| //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This is the internal per-function state used for llvm translation. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H |
| #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H |
| |
| #include "CGBuilder.h" |
| #include "CGDebugInfo.h" |
| #include "CGLoopInfo.h" |
| #include "CGValue.h" |
| #include "CodeGenModule.h" |
| #include "CodeGenPGO.h" |
| #include "EHScopeStack.h" |
| #include "VarBypassDetector.h" |
| #include "clang/AST/CharUnits.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/ExprOpenMP.h" |
| #include "clang/AST/Type.h" |
| #include "clang/Basic/ABI.h" |
| #include "clang/Basic/CapturedStmt.h" |
| #include "clang/Basic/OpenMPKinds.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Frontend/CodeGenOptions.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Transforms/Utils/SanitizerStats.h" |
| |
| namespace llvm { |
| class BasicBlock; |
| class LLVMContext; |
| class MDNode; |
| class Module; |
| class SwitchInst; |
| class Twine; |
| class Value; |
| class CallSite; |
| } |
| |
| namespace clang { |
| class ASTContext; |
| class BlockDecl; |
| class CXXDestructorDecl; |
| class CXXForRangeStmt; |
| class CXXTryStmt; |
| class Decl; |
| class LabelDecl; |
| class EnumConstantDecl; |
| class FunctionDecl; |
| class FunctionProtoType; |
| class LabelStmt; |
| class ObjCContainerDecl; |
| class ObjCInterfaceDecl; |
| class ObjCIvarDecl; |
| class ObjCMethodDecl; |
| class ObjCImplementationDecl; |
| class ObjCPropertyImplDecl; |
| class TargetInfo; |
| class VarDecl; |
| class ObjCForCollectionStmt; |
| class ObjCAtTryStmt; |
| class ObjCAtThrowStmt; |
| class ObjCAtSynchronizedStmt; |
| class ObjCAutoreleasePoolStmt; |
| |
| namespace analyze_os_log { |
| class OSLogBufferLayout; |
| } |
| |
| namespace CodeGen { |
| class CodeGenTypes; |
| class CGCallee; |
| class CGFunctionInfo; |
| class CGRecordLayout; |
| class CGBlockInfo; |
| class CGCXXABI; |
| class BlockByrefHelpers; |
| class BlockByrefInfo; |
| class BlockFlags; |
| class BlockFieldFlags; |
| class RegionCodeGenTy; |
| class TargetCodeGenInfo; |
| struct OMPTaskDataTy; |
| struct CGCoroData; |
| |
| /// The kind of evaluation to perform on values of a particular |
| /// type. Basically, is the code in CGExprScalar, CGExprComplex, or |
| /// CGExprAgg? |
| /// |
| /// TODO: should vectors maybe be split out into their own thing? |
| enum TypeEvaluationKind { |
| TEK_Scalar, |
| TEK_Complex, |
| TEK_Aggregate |
| }; |
| |
| #define LIST_SANITIZER_CHECKS \ |
| SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ |
| SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ |
| SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ |
| SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ |
| SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ |
| SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ |
| SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ |
| SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ |
| SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ |
| SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ |
| SANITIZER_CHECK(MissingReturn, missing_return, 0) \ |
| SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ |
| SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ |
| SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ |
| SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ |
| SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ |
| SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ |
| SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ |
| SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ |
| SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ |
| SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ |
| SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ |
| SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) |
| |
| enum SanitizerHandler { |
| #define SANITIZER_CHECK(Enum, Name, Version) Enum, |
| LIST_SANITIZER_CHECKS |
| #undef SANITIZER_CHECK |
| }; |
| |
| /// Helper class with most of the code for saving a value for a |
| /// conditional expression cleanup. |
| struct DominatingLLVMValue { |
| typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; |
| |
| /// Answer whether the given value needs extra work to be saved. |
| static bool needsSaving(llvm::Value *value) { |
| // If it's not an instruction, we don't need to save. |
| if (!isa<llvm::Instruction>(value)) return false; |
| |
| // If it's an instruction in the entry block, we don't need to save. |
| llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); |
| return (block != &block->getParent()->getEntryBlock()); |
| } |
| |
| static saved_type save(CodeGenFunction &CGF, llvm::Value *value); |
| static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); |
| }; |
| |
| /// A partial specialization of DominatingValue for llvm::Values that |
| /// might be llvm::Instructions. |
| template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { |
| typedef T *type; |
| static type restore(CodeGenFunction &CGF, saved_type value) { |
| return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); |
| } |
| }; |
| |
| /// A specialization of DominatingValue for Address. |
| template <> struct DominatingValue<Address> { |
| typedef Address type; |
| |
| struct saved_type { |
| DominatingLLVMValue::saved_type SavedValue; |
| CharUnits Alignment; |
| }; |
| |
| static bool needsSaving(type value) { |
| return DominatingLLVMValue::needsSaving(value.getPointer()); |
| } |
| static saved_type save(CodeGenFunction &CGF, type value) { |
| return { DominatingLLVMValue::save(CGF, value.getPointer()), |
| value.getAlignment() }; |
| } |
| static type restore(CodeGenFunction &CGF, saved_type value) { |
| return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), |
| value.Alignment); |
| } |
| }; |
| |
| /// A specialization of DominatingValue for RValue. |
| template <> struct DominatingValue<RValue> { |
| typedef RValue type; |
| class saved_type { |
| enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, |
| AggregateAddress, ComplexAddress }; |
| |
| llvm::Value *Value; |
| unsigned K : 3; |
| unsigned Align : 29; |
| saved_type(llvm::Value *v, Kind k, unsigned a = 0) |
| : Value(v), K(k), Align(a) {} |
| |
| public: |
| static bool needsSaving(RValue value); |
| static saved_type save(CodeGenFunction &CGF, RValue value); |
| RValue restore(CodeGenFunction &CGF); |
| |
| // implementations in CGCleanup.cpp |
| }; |
| |
| static bool needsSaving(type value) { |
| return saved_type::needsSaving(value); |
| } |
| static saved_type save(CodeGenFunction &CGF, type value) { |
| return saved_type::save(CGF, value); |
| } |
| static type restore(CodeGenFunction &CGF, saved_type value) { |
| return value.restore(CGF); |
| } |
| }; |
| |
| /// CodeGenFunction - This class organizes the per-function state that is used |
| /// while generating LLVM code. |
| class CodeGenFunction : public CodeGenTypeCache { |
| CodeGenFunction(const CodeGenFunction &) = delete; |
| void operator=(const CodeGenFunction &) = delete; |
| |
| friend class CGCXXABI; |
| public: |
| /// A jump destination is an abstract label, branching to which may |
| /// require a jump out through normal cleanups. |
| struct JumpDest { |
| JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} |
| JumpDest(llvm::BasicBlock *Block, |
| EHScopeStack::stable_iterator Depth, |
| unsigned Index) |
| : Block(Block), ScopeDepth(Depth), Index(Index) {} |
| |
| bool isValid() const { return Block != nullptr; } |
| llvm::BasicBlock *getBlock() const { return Block; } |
| EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } |
| unsigned getDestIndex() const { return Index; } |
| |
| // This should be used cautiously. |
| void setScopeDepth(EHScopeStack::stable_iterator depth) { |
| ScopeDepth = depth; |
| } |
| |
| private: |
| llvm::BasicBlock *Block; |
| EHScopeStack::stable_iterator ScopeDepth; |
| unsigned Index; |
| }; |
| |
| CodeGenModule &CGM; // Per-module state. |
| const TargetInfo &Target; |
| |
| typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; |
| LoopInfoStack LoopStack; |
| CGBuilderTy Builder; |
| |
| // Stores variables for which we can't generate correct lifetime markers |
| // because of jumps. |
| VarBypassDetector Bypasses; |
| |
| // CodeGen lambda for loops and support for ordered clause |
| typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, |
| JumpDest)> |
| CodeGenLoopTy; |
| typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, |
| const unsigned, const bool)> |
| CodeGenOrderedTy; |
| |
| // Codegen lambda for loop bounds in worksharing loop constructs |
| typedef llvm::function_ref<std::pair<LValue, LValue>( |
| CodeGenFunction &, const OMPExecutableDirective &S)> |
| CodeGenLoopBoundsTy; |
| |
| // Codegen lambda for loop bounds in dispatch-based loop implementation |
| typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( |
| CodeGenFunction &, const OMPExecutableDirective &S, Address LB, |
| Address UB)> |
| CodeGenDispatchBoundsTy; |
| |
| /// CGBuilder insert helper. This function is called after an |
| /// instruction is created using Builder. |
| void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, |
| llvm::BasicBlock *BB, |
| llvm::BasicBlock::iterator InsertPt) const; |
| |
| /// CurFuncDecl - Holds the Decl for the current outermost |
| /// non-closure context. |
| const Decl *CurFuncDecl; |
| /// CurCodeDecl - This is the inner-most code context, which includes blocks. |
| const Decl *CurCodeDecl; |
| const CGFunctionInfo *CurFnInfo; |
| QualType FnRetTy; |
| llvm::Function *CurFn = nullptr; |
| |
| // Holds coroutine data if the current function is a coroutine. We use a |
| // wrapper to manage its lifetime, so that we don't have to define CGCoroData |
| // in this header. |
| struct CGCoroInfo { |
| std::unique_ptr<CGCoroData> Data; |
| CGCoroInfo(); |
| ~CGCoroInfo(); |
| }; |
| CGCoroInfo CurCoro; |
| |
| bool isCoroutine() const { |
| return CurCoro.Data != nullptr; |
| } |
| |
| /// CurGD - The GlobalDecl for the current function being compiled. |
| GlobalDecl CurGD; |
| |
| /// PrologueCleanupDepth - The cleanup depth enclosing all the |
| /// cleanups associated with the parameters. |
| EHScopeStack::stable_iterator PrologueCleanupDepth; |
| |
| /// ReturnBlock - Unified return block. |
| JumpDest ReturnBlock; |
| |
| /// ReturnValue - The temporary alloca to hold the return |
| /// value. This is invalid iff the function has no return value. |
| Address ReturnValue = Address::invalid(); |
| |
| /// Return true if a label was seen in the current scope. |
| bool hasLabelBeenSeenInCurrentScope() const { |
| if (CurLexicalScope) |
| return CurLexicalScope->hasLabels(); |
| return !LabelMap.empty(); |
| } |
| |
| /// AllocaInsertPoint - This is an instruction in the entry block before which |
| /// we prefer to insert allocas. |
| llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; |
| |
| /// API for captured statement code generation. |
| class CGCapturedStmtInfo { |
| public: |
| explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) |
| : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} |
| explicit CGCapturedStmtInfo(const CapturedStmt &S, |
| CapturedRegionKind K = CR_Default) |
| : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { |
| |
| RecordDecl::field_iterator Field = |
| S.getCapturedRecordDecl()->field_begin(); |
| for (CapturedStmt::const_capture_iterator I = S.capture_begin(), |
| E = S.capture_end(); |
| I != E; ++I, ++Field) { |
| if (I->capturesThis()) |
| CXXThisFieldDecl = *Field; |
| else if (I->capturesVariable()) |
| CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; |
| else if (I->capturesVariableByCopy()) |
| CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; |
| } |
| } |
| |
| virtual ~CGCapturedStmtInfo(); |
| |
| CapturedRegionKind getKind() const { return Kind; } |
| |
| virtual void setContextValue(llvm::Value *V) { ThisValue = V; } |
| // Retrieve the value of the context parameter. |
| virtual llvm::Value *getContextValue() const { return ThisValue; } |
| |
| /// Lookup the captured field decl for a variable. |
| virtual const FieldDecl *lookup(const VarDecl *VD) const { |
| return CaptureFields.lookup(VD->getCanonicalDecl()); |
| } |
| |
| bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } |
| virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } |
| |
| static bool classof(const CGCapturedStmtInfo *) { |
| return true; |
| } |
| |
| /// Emit the captured statement body. |
| virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { |
| CGF.incrementProfileCounter(S); |
| CGF.EmitStmt(S); |
| } |
| |
| /// Get the name of the capture helper. |
| virtual StringRef getHelperName() const { return "__captured_stmt"; } |
| |
| private: |
| /// The kind of captured statement being generated. |
| CapturedRegionKind Kind; |
| |
| /// Keep the map between VarDecl and FieldDecl. |
| llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; |
| |
| /// The base address of the captured record, passed in as the first |
| /// argument of the parallel region function. |
| llvm::Value *ThisValue; |
| |
| /// Captured 'this' type. |
| FieldDecl *CXXThisFieldDecl; |
| }; |
| CGCapturedStmtInfo *CapturedStmtInfo = nullptr; |
| |
| /// RAII for correct setting/restoring of CapturedStmtInfo. |
| class CGCapturedStmtRAII { |
| private: |
| CodeGenFunction &CGF; |
| CGCapturedStmtInfo *PrevCapturedStmtInfo; |
| public: |
| CGCapturedStmtRAII(CodeGenFunction &CGF, |
| CGCapturedStmtInfo *NewCapturedStmtInfo) |
| : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { |
| CGF.CapturedStmtInfo = NewCapturedStmtInfo; |
| } |
| ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } |
| }; |
| |
| /// An abstract representation of regular/ObjC call/message targets. |
| class AbstractCallee { |
| /// The function declaration of the callee. |
| const Decl *CalleeDecl; |
| |
| public: |
| AbstractCallee() : CalleeDecl(nullptr) {} |
| AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} |
| AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} |
| bool hasFunctionDecl() const { |
| return dyn_cast_or_null<FunctionDecl>(CalleeDecl); |
| } |
| const Decl *getDecl() const { return CalleeDecl; } |
| unsigned getNumParams() const { |
| if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) |
| return FD->getNumParams(); |
| return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); |
| } |
| const ParmVarDecl *getParamDecl(unsigned I) const { |
| if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) |
| return FD->getParamDecl(I); |
| return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); |
| } |
| }; |
| |
| /// Sanitizers enabled for this function. |
| SanitizerSet SanOpts; |
| |
| /// True if CodeGen currently emits code implementing sanitizer checks. |
| bool IsSanitizerScope = false; |
| |
| /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. |
| class SanitizerScope { |
| CodeGenFunction *CGF; |
| public: |
| SanitizerScope(CodeGenFunction *CGF); |
| ~SanitizerScope(); |
| }; |
| |
| /// In C++, whether we are code generating a thunk. This controls whether we |
| /// should emit cleanups. |
| bool CurFuncIsThunk = false; |
| |
| /// In ARC, whether we should autorelease the return value. |
| bool AutoreleaseResult = false; |
| |
| /// Whether we processed a Microsoft-style asm block during CodeGen. These can |
| /// potentially set the return value. |
| bool SawAsmBlock = false; |
| |
| const NamedDecl *CurSEHParent = nullptr; |
| |
| /// True if the current function is an outlined SEH helper. This can be a |
| /// finally block or filter expression. |
| bool IsOutlinedSEHHelper = false; |
| |
| const CodeGen::CGBlockInfo *BlockInfo = nullptr; |
| llvm::Value *BlockPointer = nullptr; |
| |
| llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; |
| FieldDecl *LambdaThisCaptureField = nullptr; |
| |
| /// A mapping from NRVO variables to the flags used to indicate |
| /// when the NRVO has been applied to this variable. |
| llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; |
| |
| EHScopeStack EHStack; |
| llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; |
| llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; |
| |
| llvm::Instruction *CurrentFuncletPad = nullptr; |
| |
| class CallLifetimeEnd final : public EHScopeStack::Cleanup { |
| llvm::Value *Addr; |
| llvm::Value *Size; |
| |
| public: |
| CallLifetimeEnd(Address addr, llvm::Value *size) |
| : Addr(addr.getPointer()), Size(size) {} |
| |
| void Emit(CodeGenFunction &CGF, Flags flags) override { |
| CGF.EmitLifetimeEnd(Size, Addr); |
| } |
| }; |
| |
| /// Header for data within LifetimeExtendedCleanupStack. |
| struct LifetimeExtendedCleanupHeader { |
| /// The size of the following cleanup object. |
| unsigned Size; |
| /// The kind of cleanup to push: a value from the CleanupKind enumeration. |
| unsigned Kind : 31; |
| /// Whether this is a conditional cleanup. |
| unsigned IsConditional : 1; |
| |
| size_t getSize() const { return Size; } |
| CleanupKind getKind() const { return (CleanupKind)Kind; } |
| bool isConditional() const { return IsConditional; } |
| }; |
| |
| /// i32s containing the indexes of the cleanup destinations. |
| Address NormalCleanupDest = Address::invalid(); |
| |
| unsigned NextCleanupDestIndex = 1; |
| |
| /// FirstBlockInfo - The head of a singly-linked-list of block layouts. |
| CGBlockInfo *FirstBlockInfo = nullptr; |
| |
| /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. |
| llvm::BasicBlock *EHResumeBlock = nullptr; |
| |
| /// The exception slot. All landing pads write the current exception pointer |
| /// into this alloca. |
| llvm::Value *ExceptionSlot = nullptr; |
| |
| /// The selector slot. Under the MandatoryCleanup model, all landing pads |
| /// write the current selector value into this alloca. |
| llvm::AllocaInst *EHSelectorSlot = nullptr; |
| |
| /// A stack of exception code slots. Entering an __except block pushes a slot |
| /// on the stack and leaving pops one. The __exception_code() intrinsic loads |
| /// a value from the top of the stack. |
| SmallVector<Address, 1> SEHCodeSlotStack; |
| |
| /// Value returned by __exception_info intrinsic. |
| llvm::Value *SEHInfo = nullptr; |
| |
| /// Emits a landing pad for the current EH stack. |
| llvm::BasicBlock *EmitLandingPad(); |
| |
| llvm::BasicBlock *getInvokeDestImpl(); |
| |
| template <class T> |
| typename DominatingValue<T>::saved_type saveValueInCond(T value) { |
| return DominatingValue<T>::save(*this, value); |
| } |
| |
| public: |
| /// ObjCEHValueStack - Stack of Objective-C exception values, used for |
| /// rethrows. |
| SmallVector<llvm::Value*, 8> ObjCEHValueStack; |
| |
| /// A class controlling the emission of a finally block. |
| class FinallyInfo { |
| /// Where the catchall's edge through the cleanup should go. |
| JumpDest RethrowDest; |
| |
| /// A function to call to enter the catch. |
| llvm::Constant *BeginCatchFn; |
| |
| /// An i1 variable indicating whether or not the @finally is |
| /// running for an exception. |
| llvm::AllocaInst *ForEHVar; |
| |
| /// An i8* variable into which the exception pointer to rethrow |
| /// has been saved. |
| llvm::AllocaInst *SavedExnVar; |
| |
| public: |
| void enter(CodeGenFunction &CGF, const Stmt *Finally, |
| llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, |
| llvm::Constant *rethrowFn); |
| void exit(CodeGenFunction &CGF); |
| }; |
| |
| /// Returns true inside SEH __try blocks. |
| bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } |
| |
| /// Returns true while emitting a cleanuppad. |
| bool isCleanupPadScope() const { |
| return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); |
| } |
| |
| /// pushFullExprCleanup - Push a cleanup to be run at the end of the |
| /// current full-expression. Safe against the possibility that |
| /// we're currently inside a conditionally-evaluated expression. |
| template <class T, class... As> |
| void pushFullExprCleanup(CleanupKind kind, As... A) { |
| // If we're not in a conditional branch, or if none of the |
| // arguments requires saving, then use the unconditional cleanup. |
| if (!isInConditionalBranch()) |
| return EHStack.pushCleanup<T>(kind, A...); |
| |
| // Stash values in a tuple so we can guarantee the order of saves. |
| typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; |
| SavedTuple Saved{saveValueInCond(A)...}; |
| |
| typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; |
| EHStack.pushCleanupTuple<CleanupType>(kind, Saved); |
| initFullExprCleanup(); |
| } |
| |
| /// Queue a cleanup to be pushed after finishing the current |
| /// full-expression. |
| template <class T, class... As> |
| void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { |
| if (!isInConditionalBranch()) |
| return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...); |
| |
| Address ActiveFlag = createCleanupActiveFlag(); |
| assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && |
| "cleanup active flag should never need saving"); |
| |
| typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; |
| SavedTuple Saved{saveValueInCond(A)...}; |
| |
| typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; |
| pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved); |
| } |
| |
| template <class T, class... As> |
| void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag, |
| As... A) { |
| LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, |
| ActiveFlag.isValid()}; |
| |
| size_t OldSize = LifetimeExtendedCleanupStack.size(); |
| LifetimeExtendedCleanupStack.resize( |
| LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + |
| (Header.IsConditional ? sizeof(ActiveFlag) : 0)); |
| |
| static_assert(sizeof(Header) % alignof(T) == 0, |
| "Cleanup will be allocated on misaligned address"); |
| char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; |
| new (Buffer) LifetimeExtendedCleanupHeader(Header); |
| new (Buffer + sizeof(Header)) T(A...); |
| if (Header.IsConditional) |
| new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); |
| } |
| |
| /// Set up the last cleanup that was pushed as a conditional |
| /// full-expression cleanup. |
| void initFullExprCleanup() { |
| initFullExprCleanupWithFlag(createCleanupActiveFlag()); |
| } |
| |
| void initFullExprCleanupWithFlag(Address ActiveFlag); |
| Address createCleanupActiveFlag(); |
| |
| /// PushDestructorCleanup - Push a cleanup to call the |
| /// complete-object destructor of an object of the given type at the |
| /// given address. Does nothing if T is not a C++ class type with a |
| /// non-trivial destructor. |
| void PushDestructorCleanup(QualType T, Address Addr); |
| |
| /// PushDestructorCleanup - Push a cleanup to call the |
| /// complete-object variant of the given destructor on the object at |
| /// the given address. |
| void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); |
| |
| /// PopCleanupBlock - Will pop the cleanup entry on the stack and |
| /// process all branch fixups. |
| void PopCleanupBlock(bool FallThroughIsBranchThrough = false); |
| |
| /// DeactivateCleanupBlock - Deactivates the given cleanup block. |
| /// The block cannot be reactivated. Pops it if it's the top of the |
| /// stack. |
| /// |
| /// \param DominatingIP - An instruction which is known to |
| /// dominate the current IP (if set) and which lies along |
| /// all paths of execution between the current IP and the |
| /// the point at which the cleanup comes into scope. |
| void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, |
| llvm::Instruction *DominatingIP); |
| |
| /// ActivateCleanupBlock - Activates an initially-inactive cleanup. |
| /// Cannot be used to resurrect a deactivated cleanup. |
| /// |
| /// \param DominatingIP - An instruction which is known to |
| /// dominate the current IP (if set) and which lies along |
| /// all paths of execution between the current IP and the |
| /// the point at which the cleanup comes into scope. |
| void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, |
| llvm::Instruction *DominatingIP); |
| |
| /// Enters a new scope for capturing cleanups, all of which |
| /// will be executed once the scope is exited. |
| class RunCleanupsScope { |
| EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; |
| size_t LifetimeExtendedCleanupStackSize; |
| bool OldDidCallStackSave; |
| protected: |
| bool PerformCleanup; |
| private: |
| |
| RunCleanupsScope(const RunCleanupsScope &) = delete; |
| void operator=(const RunCleanupsScope &) = delete; |
| |
| protected: |
| CodeGenFunction& CGF; |
| |
| public: |
| /// Enter a new cleanup scope. |
| explicit RunCleanupsScope(CodeGenFunction &CGF) |
| : PerformCleanup(true), CGF(CGF) |
| { |
| CleanupStackDepth = CGF.EHStack.stable_begin(); |
| LifetimeExtendedCleanupStackSize = |
| CGF.LifetimeExtendedCleanupStack.size(); |
| OldDidCallStackSave = CGF.DidCallStackSave; |
| CGF.DidCallStackSave = false; |
| OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; |
| CGF.CurrentCleanupScopeDepth = CleanupStackDepth; |
| } |
| |
| /// Exit this cleanup scope, emitting any accumulated cleanups. |
| ~RunCleanupsScope() { |
| if (PerformCleanup) |
| ForceCleanup(); |
| } |
| |
| /// Determine whether this scope requires any cleanups. |
| bool requiresCleanups() const { |
| return CGF.EHStack.stable_begin() != CleanupStackDepth; |
| } |
| |
| /// Force the emission of cleanups now, instead of waiting |
| /// until this object is destroyed. |
| /// \param ValuesToReload - A list of values that need to be available at |
| /// the insertion point after cleanup emission. If cleanup emission created |
| /// a shared cleanup block, these value pointers will be rewritten. |
| /// Otherwise, they not will be modified. |
| void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { |
| assert(PerformCleanup && "Already forced cleanup"); |
| CGF.DidCallStackSave = OldDidCallStackSave; |
| CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, |
| ValuesToReload); |
| PerformCleanup = false; |
| CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; |
| } |
| }; |
| |
| // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. |
| EHScopeStack::stable_iterator CurrentCleanupScopeDepth = |
| EHScopeStack::stable_end(); |
| |
| class LexicalScope : public RunCleanupsScope { |
| SourceRange Range; |
| SmallVector<const LabelDecl*, 4> Labels; |
| LexicalScope *ParentScope; |
| |
| LexicalScope(const LexicalScope &) = delete; |
| void operator=(const LexicalScope &) = delete; |
| |
| public: |
| /// Enter a new cleanup scope. |
| explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) |
| : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { |
| CGF.CurLexicalScope = this; |
| if (CGDebugInfo *DI = CGF.getDebugInfo()) |
| DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); |
| } |
| |
| void addLabel(const LabelDecl *label) { |
| assert(PerformCleanup && "adding label to dead scope?"); |
| Labels.push_back(label); |
| } |
| |
| /// Exit this cleanup scope, emitting any accumulated |
| /// cleanups. |
| ~LexicalScope() { |
| if (CGDebugInfo *DI = CGF.getDebugInfo()) |
| DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); |
| |
| // If we should perform a cleanup, force them now. Note that |
| // this ends the cleanup scope before rescoping any labels. |
| if (PerformCleanup) { |
| ApplyDebugLocation DL(CGF, Range.getEnd()); |
| ForceCleanup(); |
| } |
| } |
| |
| /// Force the emission of cleanups now, instead of waiting |
| /// until this object is destroyed. |
| void ForceCleanup() { |
| CGF.CurLexicalScope = ParentScope; |
| RunCleanupsScope::ForceCleanup(); |
| |
| if (!Labels.empty()) |
| rescopeLabels(); |
| } |
| |
| bool hasLabels() const { |
| return !Labels.empty(); |
| } |
| |
| void rescopeLabels(); |
| }; |
| |
| typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; |
| |
| /// The class used to assign some variables some temporarily addresses. |
| class OMPMapVars { |
| DeclMapTy SavedLocals; |
| DeclMapTy SavedTempAddresses; |
| OMPMapVars(const OMPMapVars &) = delete; |
| void operator=(const OMPMapVars &) = delete; |
| |
| public: |
| explicit OMPMapVars() = default; |
| ~OMPMapVars() { |
| assert(SavedLocals.empty() && "Did not restored original addresses."); |
| }; |
| |
| /// Sets the address of the variable \p LocalVD to be \p TempAddr in |
| /// function \p CGF. |
| /// \return true if at least one variable was set already, false otherwise. |
| bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, |
| Address TempAddr) { |
| LocalVD = LocalVD->getCanonicalDecl(); |
| // Only save it once. |
| if (SavedLocals.count(LocalVD)) return false; |
| |
| // Copy the existing local entry to SavedLocals. |
| auto it = CGF.LocalDeclMap.find(LocalVD); |
| if (it != CGF.LocalDeclMap.end()) |
| SavedLocals.try_emplace(LocalVD, it->second); |
| else |
| SavedLocals.try_emplace(LocalVD, Address::invalid()); |
| |
| // Generate the private entry. |
| QualType VarTy = LocalVD->getType(); |
| if (VarTy->isReferenceType()) { |
| Address Temp = CGF.CreateMemTemp(VarTy); |
| CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); |
| TempAddr = Temp; |
| } |
| SavedTempAddresses.try_emplace(LocalVD, TempAddr); |
| |
| return true; |
| } |
| |
| /// Applies new addresses to the list of the variables. |
| /// \return true if at least one variable is using new address, false |
| /// otherwise. |
| bool apply(CodeGenFunction &CGF) { |
| copyInto(SavedTempAddresses, CGF.LocalDeclMap); |
| SavedTempAddresses.clear(); |
| return !SavedLocals.empty(); |
| } |
| |
| /// Restores original addresses of the variables. |
| void restore(CodeGenFunction &CGF) { |
| if (!SavedLocals.empty()) { |
| copyInto(SavedLocals, CGF.LocalDeclMap); |
| SavedLocals.clear(); |
| } |
| } |
| |
| private: |
| /// Copy all the entries in the source map over the corresponding |
| /// entries in the destination, which must exist. |
| static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { |
| for (auto &Pair : Src) { |
| if (!Pair.second.isValid()) { |
| Dest.erase(Pair.first); |
| continue; |
| } |
| |
| auto I = Dest.find(Pair.first); |
| if (I != Dest.end()) |
| I->second = Pair.second; |
| else |
| Dest.insert(Pair); |
| } |
| } |
| }; |
| |
| /// The scope used to remap some variables as private in the OpenMP loop body |
| /// (or other captured region emitted without outlining), and to restore old |
| /// vars back on exit. |
| class OMPPrivateScope : public RunCleanupsScope { |
| OMPMapVars MappedVars; |
| OMPPrivateScope(const OMPPrivateScope &) = delete; |
| void operator=(const OMPPrivateScope &) = delete; |
| |
| public: |
| /// Enter a new OpenMP private scope. |
| explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} |
| |
| /// Registers \p LocalVD variable as a private and apply \p PrivateGen |
| /// function for it to generate corresponding private variable. \p |
| /// PrivateGen returns an address of the generated private variable. |
| /// \return true if the variable is registered as private, false if it has |
| /// been privatized already. |
| bool addPrivate(const VarDecl *LocalVD, |
| const llvm::function_ref<Address()> PrivateGen) { |
| assert(PerformCleanup && "adding private to dead scope"); |
| return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); |
| } |
| |
| /// Privatizes local variables previously registered as private. |
| /// Registration is separate from the actual privatization to allow |
| /// initializers use values of the original variables, not the private one. |
| /// This is important, for example, if the private variable is a class |
| /// variable initialized by a constructor that references other private |
| /// variables. But at initialization original variables must be used, not |
| /// private copies. |
| /// \return true if at least one variable was privatized, false otherwise. |
| bool Privatize() { return MappedVars.apply(CGF); } |
| |
| void ForceCleanup() { |
| RunCleanupsScope::ForceCleanup(); |
| MappedVars.restore(CGF); |
| } |
| |
| /// Exit scope - all the mapped variables are restored. |
| ~OMPPrivateScope() { |
| if (PerformCleanup) |
| ForceCleanup(); |
| } |
| |
| /// Checks if the global variable is captured in current function. |
| bool isGlobalVarCaptured(const VarDecl *VD) const { |
| VD = VD->getCanonicalDecl(); |
| return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; |
| } |
| }; |
| |
| /// Takes the old cleanup stack size and emits the cleanup blocks |
| /// that have been added. |
| void |
| PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, |
| std::initializer_list<llvm::Value **> ValuesToReload = {}); |
| |
| /// Takes the old cleanup stack size and emits the cleanup blocks |
| /// that have been added, then adds all lifetime-extended cleanups from |
| /// the given position to the stack. |
| void |
| PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, |
| size_t OldLifetimeExtendedStackSize, |
| std::initializer_list<llvm::Value **> ValuesToReload = {}); |
| |
| void ResolveBranchFixups(llvm::BasicBlock *Target); |
| |
| /// The given basic block lies in the current EH scope, but may be a |
| /// target of a potentially scope-crossing jump; get a stable handle |
| /// to which we can perform this jump later. |
| JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { |
| return JumpDest(Target, |
| EHStack.getInnermostNormalCleanup(), |
| NextCleanupDestIndex++); |
| } |
| |
| /// The given basic block lies in the current EH scope, but may be a |
| /// target of a potentially scope-crossing jump; get a stable handle |
| /// to which we can perform this jump later. |
| JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { |
| return getJumpDestInCurrentScope(createBasicBlock(Name)); |
| } |
| |
| /// EmitBranchThroughCleanup - Emit a branch from the current insert |
| /// block through the normal cleanup handling code (if any) and then |
| /// on to \arg Dest. |
| void EmitBranchThroughCleanup(JumpDest Dest); |
| |
| /// isObviouslyBranchWithoutCleanups - Return true if a branch to the |
| /// specified destination obviously has no cleanups to run. 'false' is always |
| /// a conservatively correct answer for this method. |
| bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; |
| |
| /// popCatchScope - Pops the catch scope at the top of the EHScope |
| /// stack, emitting any required code (other than the catch handlers |
| /// themselves). |
| void popCatchScope(); |
| |
| llvm::BasicBlock *getEHResumeBlock(bool isCleanup); |
| llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); |
| llvm::BasicBlock * |
| getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); |
| |
| /// An object to manage conditionally-evaluated expressions. |
| class ConditionalEvaluation { |
| llvm::BasicBlock *StartBB; |
| |
| public: |
| ConditionalEvaluation(CodeGenFunction &CGF) |
| : StartBB(CGF.Builder.GetInsertBlock()) {} |
| |
| void begin(CodeGenFunction &CGF) { |
| assert(CGF.OutermostConditional != this); |
| if (!CGF.OutermostConditional) |
| CGF.OutermostConditional = this; |
| } |
| |
| void end(CodeGenFunction &CGF) { |
| assert(CGF.OutermostConditional != nullptr); |
| if (CGF.OutermostConditional == this) |
| CGF.OutermostConditional = nullptr; |
| } |
| |
| /// Returns a block which will be executed prior to each |
| /// evaluation of the conditional code. |
| llvm::BasicBlock *getStartingBlock() const { |
| return StartBB; |
| } |
| }; |
| |
| /// isInConditionalBranch - Return true if we're currently emitting |
| /// one branch or the other of a conditional expression. |
| bool isInConditionalBranch() const { return OutermostConditional != nullptr; } |
| |
| void setBeforeOutermostConditional(llvm::Value *value, Address addr) { |
| assert(isInConditionalBranch()); |
| llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); |
| auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); |
| store->setAlignment(addr.getAlignment().getQuantity()); |
| } |
| |
| /// An RAII object to record that we're evaluating a statement |
| /// expression. |
| class StmtExprEvaluation { |
| CodeGenFunction &CGF; |
| |
| /// We have to save the outermost conditional: cleanups in a |
| /// statement expression aren't conditional just because the |
| /// StmtExpr is. |
| ConditionalEvaluation *SavedOutermostConditional; |
| |
| public: |
| StmtExprEvaluation(CodeGenFunction &CGF) |
| : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { |
| CGF.OutermostConditional = nullptr; |
| } |
| |
| ~StmtExprEvaluation() { |
| CGF.OutermostConditional = SavedOutermostConditional; |
| CGF.EnsureInsertPoint(); |
| } |
| }; |
| |
| /// An object which temporarily prevents a value from being |
| /// destroyed by aggressive peephole optimizations that assume that |
| /// all uses of a value have been realized in the IR. |
| class PeepholeProtection { |
| llvm::Instruction *Inst; |
| friend class CodeGenFunction; |
| |
| public: |
| PeepholeProtection() : Inst(nullptr) {} |
| }; |
| |
| /// A non-RAII class containing all the information about a bound |
| /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for |
| /// this which makes individual mappings very simple; using this |
| /// class directly is useful when you have a variable number of |
| /// opaque values or don't want the RAII functionality for some |
| /// reason. |
| class OpaqueValueMappingData { |
| const OpaqueValueExpr *OpaqueValue; |
| bool BoundLValue; |
| CodeGenFunction::PeepholeProtection Protection; |
| |
| OpaqueValueMappingData(const OpaqueValueExpr *ov, |
| bool boundLValue) |
| : OpaqueValue(ov), BoundLValue(boundLValue) {} |
| public: |
| OpaqueValueMappingData() : OpaqueValue(nullptr) {} |
| |
| static bool shouldBindAsLValue(const Expr *expr) { |
| // gl-values should be bound as l-values for obvious reasons. |
| // Records should be bound as l-values because IR generation |
| // always keeps them in memory. Expressions of function type |
| // act exactly like l-values but are formally required to be |
| // r-values in C. |
| return expr->isGLValue() || |
| expr->getType()->isFunctionType() || |
| hasAggregateEvaluationKind(expr->getType()); |
| } |
| |
| static OpaqueValueMappingData bind(CodeGenFunction &CGF, |
| const OpaqueValueExpr *ov, |
| const Expr *e) { |
| if (shouldBindAsLValue(ov)) |
| return bind(CGF, ov, CGF.EmitLValue(e)); |
| return bind(CGF, ov, CGF.EmitAnyExpr(e)); |
| } |
| |
| static OpaqueValueMappingData bind(CodeGenFunction &CGF, |
| const OpaqueValueExpr *ov, |
| const LValue &lv) { |
| assert(shouldBindAsLValue(ov)); |
| CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); |
| return OpaqueValueMappingData(ov, true); |
| } |
| |
| static OpaqueValueMappingData bind(CodeGenFunction &CGF, |
| const OpaqueValueExpr *ov, |
| const RValue &rv) { |
| assert(!shouldBindAsLValue(ov)); |
| CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); |
| |
| OpaqueValueMappingData data(ov, false); |
| |
| // Work around an extremely aggressive peephole optimization in |
| // EmitScalarConversion which assumes that all other uses of a |
| // value are extant. |
| data.Protection = CGF.protectFromPeepholes(rv); |
| |
| return data; |
| } |
| |
| bool isValid() const { return OpaqueValue != nullptr; } |
| void clear() { OpaqueValue = nullptr; } |
| |
| void unbind(CodeGenFunction &CGF) { |
| assert(OpaqueValue && "no data to unbind!"); |
| |
| if (BoundLValue) { |
| CGF.OpaqueLValues.erase(OpaqueValue); |
| } else { |
| CGF.OpaqueRValues.erase(OpaqueValue); |
| CGF.unprotectFromPeepholes(Protection); |
| } |
| } |
| }; |
| |
| /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. |
| class OpaqueValueMapping { |
| CodeGenFunction &CGF; |
| OpaqueValueMappingData Data; |
| |
| public: |
| static bool shouldBindAsLValue(const Expr *expr) { |
| return OpaqueValueMappingData::shouldBindAsLValue(expr); |
| } |
| |
| /// Build the opaque value mapping for the given conditional |
| /// operator if it's the GNU ?: extension. This is a common |
| /// enough pattern that the convenience operator is really |
| /// helpful. |
| /// |
| OpaqueValueMapping(CodeGenFunction &CGF, |
| const AbstractConditionalOperator *op) : CGF(CGF) { |
| if (isa<ConditionalOperator>(op)) |
| // Leave Data empty. |
| return; |
| |
| const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); |
| Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), |
| e->getCommon()); |
| } |
| |
| /// Build the opaque value mapping for an OpaqueValueExpr whose source |
| /// expression is set to the expression the OVE represents. |
| OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) |
| : CGF(CGF) { |
| if (OV) { |
| assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " |
| "for OVE with no source expression"); |
| Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); |
| } |
| } |
| |
| OpaqueValueMapping(CodeGenFunction &CGF, |
| const OpaqueValueExpr *opaqueValue, |
| LValue lvalue) |
| : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { |
| } |
| |
| OpaqueValueMapping(CodeGenFunction &CGF, |
| const OpaqueValueExpr *opaqueValue, |
| RValue rvalue) |
| : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { |
| } |
| |
| void pop() { |
| Data.unbind(CGF); |
| Data.clear(); |
| } |
| |
| ~OpaqueValueMapping() { |
| if (Data.isValid()) Data.unbind(CGF); |
| } |
| }; |
| |
| private: |
| CGDebugInfo *DebugInfo; |
| bool DisableDebugInfo = false; |
| |
| /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid |
| /// calling llvm.stacksave for multiple VLAs in the same scope. |
| bool DidCallStackSave = false; |
| |
| /// IndirectBranch - The first time an indirect goto is seen we create a block |
| /// with an indirect branch. Every time we see the address of a label taken, |
| /// we add the label to the indirect goto. Every subsequent indirect goto is |
| /// codegen'd as a jump to the IndirectBranch's basic block. |
| llvm::IndirectBrInst *IndirectBranch = nullptr; |
| |
| /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C |
| /// decls. |
| DeclMapTy LocalDeclMap; |
| |
| // Keep track of the cleanups for callee-destructed parameters pushed to the |
| // cleanup stack so that they can be deactivated later. |
| llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> |
| CalleeDestructedParamCleanups; |
| |
| /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this |
| /// will contain a mapping from said ParmVarDecl to its implicit "object_size" |
| /// parameter. |
| llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> |
| SizeArguments; |
| |
| /// Track escaped local variables with auto storage. Used during SEH |
| /// outlining to produce a call to llvm.localescape. |
| llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; |
| |
| /// LabelMap - This keeps track of the LLVM basic block for each C label. |
| llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; |
| |
| // BreakContinueStack - This keeps track of where break and continue |
| // statements should jump to. |
| struct BreakContinue { |
| BreakContinue(JumpDest Break, JumpDest Continue) |
| : BreakBlock(Break), ContinueBlock(Continue) {} |
| |
| JumpDest BreakBlock; |
| JumpDest ContinueBlock; |
| }; |
| SmallVector<BreakContinue, 8> BreakContinueStack; |
| |
| /// Handles cancellation exit points in OpenMP-related constructs. |
| class OpenMPCancelExitStack { |
| /// Tracks cancellation exit point and join point for cancel-related exit |
| /// and normal exit. |
| struct CancelExit { |
| CancelExit() = default; |
| CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, |
| JumpDest ContBlock) |
| : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} |
| OpenMPDirectiveKind Kind = OMPD_unknown; |
| /// true if the exit block has been emitted already by the special |
| /// emitExit() call, false if the default codegen is used. |
| bool HasBeenEmitted = false; |
| JumpDest ExitBlock; |
| JumpDest ContBlock; |
| }; |
| |
| SmallVector<CancelExit, 8> Stack; |
| |
| public: |
| OpenMPCancelExitStack() : Stack(1) {} |
| ~OpenMPCancelExitStack() = default; |
| /// Fetches the exit block for the current OpenMP construct. |
| JumpDest getExitBlock() const { return Stack.back().ExitBlock; } |
| /// Emits exit block with special codegen procedure specific for the related |
| /// OpenMP construct + emits code for normal construct cleanup. |
| void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, |
| const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { |
| if (Stack.back().Kind == Kind && getExitBlock().isValid()) { |
| assert(CGF.getOMPCancelDestination(Kind).isValid()); |
| assert(CGF.HaveInsertPoint()); |
| assert(!Stack.back().HasBeenEmitted); |
| auto IP = CGF.Builder.saveAndClearIP(); |
| CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); |
| CodeGen(CGF); |
| CGF.EmitBranch(Stack.back().ContBlock.getBlock()); |
| CGF.Builder.restoreIP(IP); |
| Stack.back().HasBeenEmitted = true; |
| } |
| CodeGen(CGF); |
| } |
| /// Enter the cancel supporting \a Kind construct. |
| /// \param Kind OpenMP directive that supports cancel constructs. |
| /// \param HasCancel true, if the construct has inner cancel directive, |
| /// false otherwise. |
| void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { |
| Stack.push_back({Kind, |
| HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") |
| : JumpDest(), |
| HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") |
| : JumpDest()}); |
| } |
| /// Emits default exit point for the cancel construct (if the special one |
| /// has not be used) + join point for cancel/normal exits. |
| void exit(CodeGenFunction &CGF) { |
| if (getExitBlock().isValid()) { |
| assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); |
| bool HaveIP = CGF.HaveInsertPoint(); |
| if (!Stack.back().HasBeenEmitted) { |
| if (HaveIP) |
| CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); |
| CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); |
| CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); |
| } |
| CGF.EmitBlock(Stack.back().ContBlock.getBlock()); |
| if (!HaveIP) { |
| CGF.Builder.CreateUnreachable(); |
| CGF.Builder.ClearInsertionPoint(); |
| } |
| } |
| Stack.pop_back(); |
| } |
| }; |
| OpenMPCancelExitStack OMPCancelStack; |
| |
| CodeGenPGO PGO; |
| |
| /// Calculate branch weights appropriate for PGO data |
| llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); |
| llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); |
| llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, |
| uint64_t LoopCount); |
| |
| public: |
| /// Increment the profiler's counter for the given statement by \p StepV. |
| /// If \p StepV is null, the default increment is 1. |
| void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { |
| if (CGM.getCodeGenOpts().hasProfileClangInstr()) |
| PGO.emitCounterIncrement(Builder, S, StepV); |
| PGO.setCurrentStmt(S); |
| } |
| |
| /// Get the profiler's count for the given statement. |
| uint64_t getProfileCount(const Stmt *S) { |
| Optional<uint64_t> Count = PGO.getStmtCount(S); |
| if (!Count.hasValue()) |
| return 0; |
| return *Count; |
| } |
| |
| /// Set the profiler's current count. |
| void setCurrentProfileCount(uint64_t Count) { |
| PGO.setCurrentRegionCount(Count); |
| } |
| |
| /// Get the profiler's current count. This is generally the count for the most |
| /// recently incremented counter. |
| uint64_t getCurrentProfileCount() { |
| return PGO.getCurrentRegionCount(); |
| } |
| |
| private: |
| |
| /// SwitchInsn - This is nearest current switch instruction. It is null if |
| /// current context is not in a switch. |
| llvm::SwitchInst *SwitchInsn = nullptr; |
| /// The branch weights of SwitchInsn when doing instrumentation based PGO. |
| SmallVector<uint64_t, 16> *SwitchWeights = nullptr; |
| |
| /// CaseRangeBlock - This block holds if condition check for last case |
| /// statement range in current switch instruction. |
| llvm::BasicBlock *CaseRangeBlock = nullptr; |
| |
| /// OpaqueLValues - Keeps track of the current set of opaque value |
| /// expressions. |
| llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; |
| llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; |
| |
| // VLASizeMap - This keeps track of the associated size for each VLA type. |
| // We track this by the size expression rather than the type itself because |
| // in certain situations, like a const qualifier applied to an VLA typedef, |
| // multiple VLA types can share the same size expression. |
| // FIXME: Maybe this could be a stack of maps that is pushed/popped as we |
| // enter/leave scopes. |
| llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; |
| |
| /// A block containing a single 'unreachable' instruction. Created |
| /// lazily by getUnreachableBlock(). |
| llvm::BasicBlock *UnreachableBlock = nullptr; |
| |
| /// Counts of the number return expressions in the function. |
| unsigned NumReturnExprs = 0; |
| |
| /// Count the number of simple (constant) return expressions in the function. |
| unsigned NumSimpleReturnExprs = 0; |
| |
| /// The last regular (non-return) debug location (breakpoint) in the function. |
| SourceLocation LastStopPoint; |
| |
| public: |
| /// A scope within which we are constructing the fields of an object which |
| /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use |
| /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. |
| class FieldConstructionScope { |
| public: |
| FieldConstructionScope(CodeGenFunction &CGF, Address This) |
| : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { |
| CGF.CXXDefaultInitExprThis = This; |
| } |
| ~FieldConstructionScope() { |
| CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; |
| } |
| |
| private: |
| CodeGenFunction &CGF; |
| Address OldCXXDefaultInitExprThis; |
| }; |
| |
| /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' |
| /// is overridden to be the object under construction. |
| class CXXDefaultInitExprScope { |
| public: |
| CXXDefaultInitExprScope(CodeGenFunction &CGF) |
| : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), |
| OldCXXThisAlignment(CGF.CXXThisAlignment) { |
| CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); |
| CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); |
| } |
| ~CXXDefaultInitExprScope() { |
| CGF.CXXThisValue = OldCXXThisValue; |
| CGF.CXXThisAlignment = OldCXXThisAlignment; |
| } |
| |
| public: |
| CodeGenFunction &CGF; |
| llvm::Value *OldCXXThisValue; |
| CharUnits OldCXXThisAlignment; |
| }; |
| |
| /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the |
| /// current loop index is overridden. |
| class ArrayInitLoopExprScope { |
| public: |
| ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) |
| : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { |
| CGF.ArrayInitIndex = Index; |
| } |
| ~ArrayInitLoopExprScope() { |
| CGF.ArrayInitIndex = OldArrayInitIndex; |
| } |
| |
| private: |
| CodeGenFunction &CGF; |
| llvm::Value *OldArrayInitIndex; |
| }; |
| |
| class InlinedInheritingConstructorScope { |
| public: |
| InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) |
| : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), |
| OldCurCodeDecl(CGF.CurCodeDecl), |
| OldCXXABIThisDecl(CGF.CXXABIThisDecl), |
| OldCXXABIThisValue(CGF.CXXABIThisValue), |
| OldCXXThisValue(CGF.CXXThisValue), |
| OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), |
| OldCXXThisAlignment(CGF.CXXThisAlignment), |
| OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), |
| OldCXXInheritedCtorInitExprArgs( |
| std::move(CGF.CXXInheritedCtorInitExprArgs)) { |
| CGF.CurGD = GD; |
| CGF.CurFuncDecl = CGF.CurCodeDecl = |
| cast<CXXConstructorDecl>(GD.getDecl()); |
| CGF.CXXABIThisDecl = nullptr; |
| CGF.CXXABIThisValue = nullptr; |
| CGF.CXXThisValue = nullptr; |
| CGF.CXXABIThisAlignment = CharUnits(); |
| CGF.CXXThisAlignment = CharUnits(); |
| CGF.ReturnValue = Address::invalid(); |
| CGF.FnRetTy = QualType(); |
| CGF.CXXInheritedCtorInitExprArgs.clear(); |
| } |
| ~InlinedInheritingConstructorScope() { |
| CGF.CurGD = OldCurGD; |
| CGF.CurFuncDecl = OldCurFuncDecl; |
| CGF.CurCodeDecl = OldCurCodeDecl; |
| CGF.CXXABIThisDecl = OldCXXABIThisDecl; |
| CGF.CXXABIThisValue = OldCXXABIThisValue; |
| CGF.CXXThisValue = OldCXXThisValue; |
| CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; |
| CGF.CXXThisAlignment = OldCXXThisAlignment; |
| CGF.ReturnValue = OldReturnValue; |
| CGF.FnRetTy = OldFnRetTy; |
| CGF.CXXInheritedCtorInitExprArgs = |
| std::move(OldCXXInheritedCtorInitExprArgs); |
| } |
| |
| private: |
| CodeGenFunction &CGF; |
| GlobalDecl OldCurGD; |
| const Decl *OldCurFuncDecl; |
| const Decl *OldCurCodeDecl; |
| ImplicitParamDecl *OldCXXABIThisDecl; |
| llvm::Value *OldCXXABIThisValue; |
| llvm::Value *OldCXXThisValue; |
| CharUnits OldCXXABIThisAlignment; |
| CharUnits OldCXXThisAlignment; |
| Address OldReturnValue; |
| QualType OldFnRetTy; |
| CallArgList OldCXXInheritedCtorInitExprArgs; |
| }; |
| |
| private: |
| /// CXXThisDecl - When generating code for a C++ member function, |
| /// this will hold the implicit 'this' declaration. |
| ImplicitParamDecl *CXXABIThisDecl = nullptr; |
| llvm::Value *CXXABIThisValue = nullptr; |
| llvm::Value *CXXThisValue = nullptr; |
| CharUnits CXXABIThisAlignment; |
| CharUnits CXXThisAlignment; |
| |
| /// The value of 'this' to use when evaluating CXXDefaultInitExprs within |
| /// this expression. |
| Address CXXDefaultInitExprThis = Address::invalid(); |
| |
| /// The current array initialization index when evaluating an |
| /// ArrayInitIndexExpr within an ArrayInitLoopExpr. |
| llvm::Value *ArrayInitIndex = nullptr; |
| |
| /// The values of function arguments to use when evaluating |
| /// CXXInheritedCtorInitExprs within this context. |
| CallArgList CXXInheritedCtorInitExprArgs; |
| |
| /// CXXStructorImplicitParamDecl - When generating code for a constructor or |
| /// destructor, this will hold the implicit argument (e.g. VTT). |
| ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; |
| llvm::Value *CXXStructorImplicitParamValue = nullptr; |
| |
| /// OutermostConditional - Points to the outermost active |
| /// conditional control. This is used so that we know if a |
| /// temporary should be destroyed conditionally. |
| ConditionalEvaluation *OutermostConditional = nullptr; |
| |
| /// The current lexical scope. |
| LexicalScope *CurLexicalScope = nullptr; |
| |
| /// The current source location that should be used for exception |
| /// handling code. |
| SourceLocation CurEHLocation; |
| |
| /// BlockByrefInfos - For each __block variable, contains |
| /// information about the layout of the variable. |
| llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; |
| |
| /// Used by -fsanitize=nullability-return to determine whether the return |
| /// value can be checked. |
| llvm::Value *RetValNullabilityPrecondition = nullptr; |
| |
| /// Check if -fsanitize=nullability-return instrumentation is required for |
| /// this function. |
| bool requiresReturnValueNullabilityCheck() const { |
| return RetValNullabilityPrecondition; |
| } |
| |
| /// Used to store precise source locations for return statements by the |
| /// runtime return value checks. |
| Address ReturnLocation = Address::invalid(); |
| |
| /// Check if the return value of this function requires sanitization. |
| bool requiresReturnValueCheck() const { |
| return requiresReturnValueNullabilityCheck() || |
| (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && |
| CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()); |
| } |
| |
| llvm::BasicBlock *TerminateLandingPad = nullptr; |
| llvm::BasicBlock *TerminateHandler = nullptr; |
| llvm::BasicBlock *TrapBB = nullptr; |
| |
| /// Terminate funclets keyed by parent funclet pad. |
| llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; |
| |
| /// Largest vector width used in ths function. Will be used to create a |
| /// function attribute. |
| unsigned LargestVectorWidth = 0; |
| |
| /// True if we need emit the life-time markers. |
| const bool ShouldEmitLifetimeMarkers; |
| |
| /// Add OpenCL kernel arg metadata and the kernel attribute metadata to |
| /// the function metadata. |
| void EmitOpenCLKernelMetadata(const FunctionDecl *FD, |
| llvm::Function *Fn); |
| |
| public: |
| CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); |
| ~CodeGenFunction(); |
| |
| CodeGenTypes &getTypes() const { return CGM.getTypes(); } |
| ASTContext &getContext() const { return CGM.getContext(); } |
| CGDebugInfo *getDebugInfo() { |
| if (DisableDebugInfo) |
| return nullptr; |
| return DebugInfo; |
| } |
| void disableDebugInfo() { DisableDebugInfo = true; } |
| void enableDebugInfo() { DisableDebugInfo = false; } |
| |
| bool shouldUseFusedARCCalls() { |
| return CGM.getCodeGenOpts().OptimizationLevel == 0; |
| } |
| |
| const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } |
| |
| /// Returns a pointer to the function's exception object and selector slot, |
| /// which is assigned in every landing pad. |
| Address getExceptionSlot(); |
| Address getEHSelectorSlot(); |
| |
| /// Returns the contents of the function's exception object and selector |
| /// slots. |
| llvm::Value *getExceptionFromSlot(); |
| llvm::Value *getSelectorFromSlot(); |
| |
| Address getNormalCleanupDestSlot(); |
| |
| llvm::BasicBlock *getUnreachableBlock() { |
| if (!UnreachableBlock) { |
| UnreachableBlock = createBasicBlock("unreachable"); |
| new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); |
| } |
| return UnreachableBlock; |
| } |
| |
| llvm::BasicBlock *getInvokeDest() { |
| if (!EHStack.requiresLandingPad()) return nullptr; |
| return getInvokeDestImpl(); |
| } |
| |
| bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } |
| |
| const TargetInfo &getTarget() const { return Target; } |
| llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } |
| const TargetCodeGenInfo &getTargetHooks() const { |
| return CGM.getTargetCodeGenInfo(); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Cleanups |
| //===--------------------------------------------------------------------===// |
| |
| typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); |
| |
| void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, |
| Address arrayEndPointer, |
| QualType elementType, |
| CharUnits elementAlignment, |
| Destroyer *destroyer); |
| void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, |
| llvm::Value *arrayEnd, |
| QualType elementType, |
| CharUnits elementAlignment, |
| Destroyer *destroyer); |
| |
| void pushDestroy(QualType::DestructionKind dtorKind, |
| Address addr, QualType type); |
| void pushEHDestroy(QualType::DestructionKind dtorKind, |
| Address addr, QualType type); |
| void pushDestroy(CleanupKind kind, Address addr, QualType type, |
| Destroyer *destroyer, bool useEHCleanupForArray); |
| void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, |
| QualType type, Destroyer *destroyer, |
| bool useEHCleanupForArray); |
| void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, |
| llvm::Value *CompletePtr, |
| QualType ElementType); |
| void pushStackRestore(CleanupKind kind, Address SPMem); |
| void emitDestroy(Address addr, QualType type, Destroyer *destroyer, |
| bool useEHCleanupForArray); |
| llvm::Function *generateDestroyHelper(Address addr, QualType type, |
| Destroyer *destroyer, |
| bool useEHCleanupForArray, |
| const VarDecl *VD); |
| void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, |
| QualType elementType, CharUnits elementAlign, |
| Destroyer *destroyer, |
| bool checkZeroLength, bool useEHCleanup); |
| |
| Destroyer *getDestroyer(QualType::DestructionKind destructionKind); |
| |
| /// Determines whether an EH cleanup is required to destroy a type |
| /// with the given destruction kind. |
| bool needsEHCleanup(QualType::DestructionKind kind) { |
| switch (kind) { |
| case QualType::DK_none: |
| return false; |
| case QualType::DK_cxx_destructor: |
| case QualType::DK_objc_weak_lifetime: |
| case QualType::DK_nontrivial_c_struct: |
| return getLangOpts().Exceptions; |
| case QualType::DK_objc_strong_lifetime: |
| return getLangOpts().Exceptions && |
| CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; |
| } |
| llvm_unreachable("bad destruction kind"); |
| } |
| |
| CleanupKind getCleanupKind(QualType::DestructionKind kind) { |
| return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Objective-C |
| //===--------------------------------------------------------------------===// |
| |
| void GenerateObjCMethod(const ObjCMethodDecl *OMD); |
| |
| void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); |
| |
| /// GenerateObjCGetter - Synthesize an Objective-C property getter function. |
| void GenerateObjCGetter(ObjCImplementationDecl *IMP, |
| const ObjCPropertyImplDecl *PID); |
| void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, |
| const ObjCPropertyImplDecl *propImpl, |
| const ObjCMethodDecl *GetterMothodDecl, |
| llvm::Constant *AtomicHelperFn); |
| |
| void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, |
| ObjCMethodDecl *MD, bool ctor); |
| |
| /// GenerateObjCSetter - Synthesize an Objective-C property setter function |
| /// for the given property. |
| void GenerateObjCSetter(ObjCImplementationDecl *IMP, |
| const ObjCPropertyImplDecl *PID); |
| void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, |
| const ObjCPropertyImplDecl *propImpl, |
| llvm::Constant *AtomicHelperFn); |
| |
| //===--------------------------------------------------------------------===// |
| // Block Bits |
| //===--------------------------------------------------------------------===// |
| |
| /// Emit block literal. |
| /// \return an LLVM value which is a pointer to a struct which contains |
| /// information about the block, including the block invoke function, the |
| /// captured variables, etc. |
| llvm::Value *EmitBlockLiteral(const BlockExpr *); |
| static void destroyBlockInfos(CGBlockInfo *info); |
| |
| llvm::Function *GenerateBlockFunction(GlobalDecl GD, |
| const CGBlockInfo &Info, |
| const DeclMapTy &ldm, |
| bool IsLambdaConversionToBlock, |
| bool BuildGlobalBlock); |
| |
| llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); |
| llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); |
| llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( |
| const ObjCPropertyImplDecl *PID); |
| llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( |
| const ObjCPropertyImplDecl *PID); |
| llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); |
| |
| void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); |
| |
| class AutoVarEmission; |
| |
| void emitByrefStructureInit(const AutoVarEmission &emission); |
| |
| /// Enter a cleanup to destroy a __block variable. Note that this |
| /// cleanup should be a no-op if the variable hasn't left the stack |
| /// yet; if a cleanup is required for the variable itself, that needs |
| /// to be done externally. |
| /// |
| /// \param Kind Cleanup kind. |
| /// |
| /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block |
| /// structure that will be passed to _Block_object_dispose. When |
| /// \p LoadBlockVarAddr is true, the address of the field of the block |
| /// structure that holds the address of the __block structure. |
| /// |
| /// \param Flags The flag that will be passed to _Block_object_dispose. |
| /// |
| /// \param LoadBlockVarAddr Indicates whether we need to emit a load from |
| /// \p Addr to get the address of the __block structure. |
| void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, |
| bool LoadBlockVarAddr); |
| |
| void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, |
| llvm::Value *ptr); |
| |
| Address LoadBlockStruct(); |
| Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); |
| |
| /// BuildBlockByrefAddress - Computes the location of the |
| /// data in a variable which is declared as __block. |
| Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, |
| bool followForward = true); |
| Address emitBlockByrefAddress(Address baseAddr, |
| const BlockByrefInfo &info, |
| bool followForward, |
| const llvm::Twine &name); |
| |
| const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); |
| |
| QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); |
| |
| void GenerateCode(GlobalDecl GD, llvm::Function *Fn, |
| const CGFunctionInfo &FnInfo); |
| /// Emit code for the start of a function. |
| /// \param Loc The location to be associated with the function. |
| /// \param StartLoc The location of the function body. |
| void StartFunction(GlobalDecl GD, |
| QualType RetTy, |
| llvm::Function *Fn, |
| const CGFunctionInfo &FnInfo, |
| const FunctionArgList &Args, |
| SourceLocation Loc = SourceLocation(), |
| SourceLocation StartLoc = SourceLocation()); |
| |
| static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); |
| |
| void EmitConstructorBody(FunctionArgList &Args); |
| void EmitDestructorBody(FunctionArgList &Args); |
| void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); |
| void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); |
| void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); |
| |
| void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, |
| CallArgList &CallArgs); |
| void EmitLambdaBlockInvokeBody(); |
| void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); |
| void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); |
| void EmitAsanPrologueOrEpilogue(bool Prologue); |
| |
| /// Emit the unified return block, trying to avoid its emission when |
| /// possible. |
| /// \return The debug location of the user written return statement if the |
| /// return block is is avoided. |
| llvm::DebugLoc EmitReturnBlock(); |
| |
| /// FinishFunction - Complete IR generation of the current function. It is |
| /// legal to call this function even if there is no current insertion point. |
| void FinishFunction(SourceLocation EndLoc=SourceLocation()); |
| |
| void StartThunk(llvm::Function *Fn, GlobalDecl GD, |
| const CGFunctionInfo &FnInfo, bool IsUnprototyped); |
| |
| void EmitCallAndReturnForThunk(llvm::Constant *Callee, const ThunkInfo *Thunk, |
| bool IsUnprototyped); |
| |
| void FinishThunk(); |
| |
| /// Emit a musttail call for a thunk with a potentially adjusted this pointer. |
| void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, |
| llvm::Value *Callee); |
| |
| /// Generate a thunk for the given method. |
| void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, |
| GlobalDecl GD, const ThunkInfo &Thunk, |
| bool IsUnprototyped); |
| |
| llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, |
| const CGFunctionInfo &FnInfo, |
| GlobalDecl GD, const ThunkInfo &Thunk); |
| |
| void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, |
| FunctionArgList &Args); |
| |
| void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); |
| |
| /// Struct with all information about dynamic [sub]class needed to set vptr. |
| struct VPtr { |
| BaseSubobject Base; |
| const CXXRecordDecl *NearestVBase; |
| CharUnits OffsetFromNearestVBase; |
| const CXXRecordDecl *VTableClass; |
| }; |
| |
| /// Initialize the vtable pointer of the given subobject. |
| void InitializeVTablePointer(const VPtr &vptr); |
| |
| typedef llvm::SmallVector<VPtr, 4> VPtrsVector; |
| |
| typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; |
| VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); |
| |
| void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, |
| CharUnits OffsetFromNearestVBase, |
| bool BaseIsNonVirtualPrimaryBase, |
| const CXXRecordDecl *VTableClass, |
| VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); |
| |
| void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); |
| |
| /// GetVTablePtr - Return the Value of the vtable pointer member pointed |
| /// to by This. |
| llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, |
| const CXXRecordDecl *VTableClass); |
| |
| enum CFITypeCheckKind { |
| CFITCK_VCall, |
| CFITCK_NVCall, |
| CFITCK_DerivedCast, |
| CFITCK_UnrelatedCast, |
| CFITCK_ICall, |
| CFITCK_NVMFCall, |
| CFITCK_VMFCall, |
| }; |
| |
| /// Derived is the presumed address of an object of type T after a |
| /// cast. If T is a polymorphic class type, emit a check that the virtual |
| /// table for Derived belongs to a class derived from T. |
| void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, |
| bool MayBeNull, CFITypeCheckKind TCK, |
| SourceLocation Loc); |
| |
| /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. |
| /// If vptr CFI is enabled, emit a check that VTable is valid. |
| void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, |
| CFITypeCheckKind TCK, SourceLocation Loc); |
| |
| /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for |
| /// RD using llvm.type.test. |
| void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, |
| CFITypeCheckKind TCK, SourceLocation Loc); |
| |
| /// If whole-program virtual table optimization is enabled, emit an assumption |
| /// that VTable is a member of RD's type identifier. Or, if vptr CFI is |
| /// enabled, emit a check that VTable is a member of RD's type identifier. |
| void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, |
| llvm::Value *VTable, SourceLocation Loc); |
| |
| /// Returns whether we should perform a type checked load when loading a |
| /// virtual function for virtual calls to members of RD. This is generally |
| /// true when both vcall CFI and whole-program-vtables are enabled. |
| bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); |
| |
| /// Emit a type checked load from the given vtable. |
| llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, |
| uint64_t VTableByteOffset); |
| |
| /// EnterDtorCleanups - Enter the cleanups necessary to complete the |
| /// given phase of destruction for a destructor. The end result |
| /// should call destructors on members and base classes in reverse |
| /// order of their construction. |
| void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); |
| |
| /// ShouldInstrumentFunction - Return true if the current function should be |
| /// instrumented with __cyg_profile_func_* calls |
| bool ShouldInstrumentFunction(); |
| |
| /// ShouldXRayInstrument - Return true if the current function should be |
| /// instrumented with XRay nop sleds. |
| bool ShouldXRayInstrumentFunction() const; |
| |
| /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit |
| /// XRay custom event handling calls. |
| bool AlwaysEmitXRayCustomEvents() const; |
| |
| /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit |
| /// XRay typed event handling calls. |
| bool AlwaysEmitXRayTypedEvents() const; |
| |
| /// Encode an address into a form suitable for use in a function prologue. |
| llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, |
| llvm::Constant *Addr); |
| |
| /// Decode an address used in a function prologue, encoded by \c |
| /// EncodeAddrForUseInPrologue. |
| llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, |
| llvm::Value *EncodedAddr); |
| |
| /// EmitFunctionProlog - Emit the target specific LLVM code to load the |
| /// arguments for the given function. This is also responsible for naming the |
| /// LLVM function arguments. |
| void EmitFunctionProlog(const CGFunctionInfo &FI, |
| llvm::Function *Fn, |
| const FunctionArgList &Args); |
| |
| /// EmitFunctionEpilog - Emit the target specific LLVM code to return the |
| /// given temporary. |
| void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, |
| SourceLocation EndLoc); |
| |
| /// Emit a test that checks if the return value \p RV is nonnull. |
| void EmitReturnValueCheck(llvm::Value *RV); |
| |
| /// EmitStartEHSpec - Emit the start of the exception spec. |
| void EmitStartEHSpec(const Decl *D); |
| |
| /// EmitEndEHSpec - Emit the end of the exception spec. |
| void EmitEndEHSpec(const Decl *D); |
| |
| /// getTerminateLandingPad - Return a landing pad that just calls terminate. |
| llvm::BasicBlock *getTerminateLandingPad(); |
| |
| /// getTerminateLandingPad - Return a cleanup funclet that just calls |
| /// terminate. |
| llvm::BasicBlock *getTerminateFunclet(); |
| |
| /// getTerminateHandler - Return a handler (not a landing pad, just |
| /// a catch handler) that just calls terminate. This is used when |
| /// a terminate scope encloses a try. |
| llvm::BasicBlock *getTerminateHandler(); |
| |
| llvm::Type *ConvertTypeForMem(QualType T); |
| llvm::Type *ConvertType(QualType T); |
| llvm::Type *ConvertType(const TypeDecl *T) { |
| return ConvertType(getContext().getTypeDeclType(T)); |
| } |
| |
| /// LoadObjCSelf - Load the value of self. This function is only valid while |
| /// generating code for an Objective-C method. |
| llvm::Value *LoadObjCSelf(); |
| |
| /// TypeOfSelfObject - Return type of object that this self represents. |
| QualType TypeOfSelfObject(); |
| |
| /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. |
| static TypeEvaluationKind getEvaluationKind(QualType T); |
| |
| static bool hasScalarEvaluationKind(QualType T) { |
| return getEvaluationKind(T) == TEK_Scalar; |
| } |
| |
| static bool hasAggregateEvaluationKind(QualType T) { |
| return getEvaluationKind(T) == TEK_Aggregate; |
| } |
| |
| /// createBasicBlock - Create an LLVM basic block. |
| llvm::BasicBlock *createBasicBlock(const Twine &name = "", |
| llvm::Function *parent = nullptr, |
| llvm::BasicBlock *before = nullptr) { |
| return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); |
| } |
| |
| /// getBasicBlockForLabel - Return the LLVM basicblock that the specified |
| /// label maps to. |
| JumpDest getJumpDestForLabel(const LabelDecl *S); |
| |
| /// SimplifyForwardingBlocks - If the given basic block is only a branch to |
| /// another basic block, simplify it. This assumes that no other code could |
| /// potentially reference the basic block. |
| void SimplifyForwardingBlocks(llvm::BasicBlock *BB); |
| |
| /// EmitBlock - Emit the given block \arg BB and set it as the insert point, |
| /// adding a fall-through branch from the current insert block if |
| /// necessary. It is legal to call this function even if there is no current |
| /// insertion point. |
| /// |
| /// IsFinished - If true, indicates that the caller has finished emitting |
| /// branches to the given block and does not expect to emit code into it. This |
| /// means the block can be ignored if it is unreachable. |
| void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); |
| |
| /// EmitBlockAfterUses - Emit the given block somewhere hopefully |
| /// near its uses, and leave the insertion point in it. |
| void EmitBlockAfterUses(llvm::BasicBlock *BB); |
| |
| /// EmitBranch - Emit a branch to the specified basic block from the current |
| /// insert block, taking care to avoid creation of branches from dummy |
| /// blocks. It is legal to call this function even if there is no current |
| /// insertion point. |
| /// |
| /// This function clears the current insertion point. The caller should follow |
| /// calls to this function with calls to Emit*Block prior to generation new |
| /// code. |
| void EmitBranch(llvm::BasicBlock *Block); |
| |
| /// HaveInsertPoint - True if an insertion point is defined. If not, this |
| /// indicates that the current code being emitted is unreachable. |
| bool HaveInsertPoint() const { |
| return Builder.GetInsertBlock() != nullptr; |
| } |
| |
| /// EnsureInsertPoint - Ensure that an insertion point is defined so that |
| /// emitted IR has a place to go. Note that by definition, if this function |
| /// creates a block then that block is unreachable; callers may do better to |
| /// detect when no insertion point is defined and simply skip IR generation. |
| void EnsureInsertPoint() { |
| if (!HaveInsertPoint()) |
| EmitBlock(createBasicBlock()); |
| } |
| |
| /// ErrorUnsupported - Print out an error that codegen doesn't support the |
| /// specified stmt yet. |
| void ErrorUnsupported(const Stmt *S, const char *Type); |
| |
| //===--------------------------------------------------------------------===// |
| // Helpers |
| //===--------------------------------------------------------------------===// |
| |
| LValue MakeAddrLValue(Address Addr, QualType T, |
| AlignmentSource Source = AlignmentSource::Type) { |
| return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), |
| CGM.getTBAAAccessInfo(T)); |
| } |
| |
| LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, |
| TBAAAccessInfo TBAAInfo) { |
| return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); |
| } |
| |
| LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, |
| AlignmentSource Source = AlignmentSource::Type) { |
| return LValue::MakeAddr(Address(V, Alignment), T, getContext(), |
| LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); |
| } |
| |
| LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, |
| LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { |
| return LValue::MakeAddr(Address(V, Alignment), T, getContext(), |
| BaseInfo, TBAAInfo); |
| } |
| |
| LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); |
| LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); |
| CharUnits getNaturalTypeAlignment(QualType T, |
| LValueBaseInfo *BaseInfo = nullptr, |
| TBAAAccessInfo *TBAAInfo = nullptr, |
| bool forPointeeType = false); |
| CharUnits getNaturalPointeeTypeAlignment(QualType T, |
| LValueBaseInfo *BaseInfo = nullptr, |
| TBAAAccessInfo *TBAAInfo = nullptr); |
| |
| Address EmitLoadOfReference(LValue RefLVal, |
| LValueBaseInfo *PointeeBaseInfo = nullptr, |
| TBAAAccessInfo *PointeeTBAAInfo = nullptr); |
| LValue EmitLoadOfReferenceLValue(LValue RefLVal); |
| LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, |
| AlignmentSource Source = |
| AlignmentSource::Type) { |
| LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), |
| CGM.getTBAAAccessInfo(RefTy)); |
| return EmitLoadOfReferenceLValue(RefLVal); |
| } |
| |
| Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, |
| LValueBaseInfo *BaseInfo = nullptr, |
| TBAAAccessInfo *TBAAInfo = nullptr); |
| LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); |
| |
| /// CreateTempAlloca - This creates an alloca and inserts it into the entry |
| /// block if \p ArraySize is nullptr, otherwise inserts it at the current |
| /// insertion point of the builder. The caller is responsible for setting an |
| /// appropriate alignment on |
| /// the alloca. |
| /// |
| /// \p ArraySize is the number of array elements to be allocated if it |
| /// is not nullptr. |
| /// |
| /// LangAS::Default is the address space of pointers to local variables and |
| /// temporaries, as exposed in the source language. In certain |
| /// configurations, this is not the same as the alloca address space, and a |
| /// cast is needed to lift the pointer from the alloca AS into |
| /// LangAS::Default. This can happen when the target uses a restricted |
| /// address space for the stack but the source language requires |
| /// LangAS::Default to be a generic address space. The latter condition is |
| /// common for most programming languages; OpenCL is an exception in that |
| /// LangAS::Default is the private address space, which naturally maps |
| /// to the stack. |
| /// |
| /// Because the address of a temporary is often exposed to the program in |
| /// various ways, this function will perform the cast. The original alloca |
| /// instruction is returned through \p Alloca if it is not nullptr. |
| /// |
| /// The cast is not performaed in CreateTempAllocaWithoutCast. This is |
| /// more efficient if the caller knows that the address will not be exposed. |
| llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", |
| llvm::Value *ArraySize = nullptr); |
| Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, |
| const Twine &Name = "tmp", |
| llvm::Value *ArraySize = nullptr, |
| Address *Alloca = nullptr); |
| Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, |
| const Twine &Name = "tmp", |
| llvm::Value *ArraySize = nullptr); |
| |
| /// CreateDefaultAlignedTempAlloca - This creates an alloca with the |
| /// default ABI alignment of the given LLVM type. |
| /// |
| /// IMPORTANT NOTE: This is *not* generally the right alignment for |
| /// any given AST type that happens to have been lowered to the |
| /// given IR type. This should only ever be used for function-local, |
| /// IR-driven manipulations like saving and restoring a value. Do |
| /// not hand this address off to arbitrary IRGen routines, and especially |
| /// do not pass it as an argument to a function that might expect a |
| /// properly ABI-aligned value. |
| Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, |
| const Twine &Name = "tmp"); |
| |
| /// InitTempAlloca - Provide an initial value for the given alloca which |
| /// will be observable at all locations in the function. |
| /// |
| /// The address should be something that was returned from one of |
| /// the CreateTempAlloca or CreateMemTemp routines, and the |
| /// initializer must be valid in the entry block (i.e. it must |
| /// either be a constant or an argument value). |
| void InitTempAlloca(Address Alloca, llvm::Value *Value); |
| |
| /// CreateIRTemp - Create a temporary IR object of the given type, with |
| /// appropriate alignment. This routine should only be used when an temporary |
| /// value needs to be stored into an alloca (for example, to avoid explicit |
| /// PHI construction), but the type is the IR type, not the type appropriate |
| /// for storing in memory. |
| /// |
| /// That is, this is exactly equivalent to CreateMemTemp, but calling |
| /// ConvertType instead of ConvertTypeForMem. |
| Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); |
| |
| /// CreateMemTemp - Create a temporary memory object of the given type, with |
| /// appropriate alignmen and cast it to the default address space. Returns |
| /// the original alloca instruction by \p Alloca if it is not nullptr. |
| Address CreateMemTemp(QualType T, const Twine &Name = "tmp", |
| Address *Alloca = nullptr); |
| Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", |
| Address *Alloca = nullptr); |
| |
| /// CreateMemTemp - Create a temporary memory object of the given type, with |
| /// appropriate alignmen without casting it to the default address space. |
| Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); |
| Address CreateMemTempWithoutCast(QualType T, CharUnits Align, |
| const Twine &Name = "tmp"); |
| |
| /// CreateAggTemp - Create a temporary memory object for the given |
| /// aggregate type. |
| AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { |
| return AggValueSlot::forAddr(CreateMemTemp(T, Name), |
| T.getQualifiers(), |
| AggValueSlot::IsNotDestructed, |
| AggValueSlot::DoesNotNeedGCBarriers, |
| AggValueSlot::IsNotAliased, |
| AggValueSlot::DoesNotOverlap); |
| } |
| |
| /// Emit a cast to void* in the appropriate address space. |
| llvm::Value *EmitCastToVoidPtr(llvm::Value *value); |
| |
| /// EvaluateExprAsBool - Perform the usual unary conversions on the specified |
| /// expression and compare the result against zero, returning an Int1Ty value. |
| llvm::Value *EvaluateExprAsBool(const Expr *E); |
| |
| /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. |
| void EmitIgnoredExpr(const Expr *E); |
| |
| /// EmitAnyExpr - Emit code to compute the specified expression which can have |
| /// any type. The result is returned as an RValue struct. If this is an |
| /// aggregate expression, the aggloc/agglocvolatile arguments indicate where |
| /// the result should be returned. |
| /// |
| /// \param ignoreResult True if the resulting value isn't used. |
| RValue EmitAnyExpr(const Expr *E, |
| AggValueSlot aggSlot = AggValueSlot::ignored(), |
| bool ignoreResult = false); |
| |
| // EmitVAListRef - Emit a "reference" to a va_list; this is either the address |
| // or the value of the expression, depending on how va_list is defined. |
| Address EmitVAListRef(const Expr *E); |
| |
| /// Emit a "reference" to a __builtin_ms_va_list; this is |
| /// always the value of the expression, because a __builtin_ms_va_list is a |
| /// pointer to a char. |
| Address EmitMSVAListRef(const Expr *E); |
| |
| /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will |
| /// always be accessible even if no aggregate location is provided. |
| RValue EmitAnyExprToTemp(const Expr *E); |
| |
| /// EmitAnyExprToMem - Emits the code necessary to evaluate an |
| /// arbitrary expression into the given memory location. |
| void EmitAnyExprToMem(const Expr *E, Address Location, |
| Qualifiers Quals, bool IsInitializer); |
| |
| void EmitAnyExprToExn(const Expr *E, Address Addr); |
| |
| /// EmitExprAsInit - Emits the code necessary to initialize a |
| /// location in memory with the given initializer. |
| void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, |
| bool capturedByInit); |
| |
| /// hasVolatileMember - returns true if aggregate type has a volatile |
| /// member. |
| bool hasVolatileMember(QualType T) { |
| if (const RecordType *RT = T->getAs<RecordType>()) { |
| const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); |
| return RD->hasVolatileMember(); |
| } |
| return false; |
| } |
| |
| /// Determine whether a return value slot may overlap some other object. |
| AggValueSlot::Overlap_t overlapForReturnValue() { |
| // FIXME: Assuming no overlap here breaks guaranteed copy elision for base |
| // class subobjects. These cases may need to be revisited depending on the |
| // resolution of the relevant core issue. |
| return AggValueSlot::DoesNotOverlap; |
| } |
| |
| /// Determine whether a field initialization may overlap some other object. |
| AggValueSlot::Overlap_t overlapForFieldInit(const FieldDecl *FD) { |
| // FIXME: These cases can result in overlap as a result of P0840R0's |
| // [[no_unique_address]] attribute. We can still infer NoOverlap in the |
| // presence of that attribute if the field is within the nvsize of its |
| // containing class, because non-virtual subobjects are initialized in |
| // address order. |
| return AggValueSlot::DoesNotOverlap; |
| } |
| |
| /// Determine whether a base class initialization may overlap some other |
| /// object. |
| AggValueSlot::Overlap_t overlapForBaseInit(const CXXRecordDecl *RD, |
| const CXXRecordDecl *BaseRD, |
| bool IsVirtual); |
| |
| /// Emit an aggregate assignment. |
| void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { |
| bool IsVolatile = hasVolatileMember(EltTy); |
| EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); |
| } |
| |
| void EmitAggregateCopyCtor(LValue Dest, LValue Src, |
| AggValueSlot::Overlap_t MayOverlap) { |
| EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); |
| } |
| |
| /// EmitAggregateCopy - Emit an aggregate copy. |
| /// |
| /// \param isVolatile \c true iff either the source or the destination is |
| /// volatile. |
| /// \param MayOverlap Whether the tail padding of the destination might be |
| /// occupied by some other object. More efficient code can often be |
| /// generated if not. |
| void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, |
| AggValueSlot::Overlap_t MayOverlap, |
| bool isVolatile = false); |
| |
| /// GetAddrOfLocalVar - Return the address of a local variable. |
| Address GetAddrOfLocalVar(const VarDecl *VD) { |
| auto it = LocalDeclMap.find(VD); |
| assert(it != LocalDeclMap.end() && |
| "Invalid argument to GetAddrOfLocalVar(), no decl!"); |
| return it->second; |
| } |
| |
| /// Given an opaque value expression, return its LValue mapping if it exists, |
| /// otherwise create one. |
| LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); |
| |
| /// Given an opaque value expression, return its RValue mapping if it exists, |
| /// otherwise create one. |
| RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); |
| |
| /// Get the index of the current ArrayInitLoopExpr, if any. |
| llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } |
| |
| /// getAccessedFieldNo - Given an encoded value and a result number, return |
| /// the input field number being accessed. |
| static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); |
| |
| llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); |
| llvm::BasicBlock *GetIndirectGotoBlock(); |
| |
| /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. |
| static bool IsWrappedCXXThis(const Expr *E); |
| |
| /// EmitNullInitialization - Generate code to set a value of the given type to |
| /// null, If the type contains data member pointers, they will be initialized |
| /// to -1 in accordance with the Itanium C++ ABI. |
| void EmitNullInitialization(Address DestPtr, QualType Ty); |
| |
| /// Emits a call to an LLVM variable-argument intrinsic, either |
| /// \c llvm.va_start or \c llvm.va_end. |
| /// \param ArgValue A reference to the \c va_list as emitted by either |
| /// \c EmitVAListRef or \c EmitMSVAListRef. |
| /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, |
| /// calls \c llvm.va_end. |
| llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); |
| |
| /// Generate code to get an argument from the passed in pointer |
| /// and update it accordingly. |
| /// \param VE The \c VAArgExpr for which to generate code. |
| /// \param VAListAddr Receives a reference to the \c va_list as emitted by |
| /// either \c EmitVAListRef or \c EmitMSVAListRef. |
| /// \returns A pointer to the argument. |
| // FIXME: We should be able to get rid of this method and use the va_arg |
| // instruction in LLVM instead once it works well enough. |
| Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); |
| |
| /// emitArrayLength - Compute the length of an array, even if it's a |
| /// VLA, and drill down to the base element type. |
| llvm::Value *emitArrayLength(const ArrayType *arrayType, |
| QualType &baseType, |
| Address &addr); |
| |
| /// EmitVLASize - Capture all the sizes for the VLA expressions in |
| /// the given variably-modified type and store them in the VLASizeMap. |
| /// |
| /// This function can be called with a null (unreachable) insert point. |
| void EmitVariablyModifiedType(QualType Ty); |
| |
| struct VlaSizePair { |
| llvm::Value *NumElts; |
| QualType Type; |
| |
| VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} |
| }; |
| |
| /// Return the number of elements for a single dimension |
| /// for the given array type. |
| VlaSizePair getVLAElements1D(const VariableArrayType *vla); |
| VlaSizePair getVLAElements1D(QualType vla); |
| |
| /// Returns an LLVM value that corresponds to the size, |
| /// in non-variably-sized elements, of a variable length array type, |
| /// plus that largest non-variably-sized element type. Assumes that |
| /// the type has already been emitted with EmitVariablyModifiedType. |
| VlaSizePair getVLASize(const VariableArrayType *vla); |
| VlaSizePair getVLASize(QualType vla); |
| |
| /// LoadCXXThis - Load the value of 'this'. This function is only valid while |
| /// generating code for an C++ member function. |
| llvm::Value *LoadCXXThis() { |
| assert(CXXThisValue && "no 'this' value for this function"); |
| return CXXThisValue; |
| } |
| Address LoadCXXThisAddress(); |
| |
| /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have |
| /// virtual bases. |
| // FIXME: Every place that calls LoadCXXVTT is something |
| // that needs to be abstracted properly. |
| llvm::Value *LoadCXXVTT() { |
| assert(CXXStructorImplicitParamValue && "no VTT value for this function"); |
| return CXXStructorImplicitParamValue; |
| } |
| |
| /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a |
| /// complete class to the given direct base. |
| Address |
| GetAddressOfDirectBaseInCompleteClass(Address Value, |
| const CXXRecordDecl *Derived, |
| const CXXRecordDecl *Base, |
| bool BaseIsVirtual); |
| |
| static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); |
| |
| /// GetAddressOfBaseClass - This function will add the necessary delta to the |
| /// load of 'this' and returns address of the base class. |
| Address GetAddressOfBaseClass(Address Value, |
| const CXXRecordDecl *Derived, |
| CastExpr::path_const_iterator PathBegin, |
| CastExpr::path_const_iterator PathEnd, |
| bool NullCheckValue, SourceLocation Loc); |
| |
| Address GetAddressOfDerivedClass(Address Value, |
| const CXXRecordDecl *Derived, |
| CastExpr::path_const_iterator PathBegin, |
| CastExpr::path_const_iterator PathEnd, |
| bool NullCheckValue); |
| |
| /// GetVTTParameter - Return the VTT parameter that should be passed to a |
| /// base constructor/destructor with virtual bases. |
| /// FIXME: VTTs are Itanium ABI-specific, so the definition should move |
| /// to ItaniumCXXABI.cpp together with all the references to VTT. |
| llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, |
| bool Delegating); |
| |
| void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, |
| CXXCtorType CtorType, |
| const FunctionArgList &Args, |
| SourceLocation Loc); |
| // It's important not to confuse this and the previous function. Delegating |
| // constructors are the C++0x feature. The constructor delegate optimization |
| // is used to reduce duplication in the base and complete consturctors where |
| // they are substantially the same. |
| void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, |
| const FunctionArgList &Args); |
| |
| /// Emit a call to an inheriting constructor (that is, one that invokes a |
| /// constructor inherited from a base class) by inlining its definition. This |
| /// is necessary if the ABI does not support forwarding the arguments to the |
| /// base class constructor (because they're variadic or similar). |
| void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, |
| CXXCtorType CtorType, |
| bool ForVirtualBase, |
| bool Delegating, |
| CallArgList &Args); |
| |
| /// Emit a call to a constructor inherited from a base class, passing the |
| /// current constructor's arguments along unmodified (without even making |
| /// a copy). |
| void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, |
| bool ForVirtualBase, Address This, |
| bool InheritedFromVBase, |
| const CXXInheritedCtorInitExpr *E); |
| |
| void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, |
| bool ForVirtualBase, bool Delegating, |
| Address This, const CXXConstructExpr *E, |
| AggValueSlot::Overlap_t Overlap, |
| bool NewPointerIsChecked); |
| |
| void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, |
| bool ForVirtualBase, bool Delegating, |
| Address This, CallArgList &Args, |
| AggValueSlot::Overlap_t Overlap, |
| SourceLocation Loc, |
| bool NewPointerIsChecked); |
| |
| /// Emit assumption load for all bases. Requires to be be called only on |
| /// most-derived class and not under construction of the object. |
| void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); |
| |
| /// Emit assumption that vptr load == global vtable. |
| void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); |
| |
| void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, |
| Address This, Address Src, |
| const CXXConstructExpr *E); |
| |
| void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, |
| const ArrayType *ArrayTy, |
| Address ArrayPtr, |
| const CXXConstructExpr *E, |
| bool NewPointerIsChecked, |
| bool ZeroInitialization = false); |
| |
| void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, |
| llvm::Value *NumElements, |
| Address ArrayPtr, |
| const CXXConstructExpr *E, |
| bool NewPointerIsChecked, |
| bool ZeroInitialization = false); |
| |
| static Destroyer destroyCXXObject; |
| |
| void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, |
| bool ForVirtualBase, bool Delegating, |
| Address This); |
| |
| void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, |
| llvm::Type *ElementTy, Address NewPtr, |
| llvm::Value *NumElements, |
| llvm::Value *AllocSizeWithoutCookie); |
| |
| void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, |
| Address Ptr); |
| |
| llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); |
| void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); |
| |
| llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); |
| void EmitCXXDeleteExpr(const CXXDeleteExpr *E); |
| |
| void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, |
| QualType DeleteTy, llvm::Value *NumElements = nullptr, |
| CharUnits CookieSize = CharUnits()); |
| |
| RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, |
| const CallExpr *TheCallExpr, bool IsDelete); |
| |
| llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); |
| llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); |
| Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); |
| |
| /// Situations in which we might emit a check for the suitability of a |
| /// pointer or glvalue. |
| enum TypeCheckKind { |
| /// Checking the operand of a load. Must be suitably sized and aligned. |
| TCK_Load, |
| /// Checking the destination of a store. Must be suitably sized and aligned. |
| TCK_Store, |
| /// Checking the bound value in a reference binding. Must be suitably sized |
| /// and aligned, but is not required to refer to an object (until the |
| /// reference is used), per core issue 453. |
| TCK_ReferenceBinding, |
| /// Checking the object expression in a non-static data member access. Must |
| /// be an object within its lifetime. |
| TCK_MemberAccess, |
| /// Checking the 'this' pointer for a call to a non-static member function. |
| /// Must be an object within its lifetime. |
| TCK_MemberCall, |
| /// Checking the 'this' pointer for a constructor call. |
| TCK_ConstructorCall, |
| /// Checking the operand of a static_cast to a derived pointer type. Must be |
| /// null or an object within its lifetime. |
| TCK_DowncastPointer, |
| /// Checking the operand of a static_cast to a derived reference type. Must |
| /// be an object within its lifetime. |
| TCK_DowncastReference, |
| /// Checking the operand of a cast to a base object. Must be suitably sized |
| /// and aligned. |
| TCK_Upcast, |
| /// Checking the operand of a cast to a virtual base object. Must be an |
| /// object within its lifetime. |
| TCK_UpcastToVirtualBase, |
| /// Checking the value assigned to a _Nonnull pointer. Must not be null. |
| TCK_NonnullAssign, |
| /// Checking the operand of a dynamic_cast or a typeid expression. Must be |
| /// null or an object within its lifetime. |
| TCK_DynamicOperation |
| }; |
| |
| /// Determine whether the pointer type check \p TCK permits null pointers. |
| static bool isNullPointerAllowed(TypeCheckKind TCK); |
| |
| /// Determine whether the pointer type check \p TCK requires a vptr check. |
| static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); |
| |
| /// Whether any type-checking sanitizers are enabled. If \c false, |
| /// calls to EmitTypeCheck can be skipped. |
| bool sanitizePerformTypeCheck() const; |
| |
| /// Emit a check that \p V is the address of storage of the |
| /// appropriate size and alignment for an object of type \p Type. |
| void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, |
| QualType Type, CharUnits Alignment = CharUnits::Zero(), |
| SanitizerSet SkippedChecks = SanitizerSet()); |
| |
| /// Emit a check that \p Base points into an array object, which |
| /// we can access at index \p Index. \p Accessed should be \c false if we |
| /// this expression is used as an lvalue, for instance in "&Arr[Idx]". |
| void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, |
| QualType IndexType, bool Accessed); |
| |
| llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, |
| bool isInc, bool isPre); |
| ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, |
| bool isInc, bool isPre); |
| |
| void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, |
| llvm::Value *OffsetValue = nullptr) { |
| Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, |
| OffsetValue); |
| } |
| |
| /// Converts Location to a DebugLoc, if debug information is enabled. |
| llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); |
| |
| |
| //===--------------------------------------------------------------------===// |
| // Declaration Emission |
| //===--------------------------------------------------------------------===// |
| |
| /// EmitDecl - Emit a declaration. |
| /// |
| /// This function can be called with a null (unreachable) insert point. |
| void EmitDecl(const Decl &D); |
| |
| /// EmitVarDecl - Emit a local variable declaration. |
| /// |
| /// This function can be called with a null (unreachable) insert point. |
| void EmitVarDecl(const VarDecl &D); |
| |
| void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, |
| bool capturedByInit); |
| |
| typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, |
| llvm::Value *Address); |
| |
| /// Determine whether the given initializer is trivial in the sense |
| /// that it requires no code to be generated. |
| bool isTrivialInitializer(const Expr *Init); |
| |
| /// EmitAutoVarDecl - Emit an auto variable declaration. |
| /// |
| /// This function can be called with a null (unreachable) insert point. |
| void EmitAutoVarDecl(const VarDecl &D); |
| |
| class AutoVarEmission { |
| friend class CodeGenFunction; |
| |
| const VarDecl *Variable; |
| |
| /// The address of the alloca for languages with explicit address space |
| /// (e.g. OpenCL) or alloca casted to generic pointer for address space |
| /// agnostic languages (e.g. C++). Invalid if the variable was emitted |
| /// as a global constant. |
| Address Addr; |
| |
| llvm::Value *NRVOFlag; |
| |
| /// True if the variable is a __block variable. |
| bool IsByRef; |
| |
| /// True if the variable is of aggregate type and has a constant |
| /// initializer. |
| bool IsConstantAggregate; |
| |
| /// Non-null if we should use lifetime annotations. |
| llvm::Value *SizeForLifetimeMarkers; |
| |
| /// Address with original alloca instruction. Invalid if the variable was |
| /// emitted as a global constant. |
| Address AllocaAddr; |
| |
| struct Invalid {}; |
| AutoVarEmission(Invalid) |
| : Variable(nullptr), Addr(Address::invalid()), |
| AllocaAddr(Address::invalid()) {} |
| |
| AutoVarEmission(const VarDecl &variable) |
| : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), |
| IsByRef(false), IsConstantAggregate(false), |
| SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} |
| |
| bool wasEmittedAsGlobal() const { return !Addr.isValid(); } |
| |
| public: |
| static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } |
| |
| bool useLifetimeMarkers() const { |
| return SizeForLifetimeMarkers != nullptr; |
| } |
| llvm::Value *getSizeForLifetimeMarkers() const { |
| assert(useLifetimeMarkers()); |
| return SizeForLifetimeMarkers; |
| } |
| |
| /// Returns the raw, allocated address, which is not necessarily |
| /// the address of the object itself. It is casted to default |
| /// address space for address space agnostic languages. |
| Address getAllocatedAddress() const { |
| return Addr; |
| } |
| |
| /// Returns the address for the original alloca instruction. |
| Address getOriginalAllocatedAddress() const { return AllocaAddr; } |
| |
| /// Returns the address of the object within this declaration. |
| /// Note that this does not chase the forwarding pointer for |
| /// __block decls. |
| Address getObjectAddress(CodeGenFunction &CGF) const { |
| if (!IsByRef) return Addr; |
| |
| return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); |
| } |
| }; |
| AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); |
| void EmitAutoVarInit(const AutoVarEmission &emission); |
| void EmitAutoVarCleanups(const AutoVarEmission &emission); |
| void emitAutoVarTypeCleanup(const AutoVarEmission &emission, |
| QualType::DestructionKind dtorKind); |
| |
| /// Emits the alloca and debug information for the size expressions for each |
| /// dimension of an array. It registers the association of its (1-dimensional) |
| /// QualTypes and size expression's debug node, so that CGDebugInfo can |
| /// reference this node when creating the DISubrange object to describe the |
| /// array types. |
| void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, |
| const VarDecl &D, |
| bool EmitDebugInfo); |
| |
| void EmitStaticVarDecl(const VarDecl &D, |
| llvm::GlobalValue::LinkageTypes Linkage); |
| |
| class ParamValue { |
| llvm::Value *Value; |
| unsigned Alignment; |
| ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} |
| public: |
| static ParamValue forDirect(llvm::Value *value) { |
| return ParamValue(value, 0); |
| } |
| static ParamValue forIndirect(Address addr) { |
| assert(!addr.getAlignment().isZero()); |
| return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); |
| } |
| |
| bool isIndirect() const { return Alignment != 0; } |
| llvm::Value *getAnyValue() const { return Value; } |
| |
| llvm::Value *getDirectValue() const { |
| assert(!isIndirect()); |
| return Value; |
| } |
| |
| Address getIndirectAddress() const { |
| assert(isIndirect()); |
| return Address(Value, CharUnits::fromQuantity(Alignment)); |
| } |
| }; |
| |
| /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. |
| void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); |
| |
| /// protectFromPeepholes - Protect a value that we're intending to |
| /// store to the side, but which will probably be used later, from |
| /// aggressive peepholing optimizations that might delete it. |
| /// |
| /// Pass the result to unprotectFromPeepholes to declare that |
| /// protection is no longer required. |
| /// |
| /// There's no particular reason why this shouldn't apply to |
| /// l-values, it's just that no existing peepholes work on pointers. |
| PeepholeProtection protectFromPeepholes(RValue rvalue); |
| void unprotectFromPeepholes(PeepholeProtection protection); |
| |
| void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment, |
| llvm::Value *OffsetValue = nullptr) { |
| Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, |
| OffsetValue); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Statement Emission |
| //===--------------------------------------------------------------------===// |
| |
| /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. |
| void EmitStopPoint(const Stmt *S); |
| |
| /// EmitStmt - Emit the code for the statement \arg S. It is legal to call |
| /// this function even if there is no current insertion point. |
| /// |
| /// This function may clear the current insertion point; callers should use |
| /// EnsureInsertPoint if they wish to subsequently generate code without first |
| /// calling EmitBlock, EmitBranch, or EmitStmt. |
| void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); |
| |
| /// EmitSimpleStmt - Try to emit a "simple" statement which does not |
| /// necessarily require an insertion point or debug information; typically |
| /// because the statement amounts to a jump or a container of other |
| /// statements. |
| /// |
| /// \return True if the statement was handled. |
| bool EmitSimpleStmt(const Stmt *S); |
| |
| Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, |
| AggValueSlot AVS = AggValueSlot::ignored()); |
| Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, |
| bool GetLast = false, |
| AggValueSlot AVS = |
| AggValueSlot::ignored()); |
| |
| /// EmitLabel - Emit the block for the given label. It is legal to call this |
| /// function even if there is no current insertion point. |
| void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. |
| |
| void EmitLabelStmt(const LabelStmt &S); |
| void EmitAttributedStmt(const AttributedStmt &S); |
| void EmitGotoStmt(const GotoStmt &S); |
| void EmitIndirectGotoStmt(const IndirectGotoStmt &S); |
| void EmitIfStmt(const IfStmt &S); |
| |
| void EmitWhileStmt(const WhileStmt &S, |
| ArrayRef<const Attr *> Attrs = None); |
| void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); |
| void EmitForStmt(const ForStmt &S, |
| ArrayRef<const Attr *> Attrs = None); |
| void EmitReturnStmt(const ReturnStmt &S); |
| void EmitDeclStmt(const DeclStmt &S); |
| void EmitBreakStmt(const BreakStmt &S); |
| void EmitContinueStmt(const ContinueStmt &S); |
| void EmitSwitchStmt(const SwitchStmt &S); |
| void EmitDefaultStmt(const DefaultStmt &S); |
| void EmitCaseStmt(const CaseStmt &S); |
| void EmitCaseStmtRange(const CaseStmt &S); |
| void EmitAsmStmt(const AsmStmt &S); |
| |
| void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); |
| void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); |
| void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); |
| void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); |
| void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); |
| |
| void EmitCoroutineBody(const CoroutineBodyStmt &S); |
| void EmitCoreturnStmt(const CoreturnStmt &S); |
| RValue EmitCoawaitExpr(const CoawaitExpr &E, |
| AggValueSlot aggSlot = AggValueSlot::ignored(), |
| bool ignoreResult = false); |
| LValue EmitCoawaitLValue(const CoawaitExpr *E); |
| RValue EmitCoyieldExpr(const CoyieldExpr &E, |
| AggValueSlot aggSlot = AggValueSlot::ignored(), |
| bool ignoreResult = false); |
| LValue EmitCoyieldLValue(const CoyieldExpr *E); |
| RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); |
| |
| void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); |
| void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); |
| |
| void EmitCXXTryStmt(const CXXTryStmt &S); |
| void EmitSEHTryStmt(const SEHTryStmt &S); |
| void EmitSEHLeaveStmt(const SEHLeaveStmt &S); |
| void EnterSEHTryStmt(const SEHTryStmt &S); |
| void ExitSEHTryStmt(const SEHTryStmt &S); |
| |
| void pushSEHCleanup(CleanupKind kind, |
| llvm::Function *FinallyFunc); |
| void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, |
| const Stmt *OutlinedStmt); |
| |
| llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, |
| const SEHExceptStmt &Except); |
| |
| llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, |
| const SEHFinallyStmt &Finally); |
| |
| void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, |
| llvm::Value *ParentFP, |
| llvm::Value *EntryEBP); |
| llvm::Value *EmitSEHExceptionCode(); |
| llvm::Value *EmitSEHExceptionInfo(); |
| llvm::Value *EmitSEHAbnormalTermination(); |
| |
| /// Emit simple code for OpenMP directives in Simd-only mode. |
| void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); |
| |
| /// Scan the outlined statement for captures from the parent function. For |
| /// each capture, mark the capture as escaped and emit a call to |
| /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. |
| void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, |
| bool IsFilter); |
| |
| /// Recovers the address of a local in a parent function. ParentVar is the |
| /// address of the variable used in the immediate parent function. It can |
| /// either be an alloca or a call to llvm.localrecover if there are nested |
| /// outlined functions. ParentFP is the frame pointer of the outermost parent |
| /// frame. |
| Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, |
| Address ParentVar, |
| llvm::Value *ParentFP); |
| |
| void EmitCXXForRangeStmt(const CXXForRangeStmt &S, |
| ArrayRef<const Attr *> Attrs = None); |
| |
| /// Controls insertion of cancellation exit blocks in worksharing constructs. |
| class OMPCancelStackRAII { |
| CodeGenFunction &CGF; |
| |
| public: |
| OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, |
| bool HasCancel) |
| : CGF(CGF) { |
| CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); |
| } |
| ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } |
| }; |
| |
| /// Returns calculated size of the specified type. |
| llvm::Value *getTypeSize(QualType Ty); |
| LValue InitCapturedStruct(const CapturedStmt &S); |
| llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); |
| llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); |
| Address GenerateCapturedStmtArgument(const CapturedStmt &S); |
| llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); |
| void GenerateOpenMPCapturedVars(const CapturedStmt &S, |
| SmallVectorImpl<llvm::Value *> &CapturedVars); |
| void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, |
| SourceLocation Loc); |
| /// Perform element by element copying of arrays with type \a |
| /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure |
| /// generated by \a CopyGen. |
| /// |
| /// \param DestAddr Address of the destination array. |
| /// \param SrcAddr Address of the source array. |
| /// \param OriginalType Type of destination and source arrays. |
| /// \param CopyGen Copying procedure that copies value of single array element |
| /// to another single array element. |
| void EmitOMPAggregateAssign( |
| Address DestAddr, Address SrcAddr, QualType OriginalType, |
| const llvm::function_ref<void(Address, Address)> CopyGen); |
| /// Emit proper copying of data from one variable to another. |
| /// |
| /// \param OriginalType Original type of the copied variables. |
| /// \param DestAddr Destination address. |
| /// \param SrcAddr Source address. |
| /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has |
| /// type of the base array element). |
| /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of |
| /// the base array element). |
| /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a |
| /// DestVD. |
| void EmitOMPCopy(QualType OriginalType, |
| Address DestAddr, Address SrcAddr, |
| const VarDecl *DestVD, const VarDecl *SrcVD, |
| const Expr *Copy); |
| /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or |
| /// \a X = \a E \a BO \a E. |
| /// |
| /// \param X Value to be updated. |
| /// \param E Update value. |
| /// \param BO Binary operation for update operation. |
| /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update |
| /// expression, false otherwise. |
| /// \param AO Atomic ordering of the generated atomic instructions. |
| /// \param CommonGen Code generator for complex expressions that cannot be |
| /// expressed through atomicrmw instruction. |
| /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was |
| /// generated, <false, RValue::get(nullptr)> otherwise. |
| std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( |
| LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, |
| llvm::AtomicOrdering AO, SourceLocation Loc, |
| const llvm::function_ref<RValue(RValue)> CommonGen); |
| bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, |
| OMPPrivateScope &PrivateScope); |
| void EmitOMPPrivateClause(const OMPExecutableDirective &D, |
| OMPPrivateScope &PrivateScope); |
| void EmitOMPUseDevicePtrClause( |
| const OMPClause &C, OMPPrivateScope &PrivateScope, |
| const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); |
| /// Emit code for copyin clause in \a D directive. The next code is |
| /// generated at the start of outlined functions for directives: |
| /// \code |
| /// threadprivate_var1 = master_threadprivate_var1; |
| /// operator=(threadprivate_var2, master_threadprivate_var2); |
| /// ... |
| /// __kmpc_barrier(&loc, global_tid); |
| /// \endcode |
| /// |
| /// \param D OpenMP directive possibly with 'copyin' clause(s). |
| /// \returns true if at least one copyin variable is found, false otherwise. |
| bool EmitOMPCopyinClause(const OMPExecutableDirective &D); |
| /// Emit initial code for lastprivate variables. If some variable is |
| /// not also firstprivate, then the default initialization is used. Otherwise |
| /// initialization of this variable is performed by EmitOMPFirstprivateClause |
| /// method. |
| /// |
| /// \param D Directive that may have 'lastprivate' directives. |
| /// \param PrivateScope Private scope for capturing lastprivate variables for |
| /// proper codegen in internal captured statement. |
| /// |
| /// \returns true if there is at least one lastprivate variable, false |
| /// otherwise. |
| bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, |
| OMPPrivateScope &PrivateScope); |
| /// Emit final copying of lastprivate values to original variables at |
| /// the end of the worksharing or simd directive. |
| /// |
| /// \param D Directive that has at least one 'lastprivate' directives. |
| /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if |
| /// it is the last iteration of the loop code in associated directive, or to |
| /// 'i1 false' otherwise. If this item is nullptr, no final check is required. |
| void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, |
| bool NoFinals, |
| llvm::Value *IsLastIterCond = nullptr); |
| /// Emit initial code for linear clauses. |
| void EmitOMPLinearClause(const OMPLoopDirective &D, |
| CodeGenFunction::OMPPrivateScope &PrivateScope); |
| /// Emit final code for linear clauses. |
| /// \param CondGen Optional conditional code for final part of codegen for |
| /// linear clause. |
| void EmitOMPLinearClauseFinal( |
| const OMPLoopDirective &D, |
| const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); |
| /// Emit initial code for reduction variables. Creates reduction copies |
| /// and initializes them with the values according to OpenMP standard. |
| /// |
| /// \param D Directive (possibly) with the 'reduction' clause. |
| /// \param PrivateScope Private scope for capturing reduction variables for |
| /// proper codegen in internal captured statement. |
| /// |
| void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, |
| OMPPrivateScope &PrivateScope); |
| /// Emit final update of reduction values to original variables at |
| /// the end of the directive. |
| /// |
| /// \param D Directive that has at least one 'reduction' directives. |
| /// \param ReductionKind The kind of reduction to perform. |
| void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, |
| const OpenMPDirectiveKind ReductionKind); |
| /// Emit initial code for linear variables. Creates private copies |
| /// and initializes them with the values according to OpenMP standard. |
| /// |
| /// \param D Directive (possibly) with the 'linear' clause. |
| /// \return true if at least one linear variable is found that should be |
| /// initialized with the value of the original variable, false otherwise. |
| bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); |
| |
| typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, |
| llvm::Value * /*OutlinedFn*/, |
| const OMPTaskDataTy & /*Data*/)> |
| TaskGenTy; |
| void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, |
| const OpenMPDirectiveKind CapturedRegion, |
| const RegionCodeGenTy &BodyGen, |
| const TaskGenTy &TaskGen, OMPTaskDataTy &Data); |
| struct OMPTargetDataInfo { |
| Address BasePointersArray = Address::invalid(); |
| Address PointersArray = Address::invalid(); |
| Address SizesArray = Address::invalid(); |
| unsigned NumberOfTargetItems = 0; |
| explicit OMPTargetDataInfo() = default; |
| OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, |
| Address SizesArray, unsigned NumberOfTargetItems) |
| : BasePointersArray(BasePointersArray), PointersArray(PointersArray), |
| SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {} |
| }; |
| void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, |
| const RegionCodeGenTy &BodyGen, |
| OMPTargetDataInfo &InputInfo); |
| |
| void EmitOMPParallelDirective(const OMPParallelDirective &S); |
| void EmitOMPSimdDirective(const OMPSimdDirective &S); |
| void EmitOMPForDirective(const OMPForDirective &S); |
| void EmitOMPForSimdDirective(const OMPForSimdDirective &S); |
| void EmitOMPSectionsDirective(const OMPSectionsDirective &S); |
| void EmitOMPSectionDirective(const OMPSectionDirective &S); |
| void EmitOMPSingleDirective(const OMPSingleDirective &S); |
| void EmitOMPMasterDirective(const OMPMasterDirective &S); |
| void EmitOMPCriticalDirective(const OMPCriticalDirective &S); |
| void EmitOMPParallelForDirective(const OMPParallelForDirective &S); |
| void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); |
| void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); |
| void EmitOMPTaskDirective(const OMPTaskDirective &S); |
| void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); |
| void EmitOMPBarrierDirective(const OMPBarrierDirective &S); |
| void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); |
| void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); |
| void EmitOMPFlushDirective(const OMPFlushDirective &S); |
| void EmitOMPOrderedDirective(const OMPOrderedDirective &S); |
| void EmitOMPAtomicDirective(const OMPAtomicDirective &S); |
| void EmitOMPTargetDirective(const OMPTargetDirective &S); |
| void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); |
| void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); |
| void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); |
| void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); |
| void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); |
| void |
| EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); |
| void EmitOMPTeamsDirective(const OMPTeamsDirective &S); |
| void |
| EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); |
| void EmitOMPCancelDirective(const OMPCancelDirective &S); |
| void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); |
| void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); |
| void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); |
| void EmitOMPDistributeDirective(const OMPDistributeDirective &S); |
| void EmitOMPDistributeParallelForDirective( |
| const OMPDistributeParallelForDirective &S); |
| void EmitOMPDistributeParallelForSimdDirective( |
| const OMPDistributeParallelForSimdDirective &S); |
| void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); |
| void EmitOMPTargetParallelForSimdDirective( |
| const OMPTargetParallelForSimdDirective &S); |
| void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); |
| void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); |
| void |
| EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); |
| void EmitOMPTeamsDistributeParallelForSimdDirective( |
| const OMPTeamsDistributeParallelForSimdDirective &S); |
| void EmitOMPTeamsDistributeParallelForDirective( |
| const OMPTeamsDistributeParallelForDirective &S); |
| void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); |
| void EmitOMPTargetTeamsDistributeDirective( |
| const OMPTargetTeamsDistributeDirective &S); |
| void EmitOMPTargetTeamsDistributeParallelForDirective( |
| const OMPTargetTeamsDistributeParallelForDirective &S); |
| void EmitOMPTargetTeamsDistributeParallelForSimdDirective( |
| const OMPTargetTeamsDistributeParallelForSimdDirective &S); |
| void EmitOMPTargetTeamsDistributeSimdDirective( |
| const OMPTargetTeamsDistributeSimdDirective &S); |
| |
| /// Emit device code for the target directive. |
| static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, |
| StringRef ParentName, |
| const OMPTargetDirective &S); |
| static void |
| EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, |
| const OMPTargetParallelDirective &S); |
| /// Emit device code for the target parallel for directive. |
| static void EmitOMPTargetParallelForDeviceFunction( |
| CodeGenModule &CGM, StringRef ParentName, |
| const OMPTargetParallelForDirective &S); |
| /// Emit device code for the target parallel for simd directive. |
| static void EmitOMPTargetParallelForSimdDeviceFunction( |
| CodeGenModule &CGM, StringRef ParentName, |
| const OMPTargetParallelForSimdDirective &S); |
| /// Emit device code for the target teams directive. |
| static void |
| EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, |
| const OMPTargetTeamsDirective &S); |
| /// Emit device code for the target teams distribute directive. |
| static void EmitOMPTargetTeamsDistributeDeviceFunction( |
| CodeGenModule &CGM, StringRef ParentName, |
| const OMPTargetTeamsDistributeDirective &S); |
| /// Emit device code for the target teams distribute simd directive. |
| static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( |
| CodeGenModule &CGM, StringRef ParentName, |
| const OMPTargetTeamsDistributeSimdDirective &S); |
| /// Emit device code for the target simd directive. |
| static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, |
| StringRef ParentName, |
| const OMPTargetSimdDirective &S); |
| /// Emit device code for the target teams distribute parallel for simd |
| /// directive. |
| static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( |
| CodeGenModule &CGM, StringRef ParentName, |
| const OMPTargetTeamsDistributeParallelForSimdDirective &S); |
| |
| static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( |
| CodeGenModule &CGM, StringRef ParentName, |
| const OMPTargetTeamsDistributeParallelForDirective &S); |
| /// Emit inner loop of the worksharing/simd construct. |
| /// |
| /// \param S Directive, for which the inner loop must be emitted. |
| /// \param RequiresCleanup true, if directive has some associated private |
| /// variables. |
| /// \param LoopCond Bollean condition for loop continuation. |
| /// \param IncExpr Increment expression for loop control variable. |
| /// \param BodyGen Generator for the inner body of the inner loop. |
| /// \param PostIncGen Genrator for post-increment code (required for ordered |
| /// loop directvies). |
| void EmitOMPInnerLoop( |
| const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, |
| const Expr *IncExpr, |
| const llvm::function_ref<void(CodeGenFunction &)> BodyGen, |
| const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); |
| |
| JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); |
| /// Emit initial code for loop counters of loop-based directives. |
| void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, |
| OMPPrivateScope &LoopScope); |
| |
| /// Helper for the OpenMP loop directives. |
| void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); |
| |
| /// Emit code for the worksharing loop-based directive. |
| /// \return true, if this construct has any lastprivate clause, false - |
| /// otherwise. |
| bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, |
| const CodeGenLoopBoundsTy &CodeGenLoopBounds, |
| const CodeGenDispatchBoundsTy &CGDispatchBounds); |
| |
| /// Emit code for the distribute loop-based directive. |
| void EmitOMPDistributeLoop(const OMPLoopDirective &S, |
| const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); |
| |
| /// Helpers for the OpenMP loop directives. |
| void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); |
| void EmitOMPSimdFinal( |
| const OMPLoopDirective &D, |
| const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); |
| |
| /// Emits the lvalue for the expression with possibly captured variable. |
| LValue EmitOMPSharedLValue(const Expr *E); |
| |
| private: |
| /// Helpers for blocks. |
| llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); |
| |
| /// struct with the values to be passed to the OpenMP loop-related functions |
| struct OMPLoopArguments { |
| /// loop lower bound |
| Address LB = Address::invalid(); |
| /// loop upper bound |
| Address UB = Address::invalid(); |
| /// loop stride |
| Address ST = Address::invalid(); |
| /// isLastIteration argument for runtime functions |
| Address IL = Address::invalid(); |
| /// Chunk value generated by sema |
| llvm::Value *Chunk = nullptr; |
| /// EnsureUpperBound |
| Expr *EUB = nullptr; |
| /// IncrementExpression |
| Expr *IncExpr = nullptr; |
| /// Loop initialization |
| Expr *Init = nullptr; |
| /// Loop exit condition |
| Expr *Cond = nullptr; |
| /// Update of LB after a whole chunk has been executed |
| Expr *NextLB = nullptr; |
| /// Update of UB after a whole chunk has been executed |
| Expr *NextUB = nullptr; |
| OMPLoopArguments() = default; |
| OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, |
| llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, |
| Expr *IncExpr = nullptr, Expr *Init = nullptr, |
| Expr *Cond = nullptr, Expr *NextLB = nullptr, |
| Expr *NextUB = nullptr) |
| : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), |
| IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), |
| NextUB(NextUB) {} |
| }; |
| void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, |
| const OMPLoopDirective &S, OMPPrivateScope &LoopScope, |
| const OMPLoopArguments &LoopArgs, |
| const CodeGenLoopTy &CodeGenLoop, |
| const CodeGenOrderedTy &CodeGenOrdered); |
| void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, |
| bool IsMonotonic, const OMPLoopDirective &S, |
| OMPPrivateScope &LoopScope, bool Ordered, |
| const OMPLoopArguments &LoopArgs, |
| const CodeGenDispatchBoundsTy &CGDispatchBounds); |
| void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, |
| const OMPLoopDirective &S, |
| OMPPrivateScope &LoopScope, |
| const OMPLoopArguments &LoopArgs, |
| const CodeGenLoopTy &CodeGenLoopContent); |
| /// Emit code for sections directive. |
| void EmitSections(const OMPExecutableDirective &S); |
| |
| public: |
| |
| //===--------------------------------------------------------------------===// |
| // LValue Expression Emission |
| //===--------------------------------------------------------------------===// |
| |
| /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. |
| RValue GetUndefRValue(QualType Ty); |
| |
| /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E |
| /// and issue an ErrorUnsupported style diagnostic (using the |
| /// provided Name). |
| RValue EmitUnsupportedRValue(const Expr *E, |
| const char *Name); |
| |
| /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue |
| /// an ErrorUnsupported style diagnostic (using the provided Name). |
| LValue EmitUnsupportedLValue(const Expr *E, |
| const char *Name); |
| |
| /// EmitLValue - Emit code to compute a designator that specifies the location |
| /// of the expression. |
| /// |
| /// This can return one of two things: a simple address or a bitfield |
| /// reference. In either case, the LLVM Value* in the LValue structure is |
| /// guaranteed to be an LLVM pointer type. |
| /// |
| /// If this returns a bitfield reference, nothing about the pointee type of |
| /// the LLVM value is known: For example, it may not be a pointer to an |
| /// integer. |
| /// |
| /// If this returns a normal address, and if the lvalue's C type is fixed |
| /// size, this method guarantees that the returned pointer type will point to |
| /// an LLVM type of the same size of the lvalue's type. If the lvalue has a |
| /// variable length type, this is not possible. |
| /// |
| LValue EmitLValue(const Expr *E); |
| |
| /// Same as EmitLValue but additionally we generate checking code to |
| /// guard against undefined behavior. This is only suitable when we know |
| /// that the address will be used to access the object. |
| LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); |
| |
| RValue convertTempToRValue(Address addr, QualType type, |
| SourceLocation Loc); |
| |
| void EmitAtomicInit(Expr *E, LValue lvalue); |
| |
| bool LValueIsSuitableForInlineAtomic(LValue Src); |
| |
| RValue EmitAtomicLoad(LValue LV, SourceLocation SL, |
| AggValueSlot Slot = AggValueSlot::ignored()); |
| |
| RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, |
| llvm::AtomicOrdering AO, bool IsVolatile = false, |
| AggValueSlot slot = AggValueSlot::ignored()); |
| |
| void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); |
| |
| void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, |
| bool IsVolatile, bool isInit); |
| |
| std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( |
| LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, |
| llvm::AtomicOrdering Success = |
| llvm::AtomicOrdering::SequentiallyConsistent, |
| llvm::AtomicOrdering Failure = |
| llvm::AtomicOrdering::SequentiallyConsistent, |
| bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); |
| |
| void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, |
| const llvm::function_ref<RValue(RValue)> &UpdateOp, |
| bool IsVolatile); |
| |
| /// EmitToMemory - Change a scalar value from its value |
| /// representation to its in-memory representation. |
| llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); |
| |
| /// EmitFromMemory - Change a scalar value from its memory |
| /// representation to its value representation. |
| llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); |
| |
| /// Check if the scalar \p Value is within the valid range for the given |
| /// type \p Ty. |
| /// |
| /// Returns true if a check is needed (even if the range is unknown). |
| bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, |
| SourceLocation Loc); |
| |
| /// EmitLoadOfScalar - Load a scalar value from an address, taking |
| /// care to appropriately convert from the memory representation to |
| /// the LLVM value representation. |
| llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, |
| SourceLocation Loc, |
| AlignmentSource Source = AlignmentSource::Type, |
| bool isNontemporal = false) { |
| return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), |
| CGM.getTBAAAccessInfo(Ty), isNontemporal); |
| } |
| |
| llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, |
| SourceLocation Loc, LValueBaseInfo BaseInfo, |
| TBAAAccessInfo TBAAInfo, |
| bool isNontemporal = false); |
| |
| /// EmitLoadOfScalar - Load a scalar value from an address, taking |
| /// care to appropriately convert from the memory representation to |
| /// the LLVM value representation. The l-value must be a simple |
| /// l-value. |
| llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); |
| |
| /// EmitStoreOfScalar - Store a scalar value to an address, taking |
| /// care to appropriately convert from the memory representation to |
| /// the LLVM value representation. |
| void EmitStoreOfScalar(llvm::Value *Value, Address Addr, |
| bool Volatile, QualType Ty, |
| AlignmentSource Source = AlignmentSource::Type, |
| bool isInit = false, bool isNontemporal = false) { |
| EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), |
| CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); |
| } |
| |
| void EmitStoreOfScalar(llvm::Value *Value, Address Addr, |
| bool Volatile, QualType Ty, |
| LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, |
| bool isInit = false, bool isNontemporal = false); |
| |
| /// EmitStoreOfScalar - Store a scalar value to an address, taking |
| /// care to appropriately convert from the memory representation to |
| /// the LLVM value representation. The l-value must be a simple |
| /// l-value. The isInit flag indicates whether this is an initialization. |
| /// If so, atomic qualifiers are ignored and the store is always non-atomic. |
| void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); |
| |
| /// EmitLoadOfLValue - Given an expression that represents a value lvalue, |
| /// this method emits the address of the lvalue, then loads the result as an |
| /// rvalue, returning the rvalue. |
| RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); |
| RValue EmitLoadOfExtVectorElementLValue(LValue V); |
| RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); |
| RValue EmitLoadOfGlobalRegLValue(LValue LV); |
| |
| /// EmitStoreThroughLValue - Store the specified rvalue into the specified |
| /// lvalue, where both are guaranteed to the have the same type, and that type |
| /// is 'Ty'. |
| void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); |
| void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); |
| void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); |
| |
| /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints |
| /// as EmitStoreThroughLValue. |
| /// |
| /// \param Result [out] - If non-null, this will be set to a Value* for the |
| /// bit-field contents after the store, appropriate for use as the result of |
| /// an assignment to the bit-field. |
| void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, |
| llvm::Value **Result=nullptr); |
| |
| /// Emit an l-value for an assignment (simple or compound) of complex type. |
| LValue EmitComplexAssignmentLValue(const BinaryOperator *E); |
| LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); |
| LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, |
| llvm::Value *&Result); |
| |
| // Note: only available for agg return types |
| LValue EmitBinaryOperatorLValue(const BinaryOperator *E); |
| LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); |
| // Note: only available for agg return types |
| LValue EmitCallExprLValue(const CallExpr *E); |
| // Note: only available for agg return types |
| LValue EmitVAArgExprLValue(const VAArgExpr *E); |
| LValue EmitDeclRefLValue(const DeclRefExpr *E); |
| LValue EmitStringLiteralLValue(const StringLiteral *E); |
| LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); |
| LValue EmitPredefinedLValue(const PredefinedExpr *E); |
| LValue EmitUnaryOpLValue(const UnaryOperator *E); |
| LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, |
| bool Accessed = false); |
| LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, |
| bool IsLowerBound = true); |
| LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); |
| LValue EmitMemberExpr(const MemberExpr *E); |
| LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); |
| LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); |
| LValue EmitInitListLValue(const InitListExpr *E); |
| LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); |
| LValue EmitCastLValue(const CastExpr *E); |
| LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); |
| LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); |
| |
| Address EmitExtVectorElementLValue(LValue V); |
| |
| RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); |
| |
| Address EmitArrayToPointerDecay(const Expr *Array, |
| LValueBaseInfo *BaseInfo = nullptr, |
| TBAAAccessInfo *TBAAInfo = nullptr); |
| |
| class ConstantEmission { |
| llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; |
| ConstantEmission(llvm::Constant *C, bool isReference) |
| : ValueAndIsReference(C, isReference) {} |
| public: |
| ConstantEmission() {} |
| static ConstantEmission forReference(llvm::Constant *C) { |
| return ConstantEmission(C, true); |
| } |
| static ConstantEmission forValue(llvm::Constant *C) { |
| return ConstantEmission(C, false); |
| } |
| |
| explicit operator bool() const { |
| return ValueAndIsReference.getOpaqueValue() != nullptr; |
| } |
| |
| bool isReference() const { return ValueAndIsReference.getInt(); } |
| LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { |
| assert(isReference()); |
| return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), |
| refExpr->getType()); |
| } |
| |
| llvm::Constant *getValue() const { |
| assert(!isReference()); |
| return ValueAndIsReference.getPointer(); |
| } |
| }; |
| |
| ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); |
| ConstantEmission tryEmitAsConstant(const MemberExpr *ME); |
| |
| RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, |
| AggValueSlot slot = AggValueSlot::ignored()); |
| LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); |
| |
| llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, |
| const ObjCIvarDecl *Ivar); |
| LValue EmitLValueForField(LValue Base, const FieldDecl* Field); |
| LValue EmitLValueForLambdaField(const FieldDecl *Field); |
| |
| /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that |
| /// if the Field is a reference, this will return the address of the reference |
| /// and not the address of the value stored in the reference. |
| LValue EmitLValueForFieldInitialization(LValue Base, |
| const FieldDecl* Field); |
| |
| LValue EmitLValueForIvar(QualType ObjectTy, |
| llvm::Value* Base, const ObjCIvarDecl *Ivar, |
| unsigned CVRQualifiers); |
| |
| LValue EmitCXXConstructLValue(const CXXConstructExpr *E); |
| LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); |
| LValue EmitLambdaLValue(const LambdaExpr *E); |
| LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); |
| LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); |
| |
| LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); |
| LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); |
| LValue EmitStmtExprLValue(const StmtExpr *E); |
| LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); |
| LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); |
| void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); |
| |
| //===--------------------------------------------------------------------===// |
| // Scalar Expression Emission |
| //===--------------------------------------------------------------------===// |
| |
| /// EmitCall - Generate a call of the given function, expecting the given |
| /// result type, and using the given argument list which specifies both the |
| /// LLVM arguments and the types they were derived from. |
| RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, |
| ReturnValueSlot ReturnValue, const CallArgList &Args, |
| llvm::Instruction **callOrInvoke, SourceLocation Loc); |
| RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, |
| ReturnValueSlot ReturnValue, const CallArgList &Args, |
| llvm::Instruction **callOrInvoke = nullptr) { |
| return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, |
| SourceLocation()); |
| } |
| RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, |
| ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); |
| RValue EmitCallExpr(const CallExpr *E, |
| ReturnValueSlot ReturnValue = ReturnValueSlot()); |
| RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); |
| CGCallee EmitCallee(const Expr *E); |
| |
| void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); |
| |
| llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, |
| const Twine &name = ""); |
| llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, |
| ArrayRef<llvm::Value*> args, |
| const Twine &name = ""); |
| llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, |
| const Twine &name = ""); |
| llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, |
| ArrayRef<llvm::Value*> args, |
| const Twine &name = ""); |
| |
| SmallVector<llvm::OperandBundleDef, 1> |
| getBundlesForFunclet(llvm::Value *Callee); |
| |
| llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, |
| ArrayRef<llvm::Value *> Args, |
| const Twine &Name = ""); |
| llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, |
| ArrayRef<llvm::Value*> args, |
| const Twine &name = ""); |
| llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, |
| const Twine &name = ""); |
| void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, |
| ArrayRef<llvm::Value*> args); |
| |
| CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, |
| NestedNameSpecifier *Qual, |
| llvm::Type *Ty); |
| |
| CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, |
| CXXDtorType Type, |
| const CXXRecordDecl *RD); |
| |
| // These functions emit calls to the special functions of non-trivial C |
| // structs. |
| void defaultInitNonTrivialCStructVar(LValue Dst); |
| void callCStructDefaultConstructor(LValue Dst); |
| void callCStructDestructor(LValue Dst); |
| void callCStructCopyConstructor(LValue Dst, LValue Src); |
| void callCStructMoveConstructor(LValue Dst, LValue Src); |
| void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); |
| void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); |
| |
| RValue |
| EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, |
| const CGCallee &Callee, |
| ReturnValueSlot ReturnValue, llvm::Value *This, |
| llvm::Value *ImplicitParam, |
| QualType ImplicitParamTy, const CallExpr *E, |
| CallArgList *RtlArgs); |
| RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, |
| const CGCallee &Callee, |
| llvm::Value *This, llvm::Value *ImplicitParam, |
| QualType ImplicitParamTy, const CallExpr *E, |
| StructorType Type); |
| RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, |
| ReturnValueSlot ReturnValue); |
| RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, |
| const CXXMethodDecl *MD, |
| ReturnValueSlot ReturnValue, |
| bool HasQualifier, |
| NestedNameSpecifier *Qualifier, |
| bool IsArrow, const Expr *Base); |
| // Compute the object pointer. |
| Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, |
| llvm::Value *memberPtr, |
| const MemberPointerType *memberPtrType, |
| LValueBaseInfo *BaseInfo = nullptr, |
| TBAAAccessInfo *TBAAInfo = nullptr); |
| RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, |
| ReturnValueSlot ReturnValue); |
| |
| RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, |
| const CXXMethodDecl *MD, |
| ReturnValueSlot ReturnValue); |
| RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); |
| |
| RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, |
| ReturnValueSlot ReturnValue); |
| |
| RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, |
| ReturnValueSlot ReturnValue); |
| |
| RValue EmitBuiltinExpr(const FunctionDecl *FD, |
| unsigned BuiltinID, const CallExpr *E, |
| ReturnValueSlot ReturnValue); |
| |
| /// Emit IR for __builtin_os_log_format. |
| RValue emitBuiltinOSLogFormat(const CallExpr &E); |
| |
| llvm::Function *generateBuiltinOSLogHelperFunction( |
| const analyze_os_log::OSLogBufferLayout &Layout, |
| CharUnits BufferAlignment); |
| |
| RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); |
| |
| /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call |
| /// is unhandled by the current target. |
| llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
| |
| llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, |
| const llvm::CmpInst::Predicate Fp, |
| const llvm::CmpInst::Predicate Ip, |
| const llvm::Twine &Name = ""); |
| llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
| llvm::Triple::ArchType Arch); |
| |
| llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, |
| unsigned LLVMIntrinsic, |
| unsigned AltLLVMIntrinsic, |
| const char *NameHint, |
| unsigned Modifier, |
| const CallExpr *E, |
| SmallVectorImpl<llvm::Value *> &Ops, |
| Address PtrOp0, Address PtrOp1, |
| llvm::Triple::ArchType Arch); |
| |
| llvm::Value *EmitISOVolatileLoad(const CallExpr *E); |
| llvm::Value *EmitISOVolatileStore(const CallExpr *E); |
| |
| llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, |
| unsigned Modifier, llvm::Type *ArgTy, |
| const CallExpr *E); |
| llvm::Value *EmitNeonCall(llvm::Function *F, |
| SmallVectorImpl<llvm::Value*> &O, |
| const char *name, |
| unsigned shift = 0, bool rightshift = false); |
| llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); |
| llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, |
| bool negateForRightShift); |
| llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, |
| llvm::Type *Ty, bool usgn, const char *name); |
| llvm::Value *vectorWrapScalar16(llvm::Value *Op); |
| llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
| llvm::Triple::ArchType Arch); |
| |
| llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); |
| llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
| llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
| llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
| llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
| llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
| llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E); |
| llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
| |
| private: |
| enum class MSVCIntrin; |
| |
| public: |
| llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); |
| |
| llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); |
| |
| llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); |
| llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); |
| llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); |
| llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); |
| llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); |
| llvm::Value *EmitObjCCollectionLiteral(const Expr *E, |
| const ObjCMethodDecl *MethodWithObjects); |
| llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); |
| RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, |
| ReturnValueSlot Return = ReturnValueSlot()); |
| |
| /// Retrieves the default cleanup kind for an ARC cleanup. |
| /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. |
| CleanupKind getARCCleanupKind() { |
| return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions |
| ? NormalAndEHCleanup : NormalCleanup; |
| } |
| |
| // ARC primitives. |
| void EmitARCInitWeak(Address addr, llvm::Value *value); |
| void EmitARCDestroyWeak(Address addr); |
| llvm::Value *EmitARCLoadWeak(Address addr); |
| llvm::Value *EmitARCLoadWeakRetained(Address addr); |
| llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); |
| void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); |
| void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); |
| void EmitARCCopyWeak(Address dst, Address src); |
| void EmitARCMoveWeak(Address dst, Address src); |
| llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); |
| llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); |
| llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, |
| bool resultIgnored); |
| llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, |
| bool resultIgnored); |
| llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); |
| llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); |
| llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); |
| void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); |
| void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); |
| llvm::Value *EmitARCAutorelease(llvm::Value *value); |
| llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); |
| llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); |
| llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); |
| llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); |
| |
| std::pair<LValue,llvm::Value*> |
| EmitARCStoreAutoreleasing(const BinaryOperator *e); |
| std::pair<LValue,llvm::Value*> |
| EmitARCStoreStrong(const BinaryOperator *e, bool ignored); |
| std::pair<LValue,llvm::Value*> |
| EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); |
| |
| llvm::Value *EmitObjCThrowOperand(const Expr *expr); |
| llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); |
| llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); |
| |
| llvm::Value *EmitARCExtendBlockObject(const Expr *expr); |
| llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, |
| bool allowUnsafeClaim); |
| llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); |
| llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); |
| llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); |
| |
| void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); |
| |
| static Destroyer destroyARCStrongImprecise; |
| static Destroyer destroyARCStrongPrecise; |
| static Destroyer destroyARCWeak; |
| static Destroyer emitARCIntrinsicUse; |
| static Destroyer destroyNonTrivialCStruct; |
| |
| void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); |
| llvm::Value *EmitObjCAutoreleasePoolPush(); |
| llvm::Value *EmitObjCMRRAutoreleasePoolPush(); |
| void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); |
| void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); |
| |
| /// Emits a reference binding to the passed in expression. |
| RValue EmitReferenceBindingToExpr(const Expr *E); |
| |
| //===--------------------------------------------------------------------===// |
| // Expression Emission |
| //===--------------------------------------------------------------------===// |
| |
| // Expressions are broken into three classes: scalar, complex, aggregate. |
| |
| /// EmitScalarExpr - Emit the computation of the specified expression of LLVM |
| /// scalar type, returning the result. |
| llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); |
| |
| /// Emit a conversion from the specified type to the specified destination |
| /// type, both of which are LLVM scalar types. |
| llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, |
| QualType DstTy, SourceLocation Loc); |
| |
| /// Emit a conversion from the specified complex type to the specified |
| /// destination type, where the destination type is an LLVM scalar type. |
| llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, |
| QualType DstTy, |
| SourceLocation Loc); |
| |
| /// EmitAggExpr - Emit the computation of the specified expression |
| /// of aggregate type. The result is computed into the given slot, |
| /// which may be null to indicate that the value is not needed. |
| void EmitAggExpr(const Expr *E, AggValueSlot AS); |
| |
| /// EmitAggExprToLValue - Emit the computation of the specified expression of |
| /// aggregate type into a temporary LValue. |
| LValue EmitAggExprToLValue(const Expr *E); |
| |
| /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, |
| /// make sure it survives garbage collection until this point. |
| void EmitExtendGCLifetime(llvm::Value *object); |
| |
| /// EmitComplexExpr - Emit the computation of the specified expression of |
| /// complex type, returning the result. |
| ComplexPairTy EmitComplexExpr(const Expr *E, |
| bool IgnoreReal = false, |
| bool IgnoreImag = false); |
| |
| /// EmitComplexExprIntoLValue - Emit the given expression of complex |
| /// type and place its result into the specified l-value. |
| void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); |
| |
| /// EmitStoreOfComplex - Store a complex number into the specified l-value. |
| void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); |
| |
| /// EmitLoadOfComplex - Load a complex number from the specified l-value. |
| ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); |
| |
| Address emitAddrOfRealComponent(Address complex, QualType complexType); |
| Address emitAddrOfImagComponent(Address complex, QualType complexType); |
| |
| /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the |
| /// global variable that has already been created for it. If the initializer |
| /// has a different type than GV does, this may free GV and return a different |
| /// one. Otherwise it just returns GV. |
| llvm::GlobalVariable * |
| AddInitializerToStaticVarDecl(const VarDecl &D, |
| llvm::GlobalVariable *GV); |
| |
| |
| /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ |
| /// variable with global storage. |
| void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, |
| bool PerformInit); |
| |
| llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, |
| llvm::Constant *Addr); |
| |
| /// Call atexit() with a function that passes the given argument to |
| /// the given function. |
| void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, |
| llvm::Constant *addr); |
| |
| /// Call atexit() with function dtorStub. |
| void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); |
| |
| /// Emit code in this function to perform a guarded variable |
| /// initialization. Guarded initializations are used when it's not |
| /// possible to prove that an initialization will be done exactly |
| /// once, e.g. with a static local variable or a static data member |
| /// of a class template. |
| void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, |
| bool PerformInit); |
| |
| enum class GuardKind { VariableGuard, TlsGuard }; |
| |
| /// Emit a branch to select whether or not to perform guarded initialization. |
| void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, |
| llvm::BasicBlock *InitBlock, |
| llvm::BasicBlock *NoInitBlock, |
| GuardKind Kind, const VarDecl *D); |
| |
| /// GenerateCXXGlobalInitFunc - Generates code for initializing global |
| /// variables. |
| void GenerateCXXGlobalInitFunc(llvm::Function *Fn, |
| ArrayRef<llvm::Function *> CXXThreadLocals, |
| Address Guard = Address::invalid()); |
| |
| /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global |
| /// variables. |
| void GenerateCXXGlobalDtorsFunc( |
| llvm::Function *Fn, |
| const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>> |
| &DtorsAndObjects); |
| |
| void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, |
| const VarDecl *D, |
| llvm::GlobalVariable *Addr, |
| bool PerformInit); |
| |
| void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); |
| |
| void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); |
| |
| void enterFullExpression(const ExprWithCleanups *E) { |
| if (E->getNumObjects() == 0) return; |
| enterNonTrivialFullExpression(E); |
| } |
| void enterNonTrivialFullExpression(const ExprWithCleanups *E); |
| |
| void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); |
| |
| void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); |
| |
| RValue EmitAtomicExpr(AtomicExpr *E); |
| |
| //===--------------------------------------------------------------------===// |
| // Annotations Emission |
| //===--------------------------------------------------------------------===// |
| |
| /// Emit an annotation call (intrinsic or builtin). |
| llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, |
| llvm::Value *AnnotatedVal, |
| StringRef AnnotationStr, |
| SourceLocation Location); |
| |
| /// Emit local annotations for the local variable V, declared by D. |
| void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); |
| |
| /// Emit field annotations for the given field & value. Returns the |
| /// annotation result. |
| Address EmitFieldAnnotations(const FieldDecl *D, Address V); |
| |
| //===--------------------------------------------------------------------===// |
| // Internal Helpers |
| //===--------------------------------------------------------------------===// |
| |
| /// ContainsLabel - Return true if the statement contains a label in it. If |
| /// this statement is not executed normally, it not containing a label means |
| /// that we can just remove the code. |
| static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); |
| |
| /// containsBreak - Return true if the statement contains a break out of it. |
| /// If the statement (recursively) contains a switch or loop with a break |
| /// inside of it, this is fine. |
| static bool containsBreak(const Stmt *S); |
| |
| /// Determine if the given statement might introduce a declaration into the |
| /// current scope, by being a (possibly-labelled) DeclStmt. |
| static bool mightAddDeclToScope(const Stmt *S); |
| |
| /// ConstantFoldsToSimpleInteger - If the specified expression does not fold |
| /// to a constant, or if it does but contains a label, return false. If it |
| /// constant folds return true and set the boolean result in Result. |
| bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, |
| bool AllowLabels = false); |
| |
| /// ConstantFoldsToSimpleInteger - If the specified expression does not fold |
| /// to a constant, or if it does but contains a label, return false. If it |
| /// constant folds return true and set the folded value. |
| bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, |
| bool AllowLabels = false); |
| |
| /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an |
| /// if statement) to the specified blocks. Based on the condition, this might |
| /// try to simplify the codegen of the conditional based on the branch. |
| /// TrueCount should be the number of times we expect the condition to |
| /// evaluate to true based on PGO data. |
| void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, |
| llvm::BasicBlock *FalseBlock, uint64_t TrueCount); |
| |
| /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is |
| /// nonnull, if \p LHS is marked _Nonnull. |
| void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); |
| |
| /// An enumeration which makes it easier to specify whether or not an |
| /// operation is a subtraction. |
| enum { NotSubtraction = false, IsSubtraction = true }; |
| |
| /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to |
| /// detect undefined behavior when the pointer overflow sanitizer is enabled. |
| /// \p SignedIndices indicates whether any of the GEP indices are signed. |
| /// \p IsSubtraction indicates whether the expression used to form the GEP |
| /// is a subtraction. |
| llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, |
| ArrayRef<llvm::Value *> IdxList, |
| bool SignedIndices, |
| bool IsSubtraction, |
| SourceLocation Loc, |
| const Twine &Name = ""); |
| |
| /// Specifies which type of sanitizer check to apply when handling a |
| /// particular builtin. |
| enum BuiltinCheckKind { |
| BCK_CTZPassedZero, |
| BCK_CLZPassedZero, |
| }; |
| |
| /// Emits an argument for a call to a builtin. If the builtin sanitizer is |
| /// enabled, a runtime check specified by \p Kind is also emitted. |
| llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); |
| |
| /// Emit a description of a type in a format suitable for passing to |
| /// a runtime sanitizer handler. |
| llvm::Constant *EmitCheckTypeDescriptor(QualType T); |
| |
| /// Convert a value into a format suitable for passing to a runtime |
| /// sanitizer handler. |
| llvm::Value *EmitCheckValue(llvm::Value *V); |
| |
| /// Emit a description of a source location in a format suitable for |
| /// passing to a runtime sanitizer handler. |
| llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); |
| |
| /// Create a basic block that will call a handler function in a |
| /// sanitizer runtime with the provided arguments, and create a conditional |
| /// branch to it. |
| void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, |
| SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, |
| ArrayRef<llvm::Value *> DynamicArgs); |
| |
| /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath |
| /// if Cond if false. |
| void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, |
| llvm::ConstantInt *TypeId, llvm::Value *Ptr, |
| ArrayRef<llvm::Constant *> StaticArgs); |
| |
| /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime |
| /// checking is enabled. Otherwise, just emit an unreachable instruction. |
| void EmitUnreachable(SourceLocation Loc); |
| |
| /// Create a basic block that will call the trap intrinsic, and emit a |
| /// conditional branch to it, for the -ftrapv checks. |
| void EmitTrapCheck(llvm::Value *Checked); |
| |
| /// Emit a call to trap or debugtrap and attach function attribute |
| /// "trap-func-name" if specified. |
| llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); |
| |
| /// Emit a stub for the cross-DSO CFI check function. |
| void EmitCfiCheckStub(); |
| |
| /// Emit a cross-DSO CFI failure handling function. |
| void EmitCfiCheckFail(); |
| |
| /// Create a check for a function parameter that may potentially be |
| /// declared as non-null. |
| void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, |
| AbstractCallee AC, unsigned ParmNum); |
| |
| /// EmitCallArg - Emit a single call argument. |
| void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); |
| |
| /// EmitDelegateCallArg - We are performing a delegate call; that |
| /// is, the current function is delegating to another one. Produce |
| /// a r-value suitable for passing the given parameter. |
| void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, |
| SourceLocation loc); |
| |
| /// SetFPAccuracy - Set the minimum required accuracy of the given floating |
| /// point operation, expressed as the maximum relative error in ulp. |
| void SetFPAccuracy(llvm::Value *Val, float Accuracy); |
| |
| private: |
| llvm::MDNode *getRangeForLoadFromType(QualType Ty); |
| void EmitReturnOfRValue(RValue RV, QualType Ty); |
| |
| void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); |
| |
| llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> |
| DeferredReplacements; |
| |
| /// Set the address of a local variable. |
| void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { |
| assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); |
| LocalDeclMap.insert({VD, Addr}); |
| } |
| |
| /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty |
| /// from function arguments into \arg Dst. See ABIArgInfo::Expand. |
| /// |
| /// \param AI - The first function argument of the expansion. |
| void ExpandTypeFromArgs(QualType Ty, LValue Dst, |
| SmallVectorImpl<llvm::Value *>::iterator &AI); |
| |
| /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg |
| /// Ty, into individual arguments on the provided vector \arg IRCallArgs, |
| /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. |
| void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, |
| SmallVectorImpl<llvm::Value *> &IRCallArgs, |
| unsigned &IRCallArgPos); |
| |
| llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, |
| const Expr *InputExpr, std::string &ConstraintStr); |
| |
| llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, |
| LValue InputValue, QualType InputType, |
| std::string &ConstraintStr, |
| SourceLocation Loc); |
| |
| /// Attempts to statically evaluate the object size of E. If that |
| /// fails, emits code to figure the size of E out for us. This is |
| /// pass_object_size aware. |
| /// |
| /// If EmittedExpr is non-null, this will use that instead of re-emitting E. |
| llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, |
| llvm::IntegerType *ResType, |
| llvm::Value *EmittedE); |
| |
| /// Emits the size of E, as required by __builtin_object_size. This |
| /// function is aware of pass_object_size parameters, and will act accordingly |
| /// if E is a parameter with the pass_object_size attribute. |
| llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, |
| llvm::IntegerType *ResType, |
| llvm::Value *EmittedE); |
| |
| public: |
| #ifndef NDEBUG |
| // Determine whether the given argument is an Objective-C method |
| // that may have type parameters in its signature. |
| static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { |
| const DeclContext *dc = method->getDeclContext(); |
| if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { |
| return classDecl->getTypeParamListAsWritten(); |
| } |
| |
| if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { |
| return catDecl->getTypeParamList(); |
| } |
| |
| return false; |
| } |
| |
| template<typename T> |
| static bool isObjCMethodWithTypeParams(const T *) { return false; } |
| #endif |
| |
| enum class EvaluationOrder { |
| ///! No language constraints on evaluation order. |
| Default, |
| ///! Language semantics require left-to-right evaluation. |
| ForceLeftToRight, |
| ///! Language semantics require right-to-left evaluation. |
| ForceRightToLeft |
| }; |
| |
| /// EmitCallArgs - Emit call arguments for a function. |
| template <typename T> |
| void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, |
| llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, |
| AbstractCallee AC = AbstractCallee(), |
| unsigned ParamsToSkip = 0, |
| EvaluationOrder Order = EvaluationOrder::Default) { |
| SmallVector<QualType, 16> ArgTypes; |
| CallExpr::const_arg_iterator Arg = ArgRange.begin(); |
| |
| assert((ParamsToSkip == 0 || CallArgTypeInfo) && |
| "Can't skip parameters if type info is not provided"); |
| if (CallArgTypeInfo) { |
| #ifndef NDEBUG |
| bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); |
| #endif |
| |
| // First, use the argument types that the type info knows about |
| for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, |
| E = CallArgTypeInfo->param_type_end(); |
| I != E; ++I, ++Arg) { |
| assert(Arg != ArgRange.end() && "Running over edge of argument list!"); |
| assert((isGenericMethod || |
| ((*I)->isVariablyModifiedType() || |
| (*I).getNonReferenceType()->isObjCRetainableType() || |
| getContext() |
| .getCanonicalType((*I).getNonReferenceType()) |
| .getTypePtr() == |
| getContext() |
| .getCanonicalType((*Arg)->getType()) |
| .getTypePtr())) && |
| "type mismatch in call argument!"); |
| ArgTypes.push_back(*I); |
| } |
| } |
| |
| // Either we've emitted all the call args, or we have a call to variadic |
| // function. |
| assert((Arg == ArgRange.end() || !CallArgTypeInfo || |
| CallArgTypeInfo->isVariadic()) && |
| "Extra arguments in non-variadic function!"); |
| |
| // If we still have any arguments, emit them using the type of the argument. |
| for (auto *A : llvm::make_range(Arg, ArgRange.end())) |
| ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); |
| |
| EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); |
| } |
| |
| void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, |
| llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, |
| AbstractCallee AC = AbstractCallee(), |
| unsigned ParamsToSkip = 0, |
| EvaluationOrder Order = EvaluationOrder::Default); |
| |
| /// EmitPointerWithAlignment - Given an expression with a pointer type, |
| /// emit the value and compute our best estimate of the alignment of the |
| /// pointee. |
| /// |
| /// \param BaseInfo - If non-null, this will be initialized with |
| /// information about the source of the alignment and the may-alias |
| /// attribute. Note that this function will conservatively fall back on |
| /// the type when it doesn't recognize the expression and may-alias will |
| /// be set to false. |
| /// |
| /// One reasonable way to use this information is when there's a language |
| /// guarantee that the pointer must be aligned to some stricter value, and |
| /// we're simply trying to ensure that sufficiently obvious uses of under- |
| /// aligned objects don't get miscompiled; for example, a placement new |
| /// into the address of a local variable. In such a case, it's quite |
| /// reasonable to just ignore the returned alignment when it isn't from an |
| /// explicit source. |
| Address EmitPointerWithAlignment(const Expr *Addr, |
| LValueBaseInfo *BaseInfo = nullptr, |
| TBAAAccessInfo *TBAAInfo = nullptr); |
| |
| /// If \p E references a parameter with pass_object_size info or a constant |
| /// array size modifier, emit the object size divided by the size of \p EltTy. |
| /// Otherwise return null. |
| llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); |
| |
| void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); |
| |
| struct MultiVersionResolverOption { |
| llvm::Function *Function; |
| struct Conds { |
| StringRef Architecture; |
| llvm::SmallVector<StringRef, 8> Features; |
| |
| Conds(StringRef Arch, ArrayRef<StringRef> Feats) |
| : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} |
| } Conditions; |
| |
| MultiVersionResolverOption(llvm::Function *F, StringRef Arch, |
| ArrayRef<StringRef> Feats) |
| : Function(F), Conditions(Arch, Feats) {} |
| }; |
| |
| // Emits the body of a multiversion function's resolver. Assumes that the |
| // options are already sorted in the proper order, with the 'default' option |
| // last (if it exists). |
| void EmitMultiVersionResolver(llvm::Function *Resolver, |
| ArrayRef<MultiVersionResolverOption> Options); |
| |
| struct CPUDispatchMultiVersionResolverOption { |
| llvm::Function *Function; |
| // Note: EmitX86CPUSupports only has 32 bits available, so we store the mask |
| // as 32 bits here. When 64-bit support is added to __builtin_cpu_supports, |
| // this can be extended to 64 bits. |
| uint32_t FeatureMask; |
| CPUDispatchMultiVersionResolverOption(llvm::Function *F, uint64_t Mask) |
| : Function(F), FeatureMask(static_cast<uint32_t>(Mask)) {} |
| bool operator>(const CPUDispatchMultiVersionResolverOption &Other) const { |
| return FeatureMask > Other.FeatureMask; |
| } |
| }; |
| void EmitCPUDispatchMultiVersionResolver( |
| llvm::Function *Resolver, |
| ArrayRef<CPUDispatchMultiVersionResolverOption> Options); |
| static uint32_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs); |
| |
| private: |
| QualType getVarArgType(const Expr *Arg); |
| |
| void EmitDeclMetadata(); |
| |
| BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, |
| const AutoVarEmission &emission); |
| |
| void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); |
| |
| llvm::Value *GetValueForARMHint(unsigned BuiltinID); |
| llvm::Value *EmitX86CpuIs(const CallExpr *E); |
| llvm::Value *EmitX86CpuIs(StringRef CPUStr); |
| llvm::Value *EmitX86CpuSupports(const CallExpr *E); |
| llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); |
| llvm::Value *EmitX86CpuSupports(uint32_t Mask); |
| llvm::Value *EmitX86CpuInit(); |
| llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); |
| }; |
| |
| inline DominatingLLVMValue::saved_type |
| DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { |
| if (!needsSaving(value)) return saved_type(value, false); |
| |
| // Otherwise, we need an alloca. |
| auto align = CharUnits::fromQuantity( |
| CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); |
| Address alloca = |
| CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); |
| CGF.Builder.CreateStore(value, alloca); |
| |
| return saved_type(alloca.getPointer(), true); |
| } |
| |
| inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, |
| saved_type value) { |
| // If the value says it wasn't saved, trust that it's still dominating. |
| if (!value.getInt()) return value.getPointer(); |
| |
| // Otherwise, it should be an alloca instruction, as set up in save(). |
| auto alloca = cast<llvm::AllocaInst>(value.getPointer()); |
| return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); |
| } |
| |
| } // end namespace CodeGen |
| } // end namespace clang |
| |
| #endif |