc()); |
| input = value; |
| // For every other atomic operation, we need to emit a load-op-cmpxchg loop |
| llvm::BasicBlock *startBB = Builder.GetInsertBlock(); |
| llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); |
| value = CGF.EmitToMemory(value, type); |
| Builder.CreateBr(opBB); |
| Builder.SetInsertPoint(opBB); |
| atomicPHI = Builder.CreatePHI(value->getType(), 2); |
| atomicPHI->addIncoming(value, startBB); |
| value = atomicPHI; |
| } else { |
| value = EmitLoadOfLValue(LV, E->getExprLoc()); |
| input = value; |
| } |
| |
| // Special case of integer increment that we have to check first: bool++. |
| // Due to promotion rules, we get: |
| // bool++ -> bool = bool + 1 |
| // -> bool = (int)bool + 1 |
| // -> bool = ((int)bool + 1 != 0) |
| // An interesting aspect of this is that increment is always true. |
| // Decrement does not have this property. |
| if (isInc && type->isBooleanType()) { |
| value = Builder.getTrue(); |
| |
| // Most common case by far: integer increment. |
| } else if (type->isIntegerType()) { |
| // Note that signed integer inc/dec with width less than int can't |
| // overflow because of promotion rules; we're just eliding a few steps here. |
| if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { |
| value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); |
| } else if (E->canOverflow() && type->isUnsignedIntegerType() && |
| CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { |
| value = |
| EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); |
| } else { |
| llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); |
| value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); |
| } |
| |
| // Next most common: pointer increment. |
| } else if (const PointerType *ptr = type->getAs<PointerType>()) { |
| QualType type = ptr->getPointeeType(); |
| |
| // VLA types don't have constant size. |
| if (const VariableArrayType *vla |
| = CGF.getContext().getAsVariableArrayType(type)) { |
| llvm::Value *numElts = CGF.getVLASize(vla).NumElts; |
| if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); |
| if (CGF.getLangOpts().isSignedOverflowDefined()) |
| value = Builder.CreateGEP(value, numElts, "vla.inc"); |
| else |
| value = CGF.EmitCheckedInBoundsGEP( |
| value, numElts, /*SignedIndices=*/false, isSubtraction, |
| E->getExprLoc(), "vla.inc"); |
| |
| // Arithmetic on function pointers (!) is just +-1. |
| } else if (type->isFunctionType()) { |
| llvm::Value *amt = Builder.getInt32(amount); |
| |
| value = CGF.EmitCastToVoidPtr(value); |
| if (CGF.getLangOpts().isSignedOverflowDefined()) |
| value = Builder.CreateGEP(value, amt, "incdec.funcptr"); |
| else |
| value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, |
| isSubtraction, E->getExprLoc(), |
| "incdec.funcptr"); |
| value = Builder.CreateBitCast(value, input->getType()); |
| |
| // For everything else, we can just do a simple increment. |
| } else { |
| llvm::Value *amt = Builder.getInt32(amount); |
| if (CGF.getLangOpts().isSignedOverflowDefined()) |
| value = Builder.CreateGEP(value, amt, "incdec.ptr"); |
| else |
| value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, |
| isSubtraction, E->getExprLoc(), |
| "incdec.ptr"); |
| } |
| |
| // Vector increment/decrement. |
| } else if (type->isVectorType()) { |
| if (type->hasIntegerRepresentation()) { |
| llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); |
| |
| value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); |
| } else { |
| value = Builder.CreateFAdd( |
| value, |
| llvm::ConstantFP::get(value->getType(), amount), |
| isInc ? "inc" : "dec"); |
| } |
| |
| // Floating point. |
| } else if (type->isRealFloatingType()) { |
| // Add the inc/dec to the real part. |
| llvm::Value *amt; |
| |
| if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { |
| // Another special case: half FP increment should be done via float |
| if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { |
| value = Builder.CreateCall( |
| CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, |
| CGF.CGM.FloatTy), |
| input, "incdec.conv"); |
| } else { |
| value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); |
| } |
| } |
| |
| if (value->getType()->isFloatTy()) |
| amt = llvm::ConstantFP::get(VMContext, |
| llvm::APFloat(static_cast<float>(amount))); |
| else if (value->getType()->isDoubleTy()) |
| amt = llvm::ConstantFP::get(VMContext, |
| llvm::APFloat(static_cast<double>(amount))); |
| else { |
| // Remaining types are Half, LongDouble or __float128. Convert from float. |
| llvm::APFloat F(static_cast<float>(amount)); |
| bool ignored; |
| const llvm::fltSemantics *FS; |
| // Don't use getFloatTypeSemantics because Half isn't |
| // necessarily represented using the "half" LLVM type. |
| if (value->getType()->isFP128Ty()) |
| FS = &CGF.getTarget().getFloat128Format(); |
| else if (value->getType()->isHalfTy()) |
| FS = &CGF.getTarget().getHalfFormat(); |
| else |
| FS = &CGF.getTarget().getLongDoubleFormat(); |
| F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); |
| amt = llvm::ConstantFP::get(VMContext, F); |
| } |
| value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); |
| |
| if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { |
| if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { |
| value = Builder.CreateCall( |
| CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, |
| CGF.CGM.FloatTy), |
| value, "incdec.conv"); |
| } else { |
| value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); |
| } |
| } |
| |
| // Objective-C pointer types. |
| } else { |
| const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); |
| value = CGF.EmitCastToVoidPtr(value); |
| |
| CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); |
| if (!isInc) size = -size; |
| llvm::Value *sizeValue = |
| llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); |
| |
| if (CGF.getLangOpts().isSignedOverflowDefined()) |
| value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); |
| else |
| value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, |
| /*SignedIndices=*/false, isSubtraction, |
| E->getExprLoc(), "incdec.objptr"); |
| value = Builder.CreateBitCast(value, input->getType()); |
| } |
| |
| if (atomicPHI) { |
| llvm::BasicBlock *opBB = Builder.GetInsertBlock(); |
| llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); |
| auto Pair = CGF.EmitAtomicCompareExchange( |
| LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); |
| llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); |
| llvm::Value *success = Pair.second; |
| atomicPHI->addIncoming(old, opBB); |
| Builder.CreateCondBr(success, contBB, opBB); |
| Builder.SetInsertPoint(contBB); |
| return isPre ? value : input; |
| } |
| |
| // Store the updated result through the lvalue. |
| if (LV.isBitField()) |
| CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); |
| else |
| CGF.EmitStoreThroughLValue(RValue::get(value), LV); |
| |
| // If this is a postinc, return the value read from memory, otherwise use the |
| // updated value. |
| return isPre ? value : input; |
| } |
| |
| |
| |
| Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { |
| TestAndClearIgnoreResultAssign(); |
| // Emit unary minus with EmitSub so we handle overflow cases etc. |
| BinOpInfo BinOp; |
| BinOp.RHS = Visit(E->getSubExpr()); |
| |
| if (BinOp.RHS->getType()->isFPOrFPVectorTy()) |
| BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); |
| else |
| BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); |
| BinOp.Ty = E->getType(); |
| BinOp.Opcode = BO_Sub; |
| // FIXME: once UnaryOperator carries FPFeatures, copy it here. |
| BinOp.E = E; |
| return EmitSub(BinOp); |
| } |
| |
| Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { |
| TestAndClearIgnoreResultAssign(); |
| Value *Op = Visit(E->getSubExpr()); |
| return Builder.CreateNot(Op, "neg"); |
| } |
| |
| Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { |
| // Perform vector logical not on comparison with zero vector. |
| if (E->getType()->isExtVectorType()) { |
| Value *Oper = Visit(E->getSubExpr()); |
| Value *Zero = llvm::Constant::getNullValue(Oper->getType()); |
| Value *Result; |
| if (Oper->getType()->isFPOrFPVectorTy()) |
| Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); |
| else |
| Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); |
| return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); |
| } |
| |
| // Compare operand to zero. |
| Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); |
| |
| // Invert value. |
| // TODO: Could dynamically modify easy computations here. For example, if |
| // the operand is an icmp ne, turn into icmp eq. |
| BoolVal = Builder.CreateNot(BoolVal, "lnot"); |
| |
| // ZExt result to the expr type. |
| return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); |
| } |
| |
| Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { |
| // Try folding the offsetof to a constant. |
| llvm::APSInt Value; |
| if (E->EvaluateAsInt(Value, CGF.getContext())) |
| return Builder.getInt(Value); |
| |
| // Loop over the components of the offsetof to compute the value. |
| unsigned n = E->getNumComponents(); |
| llvm::Type* ResultType = ConvertType(E->getType()); |
| llvm::Value* Result = llvm::Constant::getNullValue(ResultType); |
| QualType CurrentType = E->getTypeSourceInfo()->getType(); |
| for (unsigned i = 0; i != n; ++i) { |
| OffsetOfNode ON = E->getComponent(i); |
| llvm::Value *Offset = nullptr; |
| switch (ON.getKind()) { |
| case OffsetOfNode::Array: { |
| // Compute the index |
| Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); |
| llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); |
| bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); |
| Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); |
| |
| // Save the element type |
| CurrentType = |
| CGF.getContext().getAsArrayType(CurrentType)->getElementType(); |
| |
| // Compute the element size |
| llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, |
| CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); |
| |
| // Multiply out to compute the result |
| Offset = Builder.CreateMul(Idx, ElemSize); |
| break; |
| } |
| |
| case OffsetOfNode::Field: { |
| FieldDecl *MemberDecl = ON.getField(); |
| RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); |
| const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); |
| |
| // Compute the index of the field in its parent. |
| unsigned i = 0; |
| // FIXME: It would be nice if we didn't have to loop here! |
| for (RecordDecl::field_iterator Field = RD->field_begin(), |
| FieldEnd = RD->field_end(); |
| Field != FieldEnd; ++Field, ++i) { |
| if (*Field == MemberDecl) |
| break; |
| } |
| assert(i < RL.getFieldCount() && "offsetof field in wrong type"); |
| |
| // Compute the offset to the field |
| int64_t OffsetInt = RL.getFieldOffset(i) / |
| CGF.getContext().getCharWidth(); |
| Offset = llvm::ConstantInt::get(ResultType, OffsetInt); |
| |
| // Save the element type. |
| CurrentType = MemberDecl->getType(); |
| break; |
| } |
| |
| case OffsetOfNode::Identifier: |
| llvm_unreachable("dependent __builtin_offsetof"); |
| |
| case OffsetOfNode::Base: { |
| if (ON.getBase()->isVirtual()) { |
| CGF.ErrorUnsupported(E, "virtual base in offsetof"); |
| continue; |
| } |
| |
| RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); |
| const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); |
| |
| // Save the element type. |
| CurrentType = ON.getBase()->getType(); |
| |
| // Compute the offset to the base. |
| const RecordType *BaseRT = CurrentType->getAs<RecordType>(); |
| CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); |
| CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); |
| Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); |
| break; |
| } |
| } |
| Result = Builder.CreateAdd(Result, Offset); |
| } |
| return Result; |
| } |
| |
| /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of |
| /// argument of the sizeof expression as an integer. |
| Value * |
| ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( |
| const UnaryExprOrTypeTraitExpr *E) { |
| QualType TypeToSize = E->getTypeOfArgument(); |
| if (E->getKind() == UETT_SizeOf) { |
| if (const VariableArrayType *VAT = |
| CGF.getContext().getAsVariableArrayType(TypeToSize)) { |
| if (E->isArgumentType()) { |
| // sizeof(type) - make sure to emit the VLA size. |
| CGF.EmitVariablyModifiedType(TypeToSize); |
| } else { |
| // C99 6.5.3.4p2: If the argument is an expression of type |
| // VLA, it is evaluated. |
| CGF.EmitIgnoredExpr(E->getArgumentExpr()); |
| } |
| |
| auto VlaSize = CGF.getVLASize(VAT); |
| llvm::Value *size = VlaSize.NumElts; |
| |
| // Scale the number of non-VLA elements by the non-VLA element size. |
| CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); |
| if (!eltSize.isOne()) |
| size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); |
| |
| return size; |
| } |
| } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { |
| auto Alignment = |
| CGF.getContext() |
| .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( |
| E->getTypeOfArgument()->getPointeeType())) |
| .getQuantity(); |
| return llvm::ConstantInt::get(CGF.SizeTy, Alignment); |
| } |
| |
| // If this isn't sizeof(vla), the result must be constant; use the constant |
| // folding logic so we don't have to duplicate it here. |
| return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); |
| } |
| |
| Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { |
| Expr *Op = E->getSubExpr(); |
| if (Op->getType()->isAnyComplexType()) { |
| // If it's an l-value, load through the appropriate subobject l-value. |
| // Note that we have to ask E because Op might be an l-value that |
| // this won't work for, e.g. an Obj-C property. |
| if (E->isGLValue()) |
| return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), |
| E->getExprLoc()).getScalarVal(); |
| |
| // Otherwise, calculate and project. |
| return CGF.EmitComplexExpr(Op, false, true).first; |
| } |
| |
| return Visit(Op); |
| } |
| |
| Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { |
| Expr *Op = E->getSubExpr(); |
| if (Op->getType()->isAnyComplexType()) { |
| // If it's an l-value, load through the appropriate subobject l-value. |
| // Note that we have to ask E because Op might be an l-value that |
| // this won't work for, e.g. an Obj-C property. |
| if (Op->isGLValue()) |
| return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), |
| E->getExprLoc()).getScalarVal(); |
| |
| // Otherwise, calculate and project. |
| return CGF.EmitComplexExpr(Op, true, false).second; |
| } |
| |
| // __imag on a scalar returns zero. Emit the subexpr to ensure side |
| // effects are evaluated, but not the actual value. |
| if (Op->isGLValue()) |
| CGF.EmitLValue(Op); |
| else |
| CGF.EmitScalarExpr(Op, true); |
| return llvm::Constant::getNullValue(ConvertType(E->getType())); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Binary Operators |
| //===----------------------------------------------------------------------===// |
| |
| BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { |
| TestAndClearIgnoreResultAssign(); |
| BinOpInfo Result; |
| Result.LHS = Visit(E->getLHS()); |
| Result.RHS = Visit(E->getRHS()); |
| Result.Ty = E->getType(); |
| Result.Opcode = E->getOpcode(); |
| Result.FPFeatures = E->getFPFeatures(); |
| Result.E = E; |
| return Result; |
| } |
| |
| LValue ScalarExprEmitter::EmitCompoundAssignLValue( |
| const CompoundAssignOperator *E, |
| Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), |
| Value *&Result) { |
| QualType LHSTy = E->getLHS()->getType(); |
| BinOpInfo OpInfo; |
| |
| if (E->getComputationResultType()->isAnyComplexType()) |
| return CGF.EmitScalarCompoundAssignWithComplex(E, Result); |
| |
| // Emit the RHS first. __block variables need to have the rhs evaluated |
| // first, plus this should improve codegen a little. |
| OpInfo.RHS = Visit(E->getRHS()); |
| OpInfo.Ty = E->getComputationResultType(); |
| OpInfo.Opcode = E->getOpcode(); |
| OpInfo.FPFeatures = E->getFPFeatures(); |
| OpInfo.E = E; |
| // Load/convert the LHS. |
| LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); |
| |
| llvm::PHINode *atomicPHI = nullptr; |
| if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { |
| QualType type = atomicTy->getValueType(); |
| if (!type->isBooleanType() && type->isIntegerType() && |
| !(type->isUnsignedIntegerType() && |
| CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && |
| CGF.getLangOpts().getSignedOverflowBehavior() != |
| LangOptions::SOB_Trapping) { |
| llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; |
| switch (OpInfo.Opcode) { |
| // We don't have atomicrmw operands for *, %, /, <<, >> |
| case BO_MulAssign: case BO_DivAssign: |
| case BO_RemAssign: |
| case BO_ShlAssign: |
| case BO_ShrAssign: |
| break; |
| case BO_AddAssign: |
| aop = llvm::AtomicRMWInst::Add; |
| break; |
| case BO_SubAssign: |
| aop = llvm::AtomicRMWInst::Sub; |
| break; |
| case BO_AndAssign: |
| aop = llvm::AtomicRMWInst::And; |
| break; |
| case BO_XorAssign: |
| aop = llvm::AtomicRMWInst::Xor; |
| break; |
| case BO_OrAssign: |
| aop = llvm::AtomicRMWInst::Or; |
| break; |
| default: |
| llvm_unreachable("Invalid compound assignment type"); |
| } |
| if (aop != llvm::AtomicRMWInst::BAD_BINOP) { |
| llvm::Value *amt = CGF.EmitToMemory( |
| EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, |
| E->getExprLoc()), |
| LHSTy); |
| Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, |
| llvm::AtomicOrdering::SequentiallyConsistent); |
| return LHSLV; |
| } |
| } |
| // FIXME: For floating point types, we should be saving and restoring the |
| // floating point environment in the loop. |
| llvm::BasicBlock *startBB = Builder.GetInsertBlock(); |
| llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); |
| OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); |
| OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); |
| Builder.CreateBr(opBB); |
| Builder.SetInsertPoint(opBB); |
| atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); |
| atomicPHI->addIncoming(OpInfo.LHS, startBB); |
| OpInfo.LHS = atomicPHI; |
| } |
| else |
| OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); |
| |
| SourceLocation Loc = E->getExprLoc(); |
| OpInfo.LHS = |
| EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); |
| |
| // Expand the binary operator. |
| Result = (this->*Func)(OpInfo); |
| |
| // Convert the result back to the LHS type. |
| Result = |
| EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc); |
| |
| if (atomicPHI) { |
| llvm::BasicBlock *opBB = Builder.GetInsertBlock(); |
| llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); |
| auto Pair = CGF.EmitAtomicCompareExchange( |
| LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); |
| llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); |
| llvm::Value *success = Pair.second; |
| atomicPHI->addIncoming(old, opBB); |
| Builder.CreateCondBr(success, contBB, opBB); |
| Builder.SetInsertPoint(contBB); |
| return LHSLV; |
| } |
| |
| // Store the result value into the LHS lvalue. Bit-fields are handled |
| // specially because the result is altered by the store, i.e., [C99 6.5.16p1] |
| // 'An assignment expression has the value of the left operand after the |
| // assignment...'. |
| if (LHSLV.isBitField()) |
| CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); |
| else |
| CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); |
| |
| return LHSLV; |
| } |
| |
| Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, |
| Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { |
| bool Ignore = TestAndClearIgnoreResultAssign(); |
| Value *RHS; |
| LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); |
| |
| // If the result is clearly ignored, return now. |
| if (Ignore) |
| return nullptr; |
| |
| // The result of an assignment in C is the assigned r-value. |
| if (!CGF.getLangOpts().CPlusPlus) |
| return RHS; |
| |
| // If the lvalue is non-volatile, return the computed value of the assignment. |
| if (!LHS.isVolatileQualified()) |
| return RHS; |
| |
| // Otherwise, reload the value. |
| return EmitLoadOfLValue(LHS, E->getExprLoc()); |
| } |
| |
| void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( |
| const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { |
| SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; |
| |
| if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { |
| Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), |
| SanitizerKind::IntegerDivideByZero)); |
| } |
| |
| const auto *BO = cast<BinaryOperator>(Ops.E); |
| if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && |
| Ops.Ty->hasSignedIntegerRepresentation() && |
| !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && |
| Ops.mayHaveIntegerOverflow()) { |
| llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); |
| |
| llvm::Value *IntMin = |
| Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); |
| llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); |
| |
| llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); |
| llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); |
| llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); |
| Checks.push_back( |
| std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); |
| } |
| |
| if (Checks.size() > 0) |
| EmitBinOpCheck(Checks, Ops); |
| } |
| |
| Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { |
| { |
| CodeGenFunction::SanitizerScope SanScope(&CGF); |
| if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || |
| CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && |
| Ops.Ty->isIntegerType() && |
| (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { |
| llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); |
| EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); |
| } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && |
| Ops.Ty->isRealFloatingType() && |
| Ops.mayHaveFloatDivisionByZero()) { |
| llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); |
| llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); |
| EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), |
| Ops); |
| } |
| } |
| |
| if (Ops.LHS->getType()->isFPOrFPVectorTy()) { |
| llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); |
| if (CGF.getLangOpts().OpenCL && |
| !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { |
| // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp |
| // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt |
| // build option allows an application to specify that single precision |
| // floating-point divide (x/y and 1/x) and sqrt used in the program |
| // source are correctly rounded. |
| llvm::Type *ValTy = Val->getType(); |
| if (ValTy->isFloatTy() || |
| (isa<llvm::VectorType>(ValTy) && |
| cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) |
| CGF.SetFPAccuracy(Val, 2.5); |
| } |
| return Val; |
| } |
| else if (Ops.Ty->hasUnsignedIntegerRepresentation()) |
| return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); |
| else |
| return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); |
| } |
| |
| Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { |
| // Rem in C can't be a floating point type: C99 6.5.5p2. |
| if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || |
| CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && |
| Ops.Ty->isIntegerType() && |
| (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { |
| CodeGenFunction::SanitizerScope SanScope(&CGF); |
| llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); |
| EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); |
| } |
| |
| if (Ops.Ty->hasUnsignedIntegerRepresentation()) |
| return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); |
| else |
| return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); |
| } |
| |
| Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { |
| unsigned IID; |
| unsigned OpID = 0; |
| |
| bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); |
| switch (Ops.Opcode) { |
| case BO_Add: |
| case BO_AddAssign: |
| OpID = 1; |
| IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : |
| llvm::Intrinsic::uadd_with_overflow; |
| break; |
| case BO_Sub: |
| case BO_SubAssign: |
| OpID = 2; |
| IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : |
| llvm::Intrinsic::usub_with_overflow; |
| break; |
| case BO_Mul: |
| case BO_MulAssign: |
| OpID = 3; |
| IID = isSigned ? llvm::Intrinsic::smul_with_overflow : |
| llvm::Intrinsic::umul_with_overflow; |
| break; |
| default: |
| llvm_unreachable("Unsupported operation for overflow detection"); |
| } |
| OpID <<= 1; |
| if (isSigned) |
| OpID |= 1; |
| |
| CodeGenFunction::SanitizerScope SanScope(&CGF); |
| llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); |
| |
| llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); |
| |
| Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); |
| Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); |
| Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); |
| |
| // Handle overflow with llvm.trap if no custom handler has been specified. |
| const std::string *handlerName = |
| &CGF.getLangOpts().OverflowHandler; |
| if (handlerName->empty()) { |
| // If the signed-integer-overflow sanitizer is enabled, emit a call to its |
| // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. |
| if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { |
| llvm::Value *NotOverflow = Builder.CreateNot(overflow); |
| SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow |
| : SanitizerKind::UnsignedIntegerOverflow; |
| EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); |
| } else |
| CGF.EmitTrapCheck(Builder.CreateNot(overflow)); |
| return result; |
| } |
| |
| // Branch in case of overflow. |
| llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); |
| llvm::BasicBlock *continueBB = |
| CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); |
| llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); |
| |
| Builder.CreateCondBr(overflow, overflowBB, continueBB); |
| |
| // If an overflow handler is set, then we want to call it and then use its |
| // result, if it returns. |
| Builder.SetInsertPoint(overflowBB); |
| |
| // Get the overflow handler. |
| llvm::Type *Int8Ty = CGF.Int8Ty; |
| llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; |
| llvm::FunctionType *handlerTy = |
| llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); |
| llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); |
| |
| // Sign extend the args to 64-bit, so that we can use the same handler for |
| // all types of overflow. |
| llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); |
| llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); |
| |
| // Call the handler with the two arguments, the operation, and the size of |
| // the result. |
| llvm::Value *handlerArgs[] = { |
| lhs, |
| rhs, |
| Builder.getInt8(OpID), |
| Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) |
| }; |
| llvm::Value *handlerResult = |
| CGF.EmitNounwindRuntimeCall(handler, handlerArgs); |
| |
| // Truncate the result back to the desired size. |
| handlerResult = Builder.CreateTrunc(handlerResult, opTy); |
| Builder.CreateBr(continueBB); |
| |
| Builder.SetInsertPoint(continueBB); |
| llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); |
| phi->addIncoming(result, initialBB); |
| phi->addIncoming(handlerResult, overflowBB); |
| |
| return phi; |
| } |
| |
| /// Emit pointer + index arithmetic. |
| static Value *emitPointerArithmetic(CodeGenFunction &CGF, |
| const BinOpInfo &op, |
| bool isSubtraction) { |
| // Must have binary (not unary) expr here. Unary pointer |
| // increment/decrement doesn't use this path. |
| const BinaryOperator *expr = cast<BinaryOperator>(op.E); |
| |
| Value *pointer = op.LHS; |
| Expr *pointerOperand = expr->getLHS(); |
| Value *index = op.RHS; |
| Expr *indexOperand = expr->getRHS(); |
| |
| // In a subtraction, the LHS is always the pointer. |
| if (!isSubtraction && !pointer->getType()->isPointerTy()) { |
| std::swap(pointer, index); |
| std::swap(pointerOperand, indexOperand); |
| } |
| |
| bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); |
| |
| unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); |
| auto &DL = CGF.CGM.getDataLayout(); |
| auto PtrTy = cast<llvm::PointerType>(pointer->getType()); |
| |
| // Some versions of glibc and gcc use idioms (particularly in their malloc |
| // routines) that add a pointer-sized integer (known to be a pointer value) |
| // to a null pointer in order to cast the value back to an integer or as |
| // part of a pointer alignment algorithm. This is undefined behavior, but |
| // we'd like to be able to compile programs that use it. |
| // |
| // Normally, we'd generate a GEP with a null-pointer base here in response |
| // to that code, but it's also UB to dereference a pointer created that |
| // way. Instead (as an acknowledged hack to tolerate the idiom) we will |
| // generate a direct cast of the integer value to a pointer. |
| // |
| // The idiom (p = nullptr + N) is not met if any of the following are true: |
| // |
| // The operation is subtraction. |
| // The index is not pointer-sized. |
| // The pointer type is not byte-sized. |
| // |
| if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), |
| op.Opcode, |
| expr->getLHS(), |
| expr->getRHS())) |
| return CGF.Builder.CreateIntToPtr(index, pointer->getType()); |
| |
| if (width != DL.getTypeSizeInBits(PtrTy)) { |
| // Zero-extend or sign-extend the pointer value according to |
| // whether the index is signed or not. |
| index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, |
| "idx.ext"); |
| } |
| |
| // If this is subtraction, negate the index. |
| if (isSubtraction) |
| index = CGF.Builder.CreateNeg(index, "idx.neg"); |
| |
| if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) |
| CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), |
| /*Accessed*/ false); |
| |
| const PointerType *pointerType |
| = pointerOperand->getType()->getAs<PointerType>(); |
| if (!pointerType) { |
| QualType objectType = pointerOperand->getType() |
| ->castAs<ObjCObjectPointerType>() |
| ->getPointeeType(); |
| llvm::Value *objectSize |
| = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); |
| |
| index = CGF.Builder.CreateMul(index, objectSize); |
| |
| Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); |
| result = CGF.Builder.CreateGEP(result, index, "add.ptr"); |
| return CGF.Builder.CreateBitCast(result, pointer->getType()); |
| } |
| |
| QualType elementType = pointerType->getPointeeType(); |
| if (const VariableArrayType *vla |
| = CGF.getContext().getAsVariableArrayType(elementType)) { |
| // The element count here is the total number of non-VLA elements. |
| llvm::Value *numElements = CGF.getVLASize(vla).NumElts; |
| |
| // Effectively, the multiply by the VLA size is part of the GEP. |
| // GEP indexes are signed, and scaling an index isn't permitted to |
| // signed-overflow, so we use the same semantics for our explicit |
| // multiply. We suppress this if overflow is not undefined behavior. |
| if (CGF.getLangOpts().isSignedOverflowDefined()) { |
| index = CGF.Builder.CreateMul(index, numElements, "vla.index"); |
| pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); |
| } else { |
| index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); |
| pointer = |
| CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, |
| op.E->getExprLoc(), "add.ptr"); |
| } |
| return pointer; |
| } |
| |
| // Explicitly handle GNU void* and function pointer arithmetic extensions. The |
| // GNU void* casts amount to no-ops since our void* type is i8*, but this is |
| // future proof. |
| if (elementType->isVoidType() || elementType->isFunctionType()) { |
| Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); |
| result = CGF.Builder.CreateGEP(result, index, "add.ptr"); |
| return CGF.Builder.CreateBitCast(result, pointer->getType()); |
| } |
| |
| if (CGF.getLangOpts().isSignedOverflowDefined()) |
| return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); |
| |
| return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, |
| op.E->getExprLoc(), "add.ptr"); |
| } |
| |
| // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and |
| // Addend. Use negMul and negAdd to negate the first operand of the Mul or |
| // the add operand respectively. This allows fmuladd to represent a*b-c, or |
| // c-a*b. Patterns in LLVM should catch the negated forms and translate them to |
| // efficient operations. |
| static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, |
| const CodeGenFunction &CGF, CGBuilderTy &Builder, |
| bool negMul, bool negAdd) { |
| assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); |
| |
| Value *MulOp0 = MulOp->getOperand(0); |
| Value *MulOp1 = MulOp->getOperand(1); |
| if (negMul) { |
| MulOp0 = |
| Builder.CreateFSub( |
| llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, |
| "neg"); |
| } else if (negAdd) { |
| Addend = |
| Builder.CreateFSub( |
| llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, |
| "neg"); |
| } |
| |
| Value *FMulAdd = Builder.CreateCall( |
| CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), |
| {MulOp0, MulOp1, Addend}); |
| MulOp->eraseFromParent(); |
| |
| return FMulAdd; |
| } |
| |
| // Check whether it would be legal to emit an fmuladd intrinsic call to |
| // represent op and if so, build the fmuladd. |
| // |
| // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. |
| // Does NOT check the type of the operation - it's assumed that this function |
| // will be called from contexts where it's known that the type is contractable. |
| static Value* tryEmitFMulAdd(const BinOpInfo &op, |
| const CodeGenFunction &CGF, CGBuilderTy &Builder, |
| bool isSub=false) { |
| |
| assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || |
| op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && |
| "Only fadd/fsub can be the root of an fmuladd."); |
| |
| // Check whether this op is marked as fusable. |
| if (!op.FPFeatures.allowFPContractWithinStatement()) |
| return nullptr; |
| |
| // We have a potentially fusable op. Look for a mul on one of the operands. |
| // Also, make sure that the mul result isn't used directly. In that case, |
| // there's no point creating a muladd operation. |
| if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { |
| if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && |
| LHSBinOp->use_empty()) |
| return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); |
| } |
| if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { |
| if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && |
| RHSBinOp->use_empty()) |
| return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); |
| } |
| |
| return nullptr; |
| } |
| |
| Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { |
| if (op.LHS->getType()->isPointerTy() || |
| op.RHS->getType()->isPointerTy()) |
| return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); |
| |
| if (op.Ty->isSignedIntegerOrEnumerationType()) { |
| switch (CGF.getLangOpts().getSignedOverflowBehavior()) { |
| case LangOptions::SOB_Defined: |
| return Builder.CreateAdd(op.LHS, op.RHS, "add"); |
| case LangOptions::SOB_Undefined: |
| if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) |
| return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); |
| // Fall through. |
| case LangOptions::SOB_Trapping: |
| if (CanElideOverflowCheck(CGF.getContext(), op)) |
| return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); |
| return EmitOverflowCheckedBinOp(op); |
| } |
| } |
| |
| if (op.Ty->isUnsignedIntegerType() && |
| CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && |
| !CanElideOverflowCheck(CGF.getContext(), op)) |
| return EmitOverflowCheckedBinOp(op); |
| |
| if (op.LHS->getType()->isFPOrFPVectorTy()) { |
| // Try to form an fmuladd. |
| if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) |
| return FMulAdd; |
| |
| Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); |
| return propagateFMFlags(V, op); |
| } |
| |
| return Builder.CreateAdd(op.LHS, op.RHS, "add"); |
| } |
| |
| Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { |
| // The LHS is always a pointer if either side is. |
| if (!op.LHS->getType()->isPointerTy()) { |
| if (op.Ty->isSignedIntegerOrEnumerationType()) { |
| switch (CGF.getLangOpts().getSignedOverflowBehavior()) { |
| case LangOptions::SOB_Defined: |
| return Builder.CreateSub(op.LHS, op.RHS, "sub"); |
| case LangOptions::SOB_Undefined: |
| if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) |
| return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); |
| // Fall through. |
| case LangOptions::SOB_Trapping: |
| if (CanElideOverflowCheck(CGF.getContext(), op)) |
| return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); |
| return EmitOverflowCheckedBinOp(op); |
| } |
| } |
| |
| if (op.Ty->isUnsignedIntegerType() && |
| CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && |
| !CanElideOverflowCheck(CGF.getContext(), op)) |
| return EmitOverflowCheckedBinOp(op); |
| |
| if (op.LHS->getType()->isFPOrFPVectorTy()) { |
| // Try to form an fmuladd. |
| if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) |
| return FMulAdd; |
| Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); |
| return propagateFMFlags(V, op); |
| } |
| |
| return Builder.CreateSub(op.LHS, op.RHS, "sub"); |
| } |
| |
| // If the RHS is not a pointer, then we have normal pointer |
| // arithmetic. |
| if (!op.RHS->getType()->isPointerTy()) |
| return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); |
| |
| // Otherwise, this is a pointer subtraction. |
| |
| // Do the raw subtraction part. |
| llvm::Value *LHS |
| = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); |
| llvm::Value *RHS |
| = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); |
| Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); |
| |
| // Okay, figure out the element size. |
| const BinaryOperator *expr = cast<BinaryOperator>(op.E); |
| QualType elementType = expr->getLHS()->getType()->getPointeeType(); |
| |
| llvm::Value *divisor = nullptr; |
| |
| // For a variable-length array, this is going to be non-constant. |
| if (const VariableArrayType *vla |
| = CGF.getContext().getAsVariableArrayType(elementType)) { |
| auto VlaSize = CGF.getVLASize(vla); |
| elementType = VlaSize.Type; |
| divisor = VlaSize.NumElts; |
| |
| // Scale the number of non-VLA elements by the non-VLA element size. |
| CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); |
| if (!eltSize.isOne()) |
| divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); |
| |
| // For everything elese, we can just compute it, safe in the |
| // assumption that Sema won't let anything through that we can't |
| // safely compute the size of. |
| } else { |
| CharUnits elementSize; |
| // Handle GCC extension for pointer arithmetic on void* and |
| // function pointer types. |
| if (elementType->isVoidType() || elementType->isFunctionType()) |
| elementSize = CharUnits::One(); |
| else |
| elementSize = CGF.getContext().getTypeSizeInChars(elementType); |
| |
| // Don't even emit the divide for element size of 1. |
| if (elementSize.isOne()) |
| return diffInChars; |
| |
| divisor = CGF.CGM.getSize(elementSize); |
| } |
| |
| // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since |
| // pointer difference in C is only defined in the case where both operands |
| // are pointing to elements of an array. |
| return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); |
| } |
| |
| Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { |
| llvm::IntegerType *Ty; |
| if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) |
| Ty = cast<llvm::IntegerType>(VT->getElementType()); |
| else |
| Ty = cast<llvm::IntegerType>(LHS->getType()); |
| return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); |
| } |
| |
| Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { |
| // LLVM requires the LHS and RHS to be the same type: promote or truncate the |
| // RHS to the same size as the LHS. |
| Value *RHS = Ops.RHS; |
| if (Ops.LHS->getType() != RHS->getType()) |
| RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); |
| |
| bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && |
| Ops.Ty->hasSignedIntegerRepresentation() && |
| !CGF.getLangOpts().isSignedOverflowDefined(); |
| bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); |
| // OpenCL 6.3j: shift values are effectively % word size of LHS. |
| if (CGF.getLangOpts().OpenCL) |
| RHS = |
| Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); |
| else if ((SanitizeBase || SanitizeExponent) && |
| isa<llvm::IntegerType>(Ops.LHS->getType())) { |
| CodeGenFunction::SanitizerScope SanScope(&CGF); |
| SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; |
| llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); |
| llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); |
| |
| if (SanitizeExponent) { |
| Checks.push_back( |
| std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); |
| } |
| |
| if (SanitizeBase) { |
| // Check whether we are shifting any non-zero bits off the top of the |
| // integer. We only emit this check if exponent is valid - otherwise |
| // instructions below will have undefined behavior themselves. |
| llvm::BasicBlock *Orig = Builder.GetInsertBlock(); |
| llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); |
| llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); |
| Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); |
| llvm::Value *PromotedWidthMinusOne = |
| (RHS == Ops.RHS) ? WidthMinusOne |
| : GetWidthMinusOneValue(Ops.LHS, RHS); |
| CGF.EmitBlock(CheckShiftBase); |
| llvm::Value *BitsShiftedOff = Builder.CreateLShr( |
| Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", |
| /*NUW*/ true, /*NSW*/ true), |
| "shl.check"); |
| if (CGF.getLangOpts().CPlusPlus) { |
| // In C99, we are not permitted to shift a 1 bit into the sign bit. |
| // Under C++11's rules, shifting a 1 bit into the sign bit is |
| // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't |
| // define signed left shifts, so we use the C99 and C++11 rules there). |
| llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); |
| BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); |
| } |
| llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); |
| llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); |
| CGF.EmitBlock(Cont); |
| llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); |
| BaseCheck->addIncoming(Builder.getTrue(), Orig); |
| BaseCheck->addIncoming(ValidBase, CheckShiftBase); |
| Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); |
| } |
| |
| assert(!Checks.empty()); |
| EmitBinOpCheck(Checks, Ops); |
| } |
| |
| return Builder.CreateShl(Ops.LHS, RHS, "shl"); |
| } |
| |
| Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { |
| // LLVM requires the LHS and RHS to be the same type: promote or truncate the |
| // RHS to the same size as the LHS. |
| Value *RHS = Ops.RHS; |
| if (Ops.LHS->getType() != RHS->getType()) |
| RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); |
| |
| // OpenCL 6.3j: shift values are effectively % word size of LHS. |
| if (CGF.getLangOpts().OpenCL) |
| RHS = |
| Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); |
| else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && |
| isa<llvm::IntegerType>(Ops.LHS->getType())) { |
| CodeGenFunction::SanitizerScope SanScope(&CGF); |
| llvm::Value *Valid = |
| Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); |
| EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); |
| } |
| |
| if (Ops.Ty->hasUnsignedIntegerRepresentation()) |
| return Builder.CreateLShr(Ops.LHS, RHS, "shr"); |
| return Builder.CreateAShr(Ops.LHS, RHS, "shr"); |
| } |
| |
| enum IntrinsicType { VCMPEQ, VCMPGT }; |
| // return corresponding comparison intrinsic for given vector type |
| static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, |
| BuiltinType::Kind ElemKind) { |
| switch (ElemKind) { |
| default: llvm_unreachable("unexpected element type"); |
| case BuiltinType::Char_U: |
| case BuiltinType::UChar: |
| return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : |
| llvm::Intrinsic::ppc_altivec_vcmpgtub_p; |
| case BuiltinType::Char_S: |
| case BuiltinType::SChar: |
| return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : |
| llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; |
| case BuiltinType::UShort: |
| return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : |
| llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; |
| case BuiltinType::Short: |
| return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : |
| llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; |
| case BuiltinType::UInt: |
| return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : |
| llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; |
| case BuiltinType::Int: |
| return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : |
| llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; |
| case BuiltinType::ULong: |
| case BuiltinType::ULongLong: |
| return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : |
| llvm::Intrinsic::ppc_altivec_vcmpgtud_p; |
| case BuiltinType::Long: |
| case BuiltinType::LongLong: |
| return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : |
| llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; |
| case BuiltinType::Float: |
| return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : |
| llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; |
| case BuiltinType::Double: |
| return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : |
| llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; |
| } |
| } |
| |
| Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, |
| llvm::CmpInst::Predicate UICmpOpc, |
| llvm::CmpInst::Predicate SICmpOpc, |
| llvm::CmpInst::Predicate FCmpOpc) { |
| TestAndClearIgnoreResultAssign(); |
| Value *Result; |
| QualType LHSTy = E->getLHS()->getType(); |
| QualType RHSTy = E->getRHS()->getType(); |
| if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { |
| assert(E->getOpcode() == BO_EQ || |
| E->getOpcode() == BO_NE); |
| Value *LHS = CGF.EmitScalarExpr(E->getLHS()); |
| Value *RHS = CGF.EmitScalarExpr(E->getRHS()); |
| Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( |
| CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); |
| } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { |
| Value *LHS = Visit(E->getLHS()); |
| Value *RHS = Visit(E->getRHS()); |
| |
| // If AltiVec, the comparison results in a numeric type, so we use |
| // intrinsics comparing vectors and giving 0 or 1 as a result |
| if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { |
| // constants for mapping CR6 register bits to predicate result |
| enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; |
| |
| llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; |
| |
| // in several cases vector arguments order will be reversed |
| Value *FirstVecArg = LHS, |
| *SecondVecArg = RHS; |
| |
| QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); |
| const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); |
| BuiltinType::Kind ElementKind = BTy->getKind(); |
| |
| switch(E->getOpcode()) { |
| default: llvm_unreachable("is not a comparison operation"); |
| case BO_EQ: |
| CR6 = CR6_LT; |
| ID = GetIntrinsic(VCMPEQ, ElementKind); |
| break; |
| case BO_NE: |
| CR6 = CR6_EQ; |
| ID = GetIntrinsic(VCMPEQ, ElementKind); |
| break; |
| case BO_LT: |
| CR6 = CR6_LT; |
| ID = GetIntrinsic(VCMPGT, ElementKind); |
| std::swap(FirstVecArg, SecondVecArg); |
| break; |
| case BO_GT: |
| CR6 = CR6_LT; |
| ID = GetIntrinsic(VCMPGT, ElementKind); |
| break; |
| case BO_LE: |
| if (ElementKind == BuiltinType::Float) { |
| CR6 = CR6_LT; |
| ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; |
| std::swap(FirstVecArg, SecondVecArg); |
| } |
| else { |
| CR6 = CR6_EQ; |
| ID = GetIntrinsic(VCMPGT, ElementKind); |
| } |
| break; |
| case BO_GE: |
| if (ElementKind == BuiltinType::Float) { |
| CR6 = CR6_LT; |
| ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; |
| } |
| else { |
| CR6 = CR6_EQ; |
| ID = GetIntrinsic(VCMPGT, ElementKind); |
| std::swap(FirstVecArg, SecondVecArg); |
| } |
| break; |
| } |
| |
| Value *CR6Param = Builder.getInt32(CR6); |
| llvm::Function *F = CGF.CGM.getIntrinsic(ID); |
| Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); |
| |
| // The result type of intrinsic may not be same as E->getType(). |
| // If E->getType() is not BoolTy, EmitScalarConversion will do the |
| // conversion work. If E->getType() is BoolTy, EmitScalarConversion will |
| // do nothing, if ResultTy is not i1 at the same time, it will cause |
| // crash later. |
| llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); |
| if (ResultTy->getBitWidth() > 1 && |
| E->getType() == CGF.getContext().BoolTy) |
| Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); |
| return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), |
| E->getExprLoc()); |
| } |
| |
| if (LHS->getType()->isFPOrFPVectorTy()) { |
| Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); |
| } else if (LHSTy->hasSignedIntegerRepresentation()) { |
| Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); |
| } else { |
| // Unsigned integers and pointers. |
| |
| if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && |
| !isa<llvm::ConstantPointerNull>(LHS) && |
| !isa<llvm::ConstantPointerNull>(RHS)) { |
| |
| // Dynamic information is required to be stripped for comparisons, |
| // because it could leak the dynamic information. Based on comparisons |
| // of pointers to dynamic objects, the optimizer can replace one pointer |
| // with another, which might be incorrect in presence of invariant |
| // groups. Comparison with null is safe because null does not carry any |
| // dynamic information. |
| if (LHSTy.mayBeDynamicClass()) |
| LHS = Builder.CreateStripInvariantGroup(LHS); |
| if (RHSTy.mayBeDynamicClass()) |
| RHS = Builder.CreateStripInvariantGroup(RHS); |
| } |
| |
| Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); |
| } |
| |
| // If this is a vector comparison, sign extend the result to the appropriate |
| // vector integer type and return it (don't convert to bool). |
| if (LHSTy->isVectorType()) |
| return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); |
| |
| } else { |
| // Complex Comparison: can only be an equality comparison. |
| CodeGenFunction::ComplexPairTy LHS, RHS; |
| QualType CETy; |
| if (auto *CTy = LHSTy->getAs<ComplexType>()) { |
| LHS = CGF.EmitComplexExpr(E->getLHS()); |
| CETy = CTy->getElementType(); |
| } else { |
| LHS.first = Visit(E->getLHS()); |
| LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); |
| CETy = LHSTy; |
| } |
| if (auto *CTy = RHSTy->getAs<ComplexType>()) { |
| RHS = CGF.EmitComplexExpr(E->getRHS()); |
| assert(CGF.getContext().hasSameUnqualifiedType(CETy, |
| CTy->getElementType()) && |
| "The element types must always match."); |
| (void)CTy; |
| } else { |
| RHS.first = Visit(E->getRHS()); |
| RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); |
| assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && |
| "The element types must always match."); |
| } |
| |
| Value *ResultR, *ResultI; |
| if (CETy->isRealFloatingType()) { |
| ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); |
| ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); |
| } else { |
| // Complex comparisons can only be equality comparisons. As such, signed |
| // and unsigned opcodes are the same. |
| ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); |
| ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); |
| } |
| |
| if (E->getOpcode() == BO_EQ) { |
| Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); |
| } else { |
| assert(E->getOpcode() == BO_NE && |
| "Complex comparison other than == or != ?"); |
| Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); |
| } |
| } |
| |
| return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), |
| E->getExprLoc()); |
| } |
| |
| Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { |
| bool Ignore = TestAndClearIgnoreResultAssign(); |
| |
| Value *RHS; |
| LValue LHS; |
| |
| switch (E->getLHS()->getType().getObjCLifetime()) { |
| case Qualifiers::OCL_Strong: |
| std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); |
| break; |
| |
| case Qualifiers::OCL_Autoreleasing: |
| std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); |
| break; |
| |
| case Qualifiers::OCL_ExplicitNone: |
| std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); |
| break; |
| |
| case Qualifiers::OCL_Weak: |
| RHS = Visit(E->getRHS()); |
| LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); |
| RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); |
| break; |
| |
| case Qualifiers::OCL_None: |
| // __block variables need to have the rhs evaluated first, plus |
| // this should improve codegen just a little. |
| RHS = Visit(E->getRHS()); |
| LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); |
| |
| // Store the value into the LHS. Bit-fields are handled specially |
| // because the result is altered by the store, i.e., [C99 6.5.16p1] |
| // 'An assignment expression has the value of the left operand after |
| // the assignment...'. |
| if (LHS.isBitField()) { |
| CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); |
| } else { |
| CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); |
| CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); |
| } |
| } |
| |
| // If the result is clearly ignored, return now. |
| if (Ignore) |
| return nullptr; |
| |
| // The result of an assignment in C is the assigned r-value. |
| if (!CGF.getLangOpts().CPlusPlus) |
| return RHS; |
| |
| // If the lvalue is non-volatile, return the computed value of the assignment. |
| if (!LHS.isVolatileQualified()) |
| return RHS; |
| |
| // Otherwise, reload the value. |
| return EmitLoadOfLValue(LHS, E->getExprLoc()); |
| } |
| |
| Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { |
| // Perform vector logical and on comparisons with zero vectors. |
| if (E->getType()->isVectorType()) { |
| CGF.incrementProfileCounter(E); |
| |
| Value *LHS = Visit(E->getLHS()); |
| Value *RHS = Visit(E->getRHS()); |
| Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); |
| if (LHS->getType()->isFPOrFPVectorTy()) { |
| LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); |
| RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); |
| } else { |
| LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); |
| RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); |
| } |
| Value *And = Builder.CreateAnd(LHS, RHS); |
| return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); |
| } |
| |
| llvm::Type *ResTy = ConvertType(E->getType()); |
| |
| // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. |
| // If we have 1 && X, just emit X without inserting the control flow. |
| bool LHSCondVal; |
| if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { |
| if (LHSCondVal) { // If we have 1 && X, just emit X. |
| CGF.incrementProfileCounter(E); |
| |
| Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); |
| // ZExt result to int or bool. |
| return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); |
| } |
| |
| // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. |
| if (!CGF.ContainsLabel(E->getRHS())) |
| return llvm::Constant::getNullValue(ResTy); |
| } |
| |
| llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); |
| llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); |
| |
| CodeGenFunction::ConditionalEvaluation eval(CGF); |
| |
| // Branch on the LHS first. If it is false, go to the failure (cont) block. |
| CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, |
| CGF.getProfileCount(E->getRHS())); |
| |
| // Any edges into the ContBlock are now from an (indeterminate number of) |
| // edges from this first condition. All of these values will be false. Start |
| // setting up the PHI node in the Cont Block for this. |
| llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, |
| "", ContBlock); |
| for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); |
| PI != PE; ++PI) |
| PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); |
| |
| eval.begin(CGF); |
| CGF.EmitBlock(RHSBlock); |
| CGF.incrementProfileCounter(E); |
| Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); |
| eval.end(CGF); |
| |
| // Reaquire the RHS block, as there may be subblocks inserted. |
| RHSBlock = Builder.GetInsertBlock(); |
| |
| // Emit an unconditional branch from this block to ContBlock. |
| { |
| // There is no need to emit line number for unconditional branch. |
| auto NL = ApplyDebugLocation::CreateEmpty(CGF); |
| CGF.EmitBlock(ContBlock); |
| } |
| // Insert an entry into the phi node for the edge with the value of RHSCond. |
| PN->addIncoming(RHSCond, RHSBlock); |
| |
| // Artificial location to preserve the scope information |
| { |
| auto NL = ApplyDebugLocation::CreateArtificial(CGF); |
| PN->setDebugLoc(Builder.getCurrentDebugLocation()); |
| } |
| |
| // ZExt result to int. |
| return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); |
| } |
| |
| Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { |
| // Perform vector logical or on comparisons with zero vectors. |
| if (E->getType()->isVectorType()) { |
| CGF.incrementProfileCounter(E); |
| |
| Value *LHS = Visit(E->getLHS()); |
| Value *RHS = Visit(E->getRHS()); |
| Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); |
| if (LHS->getType()->isFPOrFPVectorTy()) { |
| LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); |
| RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); |
| } else { |
| LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); |
| RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); |
| } |
| Value *Or = Builder.CreateOr(LHS, RHS); |
| return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); |
| } |
| |
| llvm::Type *ResTy = ConvertType(E->getType()); |
| |
| // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. |
| // If we have 0 || X, just emit X without inserting the control flow. |
| bool LHSCondVal; |
| if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { |
| if (!LHSCondVal) { // If we have 0 || X, just emit X. |
| CGF.incrementProfileCounter(E); |
| |
| Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); |
| // ZExt result to int or bool. |
| return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); |
| } |
| |
| // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. |
| if (!CGF.ContainsLabel(E->getRHS())) |
| return llvm::ConstantInt::get(ResTy, 1); |
| } |
| |
| llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); |
| llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); |
| |
| CodeGenFunction::ConditionalEvaluation eval(CGF); |
| |
| // Branch on the LHS first. If it is true, go to the success (cont) block. |
| CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, |
| CGF.getCurrentProfileCount() - |
| CGF.getProfileCount(E->getRHS())); |
| |
| // Any edges into the ContBlock are now from an (indeterminate number of) |
| // edges from this first condition. All of these values will be true. Start |
| // setting up the PHI node in the Cont Block for this. |
| llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, |
| "", ContBlock); |
| for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); |
| PI != PE; ++PI) |
| PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); |
| |
| eval.begin(CGF); |
| |
| // Emit the RHS condition as a bool value. |
| CGF.EmitBlock(RHSBlock); |
| CGF.incrementProfileCounter(E); |
| Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); |
| |
| eval.end(CGF); |
| |
| // Reaquire the RHS block, as there may be subblocks inserted. |
| RHSBlock = Builder.GetInsertBlock(); |
| |
| // Emit an unconditional branch from this block to ContBlock. Insert an entry |
| // into the phi node for the edge with the value of RHSCond. |
| CGF.EmitBlock(ContBlock); |
| PN->addIncoming(RHSCond, RHSBlock); |
| |
| // ZExt result to int. |
| return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); |
| } |
| |
| Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { |
| CGF.EmitIgnoredExpr(E->getLHS()); |
| CGF.EnsureInsertPoint(); |
| return Visit(E->getRHS()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Other Operators |
| //===----------------------------------------------------------------------===// |
| |
| /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified |
| /// expression is cheap enough and side-effect-free enough to evaluate |
| /// unconditionally instead of conditionally. This is used to convert control |
| /// flow into selects in some cases. |
| static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, |
| CodeGenFunction &CGF) { |
| // Anything that is an integer or floating point constant is fine. |
| return E->IgnoreParens()->isEvaluatable(CGF.getContext()); |
| |
| // Even non-volatile automatic variables can't be evaluated unconditionally. |
| // Referencing a thread_local may cause non-trivial initialization work to |
| // occur. If we're inside a lambda and one of the variables is from the scope |
| // outside the lambda, that function may have returned already. Reading its |
| // locals is a bad idea. Also, these reads may introduce races there didn't |
| // exist in the source-level program. |
| } |
| |
| |
| Value *ScalarExprEmitter:: |
| VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { |
| TestAndClearIgnoreResultAssign(); |
| |
| // Bind the common expression if necessary. |
| CodeGenFunction::OpaqueValueMapping binding(CGF, E); |
| |
| Expr *condExpr = E->getCond(); |
| Expr *lhsExpr = E->getTrueExpr(); |
| Expr *rhsExpr = E->getFalseExpr(); |
| |
| // If the condition constant folds and can be elided, try to avoid emitting |
| // the condition and the dead arm. |
| bool CondExprBool; |
| if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { |
| Expr *live = lhsExpr, *dead = rhsExpr; |
| if (!CondExprBool) std::swap(live, dead); |
| |
| // If the dead side doesn't have labels we need, just emit the Live part. |
| if (!CGF.ContainsLabel(dead)) { |
| if (CondExprBool) |
| CGF.incrementProfileCounter(E); |
| Value *Result = Visit(live); |
| |
| // If the live part is a throw expression, it acts like it has a void |
| // type, so evaluating it returns a null Value*. However, a conditional |
| // with non-void type must return a non-null Value*. |
| if (!Result && !E->getType()->isVoidType()) |
| Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); |
| |
| return Result; |
| } |
| } |
| |
| // OpenCL: If the condition is a vector, we can treat this condition like |
| // the select function. |
| if (CGF.getLangOpts().OpenCL |
| && condExpr->getType()->isVectorType()) { |
| CGF.incrementProfileCounter(E); |
| |
| llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); |
| llvm::Value *LHS = Visit(lhsExpr); |
| llvm::Value *RHS = Visit(rhsExpr); |
| |
| llvm::Type *condType = ConvertType(condExpr->getType()); |
| llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); |
| |
| unsigned numElem = vecTy->getNumElements(); |
| llvm::Type *elemType = vecTy->getElementType(); |
| |
| llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); |
| llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); |
| llvm::Value *tmp = Builder.CreateSExt(TestMSB, |
| llvm::VectorType::get(elemType, |
| numElem), |
| "sext"); |
| llvm::Value *tmp2 = Builder.CreateNot(tmp); |
| |
| // Cast float to int to perform ANDs if necessary. |
| llvm::Value *RHSTmp = RHS; |
| llvm::Value *LHSTmp = LHS; |
| bool wasCast = false; |
| llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); |
| if (rhsVTy->getElementType()->isFloatingPointTy()) { |
| RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); |
| LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); |
| wasCast = true; |
| } |
| |
| llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); |
| llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); |
| llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); |
| if (wasCast) |
| tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); |
| |
| return tmp5; |
| } |
| |
| // If this is a really simple expression (like x ? 4 : 5), emit this as a |
| // select instead of as control flow. We can only do this if it is cheap and |
| // safe to evaluate the LHS and RHS unconditionally. |
| if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && |
| isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { |
| llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); |
| llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); |
| |
| CGF.incrementProfileCounter(E, StepV); |
| |
| llvm::Value *LHS = Visit(lhsExpr); |
| llvm::Value *RHS = Visit(rhsExpr); |
| if (!LHS) { |
| // If the conditional has void type, make sure we return a null Value*. |
| assert(!RHS && "LHS and RHS types must match"); |
| return nullptr; |
| } |
| return Builder.CreateSelect(CondV, LHS, RHS, "cond"); |
| } |
| |
| llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); |
| llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); |
| llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); |
| |
| CodeGenFunction::ConditionalEvaluation eval(CGF); |
| CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, |
| CGF.getProfileCount(lhsExpr)); |
| |
| CGF.EmitBlock(LHSBlock); |
| CGF.incrementProfileCounter(E); |
| eval.begin(CGF); |
| Value *LHS = Visit(lhsExpr); |
| eval.end(CGF); |
| |
| LHSBlock = Builder.GetInsertBlock(); |
| Builder.CreateBr(ContBlock); |
| |
| CGF.EmitBlock(RHSBlock); |
| eval.begin(CGF); |
| Value *RHS = Visit(rhsExpr); |
| eval.end(CGF); |
| |
| RHSBlock = Builder.GetInsertBlock(); |
| CGF.EmitBlock(ContBlock); |
| |
| // If the LHS or RHS is a throw expression, it will be legitimately null. |
| if (!LHS) |
| return RHS; |
| if (!RHS) |
| return LHS; |
| |
| // Create a PHI node for the real part. |
| llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); |
| PN->addIncoming(LHS, LHSBlock); |
| PN->addIncoming(RHS, RHSBlock); |
| return PN; |
| } |
| |
| Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { |
| return Visit(E->getChosenSubExpr()); |
| } |
| |
| Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { |
| QualType Ty = VE->getType(); |
| |
| if (Ty->isVariablyModifiedType()) |
| CGF.EmitVariablyModifiedType(Ty); |
| |
| Address ArgValue = Address::invalid(); |
| Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); |
| |
| llvm::Type *ArgTy = ConvertType(VE->getType()); |
| |
| // If EmitVAArg fails, emit an error. |
| if (!ArgPtr.isValid()) { |
| CGF.ErrorUnsupported(VE, "va_arg expression"); |
| return llvm::UndefValue::get(ArgTy); |
| } |
| |
| // FIXME Volatility. |
| llvm::Value *Val = Builder.CreateLoad(ArgPtr); |
| |
| // If EmitVAArg promoted the type, we must truncate it. |
| if (ArgTy != Val->getType()) { |
| if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) |
| Val = Builder.CreateIntToPtr(Val, ArgTy); |
| else |
| Val = Builder.CreateTrunc(Val, ArgTy); |
| } |
| |
| return Val; |
| } |
| |
| Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { |
| return CGF.EmitBlockLiteral(block); |
| } |
| |
| // Convert a vec3 to vec4, or vice versa. |
| static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, |
| Value *Src, unsigned NumElementsDst) { |
| llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); |
| SmallVector<llvm::Constant*, 4> Args; |
| Args.push_back(Builder.getInt32(0)); |
| Args.push_back(Builder.getInt32(1)); |
| Args.push_back(Builder.getInt32(2)); |
| if (NumElementsDst == 4) |
| Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); |
| llvm::Constant *Mask = llvm::ConstantVector::get(Args); |
| return Builder.CreateShuffleVector(Src, UnV, Mask); |
| } |
| |
| // Create cast instructions for converting LLVM value \p Src to LLVM type \p |
| // DstTy. \p Src has the same size as \p DstTy. Both are single value types |
| // but could be scalar or vectors of different lengths, and either can be |
| // pointer. |
| // There are 4 cases: |
| // 1. non-pointer -> non-pointer : needs 1 bitcast |
| // 2. pointer -> pointer : needs 1 bitcast or addrspacecast |
| // 3. pointer -> non-pointer |
| // a) pointer -> intptr_t : needs 1 ptrtoint |
| // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast |
| // 4. non-pointer -> pointer |
| // a) intptr_t -> pointer : needs 1 inttoptr |
| // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr |
| // Note: for cases 3b and 4b two casts are required since LLVM casts do not |
| // allow casting directly between pointer types and non-integer non-pointer |
| // types. |
| static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, |
| const llvm::DataLayout &DL, |
| Value *Src, llvm::Type *DstTy, |
| StringRef Name = "") { |
| auto SrcTy = Src->getType(); |
| |
| // Case 1. |
| if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) |
| return Builder.CreateBitCast(Src, DstTy, Name); |
| |
| // Case 2. |
| if (SrcTy->isPointerTy() && DstTy->isPointerTy()) |
| return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); |
| |
| // Case 3. |
| if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { |
| // Case 3b. |
| if (!DstTy->isIntegerTy()) |
| Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); |
| // Cases 3a and 3b. |
| return Builder.CreateBitOrPointerCast(Src, DstTy, Name); |
| } |
| |
| // Case 4b. |
| if (!SrcTy->isIntegerTy()) |
| Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); |
| // Cases 4a and 4b. |
| return Builder.CreateIntToPtr(Src, DstTy, Name); |
| } |
| |
| Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { |
| Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); |
| llvm::Type *DstTy = ConvertType(E->getType()); |
| |
| llvm::Type *SrcTy = Src->getType(); |
| unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? |
| cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; |
| unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? |
| cast<llvm::VectorType>(DstTy)->getNumElements() : 0; |
| |
| // Going from vec3 to non-vec3 is a special case and requires a shuffle |
| // vector to get a vec4, then a bitcast if the target type is different. |
| if (NumElementsSrc == 3 && NumElementsDst != 3) { |
| Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); |
| |
| if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { |
| Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, |
| DstTy); |
| } |
| |
| Src->setName("astype"); |
| return Src; |
| } |
| |
| // Going from non-vec3 to vec3 is a special case and requires a bitcast |
| // to vec4 if the original type is not vec4, then a shuffle vector to |
| // get a vec3. |
| if (NumElementsSrc != 3 && NumElementsDst == 3) { |
| if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { |
| auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); |
| Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, |
| Vec4Ty); |
| } |
| |
| Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); |
| Src->setName("astype"); |
| return Src; |
| } |
| |
| return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), |
| Src, DstTy, "astype"); |
| } |
| |
| Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { |
| return CGF.EmitAtomicExpr(E).getScalarVal(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Entry Point into this File |
| //===----------------------------------------------------------------------===// |
| |
| /// Emit the computation of the specified expression of scalar type, ignoring |
| /// the result. |
| Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { |
| assert(E && hasScalarEvaluationKind(E->getType()) && |
| "Invalid scalar expression to emit"); |
| |
| return ScalarExprEmitter(*this, IgnoreResultAssign) |
| .Visit(const_cast<Expr *>(E)); |
| } |
| |
| /// Emit a conversion from the specified type to the specified destination type, |
| /// both of which are LLVM scalar types. |
| Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, |
| QualType DstTy, |
| SourceLocation Loc) { |
| assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && |
| "Invalid scalar expression to emit"); |
| return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); |
| } |
| |
| /// Emit a conversion from the specified complex type to the specified |
| /// destination type, where the destination type is an LLVM scalar type. |
| Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, |
| QualType SrcTy, |
| QualType DstTy, |
| SourceLocation Loc) { |
| assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && |
| "Invalid complex -> scalar conversion"); |
| return ScalarExprEmitter(*this) |
| .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); |
| } |
| |
| |
| llvm::Value *CodeGenFunction:: |
| EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, |
| bool isInc, bool isPre) { |
| return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); |
| } |
| |
| LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { |
| // object->isa or (*object).isa |
| // Generate code as for: *(Class*)object |
| |
| Expr *BaseExpr = E->getBase(); |
| Address Addr = Address::invalid(); |
| if (BaseExpr->isRValue()) { |
| Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); |
| } else { |
| Addr = EmitLValue(BaseExpr).getAddress(); |
| } |
| |
| // Cast the address to Class*. |
| Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); |
| return MakeAddrLValue(Addr, E->getType()); |
| } |
| |
| |
| LValue CodeGenFunction::EmitCompoundAssignmentLValue( |
| const CompoundAssignOperator *E) { |
| ScalarExprEmitter Scalar(*this); |
| Value *Result = nullptr; |
| switch (E->getOpcode()) { |
| #define COMPOUND_OP(Op) \ |
| case BO_##Op##Assign: \ |
| return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ |
| Result) |
| COMPOUND_OP(Mul); |
| COMPOUND_OP(Div); |
| COMPOUND_OP(Rem); |
| COMPOUND_OP(Add); |
| COMPOUND_OP(Sub); |
| COMPOUND_OP(Shl); |
| COMPOUND_OP(Shr); |
| COMPOUND_OP(And); |
| COMPOUND_OP(Xor); |
| COMPOUND_OP(Or); |
| #undef COMPOUND_OP |
| |
| case BO_PtrMemD: |
| case BO_PtrMemI: |
| case BO_Mul: |
| case BO_Div: |
| case BO_Rem: |
| case BO_Add: |
| case BO_Sub: |
| case BO_Shl: |
| case BO_Shr: |
| case BO_LT: |
| case BO_GT: |
| case BO_LE: |
| case BO_GE: |
| case BO_EQ: |
| case BO_NE: |
| case BO_Cmp: |
| case BO_And: |
| case BO_Xor: |
| case BO_Or: |
| case BO_LAnd: |
| case BO_LOr: |
| case BO_Assign: |
| case BO_Comma: |
| llvm_unreachable("Not valid compound assignment operators"); |
| } |
| |
| llvm_unreachable("Unhandled compound assignment operator"); |
| } |
| |
| Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, |
| ArrayRef<Value *> IdxList, |
| bool SignedIndices, |
| bool IsSubtraction, |
| SourceLocation Loc, |
| const Twine &Name) { |
| Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); |
| |
| // If the pointer overflow sanitizer isn't enabled, do nothing. |
| if (!SanOpts.has(SanitizerKind::PointerOverflow)) |
| return GEPVal; |
| |
| // If the GEP has already been reduced to a constant, leave it be. |
| if (isa<llvm::Constant>(GEPVal)) |
| return GEPVal; |
| |
| // Only check for overflows in the default address space. |
| if (GEPVal->getType()->getPointerAddressSpace()) |
| return GEPVal; |
| |
| auto *GEP = cast<llvm::GEPOperator>(GEPVal); |
| assert(GEP->isInBounds() && "Expected inbounds GEP"); |
| |
| SanitizerScope SanScope(this); |
| auto &VMContext = getLLVMContext(); |
| const auto &DL = CGM.getDataLayout(); |
| auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); |
| |
| // Grab references to the signed add/mul overflow intrinsics for intptr_t. |
| auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); |
| auto *SAddIntrinsic = |
| CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); |
| auto *SMulIntrinsic = |
| CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); |
| |
| // The total (signed) byte offset for the GEP. |
| llvm::Value *TotalOffset = nullptr; |
| // The offset overflow flag - true if the total offset overflows. |
| llvm::Value *OffsetOverflows = Builder.getFalse(); |
| |
| /// Return the result of the given binary operation. |
| auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, |
| llvm::Value *RHS) -> llvm::Value * { |
| assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); |
| |
| // If the operands are constants, return a constant result. |
| if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { |
| if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { |
| llvm::APInt N; |
| bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, |
| /*Signed=*/true, N); |
| if (HasOverflow) |
| OffsetOverflows = Builder.getTrue(); |
| return llvm::ConstantInt::get(VMContext, N); |
| } |
| } |
| |
| // Otherwise, compute the result with checked arithmetic. |
| auto *ResultAndOverflow = Builder.CreateCall( |
| (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); |
| OffsetOverflows = Builder.CreateOr( |
| Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); |
| return Builder.CreateExtractValue(ResultAndOverflow, 0); |
| }; |
| |
| // Determine the total byte offset by looking at each GEP operand. |
| for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); |
| GTI != GTE; ++GTI) { |
| llvm::Value *LocalOffset; |
| auto *Index = GTI.getOperand(); |
| // Compute the local offset contributed by this indexing step: |
| if (auto *STy = GTI.getStructTypeOrNull()) { |
| // For struct indexing, the local offset is the byte position of the |
| // specified field. |
| unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); |
| LocalOffset = llvm::ConstantInt::get( |
| IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); |
| } else { |
| // Otherwise this is array-like indexing. The local offset is the index |
| // multiplied by the element size. |
| auto *ElementSize = llvm::ConstantInt::get( |
| IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); |
| auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); |
| LocalOffset = eval(BO_Mul, ElementSize, IndexS); |
| } |
| |
| // If this is the first offset, set it as the total offset. Otherwise, add |
| // the local offset into the running total. |
| if (!TotalOffset || TotalOffset == Zero) |
| TotalOffset = LocalOffset; |
| else |
| TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); |
| } |
| |
| // Common case: if the total offset is zero, don't emit a check. |
| if (TotalOffset == Zero) |
| return GEPVal; |
| |
| // Now that we've computed the total offset, add it to the base pointer (with |
| // wrapping semantics). |
| auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy); |
| auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset); |
| |
| // The GEP is valid if: |
| // 1) The total offset doesn't overflow, and |
| // 2) The sign of the difference between the computed address and the base |
| // pointer matches the sign of the total offset. |
| llvm::Value *ValidGEP; |
| auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows); |
| if (SignedIndices) { |
| auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); |
| auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero); |
| llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); |
| ValidGEP = Builder.CreateAnd( |
| Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid), |
| NoOffsetOverflow); |
| } else if (!SignedIndices && !IsSubtraction) { |
| auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); |
| ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow); |
| } else { |
| auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr); |
| ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow); |
| } |
| |
| llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; |
| // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. |
| llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; |
| EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow), |
| SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); |
| |
| return GEPVal; |
| } |