|  | //===- CriticalAntiDepBreaker.cpp - Anti-dep breaker ----------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the CriticalAntiDepBreaker class, which | 
|  | // implements register anti-dependence breaking along a blocks | 
|  | // critical path during post-RA scheduler. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "CriticalAntiDepBreaker.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/RegisterClassInfo.h" | 
|  | #include "llvm/CodeGen/ScheduleDAG.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/MC/MCInstrDesc.h" | 
|  | #include "llvm/MC/MCRegisterInfo.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <cassert> | 
|  | #include <map> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "post-RA-sched" | 
|  |  | 
|  | CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi, | 
|  | const RegisterClassInfo &RCI) | 
|  | : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()), | 
|  | TII(MF.getSubtarget().getInstrInfo()), | 
|  | TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI), | 
|  | Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0), | 
|  | DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {} | 
|  |  | 
|  | CriticalAntiDepBreaker::~CriticalAntiDepBreaker() = default; | 
|  |  | 
|  | void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { | 
|  | const unsigned BBSize = BB->size(); | 
|  | for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) { | 
|  | // Clear out the register class data. | 
|  | Classes[i] = nullptr; | 
|  |  | 
|  | // Initialize the indices to indicate that no registers are live. | 
|  | KillIndices[i] = ~0u; | 
|  | DefIndices[i] = BBSize; | 
|  | } | 
|  |  | 
|  | // Clear "do not change" set. | 
|  | KeepRegs.reset(); | 
|  |  | 
|  | bool IsReturnBlock = BB->isReturnBlock(); | 
|  |  | 
|  | // Examine the live-in regs of all successors. | 
|  | for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), | 
|  | SE = BB->succ_end(); SI != SE; ++SI) | 
|  | for (const auto &LI : (*SI)->liveins()) { | 
|  | for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) { | 
|  | unsigned Reg = *AI; | 
|  | Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); | 
|  | KillIndices[Reg] = BBSize; | 
|  | DefIndices[Reg] = ~0u; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Mark live-out callee-saved registers. In a return block this is | 
|  | // all callee-saved registers. In non-return this is any | 
|  | // callee-saved register that is not saved in the prolog. | 
|  | const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | BitVector Pristine = MFI.getPristineRegs(MF); | 
|  | for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I; | 
|  | ++I) { | 
|  | unsigned Reg = *I; | 
|  | if (!IsReturnBlock && !Pristine.test(Reg)) | 
|  | continue; | 
|  | for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) { | 
|  | unsigned Reg = *AI; | 
|  | Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); | 
|  | KillIndices[Reg] = BBSize; | 
|  | DefIndices[Reg] = ~0u; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void CriticalAntiDepBreaker::FinishBlock() { | 
|  | RegRefs.clear(); | 
|  | KeepRegs.reset(); | 
|  | } | 
|  |  | 
|  | void CriticalAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count, | 
|  | unsigned InsertPosIndex) { | 
|  | // Kill instructions can define registers but are really nops, and there might | 
|  | // be a real definition earlier that needs to be paired with uses dominated by | 
|  | // this kill. | 
|  |  | 
|  | // FIXME: It may be possible to remove the isKill() restriction once PR18663 | 
|  | // has been properly fixed. There can be value in processing kills as seen in | 
|  | // the AggressiveAntiDepBreaker class. | 
|  | if (MI.isDebugInstr() || MI.isKill()) | 
|  | return; | 
|  | assert(Count < InsertPosIndex && "Instruction index out of expected range!"); | 
|  |  | 
|  | for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { | 
|  | if (KillIndices[Reg] != ~0u) { | 
|  | // If Reg is currently live, then mark that it can't be renamed as | 
|  | // we don't know the extent of its live-range anymore (now that it | 
|  | // has been scheduled). | 
|  | Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); | 
|  | KillIndices[Reg] = Count; | 
|  | } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) { | 
|  | // Any register which was defined within the previous scheduling region | 
|  | // may have been rescheduled and its lifetime may overlap with registers | 
|  | // in ways not reflected in our current liveness state. For each such | 
|  | // register, adjust the liveness state to be conservatively correct. | 
|  | Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); | 
|  |  | 
|  | // Move the def index to the end of the previous region, to reflect | 
|  | // that the def could theoretically have been scheduled at the end. | 
|  | DefIndices[Reg] = InsertPosIndex; | 
|  | } | 
|  | } | 
|  |  | 
|  | PrescanInstruction(MI); | 
|  | ScanInstruction(MI, Count); | 
|  | } | 
|  |  | 
|  | /// CriticalPathStep - Return the next SUnit after SU on the bottom-up | 
|  | /// critical path. | 
|  | static const SDep *CriticalPathStep(const SUnit *SU) { | 
|  | const SDep *Next = nullptr; | 
|  | unsigned NextDepth = 0; | 
|  | // Find the predecessor edge with the greatest depth. | 
|  | for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); | 
|  | P != PE; ++P) { | 
|  | const SUnit *PredSU = P->getSUnit(); | 
|  | unsigned PredLatency = P->getLatency(); | 
|  | unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; | 
|  | // In the case of a latency tie, prefer an anti-dependency edge over | 
|  | // other types of edges. | 
|  | if (NextDepth < PredTotalLatency || | 
|  | (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) { | 
|  | NextDepth = PredTotalLatency; | 
|  | Next = &*P; | 
|  | } | 
|  | } | 
|  | return Next; | 
|  | } | 
|  |  | 
|  | void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr &MI) { | 
|  | // It's not safe to change register allocation for source operands of | 
|  | // instructions that have special allocation requirements. Also assume all | 
|  | // registers used in a call must not be changed (ABI). | 
|  | // FIXME: The issue with predicated instruction is more complex. We are being | 
|  | // conservative here because the kill markers cannot be trusted after | 
|  | // if-conversion: | 
|  | // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14] | 
|  | // ... | 
|  | // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395] | 
|  | // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12] | 
|  | // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8) | 
|  | // | 
|  | // The first R6 kill is not really a kill since it's killed by a predicated | 
|  | // instruction which may not be executed. The second R6 def may or may not | 
|  | // re-define R6 so it's not safe to change it since the last R6 use cannot be | 
|  | // changed. | 
|  | bool Special = | 
|  | MI.isCall() || MI.hasExtraSrcRegAllocReq() || TII->isPredicated(MI); | 
|  |  | 
|  | // Scan the register operands for this instruction and update | 
|  | // Classes and RegRefs. | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isReg()) continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (Reg == 0) continue; | 
|  | const TargetRegisterClass *NewRC = nullptr; | 
|  |  | 
|  | if (i < MI.getDesc().getNumOperands()) | 
|  | NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF); | 
|  |  | 
|  | // For now, only allow the register to be changed if its register | 
|  | // class is consistent across all uses. | 
|  | if (!Classes[Reg] && NewRC) | 
|  | Classes[Reg] = NewRC; | 
|  | else if (!NewRC || Classes[Reg] != NewRC) | 
|  | Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); | 
|  |  | 
|  | // Now check for aliases. | 
|  | for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { | 
|  | // If an alias of the reg is used during the live range, give up. | 
|  | // Note that this allows us to skip checking if AntiDepReg | 
|  | // overlaps with any of the aliases, among other things. | 
|  | unsigned AliasReg = *AI; | 
|  | if (Classes[AliasReg]) { | 
|  | Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); | 
|  | Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we're still willing to consider this register, note the reference. | 
|  | if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1)) | 
|  | RegRefs.insert(std::make_pair(Reg, &MO)); | 
|  |  | 
|  | // If this reg is tied and live (Classes[Reg] is set to -1), we can't change | 
|  | // it or any of its sub or super regs. We need to use KeepRegs to mark the | 
|  | // reg because not all uses of the same reg within an instruction are | 
|  | // necessarily tagged as tied. | 
|  | // Example: an x86 "xor %eax, %eax" will have one source operand tied to the | 
|  | // def register but not the second (see PR20020 for details). | 
|  | // FIXME: can this check be relaxed to account for undef uses | 
|  | // of a register? In the above 'xor' example, the uses of %eax are undef, so | 
|  | // earlier instructions could still replace %eax even though the 'xor' | 
|  | // itself can't be changed. | 
|  | if (MI.isRegTiedToUseOperand(i) && | 
|  | Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) { | 
|  | for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); | 
|  | SubRegs.isValid(); ++SubRegs) { | 
|  | KeepRegs.set(*SubRegs); | 
|  | } | 
|  | for (MCSuperRegIterator SuperRegs(Reg, TRI); | 
|  | SuperRegs.isValid(); ++SuperRegs) { | 
|  | KeepRegs.set(*SuperRegs); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MO.isUse() && Special) { | 
|  | if (!KeepRegs.test(Reg)) { | 
|  | for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); | 
|  | SubRegs.isValid(); ++SubRegs) | 
|  | KeepRegs.set(*SubRegs); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void CriticalAntiDepBreaker::ScanInstruction(MachineInstr &MI, unsigned Count) { | 
|  | // Update liveness. | 
|  | // Proceeding upwards, registers that are defed but not used in this | 
|  | // instruction are now dead. | 
|  | assert(!MI.isKill() && "Attempting to scan a kill instruction"); | 
|  |  | 
|  | if (!TII->isPredicated(MI)) { | 
|  | // Predicated defs are modeled as read + write, i.e. similar to two | 
|  | // address updates. | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  |  | 
|  | if (MO.isRegMask()) | 
|  | for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) | 
|  | if (MO.clobbersPhysReg(i)) { | 
|  | DefIndices[i] = Count; | 
|  | KillIndices[i] = ~0u; | 
|  | KeepRegs.reset(i); | 
|  | Classes[i] = nullptr; | 
|  | RegRefs.erase(i); | 
|  | } | 
|  |  | 
|  | if (!MO.isReg()) continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (Reg == 0) continue; | 
|  | if (!MO.isDef()) continue; | 
|  |  | 
|  | // Ignore two-addr defs. | 
|  | if (MI.isRegTiedToUseOperand(i)) | 
|  | continue; | 
|  |  | 
|  | // If we've already marked this reg as unchangeable, don't remove | 
|  | // it or any of its subregs from KeepRegs. | 
|  | bool Keep = KeepRegs.test(Reg); | 
|  |  | 
|  | // For the reg itself and all subregs: update the def to current; | 
|  | // reset the kill state, any restrictions, and references. | 
|  | for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) { | 
|  | unsigned SubregReg = *SRI; | 
|  | DefIndices[SubregReg] = Count; | 
|  | KillIndices[SubregReg] = ~0u; | 
|  | Classes[SubregReg] = nullptr; | 
|  | RegRefs.erase(SubregReg); | 
|  | if (!Keep) | 
|  | KeepRegs.reset(SubregReg); | 
|  | } | 
|  | // Conservatively mark super-registers as unusable. | 
|  | for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) | 
|  | Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1); | 
|  | } | 
|  | } | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isReg()) continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (Reg == 0) continue; | 
|  | if (!MO.isUse()) continue; | 
|  |  | 
|  | const TargetRegisterClass *NewRC = nullptr; | 
|  | if (i < MI.getDesc().getNumOperands()) | 
|  | NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF); | 
|  |  | 
|  | // For now, only allow the register to be changed if its register | 
|  | // class is consistent across all uses. | 
|  | if (!Classes[Reg] && NewRC) | 
|  | Classes[Reg] = NewRC; | 
|  | else if (!NewRC || Classes[Reg] != NewRC) | 
|  | Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); | 
|  |  | 
|  | RegRefs.insert(std::make_pair(Reg, &MO)); | 
|  |  | 
|  | // It wasn't previously live but now it is, this is a kill. | 
|  | // Repeat for all aliases. | 
|  | for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { | 
|  | unsigned AliasReg = *AI; | 
|  | if (KillIndices[AliasReg] == ~0u) { | 
|  | KillIndices[AliasReg] = Count; | 
|  | DefIndices[AliasReg] = ~0u; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check all machine operands that reference the antidependent register and must | 
|  | // be replaced by NewReg. Return true if any of their parent instructions may | 
|  | // clobber the new register. | 
|  | // | 
|  | // Note: AntiDepReg may be referenced by a two-address instruction such that | 
|  | // it's use operand is tied to a def operand. We guard against the case in which | 
|  | // the two-address instruction also defines NewReg, as may happen with | 
|  | // pre/postincrement loads. In this case, both the use and def operands are in | 
|  | // RegRefs because the def is inserted by PrescanInstruction and not erased | 
|  | // during ScanInstruction. So checking for an instruction with definitions of | 
|  | // both NewReg and AntiDepReg covers it. | 
|  | bool | 
|  | CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin, | 
|  | RegRefIter RegRefEnd, | 
|  | unsigned NewReg) { | 
|  | for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) { | 
|  | MachineOperand *RefOper = I->second; | 
|  |  | 
|  | // Don't allow the instruction defining AntiDepReg to earlyclobber its | 
|  | // operands, in case they may be assigned to NewReg. In this case antidep | 
|  | // breaking must fail, but it's too rare to bother optimizing. | 
|  | if (RefOper->isDef() && RefOper->isEarlyClobber()) | 
|  | return true; | 
|  |  | 
|  | // Handle cases in which this instruction defines NewReg. | 
|  | MachineInstr *MI = RefOper->getParent(); | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &CheckOper = MI->getOperand(i); | 
|  |  | 
|  | if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg)) | 
|  | return true; | 
|  |  | 
|  | if (!CheckOper.isReg() || !CheckOper.isDef() || | 
|  | CheckOper.getReg() != NewReg) | 
|  | continue; | 
|  |  | 
|  | // Don't allow the instruction to define NewReg and AntiDepReg. | 
|  | // When AntiDepReg is renamed it will be an illegal op. | 
|  | if (RefOper->isDef()) | 
|  | return true; | 
|  |  | 
|  | // Don't allow an instruction using AntiDepReg to be earlyclobbered by | 
|  | // NewReg. | 
|  | if (CheckOper.isEarlyClobber()) | 
|  | return true; | 
|  |  | 
|  | // Don't allow inline asm to define NewReg at all. Who knows what it's | 
|  | // doing with it. | 
|  | if (MI->isInlineAsm()) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned CriticalAntiDepBreaker:: | 
|  | findSuitableFreeRegister(RegRefIter RegRefBegin, | 
|  | RegRefIter RegRefEnd, | 
|  | unsigned AntiDepReg, | 
|  | unsigned LastNewReg, | 
|  | const TargetRegisterClass *RC, | 
|  | SmallVectorImpl<unsigned> &Forbid) { | 
|  | ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC); | 
|  | for (unsigned i = 0; i != Order.size(); ++i) { | 
|  | unsigned NewReg = Order[i]; | 
|  | // Don't replace a register with itself. | 
|  | if (NewReg == AntiDepReg) continue; | 
|  | // Don't replace a register with one that was recently used to repair | 
|  | // an anti-dependence with this AntiDepReg, because that would | 
|  | // re-introduce that anti-dependence. | 
|  | if (NewReg == LastNewReg) continue; | 
|  | // If any instructions that define AntiDepReg also define the NewReg, it's | 
|  | // not suitable.  For example, Instruction with multiple definitions can | 
|  | // result in this condition. | 
|  | if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue; | 
|  | // If NewReg is dead and NewReg's most recent def is not before | 
|  | // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg. | 
|  | assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) | 
|  | && "Kill and Def maps aren't consistent for AntiDepReg!"); | 
|  | assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) | 
|  | && "Kill and Def maps aren't consistent for NewReg!"); | 
|  | if (KillIndices[NewReg] != ~0u || | 
|  | Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) || | 
|  | KillIndices[AntiDepReg] > DefIndices[NewReg]) | 
|  | continue; | 
|  | // If NewReg overlaps any of the forbidden registers, we can't use it. | 
|  | bool Forbidden = false; | 
|  | for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(), | 
|  | ite = Forbid.end(); it != ite; ++it) | 
|  | if (TRI->regsOverlap(NewReg, *it)) { | 
|  | Forbidden = true; | 
|  | break; | 
|  | } | 
|  | if (Forbidden) continue; | 
|  | return NewReg; | 
|  | } | 
|  |  | 
|  | // No registers are free and available! | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned CriticalAntiDepBreaker:: | 
|  | BreakAntiDependencies(const std::vector<SUnit> &SUnits, | 
|  | MachineBasicBlock::iterator Begin, | 
|  | MachineBasicBlock::iterator End, | 
|  | unsigned InsertPosIndex, | 
|  | DbgValueVector &DbgValues) { | 
|  | // The code below assumes that there is at least one instruction, | 
|  | // so just duck out immediately if the block is empty. | 
|  | if (SUnits.empty()) return 0; | 
|  |  | 
|  | // Keep a map of the MachineInstr*'s back to the SUnit representing them. | 
|  | // This is used for updating debug information. | 
|  | // | 
|  | // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap | 
|  | DenseMap<MachineInstr *, const SUnit *> MISUnitMap; | 
|  |  | 
|  | // Find the node at the bottom of the critical path. | 
|  | const SUnit *Max = nullptr; | 
|  | for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { | 
|  | const SUnit *SU = &SUnits[i]; | 
|  | MISUnitMap[SU->getInstr()] = SU; | 
|  | if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency) | 
|  | Max = SU; | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | { | 
|  | LLVM_DEBUG(dbgs() << "Critical path has total latency " | 
|  | << (Max->getDepth() + Max->Latency) << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "Available regs:"); | 
|  | for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { | 
|  | if (KillIndices[Reg] == ~0u) | 
|  | LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI)); | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << '\n'); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Track progress along the critical path through the SUnit graph as we walk | 
|  | // the instructions. | 
|  | const SUnit *CriticalPathSU = Max; | 
|  | MachineInstr *CriticalPathMI = CriticalPathSU->getInstr(); | 
|  |  | 
|  | // Consider this pattern: | 
|  | //   A = ... | 
|  | //   ... = A | 
|  | //   A = ... | 
|  | //   ... = A | 
|  | //   A = ... | 
|  | //   ... = A | 
|  | //   A = ... | 
|  | //   ... = A | 
|  | // There are three anti-dependencies here, and without special care, | 
|  | // we'd break all of them using the same register: | 
|  | //   A = ... | 
|  | //   ... = A | 
|  | //   B = ... | 
|  | //   ... = B | 
|  | //   B = ... | 
|  | //   ... = B | 
|  | //   B = ... | 
|  | //   ... = B | 
|  | // because at each anti-dependence, B is the first register that | 
|  | // isn't A which is free.  This re-introduces anti-dependencies | 
|  | // at all but one of the original anti-dependencies that we were | 
|  | // trying to break.  To avoid this, keep track of the most recent | 
|  | // register that each register was replaced with, avoid | 
|  | // using it to repair an anti-dependence on the same register. | 
|  | // This lets us produce this: | 
|  | //   A = ... | 
|  | //   ... = A | 
|  | //   B = ... | 
|  | //   ... = B | 
|  | //   C = ... | 
|  | //   ... = C | 
|  | //   B = ... | 
|  | //   ... = B | 
|  | // This still has an anti-dependence on B, but at least it isn't on the | 
|  | // original critical path. | 
|  | // | 
|  | // TODO: If we tracked more than one register here, we could potentially | 
|  | // fix that remaining critical edge too. This is a little more involved, | 
|  | // because unlike the most recent register, less recent registers should | 
|  | // still be considered, though only if no other registers are available. | 
|  | std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0); | 
|  |  | 
|  | // Attempt to break anti-dependence edges on the critical path. Walk the | 
|  | // instructions from the bottom up, tracking information about liveness | 
|  | // as we go to help determine which registers are available. | 
|  | unsigned Broken = 0; | 
|  | unsigned Count = InsertPosIndex - 1; | 
|  | for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) { | 
|  | MachineInstr &MI = *--I; | 
|  | // Kill instructions can define registers but are really nops, and there | 
|  | // might be a real definition earlier that needs to be paired with uses | 
|  | // dominated by this kill. | 
|  |  | 
|  | // FIXME: It may be possible to remove the isKill() restriction once PR18663 | 
|  | // has been properly fixed. There can be value in processing kills as seen | 
|  | // in the AggressiveAntiDepBreaker class. | 
|  | if (MI.isDebugInstr() || MI.isKill()) | 
|  | continue; | 
|  |  | 
|  | // Check if this instruction has a dependence on the critical path that | 
|  | // is an anti-dependence that we may be able to break. If it is, set | 
|  | // AntiDepReg to the non-zero register associated with the anti-dependence. | 
|  | // | 
|  | // We limit our attention to the critical path as a heuristic to avoid | 
|  | // breaking anti-dependence edges that aren't going to significantly | 
|  | // impact the overall schedule. There are a limited number of registers | 
|  | // and we want to save them for the important edges. | 
|  | // | 
|  | // TODO: Instructions with multiple defs could have multiple | 
|  | // anti-dependencies. The current code here only knows how to break one | 
|  | // edge per instruction. Note that we'd have to be able to break all of | 
|  | // the anti-dependencies in an instruction in order to be effective. | 
|  | unsigned AntiDepReg = 0; | 
|  | if (&MI == CriticalPathMI) { | 
|  | if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) { | 
|  | const SUnit *NextSU = Edge->getSUnit(); | 
|  |  | 
|  | // Only consider anti-dependence edges. | 
|  | if (Edge->getKind() == SDep::Anti) { | 
|  | AntiDepReg = Edge->getReg(); | 
|  | assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); | 
|  | if (!MRI.isAllocatable(AntiDepReg)) | 
|  | // Don't break anti-dependencies on non-allocatable registers. | 
|  | AntiDepReg = 0; | 
|  | else if (KeepRegs.test(AntiDepReg)) | 
|  | // Don't break anti-dependencies if a use down below requires | 
|  | // this exact register. | 
|  | AntiDepReg = 0; | 
|  | else { | 
|  | // If the SUnit has other dependencies on the SUnit that it | 
|  | // anti-depends on, don't bother breaking the anti-dependency | 
|  | // since those edges would prevent such units from being | 
|  | // scheduled past each other regardless. | 
|  | // | 
|  | // Also, if there are dependencies on other SUnits with the | 
|  | // same register as the anti-dependency, don't attempt to | 
|  | // break it. | 
|  | for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(), | 
|  | PE = CriticalPathSU->Preds.end(); P != PE; ++P) | 
|  | if (P->getSUnit() == NextSU ? | 
|  | (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : | 
|  | (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { | 
|  | AntiDepReg = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | CriticalPathSU = NextSU; | 
|  | CriticalPathMI = CriticalPathSU->getInstr(); | 
|  | } else { | 
|  | // We've reached the end of the critical path. | 
|  | CriticalPathSU = nullptr; | 
|  | CriticalPathMI = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | PrescanInstruction(MI); | 
|  |  | 
|  | SmallVector<unsigned, 2> ForbidRegs; | 
|  |  | 
|  | // If MI's defs have a special allocation requirement, don't allow | 
|  | // any def registers to be changed. Also assume all registers | 
|  | // defined in a call must not be changed (ABI). | 
|  | if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI)) | 
|  | // If this instruction's defs have special allocation requirement, don't | 
|  | // break this anti-dependency. | 
|  | AntiDepReg = 0; | 
|  | else if (AntiDepReg) { | 
|  | // If this instruction has a use of AntiDepReg, breaking it | 
|  | // is invalid.  If the instruction defines other registers, | 
|  | // save a list of them so that we don't pick a new register | 
|  | // that overlaps any of them. | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isReg()) continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (Reg == 0) continue; | 
|  | if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) { | 
|  | AntiDepReg = 0; | 
|  | break; | 
|  | } | 
|  | if (MO.isDef() && Reg != AntiDepReg) | 
|  | ForbidRegs.push_back(Reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Determine AntiDepReg's register class, if it is live and is | 
|  | // consistently used within a single class. | 
|  | const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] | 
|  | : nullptr; | 
|  | assert((AntiDepReg == 0 || RC != nullptr) && | 
|  | "Register should be live if it's causing an anti-dependence!"); | 
|  | if (RC == reinterpret_cast<TargetRegisterClass *>(-1)) | 
|  | AntiDepReg = 0; | 
|  |  | 
|  | // Look for a suitable register to use to break the anti-dependence. | 
|  | // | 
|  | // TODO: Instead of picking the first free register, consider which might | 
|  | // be the best. | 
|  | if (AntiDepReg != 0) { | 
|  | std::pair<std::multimap<unsigned, MachineOperand *>::iterator, | 
|  | std::multimap<unsigned, MachineOperand *>::iterator> | 
|  | Range = RegRefs.equal_range(AntiDepReg); | 
|  | if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second, | 
|  | AntiDepReg, | 
|  | LastNewReg[AntiDepReg], | 
|  | RC, ForbidRegs)) { | 
|  | LLVM_DEBUG(dbgs() << "Breaking anti-dependence edge on " | 
|  | << printReg(AntiDepReg, TRI) << " with " | 
|  | << RegRefs.count(AntiDepReg) << " references" | 
|  | << " using " << printReg(NewReg, TRI) << "!\n"); | 
|  |  | 
|  | // Update the references to the old register to refer to the new | 
|  | // register. | 
|  | for (std::multimap<unsigned, MachineOperand *>::iterator | 
|  | Q = Range.first, QE = Range.second; Q != QE; ++Q) { | 
|  | Q->second->setReg(NewReg); | 
|  | // If the SU for the instruction being updated has debug information | 
|  | // related to the anti-dependency register, make sure to update that | 
|  | // as well. | 
|  | const SUnit *SU = MISUnitMap[Q->second->getParent()]; | 
|  | if (!SU) continue; | 
|  | UpdateDbgValues(DbgValues, Q->second->getParent(), | 
|  | AntiDepReg, NewReg); | 
|  | } | 
|  |  | 
|  | // We just went back in time and modified history; the | 
|  | // liveness information for the anti-dependence reg is now | 
|  | // inconsistent. Set the state as if it were dead. | 
|  | Classes[NewReg] = Classes[AntiDepReg]; | 
|  | DefIndices[NewReg] = DefIndices[AntiDepReg]; | 
|  | KillIndices[NewReg] = KillIndices[AntiDepReg]; | 
|  | assert(((KillIndices[NewReg] == ~0u) != | 
|  | (DefIndices[NewReg] == ~0u)) && | 
|  | "Kill and Def maps aren't consistent for NewReg!"); | 
|  |  | 
|  | Classes[AntiDepReg] = nullptr; | 
|  | DefIndices[AntiDepReg] = KillIndices[AntiDepReg]; | 
|  | KillIndices[AntiDepReg] = ~0u; | 
|  | assert(((KillIndices[AntiDepReg] == ~0u) != | 
|  | (DefIndices[AntiDepReg] == ~0u)) && | 
|  | "Kill and Def maps aren't consistent for AntiDepReg!"); | 
|  |  | 
|  | RegRefs.erase(AntiDepReg); | 
|  | LastNewReg[AntiDepReg] = NewReg; | 
|  | ++Broken; | 
|  | } | 
|  | } | 
|  |  | 
|  | ScanInstruction(MI, Count); | 
|  | } | 
|  |  | 
|  | return Broken; | 
|  | } |