| //===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements C++ template argument deduction. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Sema/TemplateDeduction.h" |
| #include "TreeTransform.h" |
| #include "TypeLocBuilder.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTLambda.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclAccessPair.h" |
| #include "clang/AST/DeclBase.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/DeclarationName.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/NestedNameSpecifier.h" |
| #include "clang/AST/TemplateBase.h" |
| #include "clang/AST/TemplateName.h" |
| #include "clang/AST/Type.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/AST/UnresolvedSet.h" |
| #include "clang/Basic/AddressSpaces.h" |
| #include "clang/Basic/ExceptionSpecificationType.h" |
| #include "clang/Basic/LLVM.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "clang/Basic/SourceLocation.h" |
| #include "clang/Basic/Specifiers.h" |
| #include "clang/Sema/Ownership.h" |
| #include "clang/Sema/Sema.h" |
| #include "clang/Sema/Template.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/APSInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <tuple> |
| #include <utility> |
| |
| namespace clang { |
| |
| /// Various flags that control template argument deduction. |
| /// |
| /// These flags can be bitwise-OR'd together. |
| enum TemplateDeductionFlags { |
| /// No template argument deduction flags, which indicates the |
| /// strictest results for template argument deduction (as used for, e.g., |
| /// matching class template partial specializations). |
| TDF_None = 0, |
| |
| /// Within template argument deduction from a function call, we are |
| /// matching with a parameter type for which the original parameter was |
| /// a reference. |
| TDF_ParamWithReferenceType = 0x1, |
| |
| /// Within template argument deduction from a function call, we |
| /// are matching in a case where we ignore cv-qualifiers. |
| TDF_IgnoreQualifiers = 0x02, |
| |
| /// Within template argument deduction from a function call, |
| /// we are matching in a case where we can perform template argument |
| /// deduction from a template-id of a derived class of the argument type. |
| TDF_DerivedClass = 0x04, |
| |
| /// Allow non-dependent types to differ, e.g., when performing |
| /// template argument deduction from a function call where conversions |
| /// may apply. |
| TDF_SkipNonDependent = 0x08, |
| |
| /// Whether we are performing template argument deduction for |
| /// parameters and arguments in a top-level template argument |
| TDF_TopLevelParameterTypeList = 0x10, |
| |
| /// Within template argument deduction from overload resolution per |
| /// C++ [over.over] allow matching function types that are compatible in |
| /// terms of noreturn and default calling convention adjustments, or |
| /// similarly matching a declared template specialization against a |
| /// possible template, per C++ [temp.deduct.decl]. In either case, permit |
| /// deduction where the parameter is a function type that can be converted |
| /// to the argument type. |
| TDF_AllowCompatibleFunctionType = 0x20, |
| |
| /// Within template argument deduction for a conversion function, we are |
| /// matching with an argument type for which the original argument was |
| /// a reference. |
| TDF_ArgWithReferenceType = 0x40, |
| }; |
| } |
| |
| using namespace clang; |
| using namespace sema; |
| |
| /// Compare two APSInts, extending and switching the sign as |
| /// necessary to compare their values regardless of underlying type. |
| static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) { |
| if (Y.getBitWidth() > X.getBitWidth()) |
| X = X.extend(Y.getBitWidth()); |
| else if (Y.getBitWidth() < X.getBitWidth()) |
| Y = Y.extend(X.getBitWidth()); |
| |
| // If there is a signedness mismatch, correct it. |
| if (X.isSigned() != Y.isSigned()) { |
| // If the signed value is negative, then the values cannot be the same. |
| if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative())) |
| return false; |
| |
| Y.setIsSigned(true); |
| X.setIsSigned(true); |
| } |
| |
| return X == Y; |
| } |
| |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, |
| TemplateParameterList *TemplateParams, |
| const TemplateArgument &Param, |
| TemplateArgument Arg, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced); |
| |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArgumentsByTypeMatch(Sema &S, |
| TemplateParameterList *TemplateParams, |
| QualType Param, |
| QualType Arg, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> & |
| Deduced, |
| unsigned TDF, |
| bool PartialOrdering = false, |
| bool DeducedFromArrayBound = false); |
| |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, |
| ArrayRef<TemplateArgument> Params, |
| ArrayRef<TemplateArgument> Args, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| bool NumberOfArgumentsMustMatch); |
| |
| static void MarkUsedTemplateParameters(ASTContext &Ctx, |
| const TemplateArgument &TemplateArg, |
| bool OnlyDeduced, unsigned Depth, |
| llvm::SmallBitVector &Used); |
| |
| static void MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, |
| bool OnlyDeduced, unsigned Level, |
| llvm::SmallBitVector &Deduced); |
| |
| /// If the given expression is of a form that permits the deduction |
| /// of a non-type template parameter, return the declaration of that |
| /// non-type template parameter. |
| static NonTypeTemplateParmDecl * |
| getDeducedParameterFromExpr(TemplateDeductionInfo &Info, Expr *E) { |
| // If we are within an alias template, the expression may have undergone |
| // any number of parameter substitutions already. |
| while (true) { |
| if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E)) |
| E = IC->getSubExpr(); |
| else if (SubstNonTypeTemplateParmExpr *Subst = |
| dyn_cast<SubstNonTypeTemplateParmExpr>(E)) |
| E = Subst->getReplacement(); |
| else |
| break; |
| } |
| |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) |
| if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) |
| if (NTTP->getDepth() == Info.getDeducedDepth()) |
| return NTTP; |
| |
| return nullptr; |
| } |
| |
| /// Determine whether two declaration pointers refer to the same |
| /// declaration. |
| static bool isSameDeclaration(Decl *X, Decl *Y) { |
| if (NamedDecl *NX = dyn_cast<NamedDecl>(X)) |
| X = NX->getUnderlyingDecl(); |
| if (NamedDecl *NY = dyn_cast<NamedDecl>(Y)) |
| Y = NY->getUnderlyingDecl(); |
| |
| return X->getCanonicalDecl() == Y->getCanonicalDecl(); |
| } |
| |
| /// Verify that the given, deduced template arguments are compatible. |
| /// |
| /// \returns The deduced template argument, or a NULL template argument if |
| /// the deduced template arguments were incompatible. |
| static DeducedTemplateArgument |
| checkDeducedTemplateArguments(ASTContext &Context, |
| const DeducedTemplateArgument &X, |
| const DeducedTemplateArgument &Y) { |
| // We have no deduction for one or both of the arguments; they're compatible. |
| if (X.isNull()) |
| return Y; |
| if (Y.isNull()) |
| return X; |
| |
| // If we have two non-type template argument values deduced for the same |
| // parameter, they must both match the type of the parameter, and thus must |
| // match each other's type. As we're only keeping one of them, we must check |
| // for that now. The exception is that if either was deduced from an array |
| // bound, the type is permitted to differ. |
| if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) { |
| QualType XType = X.getNonTypeTemplateArgumentType(); |
| if (!XType.isNull()) { |
| QualType YType = Y.getNonTypeTemplateArgumentType(); |
| if (YType.isNull() || !Context.hasSameType(XType, YType)) |
| return DeducedTemplateArgument(); |
| } |
| } |
| |
| switch (X.getKind()) { |
| case TemplateArgument::Null: |
| llvm_unreachable("Non-deduced template arguments handled above"); |
| |
| case TemplateArgument::Type: |
| // If two template type arguments have the same type, they're compatible. |
| if (Y.getKind() == TemplateArgument::Type && |
| Context.hasSameType(X.getAsType(), Y.getAsType())) |
| return X; |
| |
| // If one of the two arguments was deduced from an array bound, the other |
| // supersedes it. |
| if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound()) |
| return X.wasDeducedFromArrayBound() ? Y : X; |
| |
| // The arguments are not compatible. |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::Integral: |
| // If we deduced a constant in one case and either a dependent expression or |
| // declaration in another case, keep the integral constant. |
| // If both are integral constants with the same value, keep that value. |
| if (Y.getKind() == TemplateArgument::Expression || |
| Y.getKind() == TemplateArgument::Declaration || |
| (Y.getKind() == TemplateArgument::Integral && |
| hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()))) |
| return X.wasDeducedFromArrayBound() ? Y : X; |
| |
| // All other combinations are incompatible. |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::Template: |
| if (Y.getKind() == TemplateArgument::Template && |
| Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate())) |
| return X; |
| |
| // All other combinations are incompatible. |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::TemplateExpansion: |
| if (Y.getKind() == TemplateArgument::TemplateExpansion && |
| Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(), |
| Y.getAsTemplateOrTemplatePattern())) |
| return X; |
| |
| // All other combinations are incompatible. |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::Expression: { |
| if (Y.getKind() != TemplateArgument::Expression) |
| return checkDeducedTemplateArguments(Context, Y, X); |
| |
| // Compare the expressions for equality |
| llvm::FoldingSetNodeID ID1, ID2; |
| X.getAsExpr()->Profile(ID1, Context, true); |
| Y.getAsExpr()->Profile(ID2, Context, true); |
| if (ID1 == ID2) |
| return X.wasDeducedFromArrayBound() ? Y : X; |
| |
| // Differing dependent expressions are incompatible. |
| return DeducedTemplateArgument(); |
| } |
| |
| case TemplateArgument::Declaration: |
| assert(!X.wasDeducedFromArrayBound()); |
| |
| // If we deduced a declaration and a dependent expression, keep the |
| // declaration. |
| if (Y.getKind() == TemplateArgument::Expression) |
| return X; |
| |
| // If we deduced a declaration and an integral constant, keep the |
| // integral constant and whichever type did not come from an array |
| // bound. |
| if (Y.getKind() == TemplateArgument::Integral) { |
| if (Y.wasDeducedFromArrayBound()) |
| return TemplateArgument(Context, Y.getAsIntegral(), |
| X.getParamTypeForDecl()); |
| return Y; |
| } |
| |
| // If we deduced two declarations, make sure that they refer to the |
| // same declaration. |
| if (Y.getKind() == TemplateArgument::Declaration && |
| isSameDeclaration(X.getAsDecl(), Y.getAsDecl())) |
| return X; |
| |
| // All other combinations are incompatible. |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::NullPtr: |
| // If we deduced a null pointer and a dependent expression, keep the |
| // null pointer. |
| if (Y.getKind() == TemplateArgument::Expression) |
| return X; |
| |
| // If we deduced a null pointer and an integral constant, keep the |
| // integral constant. |
| if (Y.getKind() == TemplateArgument::Integral) |
| return Y; |
| |
| // If we deduced two null pointers, they are the same. |
| if (Y.getKind() == TemplateArgument::NullPtr) |
| return X; |
| |
| // All other combinations are incompatible. |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::Pack: { |
| if (Y.getKind() != TemplateArgument::Pack || |
| X.pack_size() != Y.pack_size()) |
| return DeducedTemplateArgument(); |
| |
| llvm::SmallVector<TemplateArgument, 8> NewPack; |
| for (TemplateArgument::pack_iterator XA = X.pack_begin(), |
| XAEnd = X.pack_end(), |
| YA = Y.pack_begin(); |
| XA != XAEnd; ++XA, ++YA) { |
| TemplateArgument Merged = checkDeducedTemplateArguments( |
| Context, DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()), |
| DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound())); |
| if (Merged.isNull()) |
| return DeducedTemplateArgument(); |
| NewPack.push_back(Merged); |
| } |
| |
| return DeducedTemplateArgument( |
| TemplateArgument::CreatePackCopy(Context, NewPack), |
| X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound()); |
| } |
| } |
| |
| llvm_unreachable("Invalid TemplateArgument Kind!"); |
| } |
| |
| /// Deduce the value of the given non-type template parameter |
| /// as the given deduced template argument. All non-type template parameter |
| /// deduction is funneled through here. |
| static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( |
| Sema &S, TemplateParameterList *TemplateParams, |
| NonTypeTemplateParmDecl *NTTP, const DeducedTemplateArgument &NewDeduced, |
| QualType ValueType, TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| assert(NTTP->getDepth() == Info.getDeducedDepth() && |
| "deducing non-type template argument with wrong depth"); |
| |
| DeducedTemplateArgument Result = checkDeducedTemplateArguments( |
| S.Context, Deduced[NTTP->getIndex()], NewDeduced); |
| if (Result.isNull()) { |
| Info.Param = NTTP; |
| Info.FirstArg = Deduced[NTTP->getIndex()]; |
| Info.SecondArg = NewDeduced; |
| return Sema::TDK_Inconsistent; |
| } |
| |
| Deduced[NTTP->getIndex()] = Result; |
| if (!S.getLangOpts().CPlusPlus17) |
| return Sema::TDK_Success; |
| |
| if (NTTP->isExpandedParameterPack()) |
| // FIXME: We may still need to deduce parts of the type here! But we |
| // don't have any way to find which slice of the type to use, and the |
| // type stored on the NTTP itself is nonsense. Perhaps the type of an |
| // expanded NTTP should be a pack expansion type? |
| return Sema::TDK_Success; |
| |
| // Get the type of the parameter for deduction. If it's a (dependent) array |
| // or function type, we will not have decayed it yet, so do that now. |
| QualType ParamType = S.Context.getAdjustedParameterType(NTTP->getType()); |
| if (auto *Expansion = dyn_cast<PackExpansionType>(ParamType)) |
| ParamType = Expansion->getPattern(); |
| |
| // FIXME: It's not clear how deduction of a parameter of reference |
| // type from an argument (of non-reference type) should be performed. |
| // For now, we just remove reference types from both sides and let |
| // the final check for matching types sort out the mess. |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, ParamType.getNonReferenceType(), |
| ValueType.getNonReferenceType(), Info, Deduced, TDF_SkipNonDependent, |
| /*PartialOrdering=*/false, |
| /*ArrayBound=*/NewDeduced.wasDeducedFromArrayBound()); |
| } |
| |
| /// Deduce the value of the given non-type template parameter |
| /// from the given integral constant. |
| static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( |
| Sema &S, TemplateParameterList *TemplateParams, |
| NonTypeTemplateParmDecl *NTTP, const llvm::APSInt &Value, |
| QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, |
| DeducedTemplateArgument(S.Context, Value, ValueType, |
| DeducedFromArrayBound), |
| ValueType, Info, Deduced); |
| } |
| |
| /// Deduce the value of the given non-type template parameter |
| /// from the given null pointer template argument type. |
| static Sema::TemplateDeductionResult DeduceNullPtrTemplateArgument( |
| Sema &S, TemplateParameterList *TemplateParams, |
| NonTypeTemplateParmDecl *NTTP, QualType NullPtrType, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| Expr *Value = |
| S.ImpCastExprToType(new (S.Context) CXXNullPtrLiteralExpr( |
| S.Context.NullPtrTy, NTTP->getLocation()), |
| NullPtrType, CK_NullToPointer) |
| .get(); |
| return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, |
| DeducedTemplateArgument(Value), |
| Value->getType(), Info, Deduced); |
| } |
| |
| /// Deduce the value of the given non-type template parameter |
| /// from the given type- or value-dependent expression. |
| /// |
| /// \returns true if deduction succeeded, false otherwise. |
| static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( |
| Sema &S, TemplateParameterList *TemplateParams, |
| NonTypeTemplateParmDecl *NTTP, Expr *Value, TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, |
| DeducedTemplateArgument(Value), |
| Value->getType(), Info, Deduced); |
| } |
| |
| /// Deduce the value of the given non-type template parameter |
| /// from the given declaration. |
| /// |
| /// \returns true if deduction succeeded, false otherwise. |
| static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( |
| Sema &S, TemplateParameterList *TemplateParams, |
| NonTypeTemplateParmDecl *NTTP, ValueDecl *D, QualType T, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr; |
| TemplateArgument New(D, T); |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, DeducedTemplateArgument(New), T, Info, Deduced); |
| } |
| |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, |
| TemplateParameterList *TemplateParams, |
| TemplateName Param, |
| TemplateName Arg, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| TemplateDecl *ParamDecl = Param.getAsTemplateDecl(); |
| if (!ParamDecl) { |
| // The parameter type is dependent and is not a template template parameter, |
| // so there is nothing that we can deduce. |
| return Sema::TDK_Success; |
| } |
| |
| if (TemplateTemplateParmDecl *TempParam |
| = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) { |
| // If we're not deducing at this depth, there's nothing to deduce. |
| if (TempParam->getDepth() != Info.getDeducedDepth()) |
| return Sema::TDK_Success; |
| |
| DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg)); |
| DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, |
| Deduced[TempParam->getIndex()], |
| NewDeduced); |
| if (Result.isNull()) { |
| Info.Param = TempParam; |
| Info.FirstArg = Deduced[TempParam->getIndex()]; |
| Info.SecondArg = NewDeduced; |
| return Sema::TDK_Inconsistent; |
| } |
| |
| Deduced[TempParam->getIndex()] = Result; |
| return Sema::TDK_Success; |
| } |
| |
| // Verify that the two template names are equivalent. |
| if (S.Context.hasSameTemplateName(Param, Arg)) |
| return Sema::TDK_Success; |
| |
| // Mismatch of non-dependent template parameter to argument. |
| Info.FirstArg = TemplateArgument(Param); |
| Info.SecondArg = TemplateArgument(Arg); |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| /// Deduce the template arguments by comparing the template parameter |
| /// type (which is a template-id) with the template argument type. |
| /// |
| /// \param S the Sema |
| /// |
| /// \param TemplateParams the template parameters that we are deducing |
| /// |
| /// \param Param the parameter type |
| /// |
| /// \param Arg the argument type |
| /// |
| /// \param Info information about the template argument deduction itself |
| /// |
| /// \param Deduced the deduced template arguments |
| /// |
| /// \returns the result of template argument deduction so far. Note that a |
| /// "success" result means that template argument deduction has not yet failed, |
| /// but it may still fail, later, for other reasons. |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, |
| TemplateParameterList *TemplateParams, |
| const TemplateSpecializationType *Param, |
| QualType Arg, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| assert(Arg.isCanonical() && "Argument type must be canonical"); |
| |
| // Treat an injected-class-name as its underlying template-id. |
| if (auto *Injected = dyn_cast<InjectedClassNameType>(Arg)) |
| Arg = Injected->getInjectedSpecializationType(); |
| |
| // Check whether the template argument is a dependent template-id. |
| if (const TemplateSpecializationType *SpecArg |
| = dyn_cast<TemplateSpecializationType>(Arg)) { |
| // Perform template argument deduction for the template name. |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArguments(S, TemplateParams, |
| Param->getTemplateName(), |
| SpecArg->getTemplateName(), |
| Info, Deduced)) |
| return Result; |
| |
| |
| // Perform template argument deduction on each template |
| // argument. Ignore any missing/extra arguments, since they could be |
| // filled in by default arguments. |
| return DeduceTemplateArguments(S, TemplateParams, |
| Param->template_arguments(), |
| SpecArg->template_arguments(), Info, Deduced, |
| /*NumberOfArgumentsMustMatch=*/false); |
| } |
| |
| // If the argument type is a class template specialization, we |
| // perform template argument deduction using its template |
| // arguments. |
| const RecordType *RecordArg = dyn_cast<RecordType>(Arg); |
| if (!RecordArg) { |
| Info.FirstArg = TemplateArgument(QualType(Param, 0)); |
| Info.SecondArg = TemplateArgument(Arg); |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| ClassTemplateSpecializationDecl *SpecArg |
| = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl()); |
| if (!SpecArg) { |
| Info.FirstArg = TemplateArgument(QualType(Param, 0)); |
| Info.SecondArg = TemplateArgument(Arg); |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| // Perform template argument deduction for the template name. |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArguments(S, |
| TemplateParams, |
| Param->getTemplateName(), |
| TemplateName(SpecArg->getSpecializedTemplate()), |
| Info, Deduced)) |
| return Result; |
| |
| // Perform template argument deduction for the template arguments. |
| return DeduceTemplateArguments(S, TemplateParams, Param->template_arguments(), |
| SpecArg->getTemplateArgs().asArray(), Info, |
| Deduced, /*NumberOfArgumentsMustMatch=*/true); |
| } |
| |
| /// Determines whether the given type is an opaque type that |
| /// might be more qualified when instantiated. |
| static bool IsPossiblyOpaquelyQualifiedType(QualType T) { |
| switch (T->getTypeClass()) { |
| case Type::TypeOfExpr: |
| case Type::TypeOf: |
| case Type::DependentName: |
| case Type::Decltype: |
| case Type::UnresolvedUsing: |
| case Type::TemplateTypeParm: |
| return true; |
| |
| case Type::ConstantArray: |
| case Type::IncompleteArray: |
| case Type::VariableArray: |
| case Type::DependentSizedArray: |
| return IsPossiblyOpaquelyQualifiedType( |
| cast<ArrayType>(T)->getElementType()); |
| |
| default: |
| return false; |
| } |
| } |
| |
| /// Helper function to build a TemplateParameter when we don't |
| /// know its type statically. |
| static TemplateParameter makeTemplateParameter(Decl *D) { |
| if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D)) |
| return TemplateParameter(TTP); |
| if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D)) |
| return TemplateParameter(NTTP); |
| |
| return TemplateParameter(cast<TemplateTemplateParmDecl>(D)); |
| } |
| |
| /// If \p Param is an expanded parameter pack, get the number of expansions. |
| static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) { |
| if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) |
| if (NTTP->isExpandedParameterPack()) |
| return NTTP->getNumExpansionTypes(); |
| |
| if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) |
| if (TTP->isExpandedParameterPack()) |
| return TTP->getNumExpansionTemplateParameters(); |
| |
| return None; |
| } |
| |
| /// A pack that we're currently deducing. |
| struct clang::DeducedPack { |
| // The index of the pack. |
| unsigned Index; |
| |
| // The old value of the pack before we started deducing it. |
| DeducedTemplateArgument Saved; |
| |
| // A deferred value of this pack from an inner deduction, that couldn't be |
| // deduced because this deduction hadn't happened yet. |
| DeducedTemplateArgument DeferredDeduction; |
| |
| // The new value of the pack. |
| SmallVector<DeducedTemplateArgument, 4> New; |
| |
| // The outer deduction for this pack, if any. |
| DeducedPack *Outer = nullptr; |
| |
| DeducedPack(unsigned Index) : Index(Index) {} |
| }; |
| |
| namespace { |
| |
| /// A scope in which we're performing pack deduction. |
| class PackDeductionScope { |
| public: |
| /// Prepare to deduce the packs named within Pattern. |
| PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| TemplateDeductionInfo &Info, TemplateArgument Pattern) |
| : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) { |
| unsigned NumNamedPacks = addPacks(Pattern); |
| finishConstruction(NumNamedPacks); |
| } |
| |
| /// Prepare to directly deduce arguments of the parameter with index \p Index. |
| PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| TemplateDeductionInfo &Info, unsigned Index) |
| : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) { |
| addPack(Index); |
| finishConstruction(1); |
| } |
| |
| private: |
| void addPack(unsigned Index) { |
| // Save the deduced template argument for the parameter pack expanded |
| // by this pack expansion, then clear out the deduction. |
| DeducedPack Pack(Index); |
| Pack.Saved = Deduced[Index]; |
| Deduced[Index] = TemplateArgument(); |
| |
| // FIXME: What if we encounter multiple packs with different numbers of |
| // pre-expanded expansions? (This should already have been diagnosed |
| // during substitution.) |
| if (Optional<unsigned> ExpandedPackExpansions = |
| getExpandedPackSize(TemplateParams->getParam(Index))) |
| FixedNumExpansions = ExpandedPackExpansions; |
| |
| Packs.push_back(Pack); |
| } |
| |
| unsigned addPacks(TemplateArgument Pattern) { |
| // Compute the set of template parameter indices that correspond to |
| // parameter packs expanded by the pack expansion. |
| llvm::SmallBitVector SawIndices(TemplateParams->size()); |
| |
| auto AddPack = [&](unsigned Index) { |
| if (SawIndices[Index]) |
| return; |
| SawIndices[Index] = true; |
| addPack(Index); |
| }; |
| |
| // First look for unexpanded packs in the pattern. |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| S.collectUnexpandedParameterPacks(Pattern, Unexpanded); |
| for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) { |
| unsigned Depth, Index; |
| std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]); |
| if (Depth == Info.getDeducedDepth()) |
| AddPack(Index); |
| } |
| assert(!Packs.empty() && "Pack expansion without unexpanded packs?"); |
| |
| unsigned NumNamedPacks = Packs.size(); |
| |
| // We can also have deduced template parameters that do not actually |
| // appear in the pattern, but can be deduced by it (the type of a non-type |
| // template parameter pack, in particular). These won't have prevented us |
| // from partially expanding the pack. |
| llvm::SmallBitVector Used(TemplateParams->size()); |
| MarkUsedTemplateParameters(S.Context, Pattern, /*OnlyDeduced*/true, |
| Info.getDeducedDepth(), Used); |
| for (int Index = Used.find_first(); Index != -1; |
| Index = Used.find_next(Index)) |
| if (TemplateParams->getParam(Index)->isParameterPack()) |
| AddPack(Index); |
| |
| return NumNamedPacks; |
| } |
| |
| void finishConstruction(unsigned NumNamedPacks) { |
| // Dig out the partially-substituted pack, if there is one. |
| const TemplateArgument *PartialPackArgs = nullptr; |
| unsigned NumPartialPackArgs = 0; |
| std::pair<unsigned, unsigned> PartialPackDepthIndex(-1u, -1u); |
| if (auto *Scope = S.CurrentInstantiationScope) |
| if (auto *Partial = Scope->getPartiallySubstitutedPack( |
| &PartialPackArgs, &NumPartialPackArgs)) |
| PartialPackDepthIndex = getDepthAndIndex(Partial); |
| |
| // This pack expansion will have been partially or fully expanded if |
| // it only names explicitly-specified parameter packs (including the |
| // partially-substituted one, if any). |
| bool IsExpanded = true; |
| for (unsigned I = 0; I != NumNamedPacks; ++I) { |
| if (Packs[I].Index >= Info.getNumExplicitArgs()) { |
| IsExpanded = false; |
| IsPartiallyExpanded = false; |
| break; |
| } |
| if (PartialPackDepthIndex == |
| std::make_pair(Info.getDeducedDepth(), Packs[I].Index)) { |
| IsPartiallyExpanded = true; |
| } |
| } |
| |
| // Skip over the pack elements that were expanded into separate arguments. |
| // If we partially expanded, this is the number of partial arguments. |
| if (IsPartiallyExpanded) |
| PackElements += NumPartialPackArgs; |
| else if (IsExpanded) |
| PackElements += *FixedNumExpansions; |
| |
| for (auto &Pack : Packs) { |
| if (Info.PendingDeducedPacks.size() > Pack.Index) |
| Pack.Outer = Info.PendingDeducedPacks[Pack.Index]; |
| else |
| Info.PendingDeducedPacks.resize(Pack.Index + 1); |
| Info.PendingDeducedPacks[Pack.Index] = &Pack; |
| |
| if (PartialPackDepthIndex == |
| std::make_pair(Info.getDeducedDepth(), Pack.Index)) { |
| Pack.New.append(PartialPackArgs, PartialPackArgs + NumPartialPackArgs); |
| // We pre-populate the deduced value of the partially-substituted |
| // pack with the specified value. This is not entirely correct: the |
| // value is supposed to have been substituted, not deduced, but the |
| // cases where this is observable require an exact type match anyway. |
| // |
| // FIXME: If we could represent a "depth i, index j, pack elem k" |
| // parameter, we could substitute the partially-substituted pack |
| // everywhere and avoid this. |
| if (!IsPartiallyExpanded) |
| Deduced[Pack.Index] = Pack.New[PackElements]; |
| } |
| } |
| } |
| |
| public: |
| ~PackDeductionScope() { |
| for (auto &Pack : Packs) |
| Info.PendingDeducedPacks[Pack.Index] = Pack.Outer; |
| } |
| |
| /// Determine whether this pack has already been partially expanded into a |
| /// sequence of (prior) function parameters / template arguments. |
| bool isPartiallyExpanded() { return IsPartiallyExpanded; } |
| |
| /// Determine whether this pack expansion scope has a known, fixed arity. |
| /// This happens if it involves a pack from an outer template that has |
| /// (notionally) already been expanded. |
| bool hasFixedArity() { return FixedNumExpansions.hasValue(); } |
| |
| /// Determine whether the next element of the argument is still part of this |
| /// pack. This is the case unless the pack is already expanded to a fixed |
| /// length. |
| bool hasNextElement() { |
| return !FixedNumExpansions || *FixedNumExpansions > PackElements; |
| } |
| |
| /// Move to deducing the next element in each pack that is being deduced. |
| void nextPackElement() { |
| // Capture the deduced template arguments for each parameter pack expanded |
| // by this pack expansion, add them to the list of arguments we've deduced |
| // for that pack, then clear out the deduced argument. |
| for (auto &Pack : Packs) { |
| DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index]; |
| if (!Pack.New.empty() || !DeducedArg.isNull()) { |
| while (Pack.New.size() < PackElements) |
| Pack.New.push_back(DeducedTemplateArgument()); |
| if (Pack.New.size() == PackElements) |
| Pack.New.push_back(DeducedArg); |
| else |
| Pack.New[PackElements] = DeducedArg; |
| DeducedArg = Pack.New.size() > PackElements + 1 |
| ? Pack.New[PackElements + 1] |
| : DeducedTemplateArgument(); |
| } |
| } |
| ++PackElements; |
| } |
| |
| /// Finish template argument deduction for a set of argument packs, |
| /// producing the argument packs and checking for consistency with prior |
| /// deductions. |
| Sema::TemplateDeductionResult |
| finish(bool TreatNoDeductionsAsNonDeduced = true) { |
| // Build argument packs for each of the parameter packs expanded by this |
| // pack expansion. |
| for (auto &Pack : Packs) { |
| // Put back the old value for this pack. |
| Deduced[Pack.Index] = Pack.Saved; |
| |
| // If we are deducing the size of this pack even if we didn't deduce any |
| // values for it, then make sure we build a pack of the right size. |
| // FIXME: Should we always deduce the size, even if the pack appears in |
| // a non-deduced context? |
| if (!TreatNoDeductionsAsNonDeduced) |
| Pack.New.resize(PackElements); |
| |
| // Build or find a new value for this pack. |
| DeducedTemplateArgument NewPack; |
| if (PackElements && Pack.New.empty()) { |
| if (Pack.DeferredDeduction.isNull()) { |
| // We were not able to deduce anything for this parameter pack |
| // (because it only appeared in non-deduced contexts), so just |
| // restore the saved argument pack. |
| continue; |
| } |
| |
| NewPack = Pack.DeferredDeduction; |
| Pack.DeferredDeduction = TemplateArgument(); |
| } else if (Pack.New.empty()) { |
| // If we deduced an empty argument pack, create it now. |
| NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack()); |
| } else { |
| TemplateArgument *ArgumentPack = |
| new (S.Context) TemplateArgument[Pack.New.size()]; |
| std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack); |
| NewPack = DeducedTemplateArgument( |
| TemplateArgument(llvm::makeArrayRef(ArgumentPack, Pack.New.size())), |
| // FIXME: This is wrong, it's possible that some pack elements are |
| // deduced from an array bound and others are not: |
| // template<typename ...T, T ...V> void g(const T (&...p)[V]); |
| // g({1, 2, 3}, {{}, {}}); |
| // ... should deduce T = {int, size_t (from array bound)}. |
| Pack.New[0].wasDeducedFromArrayBound()); |
| } |
| |
| // Pick where we're going to put the merged pack. |
| DeducedTemplateArgument *Loc; |
| if (Pack.Outer) { |
| if (Pack.Outer->DeferredDeduction.isNull()) { |
| // Defer checking this pack until we have a complete pack to compare |
| // it against. |
| Pack.Outer->DeferredDeduction = NewPack; |
| continue; |
| } |
| Loc = &Pack.Outer->DeferredDeduction; |
| } else { |
| Loc = &Deduced[Pack.Index]; |
| } |
| |
| // Check the new pack matches any previous value. |
| DeducedTemplateArgument OldPack = *Loc; |
| DeducedTemplateArgument Result = |
| checkDeducedTemplateArguments(S.Context, OldPack, NewPack); |
| |
| // If we deferred a deduction of this pack, check that one now too. |
| if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) { |
| OldPack = Result; |
| NewPack = Pack.DeferredDeduction; |
| Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack); |
| } |
| |
| NamedDecl *Param = TemplateParams->getParam(Pack.Index); |
| if (Result.isNull()) { |
| Info.Param = makeTemplateParameter(Param); |
| Info.FirstArg = OldPack; |
| Info.SecondArg = NewPack; |
| return Sema::TDK_Inconsistent; |
| } |
| |
| // If we have a pre-expanded pack and we didn't deduce enough elements |
| // for it, fail deduction. |
| if (Optional<unsigned> Expansions = getExpandedPackSize(Param)) { |
| if (*Expansions != PackElements) { |
| Info.Param = makeTemplateParameter(Param); |
| Info.FirstArg = Result; |
| return Sema::TDK_IncompletePack; |
| } |
| } |
| |
| *Loc = Result; |
| } |
| |
| return Sema::TDK_Success; |
| } |
| |
| private: |
| Sema &S; |
| TemplateParameterList *TemplateParams; |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced; |
| TemplateDeductionInfo &Info; |
| unsigned PackElements = 0; |
| bool IsPartiallyExpanded = false; |
| /// The number of expansions, if we have a fully-expanded pack in this scope. |
| Optional<unsigned> FixedNumExpansions; |
| |
| SmallVector<DeducedPack, 2> Packs; |
| }; |
| |
| } // namespace |
| |
| /// Deduce the template arguments by comparing the list of parameter |
| /// types to the list of argument types, as in the parameter-type-lists of |
| /// function types (C++ [temp.deduct.type]p10). |
| /// |
| /// \param S The semantic analysis object within which we are deducing |
| /// |
| /// \param TemplateParams The template parameters that we are deducing |
| /// |
| /// \param Params The list of parameter types |
| /// |
| /// \param NumParams The number of types in \c Params |
| /// |
| /// \param Args The list of argument types |
| /// |
| /// \param NumArgs The number of types in \c Args |
| /// |
| /// \param Info information about the template argument deduction itself |
| /// |
| /// \param Deduced the deduced template arguments |
| /// |
| /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe |
| /// how template argument deduction is performed. |
| /// |
| /// \param PartialOrdering If true, we are performing template argument |
| /// deduction for during partial ordering for a call |
| /// (C++0x [temp.deduct.partial]). |
| /// |
| /// \returns the result of template argument deduction so far. Note that a |
| /// "success" result means that template argument deduction has not yet failed, |
| /// but it may still fail, later, for other reasons. |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, |
| TemplateParameterList *TemplateParams, |
| const QualType *Params, unsigned NumParams, |
| const QualType *Args, unsigned NumArgs, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| unsigned TDF, |
| bool PartialOrdering = false) { |
| // C++0x [temp.deduct.type]p10: |
| // Similarly, if P has a form that contains (T), then each parameter type |
| // Pi of the respective parameter-type- list of P is compared with the |
| // corresponding parameter type Ai of the corresponding parameter-type-list |
| // of A. [...] |
| unsigned ArgIdx = 0, ParamIdx = 0; |
| for (; ParamIdx != NumParams; ++ParamIdx) { |
| // Check argument types. |
| const PackExpansionType *Expansion |
| = dyn_cast<PackExpansionType>(Params[ParamIdx]); |
| if (!Expansion) { |
| // Simple case: compare the parameter and argument types at this point. |
| |
| // Make sure we have an argument. |
| if (ArgIdx >= NumArgs) |
| return Sema::TDK_MiscellaneousDeductionFailure; |
| |
| if (isa<PackExpansionType>(Args[ArgIdx])) { |
| // C++0x [temp.deduct.type]p22: |
| // If the original function parameter associated with A is a function |
| // parameter pack and the function parameter associated with P is not |
| // a function parameter pack, then template argument deduction fails. |
| return Sema::TDK_MiscellaneousDeductionFailure; |
| } |
| |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| Params[ParamIdx], Args[ArgIdx], |
| Info, Deduced, TDF, |
| PartialOrdering)) |
| return Result; |
| |
| ++ArgIdx; |
| continue; |
| } |
| |
| // C++0x [temp.deduct.type]p10: |
| // If the parameter-declaration corresponding to Pi is a function |
| // parameter pack, then the type of its declarator- id is compared with |
| // each remaining parameter type in the parameter-type-list of A. Each |
| // comparison deduces template arguments for subsequent positions in the |
| // template parameter packs expanded by the function parameter pack. |
| |
| QualType Pattern = Expansion->getPattern(); |
| PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); |
| |
| // A pack scope with fixed arity is not really a pack any more, so is not |
| // a non-deduced context. |
| if (ParamIdx + 1 == NumParams || PackScope.hasFixedArity()) { |
| for (; ArgIdx < NumArgs && PackScope.hasNextElement(); ++ArgIdx) { |
| // Deduce template arguments from the pattern. |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern, |
| Args[ArgIdx], Info, Deduced, |
| TDF, PartialOrdering)) |
| return Result; |
| |
| PackScope.nextPackElement(); |
| } |
| } else { |
| // C++0x [temp.deduct.type]p5: |
| // The non-deduced contexts are: |
| // - A function parameter pack that does not occur at the end of the |
| // parameter-declaration-clause. |
| // |
| // FIXME: There is no wording to say what we should do in this case. We |
| // choose to resolve this by applying the same rule that is applied for a |
| // function call: that is, deduce all contained packs to their |
| // explicitly-specified values (or to <> if there is no such value). |
| // |
| // This is seemingly-arbitrarily different from the case of a template-id |
| // with a non-trailing pack-expansion in its arguments, which renders the |
| // entire template-argument-list a non-deduced context. |
| |
| // If the parameter type contains an explicitly-specified pack that we |
| // could not expand, skip the number of parameters notionally created |
| // by the expansion. |
| Optional<unsigned> NumExpansions = Expansion->getNumExpansions(); |
| if (NumExpansions && !PackScope.isPartiallyExpanded()) { |
| for (unsigned I = 0; I != *NumExpansions && ArgIdx < NumArgs; |
| ++I, ++ArgIdx) |
| PackScope.nextPackElement(); |
| } |
| } |
| |
| // Build argument packs for each of the parameter packs expanded by this |
| // pack expansion. |
| if (auto Result = PackScope.finish()) |
| return Result; |
| } |
| |
| // Make sure we don't have any extra arguments. |
| if (ArgIdx < NumArgs) |
| return Sema::TDK_MiscellaneousDeductionFailure; |
| |
| return Sema::TDK_Success; |
| } |
| |
| /// Determine whether the parameter has qualifiers that the argument |
| /// lacks. Put another way, determine whether there is no way to add |
| /// a deduced set of qualifiers to the ParamType that would result in |
| /// its qualifiers matching those of the ArgType. |
| static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType, |
| QualType ArgType) { |
| Qualifiers ParamQs = ParamType.getQualifiers(); |
| Qualifiers ArgQs = ArgType.getQualifiers(); |
| |
| if (ParamQs == ArgQs) |
| return false; |
| |
| // Mismatched (but not missing) Objective-C GC attributes. |
| if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() && |
| ParamQs.hasObjCGCAttr()) |
| return true; |
| |
| // Mismatched (but not missing) address spaces. |
| if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() && |
| ParamQs.hasAddressSpace()) |
| return true; |
| |
| // Mismatched (but not missing) Objective-C lifetime qualifiers. |
| if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() && |
| ParamQs.hasObjCLifetime()) |
| return true; |
| |
| // CVR qualifiers inconsistent or a superset. |
| return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0; |
| } |
| |
| /// Compare types for equality with respect to possibly compatible |
| /// function types (noreturn adjustment, implicit calling conventions). If any |
| /// of parameter and argument is not a function, just perform type comparison. |
| /// |
| /// \param Param the template parameter type. |
| /// |
| /// \param Arg the argument type. |
| bool Sema::isSameOrCompatibleFunctionType(CanQualType Param, |
| CanQualType Arg) { |
| const FunctionType *ParamFunction = Param->getAs<FunctionType>(), |
| *ArgFunction = Arg->getAs<FunctionType>(); |
| |
| // Just compare if not functions. |
| if (!ParamFunction || !ArgFunction) |
| return Param == Arg; |
| |
| // Noreturn and noexcept adjustment. |
| QualType AdjustedParam; |
| if (IsFunctionConversion(Param, Arg, AdjustedParam)) |
| return Arg == Context.getCanonicalType(AdjustedParam); |
| |
| // FIXME: Compatible calling conventions. |
| |
| return Param == Arg; |
| } |
| |
| /// Get the index of the first template parameter that was originally from the |
| /// innermost template-parameter-list. This is 0 except when we concatenate |
| /// the template parameter lists of a class template and a constructor template |
| /// when forming an implicit deduction guide. |
| static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD) { |
| auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FTD->getTemplatedDecl()); |
| if (!Guide || !Guide->isImplicit()) |
| return 0; |
| return Guide->getDeducedTemplate()->getTemplateParameters()->size(); |
| } |
| |
| /// Determine whether a type denotes a forwarding reference. |
| static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) { |
| // C++1z [temp.deduct.call]p3: |
| // A forwarding reference is an rvalue reference to a cv-unqualified |
| // template parameter that does not represent a template parameter of a |
| // class template. |
| if (auto *ParamRef = Param->getAs<RValueReferenceType>()) { |
| if (ParamRef->getPointeeType().getQualifiers()) |
| return false; |
| auto *TypeParm = ParamRef->getPointeeType()->getAs<TemplateTypeParmType>(); |
| return TypeParm && TypeParm->getIndex() >= FirstInnerIndex; |
| } |
| return false; |
| } |
| |
| /// Deduce the template arguments by comparing the parameter type and |
| /// the argument type (C++ [temp.deduct.type]). |
| /// |
| /// \param S the semantic analysis object within which we are deducing |
| /// |
| /// \param TemplateParams the template parameters that we are deducing |
| /// |
| /// \param ParamIn the parameter type |
| /// |
| /// \param ArgIn the argument type |
| /// |
| /// \param Info information about the template argument deduction itself |
| /// |
| /// \param Deduced the deduced template arguments |
| /// |
| /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe |
| /// how template argument deduction is performed. |
| /// |
| /// \param PartialOrdering Whether we're performing template argument deduction |
| /// in the context of partial ordering (C++0x [temp.deduct.partial]). |
| /// |
| /// \returns the result of template argument deduction so far. Note that a |
| /// "success" result means that template argument deduction has not yet failed, |
| /// but it may still fail, later, for other reasons. |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArgumentsByTypeMatch(Sema &S, |
| TemplateParameterList *TemplateParams, |
| QualType ParamIn, QualType ArgIn, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| unsigned TDF, |
| bool PartialOrdering, |
| bool DeducedFromArrayBound) { |
| // We only want to look at the canonical types, since typedefs and |
| // sugar are not part of template argument deduction. |
| QualType Param = S.Context.getCanonicalType(ParamIn); |
| QualType Arg = S.Context.getCanonicalType(ArgIn); |
| |
| // If the argument type is a pack expansion, look at its pattern. |
| // This isn't explicitly called out |
| if (const PackExpansionType *ArgExpansion |
| = dyn_cast<PackExpansionType>(Arg)) |
| Arg = ArgExpansion->getPattern(); |
| |
| if (PartialOrdering) { |
| // C++11 [temp.deduct.partial]p5: |
| // Before the partial ordering is done, certain transformations are |
| // performed on the types used for partial ordering: |
| // - If P is a reference type, P is replaced by the type referred to. |
| const ReferenceType *ParamRef = Param->getAs<ReferenceType>(); |
| if (ParamRef) |
| Param = ParamRef->getPointeeType(); |
| |
| // - If A is a reference type, A is replaced by the type referred to. |
| const ReferenceType *ArgRef = Arg->getAs<ReferenceType>(); |
| if (ArgRef) |
| Arg = ArgRef->getPointeeType(); |
| |
| if (ParamRef && ArgRef && S.Context.hasSameUnqualifiedType(Param, Arg)) { |
| // C++11 [temp.deduct.partial]p9: |
| // If, for a given type, deduction succeeds in both directions (i.e., |
| // the types are identical after the transformations above) and both |
| // P and A were reference types [...]: |
| // - if [one type] was an lvalue reference and [the other type] was |
| // not, [the other type] is not considered to be at least as |
| // specialized as [the first type] |
| // - if [one type] is more cv-qualified than [the other type], |
| // [the other type] is not considered to be at least as specialized |
| // as [the first type] |
| // Objective-C ARC adds: |
| // - [one type] has non-trivial lifetime, [the other type] has |
| // __unsafe_unretained lifetime, and the types are otherwise |
| // identical |
| // |
| // A is "considered to be at least as specialized" as P iff deduction |
| // succeeds, so we model this as a deduction failure. Note that |
| // [the first type] is P and [the other type] is A here; the standard |
| // gets this backwards. |
| Qualifiers ParamQuals = Param.getQualifiers(); |
| Qualifiers ArgQuals = Arg.getQualifiers(); |
| if ((ParamRef->isLValueReferenceType() && |
| !ArgRef->isLValueReferenceType()) || |
| ParamQuals.isStrictSupersetOf(ArgQuals) || |
| (ParamQuals.hasNonTrivialObjCLifetime() && |
| ArgQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone && |
| ParamQuals.withoutObjCLifetime() == |
| ArgQuals.withoutObjCLifetime())) { |
| Info.FirstArg = TemplateArgument(ParamIn); |
| Info.SecondArg = TemplateArgument(ArgIn); |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| } |
| |
| // C++11 [temp.deduct.partial]p7: |
| // Remove any top-level cv-qualifiers: |
| // - If P is a cv-qualified type, P is replaced by the cv-unqualified |
| // version of P. |
| Param = Param.getUnqualifiedType(); |
| // - If A is a cv-qualified type, A is replaced by the cv-unqualified |
| // version of A. |
| Arg = Arg.getUnqualifiedType(); |
| } else { |
| // C++0x [temp.deduct.call]p4 bullet 1: |
| // - If the original P is a reference type, the deduced A (i.e., the type |
| // referred to by the reference) can be more cv-qualified than the |
| // transformed A. |
| if (TDF & TDF_ParamWithReferenceType) { |
| Qualifiers Quals; |
| QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals); |
| Quals.setCVRQualifiers(Quals.getCVRQualifiers() & |
| Arg.getCVRQualifiers()); |
| Param = S.Context.getQualifiedType(UnqualParam, Quals); |
| } |
| |
| if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) { |
| // C++0x [temp.deduct.type]p10: |
| // If P and A are function types that originated from deduction when |
| // taking the address of a function template (14.8.2.2) or when deducing |
| // template arguments from a function declaration (14.8.2.6) and Pi and |
| // Ai are parameters of the top-level parameter-type-list of P and A, |
| // respectively, Pi is adjusted if it is a forwarding reference and Ai |
| // is an lvalue reference, in |
| // which case the type of Pi is changed to be the template parameter |
| // type (i.e., T&& is changed to simply T). [ Note: As a result, when |
| // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be |
| // deduced as X&. - end note ] |
| TDF &= ~TDF_TopLevelParameterTypeList; |
| if (isForwardingReference(Param, 0) && Arg->isLValueReferenceType()) |
| Param = Param->getPointeeType(); |
| } |
| } |
| |
| // C++ [temp.deduct.type]p9: |
| // A template type argument T, a template template argument TT or a |
| // template non-type argument i can be deduced if P and A have one of |
| // the following forms: |
| // |
| // T |
| // cv-list T |
| if (const TemplateTypeParmType *TemplateTypeParm |
| = Param->getAs<TemplateTypeParmType>()) { |
| // Just skip any attempts to deduce from a placeholder type or a parameter |
| // at a different depth. |
| if (Arg->isPlaceholderType() || |
| Info.getDeducedDepth() != TemplateTypeParm->getDepth()) |
| return Sema::TDK_Success; |
| |
| unsigned Index = TemplateTypeParm->getIndex(); |
| bool RecanonicalizeArg = false; |
| |
| // If the argument type is an array type, move the qualifiers up to the |
| // top level, so they can be matched with the qualifiers on the parameter. |
| if (isa<ArrayType>(Arg)) { |
| Qualifiers Quals; |
| Arg = S.Context.getUnqualifiedArrayType(Arg, Quals); |
| if (Quals) { |
| Arg = S.Context.getQualifiedType(Arg, Quals); |
| RecanonicalizeArg = true; |
| } |
| } |
| |
| // The argument type can not be less qualified than the parameter |
| // type. |
| if (!(TDF & TDF_IgnoreQualifiers) && |
| hasInconsistentOrSupersetQualifiersOf(Param, Arg)) { |
| Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); |
| Info.FirstArg = TemplateArgument(Param); |
| Info.SecondArg = TemplateArgument(Arg); |
| return Sema::TDK_Underqualified; |
| } |
| |
| // Do not match a function type with a cv-qualified type. |
| // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584 |
| if (Arg->isFunctionType() && Param.hasQualifiers()) { |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| assert(TemplateTypeParm->getDepth() == Info.getDeducedDepth() && |
| "saw template type parameter with wrong depth"); |
| assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function"); |
| QualType DeducedType = Arg; |
| |
| // Remove any qualifiers on the parameter from the deduced type. |
| // We checked the qualifiers for consistency above. |
| Qualifiers DeducedQs = DeducedType.getQualifiers(); |
| Qualifiers ParamQs = Param.getQualifiers(); |
| DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers()); |
| if (ParamQs.hasObjCGCAttr()) |
| DeducedQs.removeObjCGCAttr(); |
| if (ParamQs.hasAddressSpace()) |
| DeducedQs.removeAddressSpace(); |
| if (ParamQs.hasObjCLifetime()) |
| DeducedQs.removeObjCLifetime(); |
| |
| // Objective-C ARC: |
| // If template deduction would produce a lifetime qualifier on a type |
| // that is not a lifetime type, template argument deduction fails. |
| if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() && |
| !DeducedType->isDependentType()) { |
| Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); |
| Info.FirstArg = TemplateArgument(Param); |
| Info.SecondArg = TemplateArgument(Arg); |
| return Sema::TDK_Underqualified; |
| } |
| |
| // Objective-C ARC: |
| // If template deduction would produce an argument type with lifetime type |
| // but no lifetime qualifier, the __strong lifetime qualifier is inferred. |
| if (S.getLangOpts().ObjCAutoRefCount && |
| DeducedType->isObjCLifetimeType() && |
| !DeducedQs.hasObjCLifetime()) |
| DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong); |
| |
| DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(), |
| DeducedQs); |
| |
| if (RecanonicalizeArg) |
| DeducedType = S.Context.getCanonicalType(DeducedType); |
| |
| DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound); |
| DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, |
| Deduced[Index], |
| NewDeduced); |
| if (Result.isNull()) { |
| Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); |
| Info.FirstArg = Deduced[Index]; |
| Info.SecondArg = NewDeduced; |
| return Sema::TDK_Inconsistent; |
| } |
| |
| Deduced[Index] = Result; |
| return Sema::TDK_Success; |
| } |
| |
| // Set up the template argument deduction information for a failure. |
| Info.FirstArg = TemplateArgument(ParamIn); |
| Info.SecondArg = TemplateArgument(ArgIn); |
| |
| // If the parameter is an already-substituted template parameter |
| // pack, do nothing: we don't know which of its arguments to look |
| // at, so we have to wait until all of the parameter packs in this |
| // expansion have arguments. |
| if (isa<SubstTemplateTypeParmPackType>(Param)) |
| return Sema::TDK_Success; |
| |
| // Check the cv-qualifiers on the parameter and argument types. |
| CanQualType CanParam = S.Context.getCanonicalType(Param); |
| CanQualType CanArg = S.Context.getCanonicalType(Arg); |
| if (!(TDF & TDF_IgnoreQualifiers)) { |
| if (TDF & TDF_ParamWithReferenceType) { |
| if (hasInconsistentOrSupersetQualifiersOf(Param, Arg)) |
| return Sema::TDK_NonDeducedMismatch; |
| } else if (TDF & TDF_ArgWithReferenceType) { |
| // C++ [temp.deduct.conv]p4: |
| // If the original A is a reference type, A can be more cv-qualified |
| // than the deduced A |
| if (!Arg.getQualifiers().compatiblyIncludes(Param.getQualifiers())) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| // Strip out all extra qualifiers from the argument to figure out the |
| // type we're converting to, prior to the qualification conversion. |
| Qualifiers Quals; |
| Arg = S.Context.getUnqualifiedArrayType(Arg, Quals); |
| Arg = S.Context.getQualifiedType(Arg, Param.getQualifiers()); |
| } else if (!IsPossiblyOpaquelyQualifiedType(Param)) { |
| if (Param.getCVRQualifiers() != Arg.getCVRQualifiers()) |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| // If the parameter type is not dependent, there is nothing to deduce. |
| if (!Param->isDependentType()) { |
| if (!(TDF & TDF_SkipNonDependent)) { |
| bool NonDeduced = |
| (TDF & TDF_AllowCompatibleFunctionType) |
| ? !S.isSameOrCompatibleFunctionType(CanParam, CanArg) |
| : Param != Arg; |
| if (NonDeduced) { |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| } |
| return Sema::TDK_Success; |
| } |
| } else if (!Param->isDependentType()) { |
| CanQualType ParamUnqualType = CanParam.getUnqualifiedType(), |
| ArgUnqualType = CanArg.getUnqualifiedType(); |
| bool Success = |
| (TDF & TDF_AllowCompatibleFunctionType) |
| ? S.isSameOrCompatibleFunctionType(ParamUnqualType, ArgUnqualType) |
| : ParamUnqualType == ArgUnqualType; |
| if (Success) |
| return Sema::TDK_Success; |
| } |
| |
| switch (Param->getTypeClass()) { |
| // Non-canonical types cannot appear here. |
| #define NON_CANONICAL_TYPE(Class, Base) \ |
| case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class); |
| #define TYPE(Class, Base) |
| #include "clang/AST/TypeNodes.def" |
| |
| case Type::TemplateTypeParm: |
| case Type::SubstTemplateTypeParmPack: |
| llvm_unreachable("Type nodes handled above"); |
| |
| // These types cannot be dependent, so simply check whether the types are |
| // the same. |
| case Type::Builtin: |
| case Type::VariableArray: |
| case Type::Vector: |
| case Type::FunctionNoProto: |
| case Type::Record: |
| case Type::Enum: |
| case Type::ObjCObject: |
| case Type::ObjCInterface: |
| case Type::ObjCObjectPointer: |
| if (TDF & TDF_SkipNonDependent) |
| return Sema::TDK_Success; |
| |
| if (TDF & TDF_IgnoreQualifiers) { |
| Param = Param.getUnqualifiedType(); |
| Arg = Arg.getUnqualifiedType(); |
| } |
| |
| return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch; |
| |
| // _Complex T [placeholder extension] |
| case Type::Complex: |
| if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>()) |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| cast<ComplexType>(Param)->getElementType(), |
| ComplexArg->getElementType(), |
| Info, Deduced, TDF); |
| |
| return Sema::TDK_NonDeducedMismatch; |
| |
| // _Atomic T [extension] |
| case Type::Atomic: |
| if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>()) |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| cast<AtomicType>(Param)->getValueType(), |
| AtomicArg->getValueType(), |
| Info, Deduced, TDF); |
| |
| return Sema::TDK_NonDeducedMismatch; |
| |
| // T * |
| case Type::Pointer: { |
| QualType PointeeType; |
| if (const PointerType *PointerArg = Arg->getAs<PointerType>()) { |
| PointeeType = PointerArg->getPointeeType(); |
| } else if (const ObjCObjectPointerType *PointerArg |
| = Arg->getAs<ObjCObjectPointerType>()) { |
| PointeeType = PointerArg->getPointeeType(); |
| } else { |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass); |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| cast<PointerType>(Param)->getPointeeType(), |
| PointeeType, |
| Info, Deduced, SubTDF); |
| } |
| |
| // T & |
| case Type::LValueReference: { |
| const LValueReferenceType *ReferenceArg = |
| Arg->getAs<LValueReferenceType>(); |
| if (!ReferenceArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| cast<LValueReferenceType>(Param)->getPointeeType(), |
| ReferenceArg->getPointeeType(), Info, Deduced, 0); |
| } |
| |
| // T && [C++0x] |
| case Type::RValueReference: { |
| const RValueReferenceType *ReferenceArg = |
| Arg->getAs<RValueReferenceType>(); |
| if (!ReferenceArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| cast<RValueReferenceType>(Param)->getPointeeType(), |
| ReferenceArg->getPointeeType(), |
| Info, Deduced, 0); |
| } |
| |
| // T [] (implied, but not stated explicitly) |
| case Type::IncompleteArray: { |
| const IncompleteArrayType *IncompleteArrayArg = |
| S.Context.getAsIncompleteArrayType(Arg); |
| if (!IncompleteArrayArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| unsigned SubTDF = TDF & TDF_IgnoreQualifiers; |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| S.Context.getAsIncompleteArrayType(Param)->getElementType(), |
| IncompleteArrayArg->getElementType(), |
| Info, Deduced, SubTDF); |
| } |
| |
| // T [integer-constant] |
| case Type::ConstantArray: { |
| const ConstantArrayType *ConstantArrayArg = |
| S.Context.getAsConstantArrayType(Arg); |
| if (!ConstantArrayArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| const ConstantArrayType *ConstantArrayParm = |
| S.Context.getAsConstantArrayType(Param); |
| if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize()) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| unsigned SubTDF = TDF & TDF_IgnoreQualifiers; |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| ConstantArrayParm->getElementType(), |
| ConstantArrayArg->getElementType(), |
| Info, Deduced, SubTDF); |
| } |
| |
| // type [i] |
| case Type::DependentSizedArray: { |
| const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg); |
| if (!ArrayArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| unsigned SubTDF = TDF & TDF_IgnoreQualifiers; |
| |
| // Check the element type of the arrays |
| const DependentSizedArrayType *DependentArrayParm |
| = S.Context.getAsDependentSizedArrayType(Param); |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| DependentArrayParm->getElementType(), |
| ArrayArg->getElementType(), |
| Info, Deduced, SubTDF)) |
| return Result; |
| |
| // Determine the array bound is something we can deduce. |
| NonTypeTemplateParmDecl *NTTP |
| = getDeducedParameterFromExpr(Info, DependentArrayParm->getSizeExpr()); |
| if (!NTTP) |
| return Sema::TDK_Success; |
| |
| // We can perform template argument deduction for the given non-type |
| // template parameter. |
| assert(NTTP->getDepth() == Info.getDeducedDepth() && |
| "saw non-type template parameter with wrong depth"); |
| if (const ConstantArrayType *ConstantArrayArg |
| = dyn_cast<ConstantArrayType>(ArrayArg)) { |
| llvm::APSInt Size(ConstantArrayArg->getSize()); |
| return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, Size, |
| S.Context.getSizeType(), |
| /*ArrayBound=*/true, |
| Info, Deduced); |
| } |
| if (const DependentSizedArrayType *DependentArrayArg |
| = dyn_cast<DependentSizedArrayType>(ArrayArg)) |
| if (DependentArrayArg->getSizeExpr()) |
| return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, |
| DependentArrayArg->getSizeExpr(), |
| Info, Deduced); |
| |
| // Incomplete type does not match a dependently-sized array type |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| // type(*)(T) |
| // T(*)() |
| // T(*)(T) |
| case Type::FunctionProto: { |
| unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList; |
| const FunctionProtoType *FunctionProtoArg = |
| dyn_cast<FunctionProtoType>(Arg); |
| if (!FunctionProtoArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| const FunctionProtoType *FunctionProtoParam = |
| cast<FunctionProtoType>(Param); |
| |
| if (FunctionProtoParam->getTypeQuals() |
| != FunctionProtoArg->getTypeQuals() || |
| FunctionProtoParam->getRefQualifier() |
| != FunctionProtoArg->getRefQualifier() || |
| FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic()) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| // Check return types. |
| if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, FunctionProtoParam->getReturnType(), |
| FunctionProtoArg->getReturnType(), Info, Deduced, 0)) |
| return Result; |
| |
| // Check parameter types. |
| if (auto Result = DeduceTemplateArguments( |
| S, TemplateParams, FunctionProtoParam->param_type_begin(), |
| FunctionProtoParam->getNumParams(), |
| FunctionProtoArg->param_type_begin(), |
| FunctionProtoArg->getNumParams(), Info, Deduced, SubTDF)) |
| return Result; |
| |
| if (TDF & TDF_AllowCompatibleFunctionType) |
| return Sema::TDK_Success; |
| |
| // FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit |
| // deducing through the noexcept-specifier if it's part of the canonical |
| // type. libstdc++ relies on this. |
| Expr *NoexceptExpr = FunctionProtoParam->getNoexceptExpr(); |
| if (NonTypeTemplateParmDecl *NTTP = |
| NoexceptExpr ? getDeducedParameterFromExpr(Info, NoexceptExpr) |
| : nullptr) { |
| assert(NTTP->getDepth() == Info.getDeducedDepth() && |
| "saw non-type template parameter with wrong depth"); |
| |
| llvm::APSInt Noexcept(1); |
| switch (FunctionProtoArg->canThrow()) { |
| case CT_Cannot: |
| Noexcept = 1; |
| LLVM_FALLTHROUGH; |
| |
| case CT_Can: |
| // We give E in noexcept(E) the "deduced from array bound" treatment. |
| // FIXME: Should we? |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, Noexcept, S.Context.BoolTy, |
| /*ArrayBound*/true, Info, Deduced); |
| |
| case CT_Dependent: |
| if (Expr *ArgNoexceptExpr = FunctionProtoArg->getNoexceptExpr()) |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, ArgNoexceptExpr, Info, Deduced); |
| // Can't deduce anything from throw(T...). |
| break; |
| } |
| } |
| // FIXME: Detect non-deduced exception specification mismatches? |
| // |
| // Careful about [temp.deduct.call] and [temp.deduct.conv], which allow |
| // top-level differences in noexcept-specifications. |
| |
| return Sema::TDK_Success; |
| } |
| |
| case Type::InjectedClassName: |
| // Treat a template's injected-class-name as if the template |
| // specialization type had been used. |
| Param = cast<InjectedClassNameType>(Param) |
| ->getInjectedSpecializationType(); |
| assert(isa<TemplateSpecializationType>(Param) && |
| "injected class name is not a template specialization type"); |
| LLVM_FALLTHROUGH; |
| |
| // template-name<T> (where template-name refers to a class template) |
| // template-name<i> |
| // TT<T> |
| // TT<i> |
| // TT<> |
| case Type::TemplateSpecialization: { |
| const TemplateSpecializationType *SpecParam = |
| cast<TemplateSpecializationType>(Param); |
| |
| // When Arg cannot be a derived class, we can just try to deduce template |
| // arguments from the template-id. |
| const RecordType *RecordT = Arg->getAs<RecordType>(); |
| if (!(TDF & TDF_DerivedClass) || !RecordT) |
| return DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg, Info, |
| Deduced); |
| |
| SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(), |
| Deduced.end()); |
| |
| Sema::TemplateDeductionResult Result = DeduceTemplateArguments( |
| S, TemplateParams, SpecParam, Arg, Info, Deduced); |
| |
| if (Result == Sema::TDK_Success) |
| return Result; |
| |
| // We cannot inspect base classes as part of deduction when the type |
| // is incomplete, so either instantiate any templates necessary to |
| // complete the type, or skip over it if it cannot be completed. |
| if (!S.isCompleteType(Info.getLocation(), Arg)) |
| return Result; |
| |
| // C++14 [temp.deduct.call] p4b3: |
| // If P is a class and P has the form simple-template-id, then the |
| // transformed A can be a derived class of the deduced A. Likewise if |
| // P is a pointer to a class of the form simple-template-id, the |
| // transformed A can be a pointer to a derived class pointed to by the |
| // deduced A. |
| // |
| // These alternatives are considered only if type deduction would |
| // otherwise fail. If they yield more than one possible deduced A, the |
| // type deduction fails. |
| |
| // Reset the incorrectly deduced argument from above. |
| Deduced = DeducedOrig; |
| |
| // Use data recursion to crawl through the list of base classes. |
| // Visited contains the set of nodes we have already visited, while |
| // ToVisit is our stack of records that we still need to visit. |
| llvm::SmallPtrSet<const RecordType *, 8> Visited; |
| SmallVector<const RecordType *, 8> ToVisit; |
| ToVisit.push_back(RecordT); |
| bool Successful = false; |
| SmallVector<DeducedTemplateArgument, 8> SuccessfulDeduced; |
| while (!ToVisit.empty()) { |
| // Retrieve the next class in the inheritance hierarchy. |
| const RecordType *NextT = ToVisit.pop_back_val(); |
| |
| // If we have already seen this type, skip it. |
| if (!Visited.insert(NextT).second) |
| continue; |
| |
| // If this is a base class, try to perform template argument |
| // deduction from it. |
| if (NextT != RecordT) { |
| TemplateDeductionInfo BaseInfo(Info.getLocation()); |
| Sema::TemplateDeductionResult BaseResult = |
| DeduceTemplateArguments(S, TemplateParams, SpecParam, |
| QualType(NextT, 0), BaseInfo, Deduced); |
| |
| // If template argument deduction for this base was successful, |
| // note that we had some success. Otherwise, ignore any deductions |
| // from this base class. |
| if (BaseResult == Sema::TDK_Success) { |
| // If we've already seen some success, then deduction fails due to |
| // an ambiguity (temp.deduct.call p5). |
| if (Successful) |
| return Sema::TDK_MiscellaneousDeductionFailure; |
| |
| Successful = true; |
| std::swap(SuccessfulDeduced, Deduced); |
| |
| Info.Param = BaseInfo.Param; |
| Info.FirstArg = BaseInfo.FirstArg; |
| Info.SecondArg = BaseInfo.SecondArg; |
| } |
| |
| Deduced = DeducedOrig; |
| } |
| |
| // Visit base classes |
| CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl()); |
| for (const auto &Base : Next->bases()) { |
| assert(Base.getType()->isRecordType() && |
| "Base class that isn't a record?"); |
| ToVisit.push_back(Base.getType()->getAs<RecordType>()); |
| } |
| } |
| |
| if (Successful) { |
| std::swap(SuccessfulDeduced, Deduced); |
| return Sema::TDK_Success; |
| } |
| |
| return Result; |
| } |
| |
| // T type::* |
| // T T::* |
| // T (type::*)() |
| // type (T::*)() |
| // type (type::*)(T) |
| // type (T::*)(T) |
| // T (type::*)(T) |
| // T (T::*)() |
| // T (T::*)(T) |
| case Type::MemberPointer: { |
| const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param); |
| const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg); |
| if (!MemPtrArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| QualType ParamPointeeType = MemPtrParam->getPointeeType(); |
| if (ParamPointeeType->isFunctionType()) |
| S.adjustMemberFunctionCC(ParamPointeeType, /*IsStatic=*/true, |
| /*IsCtorOrDtor=*/false, Info.getLocation()); |
| QualType ArgPointeeType = MemPtrArg->getPointeeType(); |
| if (ArgPointeeType->isFunctionType()) |
| S.adjustMemberFunctionCC(ArgPointeeType, /*IsStatic=*/true, |
| /*IsCtorOrDtor=*/false, Info.getLocation()); |
| |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| ParamPointeeType, |
| ArgPointeeType, |
| Info, Deduced, |
| TDF & TDF_IgnoreQualifiers)) |
| return Result; |
| |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| QualType(MemPtrParam->getClass(), 0), |
| QualType(MemPtrArg->getClass(), 0), |
| Info, Deduced, |
| TDF & TDF_IgnoreQualifiers); |
| } |
| |
| // (clang extension) |
| // |
| // type(^)(T) |
| // T(^)() |
| // T(^)(T) |
| case Type::BlockPointer: { |
| const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param); |
| const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg); |
| |
| if (!BlockPtrArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| BlockPtrParam->getPointeeType(), |
| BlockPtrArg->getPointeeType(), |
| Info, Deduced, 0); |
| } |
| |
| // (clang extension) |
| // |
| // T __attribute__(((ext_vector_type(<integral constant>)))) |
| case Type::ExtVector: { |
| const ExtVectorType *VectorParam = cast<ExtVectorType>(Param); |
| if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) { |
| // Make sure that the vectors have the same number of elements. |
| if (VectorParam->getNumElements() != VectorArg->getNumElements()) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| // Perform deduction on the element types. |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| VectorParam->getElementType(), |
| VectorArg->getElementType(), |
| Info, Deduced, TDF); |
| } |
| |
| if (const DependentSizedExtVectorType *VectorArg |
| = dyn_cast<DependentSizedExtVectorType>(Arg)) { |
| // We can't check the number of elements, since the argument has a |
| // dependent number of elements. This can only occur during partial |
| // ordering. |
| |
| // Perform deduction on the element types. |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| VectorParam->getElementType(), |
| VectorArg->getElementType(), |
| Info, Deduced, TDF); |
| } |
| |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| case Type::DependentVector: { |
| const auto *VectorParam = cast<DependentVectorType>(Param); |
| |
| if (const auto *VectorArg = dyn_cast<VectorType>(Arg)) { |
| // Perform deduction on the element types. |
| if (Sema::TemplateDeductionResult Result = |
| DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, VectorParam->getElementType(), |
| VectorArg->getElementType(), Info, Deduced, TDF)) |
| return Result; |
| |
| // Perform deduction on the vector size, if we can. |
| NonTypeTemplateParmDecl *NTTP = |
| getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr()); |
| if (!NTTP) |
| return Sema::TDK_Success; |
| |
| llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); |
| ArgSize = VectorArg->getNumElements(); |
| // Note that we use the "array bound" rules here; just like in that |
| // case, we don't have any particular type for the vector size, but |
| // we can provide one if necessary. |
| return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, |
| S.Context.UnsignedIntTy, true, |
| Info, Deduced); |
| } |
| |
| if (const auto *VectorArg = dyn_cast<DependentVectorType>(Arg)) { |
| // Perform deduction on the element types. |
| if (Sema::TemplateDeductionResult Result = |
| DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, VectorParam->getElementType(), |
| VectorArg->getElementType(), Info, Deduced, TDF)) |
| return Result; |
| |
| // Perform deduction on the vector size, if we can. |
| NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr( |
| Info, VectorParam->getSizeExpr()); |
| if (!NTTP) |
| return Sema::TDK_Success; |
| |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, VectorArg->getSizeExpr(), Info, Deduced); |
| } |
| |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| // (clang extension) |
| // |
| // T __attribute__(((ext_vector_type(N)))) |
| case Type::DependentSizedExtVector: { |
| const DependentSizedExtVectorType *VectorParam |
| = cast<DependentSizedExtVectorType>(Param); |
| |
| if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) { |
| // Perform deduction on the element types. |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| VectorParam->getElementType(), |
| VectorArg->getElementType(), |
| Info, Deduced, TDF)) |
| return Result; |
| |
| // Perform deduction on the vector size, if we can. |
| NonTypeTemplateParmDecl *NTTP |
| = getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr()); |
| if (!NTTP) |
| return Sema::TDK_Success; |
| |
| llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); |
| ArgSize = VectorArg->getNumElements(); |
| // Note that we use the "array bound" rules here; just like in that |
| // case, we don't have any particular type for the vector size, but |
| // we can provide one if necessary. |
| return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, |
| S.Context.IntTy, true, Info, |
| Deduced); |
| } |
| |
| if (const DependentSizedExtVectorType *VectorArg |
| = dyn_cast<DependentSizedExtVectorType>(Arg)) { |
| // Perform deduction on the element types. |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| VectorParam->getElementType(), |
| VectorArg->getElementType(), |
| Info, Deduced, TDF)) |
| return Result; |
| |
| // Perform deduction on the vector size, if we can. |
| NonTypeTemplateParmDecl *NTTP |
| = getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr()); |
| if (!NTTP) |
| return Sema::TDK_Success; |
| |
| return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, |
| VectorArg->getSizeExpr(), |
| Info, Deduced); |
| } |
| |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| // (clang extension) |
| // |
| // T __attribute__(((address_space(N)))) |
| case Type::DependentAddressSpace: { |
| const DependentAddressSpaceType *AddressSpaceParam = |
| cast<DependentAddressSpaceType>(Param); |
| |
| if (const DependentAddressSpaceType *AddressSpaceArg = |
| dyn_cast<DependentAddressSpaceType>(Arg)) { |
| // Perform deduction on the pointer type. |
| if (Sema::TemplateDeductionResult Result = |
| DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, AddressSpaceParam->getPointeeType(), |
| AddressSpaceArg->getPointeeType(), Info, Deduced, TDF)) |
| return Result; |
| |
| // Perform deduction on the address space, if we can. |
| NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr( |
| Info, AddressSpaceParam->getAddrSpaceExpr()); |
| if (!NTTP) |
| return Sema::TDK_Success; |
| |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, AddressSpaceArg->getAddrSpaceExpr(), Info, |
| Deduced); |
| } |
| |
| if (isTargetAddressSpace(Arg.getAddressSpace())) { |
| llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(S.Context.IntTy), |
| false); |
| ArgAddressSpace = toTargetAddressSpace(Arg.getAddressSpace()); |
| |
| // Perform deduction on the pointer types. |
| if (Sema::TemplateDeductionResult Result = |
| DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, AddressSpaceParam->getPointeeType(), |
| S.Context.removeAddrSpaceQualType(Arg), Info, Deduced, TDF)) |
| return Result; |
| |
| // Perform deduction on the address space, if we can. |
| NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr( |
| Info, AddressSpaceParam->getAddrSpaceExpr()); |
| if (!NTTP) |
| return Sema::TDK_Success; |
| |
| return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, |
| ArgAddressSpace, S.Context.IntTy, |
| true, Info, Deduced); |
| } |
| |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| case Type::TypeOfExpr: |
| case Type::TypeOf: |
| case Type::DependentName: |
| case Type::UnresolvedUsing: |
| case Type::Decltype: |
| case Type::UnaryTransform: |
| case Type::Auto: |
| case Type::DeducedTemplateSpecialization: |
| case Type::DependentTemplateSpecialization: |
| case Type::PackExpansion: |
| case Type::Pipe: |
| // No template argument deduction for these types |
| return Sema::TDK_Success; |
| } |
| |
| llvm_unreachable("Invalid Type Class!"); |
| } |
| |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, |
| TemplateParameterList *TemplateParams, |
| const TemplateArgument &Param, |
| TemplateArgument Arg, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| // If the template argument is a pack expansion, perform template argument |
| // deduction against the pattern of that expansion. This only occurs during |
| // partial ordering. |
| if (Arg.isPackExpansion()) |
| Arg = Arg.getPackExpansionPattern(); |
| |
| switch (Param.getKind()) { |
| case TemplateArgument::Null: |
| llvm_unreachable("Null template argument in parameter list"); |
| |
| case TemplateArgument::Type: |
| if (Arg.getKind() == TemplateArgument::Type) |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| Param.getAsType(), |
| Arg.getAsType(), |
| Info, Deduced, 0); |
| Info.FirstArg = Param; |
| Info.SecondArg = Arg; |
| return Sema::TDK_NonDeducedMismatch; |
| |
| case TemplateArgument::Template: |
| if (Arg.getKind() == TemplateArgument::Template) |
| return DeduceTemplateArguments(S, TemplateParams, |
| Param.getAsTemplate(), |
| Arg.getAsTemplate(), Info, Deduced); |
| Info.FirstArg = Param; |
| Info.SecondArg = Arg; |
| return Sema::TDK_NonDeducedMismatch; |
| |
| case TemplateArgument::TemplateExpansion: |
| llvm_unreachable("caller should handle pack expansions"); |
| |
| case TemplateArgument::Declaration: |
| if (Arg.getKind() == TemplateArgument::Declaration && |
| isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl())) |
| return Sema::TDK_Success; |
| |
| Info.FirstArg = Param; |
| Info.SecondArg = Arg; |
| return Sema::TDK_NonDeducedMismatch; |
| |
| case TemplateArgument::NullPtr: |
| if (Arg.getKind() == TemplateArgument::NullPtr && |
| S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType())) |
| return Sema::TDK_Success; |
| |
| Info.FirstArg = Param; |
| Info.SecondArg = Arg; |
| return Sema::TDK_NonDeducedMismatch; |
| |
| case TemplateArgument::Integral: |
| if (Arg.getKind() == TemplateArgument::Integral) { |
| if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral())) |
| return Sema::TDK_Success; |
| |
| Info.FirstArg = Param; |
| Info.SecondArg = Arg; |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| if (Arg.getKind() == TemplateArgument::Expression) { |
| Info.FirstArg = Param; |
| Info.SecondArg = Arg; |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| Info.FirstArg = Param; |
| Info.SecondArg = Arg; |
| return Sema::TDK_NonDeducedMismatch; |
| |
| case TemplateArgument::Expression: |
| if (NonTypeTemplateParmDecl *NTTP |
| = getDeducedParameterFromExpr(Info, Param.getAsExpr())) { |
| if (Arg.getKind() == TemplateArgument::Integral) |
| return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, |
| Arg.getAsIntegral(), |
| Arg.getIntegralType(), |
| /*ArrayBound=*/false, |
| Info, Deduced); |
| if (Arg.getKind() == TemplateArgument::NullPtr) |
| return DeduceNullPtrTemplateArgument(S, TemplateParams, NTTP, |
| Arg.getNullPtrType(), |
| Info, Deduced); |
| if (Arg.getKind() == TemplateArgument::Expression) |
| return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, |
| Arg.getAsExpr(), Info, Deduced); |
| if (Arg.getKind() == TemplateArgument::Declaration) |
| return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, |
| Arg.getAsDecl(), |
| Arg.getParamTypeForDecl(), |
| Info, Deduced); |
| |
| Info.FirstArg = Param; |
| Info.SecondArg = Arg; |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| // Can't deduce anything, but that's okay. |
| return Sema::TDK_Success; |
| |
| case TemplateArgument::Pack: |
| llvm_unreachable("Argument packs should be expanded by the caller!"); |
| } |
| |
| llvm_unreachable("Invalid TemplateArgument Kind!"); |
| } |
| |
| /// Determine whether there is a template argument to be used for |
| /// deduction. |
| /// |
| /// This routine "expands" argument packs in-place, overriding its input |
| /// parameters so that \c Args[ArgIdx] will be the available template argument. |
| /// |
| /// \returns true if there is another template argument (which will be at |
| /// \c Args[ArgIdx]), false otherwise. |
| static bool hasTemplateArgumentForDeduction(ArrayRef<TemplateArgument> &Args, |
| unsigned &ArgIdx) { |
| if (ArgIdx == Args.size()) |
| return false; |
| |
| const TemplateArgument &Arg = Args[ArgIdx]; |
| if (Arg.getKind() != TemplateArgument::Pack) |
| return true; |
| |
| assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?"); |
| Args = Arg.pack_elements(); |
| ArgIdx = 0; |
| return ArgIdx < Args.size(); |
| } |
| |
| /// Determine whether the given set of template arguments has a pack |
| /// expansion that is not the last template argument. |
| static bool hasPackExpansionBeforeEnd(ArrayRef<TemplateArgument> Args) { |
| bool FoundPackExpansion = false; |
| for (const auto &A : Args) { |
| if (FoundPackExpansion) |
| return true; |
| |
| if (A.getKind() == TemplateArgument::Pack) |
| return hasPackExpansionBeforeEnd(A.pack_elements()); |
| |
| // FIXME: If this is a fixed-arity pack expansion from an outer level of |
| // templates, it should not be treated as a pack expansion. |
| if (A.isPackExpansion()) |
| FoundPackExpansion = true; |
| } |
| |
| return false; |
| } |
| |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, |
| ArrayRef<TemplateArgument> Params, |
| ArrayRef<TemplateArgument> Args, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| bool NumberOfArgumentsMustMatch) { |
| // C++0x [temp.deduct.type]p9: |
| // If the template argument list of P contains a pack expansion that is not |
| // the last template argument, the entire template argument list is a |
| // non-deduced context. |
| if (hasPackExpansionBeforeEnd(Params)) |
| return Sema::TDK_Success; |
| |
| // C++0x [temp.deduct.type]p9: |
| // If P has a form that contains <T> or <i>, then each argument Pi of the |
| // respective template argument list P is compared with the corresponding |
| // argument Ai of the corresponding template argument list of A. |
| unsigned ArgIdx = 0, ParamIdx = 0; |
| for (; hasTemplateArgumentForDeduction(Params, ParamIdx); ++ParamIdx) { |
| if (!Params[ParamIdx].isPackExpansion()) { |
| // The simple case: deduce template arguments by matching Pi and Ai. |
| |
| // Check whether we have enough arguments. |
| if (!hasTemplateArgumentForDeduction(Args, ArgIdx)) |
| return NumberOfArgumentsMustMatch |
| ? Sema::TDK_MiscellaneousDeductionFailure |
| : Sema::TDK_Success; |
| |
| // C++1z [temp.deduct.type]p9: |
| // During partial ordering, if Ai was originally a pack expansion [and] |
| // Pi is not a pack expansion, template argument deduction fails. |
| if (Args[ArgIdx].isPackExpansion()) |
| return Sema::TDK_MiscellaneousDeductionFailure; |
| |
| // Perform deduction for this Pi/Ai pair. |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArguments(S, TemplateParams, |
| Params[ParamIdx], Args[ArgIdx], |
| Info, Deduced)) |
| return Result; |
| |
| // Move to the next argument. |
| ++ArgIdx; |
| continue; |
| } |
| |
| // The parameter is a pack expansion. |
| |
| // C++0x [temp.deduct.type]p9: |
| // If Pi is a pack expansion, then the pattern of Pi is compared with |
| // each remaining argument in the template argument list of A. Each |
| // comparison deduces template arguments for subsequent positions in the |
| // template parameter packs expanded by Pi. |
| TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern(); |
| |
| // Prepare to deduce the packs within the pattern. |
| PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); |
| |
| // Keep track of the deduced template arguments for each parameter pack |
| // expanded by this pack expansion (the outer index) and for each |
| // template argument (the inner SmallVectors). |
| for (; hasTemplateArgumentForDeduction(Args, ArgIdx) && |
| PackScope.hasNextElement(); |
| ++ArgIdx) { |
| // Deduce template arguments from the pattern. |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx], |
| Info, Deduced)) |
| return Result; |
| |
| PackScope.nextPackElement(); |
| } |
| |
| // Build argument packs for each of the parameter packs expanded by this |
| // pack expansion. |
| if (auto Result = PackScope.finish()) |
| return Result; |
| } |
| |
| return Sema::TDK_Success; |
| } |
| |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, |
| TemplateParameterList *TemplateParams, |
| const TemplateArgumentList &ParamList, |
| const TemplateArgumentList &ArgList, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| return DeduceTemplateArguments(S, TemplateParams, ParamList.asArray(), |
| ArgList.asArray(), Info, Deduced, |
| /*NumberOfArgumentsMustMatch*/false); |
| } |
| |
| /// Determine whether two template arguments are the same. |
| static bool isSameTemplateArg(ASTContext &Context, |
| TemplateArgument X, |
| const TemplateArgument &Y, |
| bool PackExpansionMatchesPack = false) { |
| // If we're checking deduced arguments (X) against original arguments (Y), |
| // we will have flattened packs to non-expansions in X. |
| if (PackExpansionMatchesPack && X.isPackExpansion() && !Y.isPackExpansion()) |
| X = X.getPackExpansionPattern(); |
| |
| if (X.getKind() != Y.getKind()) |
| return false; |
| |
| switch (X.getKind()) { |
| case TemplateArgument::Null: |
| llvm_unreachable("Comparing NULL template argument"); |
| |
| case TemplateArgument::Type: |
| return Context.getCanonicalType(X.getAsType()) == |
| Context.getCanonicalType(Y.getAsType()); |
| |
| case TemplateArgument::Declaration: |
| return isSameDeclaration(X.getAsDecl(), Y.getAsDecl()); |
| |
| case TemplateArgument::NullPtr: |
| return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()); |
| |
| case TemplateArgument::Template: |
| case TemplateArgument::TemplateExpansion: |
| return Context.getCanonicalTemplateName( |
| X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() == |
| Context.getCanonicalTemplateName( |
| Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer(); |
| |
| case TemplateArgument::Integral: |
| return hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()); |
| |
| case TemplateArgument::Expression: { |
| llvm::FoldingSetNodeID XID, YID; |
| X.getAsExpr()->Profile(XID, Context, true); |
| Y.getAsExpr()->Profile(YID, Context, true); |
| return XID == YID; |
| } |
| |
| case TemplateArgument::Pack: |
| if (X.pack_size() != Y.pack_size()) |
| return false; |
| |
| for (TemplateArgument::pack_iterator XP = X.pack_begin(), |
| XPEnd = X.pack_end(), |
| YP = Y.pack_begin(); |
| XP != XPEnd; ++XP, ++YP) |
| if (!isSameTemplateArg(Context, *XP, *YP, PackExpansionMatchesPack)) |
| return false; |
| |
| return true; |
| } |
| |
| llvm_unreachable("Invalid TemplateArgument Kind!"); |
| } |
| |
| /// Allocate a TemplateArgumentLoc where all locations have |
| /// been initialized to the given location. |
| /// |
| /// \param Arg The template argument we are producing template argument |
| /// location information for. |
| /// |
| /// \param NTTPType For a declaration template argument, the type of |
| /// the non-type template parameter that corresponds to this template |
| /// argument. Can be null if no type sugar is available to add to the |
| /// type from the template argument. |
| /// |
| /// \param Loc The source location to use for the resulting template |
| /// argument. |
| TemplateArgumentLoc |
| Sema::getTrivialTemplateArgumentLoc(const TemplateArgument &Arg, |
| QualType NTTPType, SourceLocation Loc) { |
| switch (Arg.getKind()) { |
| case TemplateArgument::Null: |
| llvm_unreachable("Can't get a NULL template argument here"); |
| |
| case TemplateArgument::Type: |
| return TemplateArgumentLoc( |
| Arg, Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc)); |
| |
| case TemplateArgument::Declaration: { |
| if (NTTPType.isNull()) |
| NTTPType = Arg.getParamTypeForDecl(); |
| Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) |
| .getAs<Expr>(); |
| return TemplateArgumentLoc(TemplateArgument(E), E); |
| } |
| |
| case TemplateArgument::NullPtr: { |
| if (NTTPType.isNull()) |
| NTTPType = Arg.getNullPtrType(); |
| Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) |
| .getAs<Expr>(); |
| return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true), |
| E); |
| } |
| |
| case TemplateArgument::Integral: { |
| Expr *E = |
| BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>(); |
| return TemplateArgumentLoc(TemplateArgument(E), E); |
| } |
| |
| case TemplateArgument::Template: |
| case TemplateArgument::TemplateExpansion: { |
| NestedNameSpecifierLocBuilder Builder; |
| TemplateName Template = Arg.getAsTemplate(); |
| if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) |
| Builder.MakeTrivial(Context, DTN->getQualifier(), Loc); |
| else if (QualifiedTemplateName *QTN = |
| Template.getAsQualifiedTemplateName()) |
| Builder.MakeTrivial(Context, QTN->getQualifier(), Loc); |
| |
| if (Arg.getKind() == TemplateArgument::Template) |
| return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(Context), |
| Loc); |
| |
| return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(Context), |
| Loc, Loc); |
| } |
| |
| case TemplateArgument::Expression: |
| return TemplateArgumentLoc(Arg, Arg.getAsExpr()); |
| |
| case TemplateArgument::Pack: |
| return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo()); |
| } |
| |
| llvm_unreachable("Invalid TemplateArgument Kind!"); |
| } |
| |
| /// Convert the given deduced template argument and add it to the set of |
| /// fully-converted template arguments. |
| static bool |
| ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param, |
| DeducedTemplateArgument Arg, |
| NamedDecl *Template, |
| TemplateDeductionInfo &Info, |
| bool IsDeduced, |
| SmallVectorImpl<TemplateArgument> &Output) { |
| auto ConvertArg = [&](DeducedTemplateArgument Arg, |
| unsigned ArgumentPackIndex) { |
| // Convert the deduced template argument into a template |
| // argument that we can check, almost as if the user had written |
| // the template argument explicitly. |
| TemplateArgumentLoc ArgLoc = |
| S.getTrivialTemplateArgumentLoc(Arg, QualType(), Info.getLocation()); |
| |
| // Check the template argument, converting it as necessary. |
| return S.CheckTemplateArgument( |
| Param, ArgLoc, Template, Template->getLocation(), |
| Template->getSourceRange().getEnd(), ArgumentPackIndex, Output, |
| IsDeduced |
| ? (Arg.wasDeducedFromArrayBound() ? Sema::CTAK_DeducedFromArrayBound |
| : Sema::CTAK_Deduced) |
| : Sema::CTAK_Specified); |
| }; |
| |
| if (Arg.getKind() == TemplateArgument::Pack) { |
| // This is a template argument pack, so check each of its arguments against |
| // the template parameter. |
| SmallVector<TemplateArgument, 2> PackedArgsBuilder; |
| for (const auto &P : Arg.pack_elements()) { |
| // When converting the deduced template argument, append it to the |
| // general output list. We need to do this so that the template argument |
| // checking logic has all of the prior template arguments available. |
| DeducedTemplateArgument InnerArg(P); |
| InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound()); |
| assert(InnerArg.getKind() != TemplateArgument::Pack && |
| "deduced nested pack"); |
| if (P.isNull()) { |
| // We deduced arguments for some elements of this pack, but not for |
| // all of them. This happens if we get a conditionally-non-deduced |
| // context in a pack expansion (such as an overload set in one of the |
| // arguments). |
| S.Diag(Param->getLocation(), |
| diag::err_template_arg_deduced_incomplete_pack) |
| << Arg << Param; |
| return true; |
| } |
| if (ConvertArg(InnerArg, PackedArgsBuilder.size())) |
| return true; |
| |
| // Move the converted template argument into our argument pack. |
| PackedArgsBuilder.push_back(Output.pop_back_val()); |
| } |
| |
| // If the pack is empty, we still need to substitute into the parameter |
| // itself, in case that substitution fails. |
| if (PackedArgsBuilder.empty()) { |
| LocalInstantiationScope Scope(S); |
| TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Output); |
| MultiLevelTemplateArgumentList Args(TemplateArgs); |
| |
| if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) { |
| Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, |
| NTTP, Output, |
| Template->getSourceRange()); |
| if (Inst.isInvalid() || |
| S.SubstType(NTTP->getType(), Args, NTTP->getLocation(), |
| NTTP->getDeclName()).isNull()) |
| return true; |
| } else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) { |
| Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, |
| TTP, Output, |
| Template->getSourceRange()); |
| if (Inst.isInvalid() || !S.SubstDecl(TTP, S.CurContext, Args)) |
| return true; |
| } |
| // For type parameters, no substitution is ever required. |
| } |
| |
| // Create the resulting argument pack. |
| Output.push_back( |
| TemplateArgument::CreatePackCopy(S.Context, PackedArgsBuilder)); |
| return false; |
| } |
| |
| return ConvertArg(Arg, 0); |
| } |
| |
| // FIXME: This should not be a template, but |
| // ClassTemplatePartialSpecializationDecl sadly does not derive from |
| // TemplateDecl. |
| template<typename TemplateDeclT> |
| static Sema::TemplateDeductionResult ConvertDeducedTemplateArguments( |
| Sema &S, TemplateDeclT *Template, bool IsDeduced, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| TemplateDeductionInfo &Info, SmallVectorImpl<TemplateArgument> &Builder, |
| LocalInstantiationScope *CurrentInstantiationScope = nullptr, |
| unsigned NumAlreadyConverted = 0, bool PartialOverloading = false) { |
| TemplateParameterList *TemplateParams = Template->getTemplateParameters(); |
| |
| for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { |
| NamedDecl *Param = TemplateParams->getParam(I); |
| |
| // C++0x [temp.arg.explicit]p3: |
| // A trailing template parameter pack (14.5.3) not otherwise deduced will |
| // be deduced to an empty sequence of template arguments. |
| // FIXME: Where did the word "trailing" come from? |
| if (Deduced[I].isNull() && Param->isTemplateParameterPack()) { |
| if (auto Result = PackDeductionScope(S, TemplateParams, Deduced, Info, I) |
| .finish(/*TreatNoDeductionsAsNonDeduced*/false)) |
| return Result; |
| } |
| |
| if (!Deduced[I].isNull()) { |
| if (I < NumAlreadyConverted) { |
| // We may have had explicitly-specified template arguments for a |
| // template parameter pack (that may or may not have been extended |
| // via additional deduced arguments). |
| if (Param->isParameterPack() && CurrentInstantiationScope && |
| CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) { |
| // Forget the partially-substituted pack; its substitution is now |
| // complete. |
| CurrentInstantiationScope->ResetPartiallySubstitutedPack(); |
| // We still need to check the argument in case it was extended by |
| // deduction. |
| } else { |
| // We have already fully type-checked and converted this |
| // argument, because it was explicitly-specified. Just record the |
| // presence of this argument. |
| Builder.push_back(Deduced[I]); |
| continue; |
| } |
| } |
| |
| // We may have deduced this argument, so it still needs to be |
| // checked and converted. |
| if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Template, Info, |
| IsDeduced, Builder)) { |
| Info.Param = makeTemplateParameter(Param); |
| // FIXME: These template arguments are temporary. Free them! |
| Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder)); |
| return Sema::TDK_SubstitutionFailure; |
| } |
| |
| continue; |
| } |
| |
| // Substitute into the default template argument, if available. |
| bool HasDefaultArg = false; |
| TemplateDecl *TD = dyn_cast<TemplateDecl>(Template); |
| if (!TD) { |
| assert(isa<ClassTemplatePartialSpecializationDecl>(Template) || |
| isa<VarTemplatePartialSpecializationDecl>(Template)); |
| return Sema::TDK_Incomplete; |
| } |
| |
| TemplateArgumentLoc DefArg = S.SubstDefaultTemplateArgumentIfAvailable( |
| TD, TD->getLocation(), TD->getSourceRange().getEnd(), Param, Builder, |
| HasDefaultArg); |
| |
| // If there was no default argument, deduction is incomplete. |
| if (DefArg.getArgument().isNull()) { |
| Info.Param = makeTemplateParameter( |
| const_cast<NamedDecl *>(TemplateParams->getParam(I))); |
| Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder)); |
| if (PartialOverloading) break; |
| |
| return HasDefaultArg ? Sema::TDK_SubstitutionFailure |
| : Sema::TDK_Incomplete; |
| } |
| |
| // Check whether we can actually use the default argument. |
| if (S.CheckTemplateArgument(Param, DefArg, TD, TD->getLocation(), |
| TD->getSourceRange().getEnd(), 0, Builder, |
| Sema::CTAK_Specified)) { |
| Info.Param = makeTemplateParameter( |
| const_cast<NamedDecl *>(TemplateParams->getParam(I))); |
| // FIXME: These template arguments are temporary. Free them! |
| Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder)); |
| return Sema::TDK_SubstitutionFailure; |
| } |
| |
| // If we get here, we successfully used the default template argument. |
| } |
| |
| return Sema::TDK_Success; |
| } |
| |
| static DeclContext *getAsDeclContextOrEnclosing(Decl *D) { |
| if (auto *DC = dyn_cast<DeclContext>(D)) |
| return DC; |
| return D->getDeclContext(); |
| } |
| |
| template<typename T> struct IsPartialSpecialization { |
| static constexpr bool value = false; |
| }; |
| template<> |
| struct IsPartialSpecialization<ClassTemplatePartialSpecializationDecl> { |
| static constexpr bool value = true; |
| }; |
| template<> |
| struct IsPartialSpecialization<VarTemplatePartialSpecializationDecl> { |
| static constexpr bool value = true; |
| }; |
| |
| /// Complete template argument deduction for a partial specialization. |
| template <typename T> |
| static typename std::enable_if<IsPartialSpecialization<T>::value, |
| Sema::TemplateDeductionResult>::type |
| FinishTemplateArgumentDeduction( |
| Sema &S, T *Partial, bool IsPartialOrdering, |
| const TemplateArgumentList &TemplateArgs, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| TemplateDeductionInfo &Info) { |
| // Unevaluated SFINAE context. |
| EnterExpressionEvaluationContext Unevaluated( |
| S, Sema::ExpressionEvaluationContext::Unevaluated); |
| Sema::SFINAETrap Trap(S); |
| |
| Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Partial)); |
| |
| // C++ [temp.deduct.type]p2: |
| // [...] or if any template argument remains neither deduced nor |
| // explicitly specified, template argument deduction fails. |
| SmallVector<TemplateArgument, 4> Builder; |
| if (auto Result = ConvertDeducedTemplateArguments( |
| S, Partial, IsPartialOrdering, Deduced, Info, Builder)) |
| return Result; |
| |
| // Form the template argument list from the deduced template arguments. |
| TemplateArgumentList *DeducedArgumentList |
| = TemplateArgumentList::CreateCopy(S.Context, Builder); |
| |
| Info.reset(DeducedArgumentList); |
| |
| // Substitute the deduced template arguments into the template |
| // arguments of the class template partial specialization, and |
| // verify that the instantiated template arguments are both valid |
| // and are equivalent to the template arguments originally provided |
| // to the class template. |
| LocalInstantiationScope InstScope(S); |
| auto *Template = Partial->getSpecializedTemplate(); |
| const ASTTemplateArgumentListInfo *PartialTemplArgInfo = |
| Partial->getTemplateArgsAsWritten(); |
| const TemplateArgumentLoc *PartialTemplateArgs = |
| PartialTemplArgInfo->getTemplateArgs(); |
| |
| TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc, |
| PartialTemplArgInfo->RAngleLoc); |
| |
| if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs, |
| InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) { |
| unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx; |
| if (ParamIdx >= Partial->getTemplateParameters()->size()) |
| ParamIdx = Partial->getTemplateParameters()->size() - 1; |
| |
| Decl *Param = const_cast<NamedDecl *>( |
| Partial->getTemplateParameters()->getParam(ParamIdx)); |
| Info.Param = makeTemplateParameter(Param); |
| Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument(); |
| return Sema::TDK_SubstitutionFailure; |
| } |
| |
| SmallVector<TemplateArgument, 4> ConvertedInstArgs; |
| if (S.CheckTemplateArgumentList(Template, Partial->getLocation(), InstArgs, |
| false, ConvertedInstArgs)) |
| return Sema::TDK_SubstitutionFailure; |
| |
| TemplateParameterList *TemplateParams = Template->getTemplateParameters(); |
| for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { |
| TemplateArgument InstArg = ConvertedInstArgs.data()[I]; |
| if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) { |
| Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); |
| Info.FirstArg = TemplateArgs[I]; |
| Info.SecondArg = InstArg; |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| } |
| |
| if (Trap.hasErrorOccurred()) |
| return Sema::TDK_SubstitutionFailure; |
| |
| return Sema::TDK_Success; |
| } |
| |
| /// Complete template argument deduction for a class or variable template, |
| /// when partial ordering against a partial specialization. |
| // FIXME: Factor out duplication with partial specialization version above. |
| static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction( |
| Sema &S, TemplateDecl *Template, bool PartialOrdering, |
| const TemplateArgumentList &TemplateArgs, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| TemplateDeductionInfo &Info) { |
| // Unevaluated SFINAE context. |
| EnterExpressionEvaluationContext Unevaluated( |
| S, Sema::ExpressionEvaluationContext::Unevaluated); |
| Sema::SFINAETrap Trap(S); |
| |
| Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Template)); |
| |
| // C++ [temp.deduct.type]p2: |
| // [...] or if any template argument remains neither deduced nor |
| // explicitly specified, template argument deduction fails. |
| SmallVector<TemplateArgument, 4> Builder; |
| if (auto Result = ConvertDeducedTemplateArguments( |
| S, Template, /*IsDeduced*/PartialOrdering, Deduced, Info, Builder)) |
| return Result; |
| |
| // Check that we produced the correct argument list. |
| TemplateParameterList *TemplateParams = Template->getTemplateParameters(); |
| for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { |
| TemplateArgument InstArg = Builder[I]; |
| if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg, |
| /*PackExpansionMatchesPack*/true)) { |
| Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); |
| Info.FirstArg = TemplateArgs[I]; |
| Info.SecondArg = InstArg; |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| } |
| |
| if (Trap.hasErrorOccurred()) |
| return Sema::TDK_SubstitutionFailure; |
| |
| return Sema::TDK_Success; |
| } |
| |
| |
| /// Perform template argument deduction to determine whether |
| /// the given template arguments match the given class template |
| /// partial specialization per C++ [temp.class.spec.match]. |
| Sema::TemplateDeductionResult |
| Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, |
| const TemplateArgumentList &TemplateArgs, |
| TemplateDeductionInfo &Info) { |
| if (Partial->isInvalidDecl()) |
| return TDK_Invalid; |
| |
| // C++ [temp.class.spec.match]p2: |
| // A partial specialization matches a given actual template |
| // argument list if the template arguments of the partial |
| // specialization can be deduced from the actual template argument |
| // list (14.8.2). |
| |
| // Unevaluated SFINAE context. |
| EnterExpressionEvaluationContext Unevaluated( |
| *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| SFINAETrap Trap(*this); |
| |
| SmallVector<DeducedTemplateArgument, 4> Deduced; |
| Deduced.resize(Partial->getTemplateParameters()->size()); |
| if (TemplateDeductionResult Result |
| = ::DeduceTemplateArguments(*this, |
| Partial->getTemplateParameters(), |
| Partial->getTemplateArgs(), |
| TemplateArgs, Info, Deduced)) |
| return Result; |
| |
| SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); |
| InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs, |
| Info); |
| if (Inst.isInvalid()) |
| return TDK_InstantiationDepth; |
| |
| if (Trap.hasErrorOccurred()) |
| return Sema::TDK_SubstitutionFailure; |
| |
| return ::FinishTemplateArgumentDeduction( |
| *this, Partial, /*PartialOrdering=*/false, TemplateArgs, Deduced, Info); |
| } |
| |
| /// Perform template argument deduction to determine whether |
| /// the given template arguments match the given variable template |
| /// partial specialization per C++ [temp.class.spec.match]. |
| Sema::TemplateDeductionResult |
| Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial, |
| const TemplateArgumentList &TemplateArgs, |
| TemplateDeductionInfo &Info) { |
| if (Partial->isInvalidDecl()) |
| return TDK_Invalid; |
| |
| // C++ [temp.class.spec.match]p2: |
| // A partial specialization matches a given actual template |
| // argument list if the template arguments of the partial |
| // specialization can be deduced from the actual template argument |
| // list (14.8.2). |
| |
| // Unevaluated SFINAE context. |
| EnterExpressionEvaluationContext Unevaluated( |
| *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| SFINAETrap Trap(*this); |
| |
| SmallVector<DeducedTemplateArgument, 4> Deduced; |
| Deduced.resize(Partial->getTemplateParameters()->size()); |
| if (TemplateDeductionResult Result = ::DeduceTemplateArguments( |
| *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(), |
| TemplateArgs, Info, Deduced)) |
| return Result; |
| |
| SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); |
| InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs, |
| Info); |
| if (Inst.isInvalid()) |
| return TDK_InstantiationDepth; |
| |
| if (Trap.hasErrorOccurred()) |
| return Sema::TDK_SubstitutionFailure; |
| |
| return ::FinishTemplateArgumentDeduction( |
| *this, Partial, /*PartialOrdering=*/false, TemplateArgs, Deduced, Info); |
| } |
| |
| /// Determine whether the given type T is a simple-template-id type. |
| static bool isSimpleTemplateIdType(QualType T) { |
| if (const TemplateSpecializationType *Spec |
| = T->getAs<TemplateSpecializationType>()) |
| return Spec->getTemplateName().getAsTemplateDecl() != nullptr; |
| |
| // C++17 [temp.local]p2: |
| // the injected-class-name [...] is equivalent to the template-name followed |
| // by the template-arguments of the class template specialization or partial |
| // specialization enclosed in <> |
| // ... which means it's equivalent to a simple-template-id. |
| // |
| // This only arises during class template argument deduction for a copy |
| // deduction candidate, where it permits slicing. |
| if (T->getAs<InjectedClassNameType>()) |
| return true; |
| |
| return false; |
| } |
| |
| /// Substitute the explicitly-provided template arguments into the |
| /// given function template according to C++ [temp.arg.explicit]. |
| /// |
| /// \param FunctionTemplate the function template into which the explicit |
| /// template arguments will be substituted. |
| /// |
| /// \param ExplicitTemplateArgs the explicitly-specified template |
| /// arguments. |
| /// |
| /// \param Deduced the deduced template arguments, which will be populated |
| /// with the converted and checked explicit template arguments. |
| /// |
| /// \param ParamTypes will be populated with the instantiated function |
| /// parameters. |
| /// |
| /// \param FunctionType if non-NULL, the result type of the function template |
| /// will also be instantiated and the pointed-to value will be updated with |
| /// the instantiated function type. |
| /// |
| /// \param Info if substitution fails for any reason, this object will be |
| /// populated with more information about the failure. |
| /// |
| /// \returns TDK_Success if substitution was successful, or some failure |
| /// condition. |
| Sema::TemplateDeductionResult |
| Sema::SubstituteExplicitTemplateArguments( |
| FunctionTemplateDecl *FunctionTemplate, |
| TemplateArgumentListInfo &ExplicitTemplateArgs, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| SmallVectorImpl<QualType> &ParamTypes, |
| QualType *FunctionType, |
| TemplateDeductionInfo &Info) { |
| FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); |
| TemplateParameterList *TemplateParams |
| = FunctionTemplate->getTemplateParameters(); |
| |
| if (ExplicitTemplateArgs.size() == 0) { |
| // No arguments to substitute; just copy over the parameter types and |
| // fill in the function type. |
| for (auto P : Function->parameters()) |
| ParamTypes.push_back(P->getType()); |
| |
| if (FunctionType) |
| *FunctionType = Function->getType(); |
| return TDK_Success; |
| } |
| |
| // Unevaluated SFINAE context. |
| EnterExpressionEvaluationContext Unevaluated( |
| *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| SFINAETrap Trap(*this); |
| |
| // C++ [temp.arg.explicit]p3: |
| // Template arguments that are present shall be specified in the |
| // declaration order of their corresponding template-parameters. The |
| // template argument list shall not specify more template-arguments than |
| // there are corresponding template-parameters. |
| SmallVector<TemplateArgument, 4> Builder; |
| |
| // Enter a new template instantiation context where we check the |
| // explicitly-specified template arguments against this function template, |
| // and then substitute them into the function parameter types. |
| SmallVector<TemplateArgument, 4> DeducedArgs; |
| InstantiatingTemplate Inst( |
| *this, Info.getLocation(), FunctionTemplate, DeducedArgs, |
| CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info); |
| if (Inst.isInvalid()) |
| return TDK_InstantiationDepth; |
| |
| if (CheckTemplateArgumentList(FunctionTemplate, SourceLocation(), |
| ExplicitTemplateArgs, true, Builder, false) || |
| Trap.hasErrorOccurred()) { |
| unsigned Index = Builder.size(); |
| if (Index >= TemplateParams->size()) |
| return TDK_SubstitutionFailure; |
| Info.Param = makeTemplateParameter(TemplateParams->getParam(Index)); |
| return TDK_InvalidExplicitArguments; |
| } |
| |
| // Form the template argument list from the explicitly-specified |
| // template arguments. |
| TemplateArgumentList *ExplicitArgumentList |
| = TemplateArgumentList::CreateCopy(Context, Builder); |
| Info.setExplicitArgs(ExplicitArgumentList); |
| |
| // Template argument deduction and the final substitution should be |
| // done in the context of the templated declaration. Explicit |
| // argument substitution, on the other hand, needs to happen in the |
| // calling context. |
| ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); |
| |
| // If we deduced template arguments for a template parameter pack, |
| // note that the template argument pack is partially substituted and record |
| // the explicit template arguments. They'll be used as part of deduction |
| // for this template parameter pack. |
| unsigned PartiallySubstitutedPackIndex = -1u; |
| if (!Builder.empty()) { |
| const TemplateArgument &Arg = Builder.back(); |
| if (Arg.getKind() == TemplateArgument::Pack) { |
| auto *Param = TemplateParams->getParam(Builder.size() - 1); |
| // If this is a fully-saturated fixed-size pack, it should be |
| // fully-substituted, not partially-substituted. |
| Optional<unsigned> Expansions = getExpandedPackSize(Param); |
| if (!Expansions || Arg.pack_size() < *Expansions) { |
| PartiallySubstitutedPackIndex = Builder.size() - 1; |
| CurrentInstantiationScope->SetPartiallySubstitutedPack( |
| Param, Arg.pack_begin(), Arg.pack_size()); |
| } |
| } |
| } |
| |
| const FunctionProtoType *Proto |
| = Function->getType()->getAs<FunctionProtoType>(); |
| assert(Proto && "Function template does not have a prototype?"); |
| |
| // Isolate our substituted parameters from our caller. |
| LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true); |
| |
| ExtParameterInfoBuilder ExtParamInfos; |
| |
| // Instantiate the types of each of the function parameters given the |
| // explicitly-specified template arguments. If the function has a trailing |
| // return type, substitute it after the arguments to ensure we substitute |
| // in lexical order. |
| if (Proto->hasTrailingReturn()) { |
| if (SubstParmTypes(Function->getLocation(), Function->parameters(), |
| Proto->getExtParameterInfosOrNull(), |
| MultiLevelTemplateArgumentList(*ExplicitArgumentList), |
| ParamTypes, /*params*/ nullptr, ExtParamInfos)) |
| return TDK_SubstitutionFailure; |
| } |
| |
| // Instantiate the return type. |
| QualType ResultType; |
| { |
| // C++11 [expr.prim.general]p3: |
| // If a declaration declares a member function or member function |
| // template of a class X, the expression this is a prvalue of type |
| // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq |
| // and the end of the function-definition, member-declarator, or |
| // declarator. |
| unsigned ThisTypeQuals = 0; |
| CXXRecordDecl *ThisContext = nullptr; |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { |
| ThisContext = Method->getParent(); |
| ThisTypeQuals = Method->getTypeQualifiers(); |
| } |
| |
| CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals, |
| getLangOpts().CPlusPlus11); |
| |
| ResultType = |
| SubstType(Proto->getReturnType(), |
| MultiLevelTemplateArgumentList(*ExplicitArgumentList), |
| Function->getTypeSpecStartLoc(), Function->getDeclName()); |
| if (ResultType.isNull() || Trap.hasErrorOccurred()) |
| return TDK_SubstitutionFailure; |
| } |
| |
| // Instantiate the types of each of the function parameters given the |
| // explicitly-specified template arguments if we didn't do so earlier. |
| if (!Proto->hasTrailingReturn() && |
| SubstParmTypes(Function->getLocation(), Function->parameters(), |
| Proto->getExtParameterInfosOrNull(), |
| MultiLevelTemplateArgumentList(*ExplicitArgumentList), |
| ParamTypes, /*params*/ nullptr, ExtParamInfos)) |
| return TDK_SubstitutionFailure; |
| |
| if (FunctionType) { |
| auto EPI = Proto->getExtProtoInfo(); |
| EPI.ExtParameterInfos = ExtParamInfos.getPointerOrNull(ParamTypes.size()); |
| |
| // In C++1z onwards, exception specifications are part of the function type, |
| // so substitution into the type must also substitute into the exception |
| // specification. |
| SmallVector<QualType, 4> ExceptionStorage; |
| if (getLangOpts().CPlusPlus17 && |
| SubstExceptionSpec( |
| Function->getLocation(), EPI.ExceptionSpec, ExceptionStorage, |
| MultiLevelTemplateArgumentList(*ExplicitArgumentList))) |
| return TDK_SubstitutionFailure; |
| |
| *FunctionType = BuildFunctionType(ResultType, ParamTypes, |
| Function->getLocation(), |
| Function->getDeclName(), |
| EPI); |
| if (FunctionType->isNull() || Trap.hasErrorOccurred()) |
| return TDK_SubstitutionFailure; |
| } |
| |
| // C++ [temp.arg.explicit]p2: |
| // Trailing template arguments that can be deduced (14.8.2) may be |
| // omitted from the list of explicit template-arguments. If all of the |
| // template arguments can be deduced, they may all be omitted; in this |
| // case, the empty template argument list <> itself may also be omitted. |
| // |
| // Take all of the explicitly-specified arguments and put them into |
| // the set of deduced template arguments. The partially-substituted |
| // parameter pack, however, will be set to NULL since the deduction |
| // mechanism handles the partially-substituted argument pack directly. |
| Deduced.reserve(TemplateParams->size()); |
| for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) { |
| const TemplateArgument &Arg = ExplicitArgumentList->get(I); |
| if (I == PartiallySubstitutedPackIndex) |
| Deduced.push_back(DeducedTemplateArgument()); |
| else |
| Deduced.push_back(Arg); |
| } |
| |
| return TDK_Success; |
| } |
| |
| /// Check whether the deduced argument type for a call to a function |
| /// template matches the actual argument type per C++ [temp.deduct.call]p4. |
| static Sema::TemplateDeductionResult |
| CheckOriginalCallArgDeduction(Sema &S, TemplateDeductionInfo &Info, |
| Sema::OriginalCallArg OriginalArg, |
| QualType DeducedA) { |
| ASTContext &Context = S.Context; |
| |
| auto Failed = [&]() -> Sema::TemplateDeductionResult { |
| Info.FirstArg = TemplateArgument(DeducedA); |
| Info.SecondArg = TemplateArgument(OriginalArg.OriginalArgType); |
| Info.CallArgIndex = OriginalArg.ArgIdx; |
| return OriginalArg.DecomposedParam ? Sema::TDK_DeducedMismatchNested |
| : Sema::TDK_DeducedMismatch; |
| }; |
| |
| QualType A = OriginalArg.OriginalArgType; |
| QualType OriginalParamType = OriginalArg.OriginalParamType; |
| |
| // Check for type equality (top-level cv-qualifiers are ignored). |
| if (Context.hasSameUnqualifiedType(A, DeducedA)) |
| return Sema::TDK_Success; |
| |
| // Strip off references on the argument types; they aren't needed for |
| // the following checks. |
| if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>()) |
| DeducedA = DeducedARef->getPointeeType(); |
| if (const ReferenceType *ARef = A->getAs<ReferenceType>()) |
| A = ARef->getPointeeType(); |
| |
| // C++ [temp.deduct.call]p4: |
| // [...] However, there are three cases that allow a difference: |
| // - If the original P is a reference type, the deduced A (i.e., the |
| // type referred to by the reference) can be more cv-qualified than |
| // the transformed A. |
| if (const ReferenceType *OriginalParamRef |
| = OriginalParamType->getAs<ReferenceType>()) { |
| // We don't want to keep the reference around any more. |
| OriginalParamType = OriginalParamRef->getPointeeType(); |
| |
| // FIXME: Resolve core issue (no number yet): if the original P is a |
| // reference type and the transformed A is function type "noexcept F", |
| // the deduced A can be F. |
| QualType Tmp; |
| if (A->isFunctionType() && S.IsFunctionConversion(A, DeducedA, Tmp)) |
| return Sema::TDK_Success; |
| |
| Qualifiers AQuals = A.getQualifiers(); |
| Qualifiers DeducedAQuals = DeducedA.getQualifiers(); |
| |
| // Under Objective-C++ ARC, the deduced type may have implicitly |
| // been given strong or (when dealing with a const reference) |
| // unsafe_unretained lifetime. If so, update the original |
| // qualifiers to include this lifetime. |
| if (S.getLangOpts().ObjCAutoRefCount && |
| ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong && |
| AQuals.getObjCLifetime() == Qualifiers::OCL_None) || |
| (DeducedAQuals.hasConst() && |
| DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) { |
| AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime()); |
| } |
| |
| if (AQuals == DeducedAQuals) { |
| // Qualifiers match; there's nothing to do. |
| } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) { |
| return Failed(); |
| } else { |
| // Qualifiers are compatible, so have the argument type adopt the |
| // deduced argument type's qualifiers as if we had performed the |
| // qualification conversion. |
| A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals); |
| } |
| } |
| |
| // - The transformed A can be another pointer or pointer to member |
| // type that can be converted to the deduced A via a function pointer |
| // conversion and/or a qualification conversion. |
| // |
| // Also allow conversions which merely strip __attribute__((noreturn)) from |
| // function types (recursively). |
| bool ObjCLifetimeConversion = false; |
| QualType ResultTy; |
| if ((A->isAnyPointerType() || A->isMemberPointerType()) && |
| (S.IsQualificationConversion(A, DeducedA, false, |
| ObjCLifetimeConversion) || |
| S.IsFunctionConversion(A, DeducedA, ResultTy))) |
| return Sema::TDK_Success; |
| |
| // - If P is a class and P has the form simple-template-id, then the |
| // transformed A can be a derived class of the deduced A. [...] |
| // [...] Likewise, if P is a pointer to a class of the form |
| // simple-template-id, the transformed A can be a pointer to a |
| // derived class pointed to by the deduced A. |
| if (const PointerType *OriginalParamPtr |
| = OriginalParamType->getAs<PointerType>()) { |
| if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) { |
| if (const PointerType *APtr = A->getAs<PointerType>()) { |
| if (A->getPointeeType()->isRecordType()) { |
| OriginalParamType = OriginalParamPtr->getPointeeType(); |
| DeducedA = DeducedAPtr->getPointeeType(); |
| A = APtr->getPointeeType(); |
| } |
| } |
| } |
| } |
| |
| if (Context.hasSameUnqualifiedType(A, DeducedA)) |
| return Sema::TDK_Success; |
| |
| if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) && |
| S.IsDerivedFrom(Info.getLocation(), A, DeducedA)) |
| return Sema::TDK_Success; |
| |
| return Failed(); |
| } |
| |
| /// Find the pack index for a particular parameter index in an instantiation of |
| /// a function template with specific arguments. |
| /// |
| /// \return The pack index for whichever pack produced this parameter, or -1 |
| /// if this was not produced by a parameter. Intended to be used as the |
| /// ArgumentPackSubstitutionIndex for further substitutions. |
| // FIXME: We should track this in OriginalCallArgs so we don't need to |
| // reconstruct it here. |
| static unsigned getPackIndexForParam(Sema &S, |
| FunctionTemplateDecl *FunctionTemplate, |
| const MultiLevelTemplateArgumentList &Args, |
| unsigned ParamIdx) { |
| unsigned Idx = 0; |
| for (auto *PD : FunctionTemplate->getTemplatedDecl()->parameters()) { |
| if (PD->isParameterPack()) { |
| unsigned NumExpansions = |
| S.getNumArgumentsInExpansion(PD->getType(), Args).getValueOr(1); |
| if (Idx + NumExpansions > ParamIdx) |
| return ParamIdx - Idx; |
| Idx += NumExpansions; |
| } else { |
| if (Idx == ParamIdx) |
| return -1; // Not a pack expansion |
| ++Idx; |
| } |
| } |
| |
| llvm_unreachable("parameter index would not be produced from template"); |
| } |
| |
| /// Finish template argument deduction for a function template, |
| /// checking the deduced template arguments for completeness and forming |
| /// the function template specialization. |
| /// |
| /// \param OriginalCallArgs If non-NULL, the original call arguments against |
| /// which the deduced argument types should be compared. |
| Sema::TemplateDeductionResult Sema::FinishTemplateArgumentDeduction( |
| FunctionTemplateDecl *FunctionTemplate, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| unsigned NumExplicitlySpecified, FunctionDecl *&Specialization, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs, |
| bool PartialOverloading, llvm::function_ref<bool()> CheckNonDependent) { |
| // Unevaluated SFINAE context. |
| EnterExpressionEvaluationContext Unevaluated( |
| *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| SFINAETrap Trap(*this); |
| |
| // Enter a new template instantiation context while we instantiate the |
| // actual function declaration. |
| SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); |
| InstantiatingTemplate Inst( |
| *this, Info.getLocation(), FunctionTemplate, DeducedArgs, |
| CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info); |
| if (Inst.isInvalid()) |
| return TDK_InstantiationDepth; |
| |
| ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); |
| |
| // C++ [temp.deduct.type]p2: |
| // [...] or if any template argument remains neither deduced nor |
| // explicitly specified, template argument deduction fails. |
| SmallVector<TemplateArgument, 4> Builder; |
| if (auto Result = ConvertDeducedTemplateArguments( |
| *this, FunctionTemplate, /*IsDeduced*/true, Deduced, Info, Builder, |
| CurrentInstantiationScope, NumExplicitlySpecified, |
| PartialOverloading)) |
| return Result; |
| |
| // C++ [temp.deduct.call]p10: [DR1391] |
| // If deduction succeeds for all parameters that contain |
| // template-parameters that participate in template argument deduction, |
| // and all template arguments are explicitly specified, deduced, or |
| // obtained from default template arguments, remaining parameters are then |
| // compared with the corresponding arguments. For each remaining parameter |
| // P with a type that was non-dependent before substitution of any |
| // explicitly-specified template arguments, if the corresponding argument |
| // A cannot be implicitly converted to P, deduction fails. |
| if (CheckNonDependent()) |
| return TDK_NonDependentConversionFailure; |
| |
| // Form the template argument list from the deduced template arguments. |
| TemplateArgumentList *DeducedArgumentList |
| = TemplateArgumentList::CreateCopy(Context, Builder); |
| Info.reset(DeducedArgumentList); |
| |
| // Substitute the deduced template arguments into the function template |
| // declaration to produce the function template specialization. |
| DeclContext *Owner = FunctionTemplate->getDeclContext(); |
| if (FunctionTemplate->getFriendObjectKind()) |
| Owner = FunctionTemplate->getLexicalDeclContext(); |
| MultiLevelTemplateArgumentList SubstArgs(*DeducedArgumentList); |
| Specialization = cast_or_null<FunctionDecl>( |
| SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner, SubstArgs)); |
| if (!Specialization || Specialization->isInvalidDecl()) |
| return TDK_SubstitutionFailure; |
| |
| assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() == |
| FunctionTemplate->getCanonicalDecl()); |
| |
| // If the template argument list is owned by the function template |
| // specialization, release it. |
| if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList && |
| !Trap.hasErrorOccurred()) |
| Info.take(); |
| |
| // There may have been an error that did not prevent us from constructing a |
| // declaration. Mark the declaration invalid and return with a substitution |
| // failure. |
| if (Trap.hasErrorOccurred()) { |
| Specialization->setInvalidDecl(true); |
| return TDK_SubstitutionFailure; |
| } |
| |
| if (OriginalCallArgs) { |
| // C++ [temp.deduct.call]p4: |
| // In general, the deduction process attempts to find template argument |
| // values that will make the deduced A identical to A (after the type A |
| // is transformed as described above). [...] |
| llvm::SmallDenseMap<std::pair<unsigned, QualType>, QualType> DeducedATypes; |
| for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) { |
| OriginalCallArg OriginalArg = (*OriginalCallArgs)[I]; |
| |
| auto ParamIdx = OriginalArg.ArgIdx; |
| if (ParamIdx >= Specialization->getNumParams()) |
| // FIXME: This presumably means a pack ended up smaller than we |
| // expected while deducing. Should this not result in deduction |
| // failure? Can it even happen? |
| continue; |
| |
| QualType DeducedA; |
| if (!OriginalArg.DecomposedParam) { |
| // P is one of the function parameters, just look up its substituted |
| // type. |
| DeducedA = Specialization->getParamDecl(ParamIdx)->getType(); |
| } else { |
| // P is a decomposed element of a parameter corresponding to a |
| // braced-init-list argument. Substitute back into P to find the |
| // deduced A. |
| QualType &CacheEntry = |
| DeducedATypes[{ParamIdx, OriginalArg.OriginalParamType}]; |
| if (CacheEntry.isNull()) { |
| ArgumentPackSubstitutionIndexRAII PackIndex( |
| *this, getPackIndexForParam(*this, FunctionTemplate, SubstArgs, |
| ParamIdx)); |
| CacheEntry = |
| SubstType(OriginalArg.OriginalParamType, SubstArgs, |
| Specialization->getTypeSpecStartLoc(), |
| Specialization->getDeclName()); |
| } |
| DeducedA = CacheEntry; |
| } |
| |
| if (auto TDK = |
| CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) |
| return TDK; |
| } |
| } |
| |
| // If we suppressed any diagnostics while performing template argument |
| // deduction, and if we haven't already instantiated this declaration, |
| // keep track of these diagnostics. They'll be emitted if this specialization |
| // is actually used. |
| if (Info.diag_begin() != Info.diag_end()) { |
| SuppressedDiagnosticsMap::iterator |
| Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl()); |
| if (Pos == SuppressedDiagnostics.end()) |
| SuppressedDiagnostics[Specialization->getCanonicalDecl()] |
| .append(Info.diag_begin(), Info.diag_end()); |
| } |
| |
| return TDK_Success; |
| } |
| |
| /// Gets the type of a function for template-argument-deducton |
| /// purposes when it's considered as part of an overload set. |
| static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R, |
| FunctionDecl *Fn) { |
| // We may need to deduce the return type of the function now. |
| if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() && |
| S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false)) |
| return {}; |
| |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) |
| if (Method->isInstance()) { |
| // An instance method that's referenced in a form that doesn't |
| // look like a member pointer is just invalid. |
| if (!R.HasFormOfMemberPointer) |
| return {}; |
| |
| return S.Context.getMemberPointerType(Fn->getType(), |
| S.Context.getTypeDeclType(Method->getParent()).getTypePtr()); |
| } |
| |
| if (!R.IsAddressOfOperand) return Fn->getType(); |
| return S.Context.getPointerType(Fn->getType()); |
| } |
| |
| /// Apply the deduction rules for overload sets. |
| /// |
| /// \return the null type if this argument should be treated as an |
| /// undeduced context |
| static QualType |
| ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams, |
| Expr *Arg, QualType ParamType, |
| bool ParamWasReference) { |
| |
| OverloadExpr::FindResult R = OverloadExpr::find(Arg); |
| |
| OverloadExpr *Ovl = R.Expression; |
| |
| // C++0x [temp.deduct.call]p4 |
| unsigned TDF = 0; |
| if (ParamWasReference) |
| TDF |= TDF_ParamWithReferenceType; |
| if (R.IsAddressOfOperand) |
| TDF |= TDF_IgnoreQualifiers; |
| |
| // C++0x [temp.deduct.call]p6: |
| // When P is a function type, pointer to function type, or pointer |
| // to member function type: |
| |
| if (!ParamType->isFunctionType() && |
| !ParamType->isFunctionPointerType() && |
| !ParamType->isMemberFunctionPointerType()) { |
| if (Ovl->hasExplicitTemplateArgs()) { |
| // But we can still look for an explicit specialization. |
| if (FunctionDecl *ExplicitSpec |
| = S.ResolveSingleFunctionTemplateSpecialization(Ovl)) |
| return GetTypeOfFunction(S, R, ExplicitSpec); |
| } |
| |
| DeclAccessPair DAP; |
| if (FunctionDecl *Viable = |
| S.resolveAddressOfOnlyViableOverloadCandidate(Arg, DAP)) |
| return GetTypeOfFunction(S, R, Viable); |
| |
| return {}; |
| } |
| |
| // Gather the explicit template arguments, if any. |
| TemplateArgumentListInfo ExplicitTemplateArgs; |
| if (Ovl->hasExplicitTemplateArgs()) |
| Ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs); |
| QualType Match; |
| for (UnresolvedSetIterator I = Ovl->decls_begin(), |
| E = Ovl->decls_end(); I != E; ++I) { |
| NamedDecl *D = (*I)->getUnderlyingDecl(); |
| |
| if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) { |
| // - If the argument is an overload set containing one or more |
| // function templates, the parameter is treated as a |
| // non-deduced context. |
| if (!Ovl->hasExplicitTemplateArgs()) |
| return {}; |
| |
| // Otherwise, see if we can resolve a function type |
| FunctionDecl *Specialization = nullptr; |
| TemplateDeductionInfo Info(Ovl->getNameLoc()); |
| if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs, |
| Specialization, Info)) |
| continue; |
| |
| D = Specialization; |
| } |
| |
| FunctionDecl *Fn = cast<FunctionDecl>(D); |
| QualType ArgType = GetTypeOfFunction(S, R, Fn); |
| if (ArgType.isNull()) continue; |
| |
| // Function-to-pointer conversion. |
| if (!ParamWasReference && ParamType->isPointerType() && |
| ArgType->isFunctionType()) |
| ArgType = S.Context.getPointerType(ArgType); |
| |
| // - If the argument is an overload set (not containing function |
| // templates), trial argument deduction is attempted using each |
| // of the members of the set. If deduction succeeds for only one |
| // of the overload set members, that member is used as the |
| // argument value for the deduction. If deduction succeeds for |
| // more than one member of the overload set the parameter is |
| // treated as a non-deduced context. |
| |
| // We do all of this in a fresh context per C++0x [temp.deduct.type]p2: |
| // Type deduction is done independently for each P/A pair, and |
| // the deduced template argument values are then combined. |
| // So we do not reject deductions which were made elsewhere. |
| SmallVector<DeducedTemplateArgument, 8> |
| Deduced(TemplateParams->size()); |
| TemplateDeductionInfo Info(Ovl->getNameLoc()); |
| Sema::TemplateDeductionResult Result |
| = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType, |
| ArgType, Info, Deduced, TDF); |
| if (Result) continue; |
| if (!Match.isNull()) |
| return {}; |
| Match = ArgType; |
| } |
| |
| return Match; |
| } |
| |
| /// Perform the adjustments to the parameter and argument types |
| /// described in C++ [temp.deduct.call]. |
| /// |
| /// \returns true if the caller should not attempt to perform any template |
| /// argument deduction based on this P/A pair because the argument is an |
| /// overloaded function set that could not be resolved. |
| static bool AdjustFunctionParmAndArgTypesForDeduction( |
| Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, |
| QualType &ParamType, QualType &ArgType, Expr *Arg, unsigned &TDF) { |
| // C++0x [temp.deduct.call]p3: |
| // If P is a cv-qualified type, the top level cv-qualifiers of P's type |
| // are ignored for type deduction. |
| if (ParamType.hasQualifiers()) |
| ParamType = ParamType.getUnqualifiedType(); |
| |
| // [...] If P is a reference type, the type referred to by P is |
| // used for type deduction. |
| const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>(); |
| if (ParamRefType) |
| ParamType = ParamRefType->getPointeeType(); |
| |
| // Overload sets usually make this parameter an undeduced context, |
| // but there are sometimes special circumstances. Typically |
| // involving a template-id-expr. |
| if (ArgType == S.Context.OverloadTy) { |
| ArgType = ResolveOverloadForDeduction(S, TemplateParams, |
| Arg, ParamType, |
| ParamRefType != nullptr); |
| if (ArgType.isNull()) |
| return true; |
| } |
| |
| if (ParamRefType) { |
| // If the argument has incomplete array type, try to complete its type. |
| if (ArgType->isIncompleteArrayType()) { |
| S.completeExprArrayBound(Arg); |
| ArgType = Arg->getType(); |
| } |
| |
| // C++1z [temp.deduct.call]p3: |
| // If P is a forwarding reference and the argument is an lvalue, the type |
| // "lvalue reference to A" is used in place of A for type deduction. |
| if (isForwardingReference(QualType(ParamRefType, 0), FirstInnerIndex) && |
| Arg->isLValue()) |
| ArgType = S.Context.getLValueReferenceType(ArgType); |
| } else { |
| // C++ [temp.deduct.call]p2: |
| // If P is not a reference type: |
| // - If A is an array type, the pointer type produced by the |
| // array-to-pointer standard conversion (4.2) is used in place of |
| // A for type deduction; otherwise, |
| if (ArgType->isArrayType()) |
| ArgType = S.Context.getArrayDecayedType(ArgType); |
| // - If A is a function type, the pointer type produced by the |
| // function-to-pointer standard conversion (4.3) is used in place |
| // of A for type deduction; otherwise, |
| else if (ArgType->isFunctionType()) |
| ArgType = S.Context.getPointerType(ArgType); |
| else { |
| // - If A is a cv-qualified type, the top level cv-qualifiers of A's |
| // type are ignored for type deduction. |
| ArgType = ArgType.getUnqualifiedType(); |
| } |
| } |
| |
| // C++0x [temp.deduct.call]p4: |
| // In general, the deduction process attempts to find template argument |
| // values that will make the deduced A identical to A (after the type A |
| // is transformed as described above). [...] |
| TDF = TDF_SkipNonDependent; |
| |
| // - If the original P is a reference type, the deduced A (i.e., the |
| // type referred to by the reference) can be more cv-qualified than |
| // the transformed A. |
| if (ParamRefType) |
| TDF |= TDF_ParamWithReferenceType; |
| // - The transformed A can be another pointer or pointer to member |
| // type that can be converted to the deduced A via a qualification |
| // conversion (4.4). |
| if (ArgType->isPointerType() || ArgType->isMemberPointerType() || |
| ArgType->isObjCObjectPointerType()) |
| TDF |= TDF_IgnoreQualifiers; |
| // - If P is a class and P has the form simple-template-id, then the |
| // transformed A can be a derived class of the deduced A. Likewise, |
| // if P is a pointer to a class of the form simple-template-id, the |
| // transformed A can be a pointer to a derived class pointed to by |
| // the deduced A. |
| if (isSimpleTemplateIdType(ParamType) || |
| (isa<PointerType>(ParamType) && |
| isSimpleTemplateIdType( |
| ParamType->getAs<PointerType>()->getPointeeType()))) |
| TDF |= TDF_DerivedClass; |
| |
| return false; |
| } |
| |
| static bool |
| hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate, |
| QualType T); |
| |
| static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument( |
| Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, |
| QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, |
| bool DecomposedParam, unsigned ArgIdx, unsigned TDF); |
| |
| /// Attempt template argument deduction from an initializer list |
| /// deemed to be an argument in a function call. |
| static Sema::TemplateDeductionResult DeduceFromInitializerList( |
| Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType, |
| InitListExpr *ILE, TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, unsigned ArgIdx, |
| unsigned TDF) { |
| // C++ [temp.deduct.call]p1: (CWG 1591) |
| // If removing references and cv-qualifiers from P gives |
| // std::initializer_list<P0> or P0[N] for some P0 and N and the argument is |
| // a non-empty initializer list, then deduction is performed instead for |
| // each element of the initializer list, taking P0 as a function template |
| // parameter type and the initializer element as its argument |
| // |
| // We've already removed references and cv-qualifiers here. |
| if (!ILE->getNumInits()) |
| return Sema::TDK_Success; |
| |
| QualType ElTy; |
| auto *ArrTy = S.Context.getAsArrayType(AdjustedParamType); |
| if (ArrTy) |
| ElTy = ArrTy->getElementType(); |
| else if (!S.isStdInitializerList(AdjustedParamType, &ElTy)) { |
| // Otherwise, an initializer list argument causes the parameter to be |
| // considered a non-deduced context |
| return Sema::TDK_Success; |
| } |
| |
| // Deduction only needs to be done for dependent types. |
| if (ElTy->isDependentType()) { |
| for (Expr *E : ILE->inits()) { |
| if (auto Result = DeduceTemplateArgumentsFromCallArgument( |
| S, TemplateParams, 0, ElTy, E, Info, Deduced, OriginalCallArgs, true, |
| ArgIdx, TDF)) |
| return Result; |
| } |
| } |
| |
| // in the P0[N] case, if N is a non-type template parameter, N is deduced |
| // from the length of the initializer list. |
| if (auto *DependentArrTy = dyn_cast_or_null<DependentSizedArrayType>(ArrTy)) { |
| // Determine the array bound is something we can deduce. |
| if (NonTypeTemplateParmDecl *NTTP = |
| getDeducedParameterFromExpr(Info, DependentArrTy->getSizeExpr())) { |
| // We can perform template argument deduction for the given non-type |
| // template parameter. |
| // C++ [temp.deduct.type]p13: |
| // The type of N in the type T[N] is std::size_t. |
| QualType T = S.Context.getSizeType(); |
| llvm::APInt Size(S.Context.getIntWidth(T), ILE->getNumInits()); |
| if (auto Result = DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, llvm::APSInt(Size), T, |
| /*ArrayBound=*/true, Info, Deduced)) |
| return Result; |
| } |
| } |
| |
| return Sema::TDK_Success; |
| } |
| |
| /// Perform template argument deduction per [temp.deduct.call] for a |
| /// single parameter / argument pair. |
| static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument( |
| Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, |
| QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, |
| bool DecomposedParam, unsigned ArgIdx, unsigned TDF) { |
| QualType ArgType = Arg->getType(); |
| QualType OrigParamType = ParamType; |
| |
| // If P is a reference type [...] |
| // If P is a cv-qualified type [...] |
| if (AdjustFunctionParmAndArgTypesForDeduction( |
| S, TemplateParams, FirstInnerIndex, ParamType, ArgType, Arg, TDF)) |
| return Sema::TDK_Success; |
| |
| // If [...] the argument is a non-empty initializer list [...] |
| if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) |
| return DeduceFromInitializerList(S, TemplateParams, ParamType, ILE, Info, |
| Deduced, OriginalCallArgs, ArgIdx, TDF); |
| |
| // [...] the deduction process attempts to find template argument values |
| // that will make the deduced A identical to A |
| // |
| // Keep track of the argument type and corresponding parameter index, |
| // so we can check for compatibility between the deduced A and A. |
| OriginalCallArgs.push_back( |
| Sema::OriginalCallArg(OrigParamType, DecomposedParam, ArgIdx, ArgType)); |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType, |
| ArgType, Info, Deduced, TDF); |
| } |
| |
| /// Perform template argument deduction from a function call |
| /// (C++ [temp.deduct.call]). |
| /// |
| /// \param FunctionTemplate the function template for which we are performing |
| /// template argument deduction. |
| /// |
| /// \param ExplicitTemplateArgs the explicit template arguments provided |
| /// for this call. |
| /// |
| /// \param Args the function call arguments |
| /// |
| /// \param Specialization if template argument deduction was successful, |
| /// this will be set to the function template specialization produced by |
| /// template argument deduction. |
| /// |
| /// \param Info the argument will be updated to provide additional information |
| /// about template argument deduction. |
| /// |
| /// \param CheckNonDependent A callback to invoke to check conversions for |
| /// non-dependent parameters, between deduction and substitution, per DR1391. |
| /// If this returns true, substitution will be skipped and we return |
| /// TDK_NonDependentConversionFailure. The callback is passed the parameter |
| /// types (after substituting explicit template arguments). |
| /// |
| /// \returns the result of template argument deduction. |
| Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( |
| FunctionTemplateDecl *FunctionTemplate, |
| TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, |
| FunctionDecl *&Specialization, TemplateDeductionInfo &Info, |
| bool PartialOverloading, |
| llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent) { |
| if (FunctionTemplate->isInvalidDecl()) |
| return TDK_Invalid; |
| |
| FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); |
| unsigned NumParams = Function->getNumParams(); |
| |
| unsigned FirstInnerIndex = getFirstInnerIndex(FunctionTemplate); |
| |
| // C++ [temp.deduct.call]p1: |
| // Template argument deduction is done by comparing each function template |
| // parameter type (call it P) with the type of the corresponding argument |
| // of the call (call it A) as described below. |
| if (Args.size() < Function->getMinRequiredArguments() && !PartialOverloading) |
| return TDK_TooFewArguments; |
| else if (TooManyArguments(NumParams, Args.size(), PartialOverloading)) { |
| const FunctionProtoType *Proto |
| = Function->getType()->getAs<FunctionProtoType>(); |
| if (Proto->isTemplateVariadic()) |
| /* Do nothing */; |
| else if (!Proto->isVariadic()) |
| return TDK_TooManyArguments; |
| } |
| |
| // The types of the parameters from which we will perform template argument |
| // deduction. |
| LocalInstantiationScope InstScope(*this); |
| TemplateParameterList *TemplateParams |
| = FunctionTemplate->getTemplateParameters(); |
| SmallVector<DeducedTemplateArgument, 4> Deduced; |
| SmallVector<QualType, 8> ParamTypes; |
| unsigned NumExplicitlySpecified = 0; |
| if (ExplicitTemplateArgs) { |
| TemplateDeductionResult Result = |
| SubstituteExplicitTemplateArguments(FunctionTemplate, |
| *ExplicitTemplateArgs, |
| Deduced, |
| ParamTypes, |
| nullptr, |
| Info); |
| if (Result) |
| return Result; |
| |
| NumExplicitlySpecified = Deduced.size(); |
| } else { |
| // Just fill in the parameter types from the function declaration. |
| for (unsigned I = 0; I != NumParams; ++I) |
| ParamTypes.push_back(Function->getParamDecl(I)->getType()); |
| } |
| |
| SmallVector<OriginalCallArg, 8> OriginalCallArgs; |
| |
| // Deduce an argument of type ParamType from an expression with index ArgIdx. |
| auto DeduceCallArgument = [&](QualType ParamType, unsigned ArgIdx) { |
| // C++ [demp.deduct.call]p1: (DR1391) |
| // Template argument deduction is done by comparing each function template |
| // parameter that contains template-parameters that participate in |
| // template argument deduction ... |
| if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType)) |
| return Sema::TDK_Success; |
| |
| // ... with the type of the corresponding argument |
| return DeduceTemplateArgumentsFromCallArgument( |
| *this, TemplateParams, FirstInnerIndex, ParamType, Args[ArgIdx], Info, Deduced, |
| OriginalCallArgs, /*Decomposed*/false, ArgIdx, /*TDF*/ 0); |
| }; |
| |
| // Deduce template arguments from the function parameters. |
| Deduced.resize(TemplateParams->size()); |
| SmallVector<QualType, 8> ParamTypesForArgChecking; |
| for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(), ArgIdx = 0; |
| ParamIdx != NumParamTypes; ++ParamIdx) { |
| QualType ParamType = ParamTypes[ParamIdx]; |
| |
| const PackExpansionType *ParamExpansion = |
| dyn_cast<PackExpansionType>(ParamType); |
| if (!ParamExpansion) { |
| // Simple case: matching a function parameter to a function argument. |
| if (ArgIdx >= Args.size()) |
| break; |
| |
| ParamTypesForArgChecking.push_back(ParamType); |
| if (auto Result = DeduceCallArgument(ParamType, ArgIdx++)) |
| return Result; |
| |
| continue; |
| } |
| |
| QualType ParamPattern = ParamExpansion->getPattern(); |
| PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info, |
| ParamPattern); |
| |
| // C++0x [temp.deduct.call]p1: |
| // For a function parameter pack that occurs at the end of the |
| // parameter-declaration-list, the type A of each remaining argument of |
| // the call is compared with the type P of the declarator-id of the |
| // function parameter pack. Each comparison deduces template arguments |
| // for subsequent positions in the template parameter packs expanded by |
| // the function parameter pack. When a function parameter pack appears |
| // in a non-deduced context [not at the end of the list], the type of |
| // that parameter pack is never deduced. |
| // |
| // FIXME: The above rule allows the size of the parameter pack to change |
| // after we skip it (in the non-deduced case). That makes no sense, so |
| // we instead notionally deduce the pack against N arguments, where N is |
| // the length of the explicitly-specified pack if it's expanded by the |
| // parameter pack and 0 otherwise, and we treat each deduction as a |
| // non-deduced context. |
| if (ParamIdx + 1 == NumParamTypes || PackScope.hasFixedArity()) { |
| for (; ArgIdx < Args.size() && PackScope.hasNextElement(); |
| PackScope.nextPackElement(), ++ArgIdx) { |
| ParamTypesForArgChecking.push_back(ParamPattern); |
| if (auto Result = DeduceCallArgument(ParamPattern, ArgIdx)) |
| return Result; |
| } |
| } else { |
| // If the parameter type contains an explicitly-specified pack that we |
| // could not expand, skip the number of parameters notionally created |
| // by the expansion. |
| Optional<unsigned> NumExpansions = ParamExpansion->getNumExpansions(); |
| if (NumExpansions && !PackScope.isPartiallyExpanded()) { |
| for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size(); |
| ++I, ++ArgIdx) { |
| ParamTypesForArgChecking.push_back(ParamPattern); |
| // FIXME: Should we add OriginalCallArgs for these? What if the |
| // corresponding argument is a list? |
| PackScope.nextPackElement(); |
| } |
| } |
| } |
| |
| // Build argument packs for each of the parameter packs expanded by this |
| // pack expansion. |
| if (auto Result = PackScope.finish()) |
| return Result; |
| } |
| |
| // Capture the context in which the function call is made. This is the context |
| // that is needed when the accessibility of template arguments is checked. |
| DeclContext *CallingCtx = CurContext; |
| |
| return FinishTemplateArgumentDeduction( |
| FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info, |
| &OriginalCallArgs, PartialOverloading, [&, CallingCtx]() { |
| ContextRAII SavedContext(*this, CallingCtx); |
| return CheckNonDependent(ParamTypesForArgChecking); |
| }); |
| } |
| |
| QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType, |
| QualType FunctionType, |
| bool AdjustExceptionSpec) { |
| if (ArgFunctionType.isNull()) |
| return ArgFunctionType; |
| |
| const FunctionProtoType *FunctionTypeP = |
| FunctionType->castAs<FunctionProtoType>(); |
| const FunctionProtoType *ArgFunctionTypeP = |
| ArgFunctionType->getAs<FunctionProtoType>(); |
| |
| FunctionProtoType::ExtProtoInfo EPI = ArgFunctionTypeP->getExtProtoInfo(); |
| bool Rebuild = false; |
| |
| CallingConv CC = FunctionTypeP->getCallConv(); |
| if (EPI.ExtInfo.getCC() != CC) { |
| EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC); |
| Rebuild = true; |
| } |
| |
| bool NoReturn = FunctionTypeP->getNoReturnAttr(); |
| if (EPI.ExtInfo.getNoReturn() != NoReturn) { |
| EPI.ExtInfo = EPI.ExtInfo.withNoReturn(NoReturn); |
| Rebuild = true; |
| } |
| |
| if (AdjustExceptionSpec && (FunctionTypeP->hasExceptionSpec() || |
| ArgFunctionTypeP->hasExceptionSpec())) { |
| EPI.ExceptionSpec = FunctionTypeP->getExtProtoInfo().ExceptionSpec; |
| Rebuild = true; |
| } |
| |
| if (!Rebuild) |
| return ArgFunctionType; |
| |
| return Context.getFunctionType(ArgFunctionTypeP->getReturnType(), |
| ArgFunctionTypeP->getParamTypes(), EPI); |
| } |
| |
| /// Deduce template arguments when taking the address of a function |
| /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to |
| /// a template. |
| /// |
| /// \param FunctionTemplate the function template for which we are performing |
| /// template argument deduction. |
| /// |
| /// \param ExplicitTemplateArgs the explicitly-specified template |
| /// arguments. |
| /// |
| /// \param ArgFunctionType the function type that will be used as the |
| /// "argument" type (A) when performing template argument deduction from the |
| /// function template's function type. This type may be NULL, if there is no |
| /// argument type to compare against, in C++0x [temp.arg.explicit]p3. |
| /// |
| /// \param Specialization if template argument deduction was successful, |
| /// this will be set to the function template specialization produced by |
| /// template argument deduction. |
| /// |
| /// \param Info the argument will be updated to provide additional information |
| /// about template argument deduction. |
| /// |
| /// \param IsAddressOfFunction If \c true, we are deducing as part of taking |
| /// the address of a function template per [temp.deduct.funcaddr] and |
| /// [over.over]. If \c false, we are looking up a function template |
| /// specialization based on its signature, per [temp.deduct.decl]. |
| /// |
| /// \returns the result of template argument deduction. |
| Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( |
| FunctionTemplateDecl *FunctionTemplate, |
| TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType, |
| FunctionDecl *&Specialization, TemplateDeductionInfo &Info, |
| bool IsAddressOfFunction) { |
| if (FunctionTemplate->isInvalidDecl()) |
| return TDK_Invalid; |
| |
| FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); |
| TemplateParameterList *TemplateParams |
| = FunctionTemplate->getTemplateParameters(); |
| QualType FunctionType = Function->getType(); |
| |
| // Substitute any explicit template arguments. |
| LocalInstantiationScope InstScope(*this); |
| SmallVector<DeducedTemplateArgument, 4> Deduced; |
| unsigned NumExplicitlySpecified = 0; |
| SmallVector<QualType, 4> ParamTypes; |
| if (ExplicitTemplateArgs) { |
| if (TemplateDeductionResult Result |
| = SubstituteExplicitTemplateArguments(FunctionTemplate, |
| *ExplicitTemplateArgs, |
| Deduced, ParamTypes, |
| &FunctionType, Info)) |
| return Result; |
| |
| NumExplicitlySpecified = Deduced.size(); |
| } |
| |
| // When taking the address of a function, we require convertibility of |
| // the resulting function type. Otherwise, we allow arbitrary mismatches |
| // of calling convention and noreturn. |
| if (!IsAddressOfFunction) |
| ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType, |
| /*AdjustExceptionSpec*/false); |
| |
| // Unevaluated SFINAE context. |
| EnterExpressionEvaluationContext Unevaluated( |
| *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| SFINAETrap Trap(*this); |
| |
| Deduced.resize(TemplateParams->size()); |
| |
| // If the function has a deduced return type, substitute it for a dependent |
| // type so that we treat it as a non-deduced context in what follows. If we |
| // are looking up by signature, the signature type should also have a deduced |
| // return type, which we instead expect to exactly match. |
| bool HasDeducedReturnType = false; |
| if (getLangOpts().CPlusPlus14 && IsAddressOfFunction && |
| Function->getReturnType()->getContainedAutoType()) { |
| FunctionType = SubstAutoType(FunctionType, Context.DependentTy); |
| HasDeducedReturnType = true; |
| } |
| |
| if (!ArgFunctionType.isNull()) { |
| unsigned TDF = |
| TDF_TopLevelParameterTypeList | TDF_AllowCompatibleFunctionType; |
| // Deduce template arguments from the function type. |
| if (TemplateDeductionResult Result |
| = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, |
| FunctionType, ArgFunctionType, |
| Info, Deduced, TDF)) |
| return Result; |
| } |
| |
| if (TemplateDeductionResult Result |
| = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, |
| NumExplicitlySpecified, |
| Specialization, Info)) |
| return Result; |
| |
| // If the function has a deduced return type, deduce it now, so we can check |
| // that the deduced function type matches the requested type. |
| if (HasDeducedReturnType && |
| Specialization->getReturnType()->isUndeducedType() && |
| DeduceReturnType(Specialization, Info.getLocation(), false)) |
| return TDK_MiscellaneousDeductionFailure; |
| |
| // If the function has a dependent exception specification, resolve it now, |
| // so we can check that the exception specification matches. |
| auto *SpecializationFPT = |
| Specialization->getType()->castAs<FunctionProtoType>(); |
| if (getLangOpts().CPlusPlus17 && |
| isUnresolvedExceptionSpec(SpecializationFPT->getExceptionSpecType()) && |
| !ResolveExceptionSpec(Info.getLocation(), SpecializationFPT)) |
| return TDK_MiscellaneousDeductionFailure; |
| |
| // Adjust the exception specification of the argument to match the |
| // substituted and resolved type we just formed. (Calling convention and |
| // noreturn can't be dependent, so we don't actually need this for them |
| // right now.) |
| QualType SpecializationType = Specialization->getType(); |
| if (!IsAddressOfFunction) |
| ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, SpecializationType, |
| /*AdjustExceptionSpec*/true); |
| |
| // If the requested function type does not match the actual type of the |
| // specialization with respect to arguments of compatible pointer to function |
| // types, template argument deduction fails. |
| if (!ArgFunctionType.isNull()) { |
| if (IsAddressOfFunction && |
| !isSameOrCompatibleFunctionType( |
| Context.getCanonicalType(SpecializationType), |
| Context.getCanonicalType(ArgFunctionType))) |
| return TDK_MiscellaneousDeductionFailure; |
| |
| if (!IsAddressOfFunction && |
| !Context.hasSameType(SpecializationType, ArgFunctionType)) |
| return TDK_MiscellaneousDeductionFailure; |
| } |
| |
| return TDK_Success; |
| } |
| |
| /// Deduce template arguments for a templated conversion |
| /// function (C++ [temp.deduct.conv]) and, if successful, produce a |
| /// conversion function template specialization. |
| Sema::TemplateDeductionResult |
| Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate, |
| QualType ToType, |
| CXXConversionDecl *&Specialization, |
| TemplateDeductionInfo &Info) { |
| if (ConversionTemplate->isInvalidDecl()) |
| return TDK_Invalid; |
| |
| CXXConversionDecl *ConversionGeneric |
| = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl()); |
| |
| QualType FromType = ConversionGeneric->getConversionType(); |
| |
| // Canonicalize the types for deduction. |
| QualType P = Context.getCanonicalType(FromType); |
| QualType A = Context.getCanonicalType(ToType); |
| |
| // C++0x [temp.deduct.conv]p2: |
| // If P is a reference type, the type referred to by P is used for |
| // type deduction. |
| if (const ReferenceType *PRef = P->getAs<ReferenceType>()) |
| P = PRef->getPointeeType(); |
| |
| // C++0x [temp.deduct.conv]p4: |
| // [...] If A is a reference type, the type referred to by A is used |
| // for type deduction. |
| if (const ReferenceType *ARef = A->getAs<ReferenceType>()) { |
| A = ARef->getPointeeType(); |
| // We work around a defect in the standard here: cv-qualifiers are also |
| // removed from P and A in this case, unless P was a reference type. This |
| // seems to mostly match what other compilers are doing. |
| if (!FromType->getAs<ReferenceType>()) { |
| A = A.getUnqualifiedType(); |
| P = P.getUnqualifiedType(); |
| } |
| |
| // C++ [temp.deduct.conv]p3: |
| // |
| // If A is not a reference type: |
| } else { |
| assert(!A->isReferenceType() && "Reference types were handled above"); |
| |
| // - If P is an array type, the pointer type produced by the |
| // array-to-pointer standard conversion (4.2) is used in place |
| // of P for type deduction; otherwise, |
| if (P->isArrayType()) |
| P = Context.getArrayDecayedType(P); |
| // - If P is a function type, the pointer type produced by the |
| // function-to-pointer standard conversion (4.3) is used in |
| // place of P for type deduction; otherwise, |
| else if (P->isFunctionType()) |
| P = Context.getPointerType(P); |
| // - If P is a cv-qualified type, the top level cv-qualifiers of |
| // P's type are ignored for type deduction. |
| else |
| P = P.getUnqualifiedType(); |
| |
| // C++0x [temp.deduct.conv]p4: |
| // If A is a cv-qualified type, the top level cv-qualifiers of A's |
| // type are ignored for type deduction. If A is a reference type, the type |
| // referred to by A is used for type deduction. |
| A = A.getUnqualifiedType(); |
| } |
| |
| // Unevaluated SFINAE context. |
| EnterExpressionEvaluationContext Unevaluated( |
| *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| SFINAETrap Trap(*this); |
| |
| // C++ [temp.deduct.conv]p1: |
| // Template argument deduction is done by comparing the return |
| // type of the template conversion function (call it P) with the |
| // type that is required as the result of the conversion (call it |
| // A) as described in 14.8.2.4. |
| TemplateParameterList *TemplateParams |
| = ConversionTemplate->getTemplateParameters(); |
| SmallVector<DeducedTemplateArgument, 4> Deduced; |
| Deduced.resize(TemplateParams->size()); |
| |
| // C++0x [temp.deduct.conv]p4: |
| // In general, the deduction process attempts to find template |
| // argument values that will make the deduced A identical to |
| // A. However, there are two cases that allow a difference: |
| unsigned TDF = 0; |
| // - If the original A is a reference type, A can be more |
| // cv-qualified than the deduced A (i.e., the type referred to |
| // by the reference) |
| if (ToType->isReferenceType()) |
| TDF |= TDF_ArgWithReferenceType; |
| // - The deduced A can be another pointer or pointer to member |
| // type that can be converted to A via a qualification |
| // conversion. |
| // |
| // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when |
| // both P and A are pointers or member pointers. In this case, we |
| // just ignore cv-qualifiers completely). |
| if ((P->isPointerType() && A->isPointerType()) || |
| (P->isMemberPointerType() && A->isMemberPointerType())) |
| TDF |= TDF_IgnoreQualifiers; |
| if (TemplateDeductionResult Result |
| = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, |
| P, A, Info, Deduced, TDF)) |
| return Result; |
| |
| // Create an Instantiation Scope for finalizing the operator. |
| LocalInstantiationScope InstScope(*this); |
| // Finish template argument deduction. |
| FunctionDecl *ConversionSpecialized = nullptr; |
| TemplateDeductionResult Result |
| = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0, |
| ConversionSpecialized, Info); |
| Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized); |
| return Result; |
| } |
| |
| /// Deduce template arguments for a function template when there is |
| /// nothing to deduce against (C++0x [temp.arg.explicit]p3). |
| /// |
| /// \param FunctionTemplate the function template for which we are performing |
| /// template argument deduction. |
| /// |
| /// \param ExplicitTemplateArgs the explicitly-specified template |
| /// arguments. |
| /// |
| /// \param Specialization if template argument deduction was successful, |
| /// this will be set to the function template specialization produced by |
| /// template argument deduction. |
| /// |
| /// \param Info the argument will be updated to provide additional information |
| /// about template argument deduction. |
| /// |
| /// \param IsAddressOfFunction If \c true, we are deducing as part of taking |
| /// the address of a function template in a context where we do not have a |
| /// target type, per [over.over]. If \c false, we are looking up a function |
| /// template specialization based on its signature, which only happens when |
| /// deducing a function parameter type from an argument that is a template-id |
| /// naming a function template specialization. |
| /// |
| /// \returns the result of template argument deduction. |
| Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( |
| FunctionTemplateDecl *FunctionTemplate, |
| TemplateArgumentListInfo *ExplicitTemplateArgs, |
| FunctionDecl *&Specialization, TemplateDeductionInfo &Info, |
| bool IsAddressOfFunction) { |
| return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, |
| QualType(), Specialization, Info, |
| IsAddressOfFunction); |
| } |
| |
| namespace { |
| |
| /// Substitute the 'auto' specifier or deduced template specialization type |
| /// specifier within a type for a given replacement type. |
| class SubstituteDeducedTypeTransform : |
| public TreeTransform<SubstituteDeducedTypeTransform> { |
| QualType Replacement; |
| bool UseTypeSugar; |
| |
| public: |
| SubstituteDeducedTypeTransform(Sema &SemaRef, QualType Replacement, |
| bool UseTypeSugar = true) |
| : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), |
| Replacement(Replacement), UseTypeSugar(UseTypeSugar) {} |
| |
| QualType TransformDesugared(TypeLocBuilder &TLB, DeducedTypeLoc TL) { |
| assert(isa<TemplateTypeParmType>(Replacement) && |
| "unexpected unsugared replacement kind"); |
| QualType Result = Replacement; |
| TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| return Result; |
| } |
| |
| QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) { |
| // If we're building the type pattern to deduce against, don't wrap the |
| // substituted type in an AutoType. Certain template deduction rules |
| // apply only when a template type parameter appears directly (and not if |
| // the parameter is found through desugaring). For instance: |
| // auto &&lref = lvalue; |
| // must transform into "rvalue reference to T" not "rvalue reference to |
| // auto type deduced as T" in order for [temp.deduct.call]p3 to apply. |
| // |
| // FIXME: Is this still necessary? |
| if (!UseTypeSugar) |
| return TransformDesugared(TLB, TL); |
| |
| QualType Result = SemaRef.Context.getAutoType( |
| Replacement, TL.getTypePtr()->getKeyword(), Replacement.isNull()); |
| auto NewTL = TLB.push<AutoTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| return Result; |
| } |
| |
| QualType TransformDeducedTemplateSpecializationType( |
| TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) { |
| if (!UseTypeSugar) |
| return TransformDesugared(TLB, TL); |
| |
| QualType Result = SemaRef.Context.getDeducedTemplateSpecializationType( |
| TL.getTypePtr()->getTemplateName(), |
| Replacement, Replacement.isNull()); |
| auto NewTL = TLB.push<DeducedTemplateSpecializationTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| return Result; |
| } |
| |
| ExprResult TransformLambdaExpr(LambdaExpr *E) { |
| // Lambdas never need to be transformed. |
| return E; |
| } |
| |
| QualType Apply(TypeLoc TL) { |
| // Create some scratch storage for the transformed type locations. |
| // FIXME: We're just going to throw this information away. Don't build it. |
| TypeLocBuilder TLB; |
| TLB.reserve(TL.getFullDataSize()); |
| return TransformType(TLB, TL); |
| } |
| }; |
| |
| } // namespace |
| |
| Sema::DeduceAutoResult |
| Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result, |
| Optional<unsigned> DependentDeductionDepth) { |
| return DeduceAutoType(Type->getTypeLoc(), Init, Result, |
| DependentDeductionDepth); |
| } |
| |
| /// Attempt to produce an informative diagostic explaining why auto deduction |
| /// failed. |
| /// \return \c true if diagnosed, \c false if not. |
| static bool diagnoseAutoDeductionFailure(Sema &S, |
| Sema::TemplateDeductionResult TDK, |
| TemplateDeductionInfo &Info, |
| ArrayRef<SourceRange> Ranges) { |
| switch (TDK) { |
| case Sema::TDK_Inconsistent: { |
| // Inconsistent deduction means we were deducing from an initializer list. |
| auto D = S.Diag(Info.getLocation(), diag::err_auto_inconsistent_deduction); |
| D << Info.FirstArg << Info.SecondArg; |
| for (auto R : Ranges) |
| D << R; |
| return true; |
| } |
| |
| // FIXME: Are there other cases for which a custom diagnostic is more useful |
| // than the basic "types don't match" diagnostic? |
| |
| default: |
| return false; |
| } |
| } |
| |
| /// Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6) |
| /// |
| /// Note that this is done even if the initializer is dependent. (This is |
| /// necessary to support partial ordering of templates using 'auto'.) |
| /// A dependent type will be produced when deducing from a dependent type. |
| /// |
| /// \param Type the type pattern using the auto type-specifier. |
| /// \param Init the initializer for the variable whose type is to be deduced. |
| /// \param Result if type deduction was successful, this will be set to the |
| /// deduced type. |
| /// \param DependentDeductionDepth Set if we should permit deduction in |
| /// dependent cases. This is necessary for template partial ordering with |
| /// 'auto' template parameters. The value specified is the template |
| /// parameter depth at which we should perform 'auto' deduction. |
| Sema::DeduceAutoResult |
| Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result, |
| Optional<unsigned> DependentDeductionDepth) { |
| if (Init->getType()->isNonOverloadPlaceholderType()) { |
| ExprResult NonPlaceholder = CheckPlaceholderExpr(Init); |
| if (NonPlaceholder.isInvalid()) |
| return DAR_FailedAlreadyDiagnosed; |
| Init = NonPlaceholder.get(); |
| } |
| |
| if (!DependentDeductionDepth && |
| (Type.getType()->isDependentType() || Init->isTypeDependent())) { |
| Result = SubstituteDeducedTypeTransform(*this, QualType()).Apply(Type); |
| assert(!Result.isNull() && "substituting DependentTy can't fail"); |
| return DAR_Succeeded; |
| } |
| |
| // Find the depth of template parameter to synthesize. |
| unsigned Depth = DependentDeductionDepth.getValueOr(0); |
| |
| // If this is a 'decltype(auto)' specifier, do the decltype dance. |
| // Since 'decltype(auto)' can only occur at the top of the type, we |
| // don't need to go digging for it. |
| if (const AutoType *AT = Type.getType()->getAs<AutoType>()) { |
| if (AT->isDecltypeAuto()) { |
| if (isa<InitListExpr>(Init)) { |
| Diag(Init->getLocStart(), diag::err_decltype_auto_initializer_list); |
| return DAR_FailedAlreadyDiagnosed; |
| } |
| |
| QualType Deduced = BuildDecltypeType(Init, Init->getLocStart(), false); |
| if (Deduced.isNull()) |
| return DAR_FailedAlreadyDiagnosed; |
| // FIXME: Support a non-canonical deduced type for 'auto'. |
| Deduced = Context.getCanonicalType(Deduced); |
| Result = SubstituteDeducedTypeTransform(*this, Deduced).Apply(Type); |
| if (Result.isNull()) |
| return DAR_FailedAlreadyDiagnosed; |
| return DAR_Succeeded; |
| } else if (!getLangOpts().CPlusPlus) { |
| if (isa<InitListExpr>(Init)) { |
| Diag(Init->getLocStart(), diag::err_auto_init_list_from_c); |
| return DAR_FailedAlreadyDiagnosed; |
| } |
| } |
| } |
| |
| SourceLocation Loc = Init->getExprLoc(); |
| |
| LocalInstantiationScope InstScope(*this); |
| |
| // Build template<class TemplParam> void Func(FuncParam); |
| TemplateTypeParmDecl *TemplParam = TemplateTypeParmDecl::Create( |
| Context, nullptr, SourceLocation(), Loc, Depth, 0, nullptr, false, false); |
| QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0); |
| NamedDecl *TemplParamPtr = TemplParam; |
| FixedSizeTemplateParameterListStorage<1, false> TemplateParamsSt( |
| Loc, Loc, TemplParamPtr, Loc, nullptr); |
| |
| QualType FuncParam = |
| SubstituteDeducedTypeTransform(*this, TemplArg, /*UseTypeSugar*/false) |
| .Apply(Type); |
| assert(!FuncParam.isNull() && |
| "substituting template parameter for 'auto' failed"); |
| |
| // Deduce type of TemplParam in Func(Init) |
| SmallVector<DeducedTemplateArgument, 1> Deduced; |
| Deduced.resize(1); |
| |
| TemplateDeductionInfo Info(Loc, Depth); |
| |
| // If deduction failed, don't diagnose if the initializer is dependent; it |
| // might acquire a matching type in the instantiation. |
| auto DeductionFailed = [&](TemplateDeductionResult TDK, |
| ArrayRef<SourceRange> Ranges) -> DeduceAutoResult { |
| if (Init->isTypeDependent()) { |
| Result = SubstituteDeducedTypeTransform(*this, QualType()).Apply(Type); |
| assert(!Result.isNull() && "substituting DependentTy can't fail"); |
| return DAR_Succeeded; |
| } |
| if (diagnoseAutoDeductionFailure(*this, TDK, Info, Ranges)) |
| return DAR_FailedAlreadyDiagnosed; |
| return DAR_Failed; |
| }; |
| |
| SmallVector<OriginalCallArg, 4> OriginalCallArgs; |
| |
| InitListExpr *InitList = dyn_cast<InitListExpr>(Init); |
| if (InitList) { |
| // Notionally, we substitute std::initializer_list<T> for 'auto' and deduce |
| // against that. Such deduction only succeeds if removing cv-qualifiers and |
| // references results in std::initializer_list<T>. |
| if (!Type.getType().getNonReferenceType()->getAs<AutoType>()) |
| return DAR_Failed; |
| |
| SourceRange DeducedFromInitRange; |
| for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) { |
| Expr *Init = InitList->getInit(i); |
| |
| if (auto TDK = DeduceTemplateArgumentsFromCallArgument( |
| *this, TemplateParamsSt.get(), 0, TemplArg, Init, |
| Info, Deduced, OriginalCallArgs, /*Decomposed*/ true, |
| /*ArgIdx*/ 0, /*TDF*/ 0)) |
| return DeductionFailed(TDK, {DeducedFromInitRange, |
| Init->getSourceRange()}); |
| |
| if (DeducedFromInitRange.isInvalid() && |
| Deduced[0].getKind() != TemplateArgument::Null) |
| DeducedFromInitRange = Init->getSourceRange(); |
| } |
| } else { |
| if (!getLangOpts().CPlusPlus && Init->refersToBitField()) { |
| Diag(Loc, diag::err_auto_bitfield); |
| return DAR_FailedAlreadyDiagnosed; |
| } |
| |
| if (auto TDK = DeduceTemplateArgumentsFromCallArgument( |
| *this, TemplateParamsSt.get(), 0, FuncParam, Init, Info, Deduced, |
| OriginalCallArgs, /*Decomposed*/ false, /*ArgIdx*/ 0, /*TDF*/ 0)) |
| return DeductionFailed(TDK, {}); |
| } |
| |
| // Could be null if somehow 'auto' appears in a non-deduced context. |
| if (Deduced[0].getKind() != TemplateArgument::Type) |
| return DeductionFailed(TDK_Incomplete, {}); |
| |
| QualType DeducedType = Deduced[0].getAsType(); |
| |
| if (InitList) { |
| DeducedType = BuildStdInitializerList(DeducedType, Loc); |
| if (DeducedType.isNull()) |
| return DAR_FailedAlreadyDiagnosed; |
| } |
| |
| Result = SubstituteDeducedTypeTransform(*this, DeducedType).Apply(Type); |
| if (Result.isNull()) |
| return DAR_FailedAlreadyDiagnosed; |
| |
| // Check that the deduced argument type is compatible with the original |
| // argument type per C++ [temp.deduct.call]p4. |
| QualType DeducedA = InitList ? Deduced[0].getAsType() : Result; |
| for (const OriginalCallArg &OriginalArg : OriginalCallArgs) { |
| assert((bool)InitList == OriginalArg.DecomposedParam && |
| "decomposed non-init-list in auto deduction?"); |
| if (auto TDK = |
| CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) { |
| Result = QualType(); |
| return DeductionFailed(TDK, {}); |
| } |
| } |
| |
| return DAR_Succeeded; |
| } |
| |
| QualType Sema::SubstAutoType(QualType TypeWithAuto, |
| QualType TypeToReplaceAuto) { |
| if (TypeToReplaceAuto->isDependentType()) |
| TypeToReplaceAuto = QualType(); |
| return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto) |
| .TransformType(TypeWithAuto); |
| } |
| |
| TypeSourceInfo *Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, |
| QualType TypeToReplaceAuto) { |
| if (TypeToReplaceAuto->isDependentType()) |
| TypeToReplaceAuto = QualType(); |
| return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto) |
| .TransformType(TypeWithAuto); |
| } |
| |
| QualType Sema::ReplaceAutoType(QualType TypeWithAuto, |
| QualType TypeToReplaceAuto) { |
| return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto, |
| /*UseTypeSugar*/ false) |
| .TransformType(TypeWithAuto); |
| } |
| |
| void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) { |
| if (isa<InitListExpr>(Init)) |
| Diag(VDecl->getLocation(), |
| VDecl->isInitCapture() |
| ? diag::err_init_capture_deduction_failure_from_init_list |
| : diag::err_auto_var_deduction_failure_from_init_list) |
| << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange(); |
| else |
| Diag(VDecl->getLocation(), |
| VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure |
| : diag::err_auto_var_deduction_failure) |
| << VDecl->getDeclName() << VDecl->getType() << Init->getType() |
| << Init->getSourceRange(); |
| } |
| |
| bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc, |
| bool Diagnose) { |
| assert(FD->getReturnType()->isUndeducedType()); |
| |
| // For a lambda's conversion operator, deduce any 'auto' or 'decltype(auto)' |
| // within the return type from the call operator's type. |
| if (isLambdaConversionOperator(FD)) { |
| CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent(); |
| FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); |
| |
| // For a generic lambda, instantiate the call operator if needed. |
| if (auto *Args = FD->getTemplateSpecializationArgs()) { |
| CallOp = InstantiateFunctionDeclaration( |
| CallOp->getDescribedFunctionTemplate(), Args, Loc); |
| if (!CallOp || CallOp->isInvalidDecl()) |
| return true; |
| |
| // We might need to deduce the return type by instantiating the definition |
| // of the operator() function. |
| if (CallOp->getReturnType()->isUndeducedType()) |
| InstantiateFunctionDefinition(Loc, CallOp); |
| } |
| |
| if (CallOp->isInvalidDecl()) |
| return true; |
| assert(!CallOp->getReturnType()->isUndeducedType() && |
| "failed to deduce lambda return type"); |
| |
| // Build the new return type from scratch. |
| QualType RetType = getLambdaConversionFunctionResultType( |
| CallOp->getType()->castAs<FunctionProtoType>()); |
| if (FD->getReturnType()->getAs<PointerType>()) |
| RetType = Context.getPointerType(RetType); |
| else { |
| assert(FD->getReturnType()->getAs<BlockPointerType>()); |
| RetType = Context.getBlockPointerType(RetType); |
| } |
| Context.adjustDeducedFunctionResultType(FD, RetType); |
| return false; |
| } |
| |
| if (FD->getTemplateInstantiationPattern()) |
| InstantiateFunctionDefinition(Loc, FD); |
| |
| bool StillUndeduced = FD->getReturnType()->isUndeducedType(); |
| if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) { |
| Diag(Loc, diag::err_auto_fn_used_before_defined) << FD; |
| Diag(FD->getLocation(), diag::note_callee_decl) << FD; |
| } |
| |
| return StillUndeduced; |
| } |
| |
| /// If this is a non-static member function, |
| static void |
| AddImplicitObjectParameterType(ASTContext &Context, |
| CXXMethodDecl *Method, |
| SmallVectorImpl<QualType> &ArgTypes) { |
| // C++11 [temp.func.order]p3: |
| // [...] The new parameter is of type "reference to cv A," where cv are |
| // the cv-qualifiers of the function template (if any) and A is |
| // the class of which the function template is a member. |
| // |
| // The standard doesn't say explicitly, but we pick the appropriate kind of |
| // reference type based on [over.match.funcs]p4. |
| QualType ArgTy = Context.getTypeDeclType(Method->getParent()); |
| ArgTy = Context.getQualifiedType(ArgTy, |
| Qualifiers::fromCVRMask(Method->getTypeQualifiers())); |
| if (Method->getRefQualifier() == RQ_RValue) |
| ArgTy = Context.getRValueReferenceType(ArgTy); |
| else |
| ArgTy = Context.getLValueReferenceType(ArgTy); |
| ArgTypes.push_back(ArgTy); |
| } |
| |
| /// Determine whether the function template \p FT1 is at least as |
| /// specialized as \p FT2. |
| static bool isAtLeastAsSpecializedAs(Sema &S, |
| SourceLocation Loc, |
| FunctionTemplateDecl *FT1, |
| FunctionTemplateDecl *FT2, |
| TemplatePartialOrderingContext TPOC, |
| unsigned NumCallArguments1) { |
| FunctionDecl *FD1 = FT1->getTemplatedDecl(); |
| FunctionDecl *FD2 = FT2->getTemplatedDecl(); |
| const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>(); |
| const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>(); |
| |
| assert(Proto1 && Proto2 && "Function templates must have prototypes"); |
| TemplateParameterList *TemplateParams = FT2->getTemplateParameters(); |
| SmallVector<DeducedTemplateArgument, 4> Deduced; |
| Deduced.resize(TemplateParams->size()); |
| |
| // C++0x [temp.deduct.partial]p3: |
| // The types used to determine the ordering depend on the context in which |
| // the partial ordering is done: |
| TemplateDeductionInfo Info(Loc); |
| SmallVector<QualType, 4> Args2; |
| switch (TPOC) { |
| case TPOC_Call: { |
| // - In the context of a function call, the function parameter types are |
| // used. |
| CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1); |
| CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2); |
| |
| // C++11 [temp.func.order]p3: |
| // [...] If only one of the function templates is a non-static |
| // member, that function template is considered to have a new |
| // first parameter inserted in its function parameter list. The |
| // new parameter is of type "reference to cv A," where cv are |
| // the cv-qualifiers of the function template (if any) and A is |
| // the class of which the function template is a member. |
| // |
| // Note that we interpret this to mean "if one of the function |
| // templates is a non-static member and the other is a non-member"; |
| // otherwise, the ordering rules for static functions against non-static |
| // functions don't make any sense. |
| // |
| // C++98/03 doesn't have this provision but we've extended DR532 to cover |
| // it as wording was broken prior to it. |
| SmallVector<QualType, 4> Args1; |
| |
| unsigned NumComparedArguments = NumCallArguments1; |
| |
| if (!Method2 && Method1 && !Method1->isStatic()) { |
| // Compare 'this' from Method1 against first parameter from Method2. |
| AddImplicitObjectParameterType(S.Context, Method1, Args1); |
| ++NumComparedArguments; |
| } else if (!Method1 && Method2 && !Method2->isStatic()) { |
| // Compare 'this' from Method2 against first parameter from Method1. |
| AddImplicitObjectParameterType(S.Context, Method2, Args2); |
| } |
| |
| Args1.insert(Args1.end(), Proto1->param_type_begin(), |
| Proto1->param_type_end()); |
| Args2.insert(Args2.end(), Proto2->param_type_begin(), |
| Proto2->param_type_end()); |
| |
| // C++ [temp.func.order]p5: |
| // The presence of unused ellipsis and default arguments has no effect on |
| // the partial ordering of function templates. |
| if (Args1.size() > NumComparedArguments) |
| Args1.resize(NumComparedArguments); |
| if (Args2.size() > NumComparedArguments) |
| Args2.resize(NumComparedArguments); |
| if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(), |
| Args1.data(), Args1.size(), Info, Deduced, |
| TDF_None, /*PartialOrdering=*/true)) |
| return false; |
| |
| break; |
| } |
| |
| case TPOC_Conversion: |
| // - In the context of a call to a conversion operator, the return types |
| // of the conversion function templates are used. |
| if (DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(), |
| Info, Deduced, TDF_None, |
| /*PartialOrdering=*/true)) |
| return false; |
| break; |
| |
| case TPOC_Other: |
| // - In other contexts (14.6.6.2) the function template's function type |
| // is used. |
| if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| FD2->getType(), FD1->getType(), |
| Info, Deduced, TDF_None, |
| /*PartialOrdering=*/true)) |
| return false; |
| break; |
| } |
| |
| // C++0x [temp.deduct.partial]p11: |
| // In most cases, all template parameters must have values in order for |
| // deduction to succeed, but for partial ordering purposes a template |
| // parameter may remain without a value provided it is not used in the |
| // types being used for partial ordering. [ Note: a template parameter used |
| // in a non-deduced context is considered used. -end note] |
| unsigned ArgIdx = 0, NumArgs = Deduced.size(); |
| for (; ArgIdx != NumArgs; ++ArgIdx) |
| if (Deduced[ArgIdx].isNull()) |
| break; |
| |
| // FIXME: We fail to implement [temp.deduct.type]p1 along this path. We need |
| // to substitute the deduced arguments back into the template and check that |
| // we get the right type. |
| |
| if (ArgIdx == NumArgs) { |
| // All template arguments were deduced. FT1 is at least as specialized |
| // as FT2. |
| return true; |
| } |
| |
| // Figure out which template parameters were used. |
| llvm::SmallBitVector UsedParameters(TemplateParams->size()); |
| switch (TPOC) { |
| case TPOC_Call: |
| for (unsigned I = 0, N = Args2.size(); I != N; ++I) |
| ::MarkUsedTemplateParameters(S.Context, Args2[I], false, |
| TemplateParams->getDepth(), |
| UsedParameters); |
| break; |
| |
| case TPOC_Conversion: |
| ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false, |
| TemplateParams->getDepth(), UsedParameters); |
| break; |
| |
| case TPOC_Other: |
| ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false, |
| TemplateParams->getDepth(), |
| UsedParameters); |
| break; |
| } |
| |
| for (; ArgIdx != NumArgs; ++ArgIdx) |
| // If this argument had no value deduced but was used in one of the types |
| // used for partial ordering, then deduction fails. |
| if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx]) |
| return false; |
| |
| return true; |
| } |
| |
| /// Determine whether this a function template whose parameter-type-list |
| /// ends with a function parameter pack. |
| static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) { |
| FunctionDecl *Function = FunTmpl->getTemplatedDecl(); |
| unsigned NumParams = Function->getNumParams(); |
| if (NumParams == 0) |
| return false; |
| |
| ParmVarDecl *Last = Function->getParamDecl(NumParams - 1); |
| if (!Last->isParameterPack()) |
| return false; |
| |
| // Make sure that no previous parameter is a parameter pack. |
| while (--NumParams > 0) { |
| if (Function->getParamDecl(NumParams - 1)->isParameterPack()) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// Returns the more specialized function template according |
| /// to the rules of function template partial ordering (C++ [temp.func.order]). |
| /// |
| /// \param FT1 the first function template |
| /// |
| /// \param FT2 the second function template |
| /// |
| /// \param TPOC the context in which we are performing partial ordering of |
| /// function templates. |
| /// |
| /// \param NumCallArguments1 The number of arguments in the call to FT1, used |
| /// only when \c TPOC is \c TPOC_Call. |
| /// |
| /// \param NumCallArguments2 The number of arguments in the call to FT2, used |
| /// only when \c TPOC is \c TPOC_Call. |
| /// |
| /// \returns the more specialized function template. If neither |
| /// template is more specialized, returns NULL. |
| FunctionTemplateDecl * |
| Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1, |
| FunctionTemplateDecl *FT2, |
| SourceLocation Loc, |
| TemplatePartialOrderingContext TPOC, |
| unsigned NumCallArguments1, |
| unsigned NumCallArguments2) { |
| bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, |
| NumCallArguments1); |
| bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC, |
| NumCallArguments2); |
| |
| if (Better1 != Better2) // We have a clear winner |
| return Better1 ? FT1 : FT2; |
| |
| if (!Better1 && !Better2) // Neither is better than the other |
| return nullptr; |
| |
| // FIXME: This mimics what GCC implements, but doesn't match up with the |
| // proposed resolution for core issue 692. This area needs to be sorted out, |
| // but for now we attempt to maintain compatibility. |
| bool Variadic1 = isVariadicFunctionTemplate(FT1); |
| bool Variadic2 = isVariadicFunctionTemplate(FT2); |
| if (Variadic1 != Variadic2) |
| return Variadic1? FT2 : FT1; |
| |
| return nullptr; |
| } |
| |
| /// Determine if the two templates are equivalent. |
| static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) { |
| if (T1 == T2) |
| return true; |
| |
| if (!T1 || !T2) |
| return false; |
| |
| return T1->getCanonicalDecl() == T2->getCanonicalDecl(); |
| } |
| |
| /// Retrieve the most specialized of the given function template |
| /// specializations. |
| /// |
| /// \param SpecBegin the start iterator of the function template |
| /// specializations that we will be comparing. |
| /// |
| /// \param SpecEnd the end iterator of the function template |
| /// specializations, paired with \p SpecBegin. |
| /// |
| /// \param Loc the location where the ambiguity or no-specializations |
| /// diagnostic should occur. |
| /// |
| /// \param NoneDiag partial diagnostic used to diagnose cases where there are |
| /// no matching candidates. |
| /// |
| /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one |
| /// occurs. |
| /// |
| /// \param CandidateDiag partial diagnostic used for each function template |
| /// specialization that is a candidate in the ambiguous ordering. One parameter |
| /// in this diagnostic should be unbound, which will correspond to the string |
| /// describing the template arguments for the function template specialization. |
| /// |
| /// \returns the most specialized function template specialization, if |
| /// found. Otherwise, returns SpecEnd. |
| UnresolvedSetIterator Sema::getMostSpecialized( |
| UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd, |
| TemplateSpecCandidateSet &FailedCandidates, |
| SourceLocation Loc, const PartialDiagnostic &NoneDiag, |
| const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag, |
| bool Complain, QualType TargetType) { |
| if (SpecBegin == SpecEnd) { |
| if (Complain) { |
| Diag(Loc, NoneDiag); |
| FailedCandidates.NoteCandidates(*this, Loc); |
| } |
| return SpecEnd; |
| } |
| |
| if (SpecBegin + 1 == SpecEnd) |
| return SpecBegin; |
| |
| // Find the function template that is better than all of the templates it |
| // has been compared to. |
| UnresolvedSetIterator Best = SpecBegin; |
| FunctionTemplateDecl *BestTemplate |
| = cast<FunctionDecl>(*Best)->getPrimaryTemplate(); |
| assert(BestTemplate && "Not a function template specialization?"); |
| for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) { |
| FunctionTemplateDecl *Challenger |
| = cast<FunctionDecl>(*I)->getPrimaryTemplate(); |
| assert(Challenger && "Not a function template specialization?"); |
| if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, |
| Loc, TPOC_Other, 0, 0), |
| Challenger)) { |
| Best = I; |
| BestTemplate = Challenger; |
| } |
| } |
| |
| // Make sure that the "best" function template is more specialized than all |
| // of the others. |
| bool Ambiguous = false; |
| for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { |
| FunctionTemplateDecl *Challenger |
| = cast<FunctionDecl>(*I)->getPrimaryTemplate(); |
| if (I != Best && |
| !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, |
| Loc, TPOC_Other, 0, 0), |
| BestTemplate)) { |
| Ambiguous = true; |
| break; |
| } |
| } |
| |
| if (!Ambiguous) { |
| // We found an answer. Return it. |
| return Best; |
| } |
| |
| // Diagnose the ambiguity. |
| if (Complain) { |
| Diag(Loc, AmbigDiag); |
| |
| // FIXME: Can we order the candidates in some sane way? |
| for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { |
| PartialDiagnostic PD = CandidateDiag; |
| const auto *FD = cast<FunctionDecl>(*I); |
| PD << FD << getTemplateArgumentBindingsText( |
| FD->getPrimaryTemplate()->getTemplateParameters(), |
| *FD->getTemplateSpecializationArgs()); |
| if (!TargetType.isNull()) |
| HandleFunctionTypeMismatch(PD, FD->getType(), TargetType); |
| Diag((*I)->getLocation(), PD); |
| } |
| } |
| |
| return SpecEnd; |
| } |
| |
| /// Determine whether one partial specialization, P1, is at least as |
| /// specialized than another, P2. |
| /// |
| /// \tparam TemplateLikeDecl The kind of P2, which must be a |
| /// TemplateDecl or {Class,Var}TemplatePartialSpecializationDecl. |
| /// \param T1 The injected-class-name of P1 (faked for a variable template). |
| /// \param T2 The injected-class-name of P2 (faked for a variable template). |
| template<typename TemplateLikeDecl> |
| static bool isAtLeastAsSpecializedAs(Sema &S, QualType T1, QualType T2, |
| TemplateLikeDecl *P2, |
| TemplateDeductionInfo &Info) { |
| // C++ [temp.class.order]p1: |
| // For two class template partial specializations, the first is at least as |
| // specialized as the second if, given the following rewrite to two |
| // function templates, the first function template is at least as |
| // specialized as the second according to the ordering rules for function |
| // templates (14.6.6.2): |
| // - the first function template has the same template parameters as the |
| // first partial specialization and has a single function parameter |
| // whose type is a class template specialization with the template |
| // arguments of the first partial specialization, and |
| // - the second function template has the same template parameters as the |
| // second partial specialization and has a single function parameter |
| // whose type is a class template specialization with the template |
| // arguments of the second partial specialization. |
| // |
| // Rather than synthesize function templates, we merely perform the |
| // equivalent partial ordering by performing deduction directly on |
| // the template arguments of the class template partial |
| // specializations. This computation is slightly simpler than the |
| // general problem of function template partial ordering, because |
| // class template partial specializations are more constrained. We |
| // know that every template parameter is deducible from the class |
| // template partial specialization's template arguments, for |
| // example. |
| SmallVector<DeducedTemplateArgument, 4> Deduced; |
| |
| // Determine whether P1 is at least as specialized as P2. |
| Deduced.resize(P2->getTemplateParameters()->size()); |
| if (DeduceTemplateArgumentsByTypeMatch(S, P2->getTemplateParameters(), |
| T2, T1, Info, Deduced, TDF_None, |
| /*PartialOrdering=*/true)) |
| return false; |
| |
| SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), |
| Deduced.end()); |
| Sema::InstantiatingTemplate Inst(S, Info.getLocation(), P2, DeducedArgs, |
| Info); |
| auto *TST1 = T1->castAs<TemplateSpecializationType>(); |
| if (FinishTemplateArgumentDeduction( |
| S, P2, /*PartialOrdering=*/true, |
| TemplateArgumentList(TemplateArgumentList::OnStack, |
| TST1->template_arguments()), |
| Deduced, Info)) |
| return false; |
| |
| return true; |
| } |
| |
| /// Returns the more specialized class template partial specialization |
| /// according to the rules of partial ordering of class template partial |
| /// specializations (C++ [temp.class.order]). |
| /// |
| /// \param PS1 the first class template partial specialization |
| /// |
| /// \param PS2 the second class template partial specialization |
| /// |
| /// \returns the more specialized class template partial specialization. If |
| /// neither partial specialization is more specialized, returns NULL. |
| ClassTemplatePartialSpecializationDecl * |
| Sema::getMoreSpecializedPartialSpecialization( |
| ClassTemplatePartialSpecializationDecl *PS1, |
| ClassTemplatePartialSpecializationDecl *PS2, |
| SourceLocation Loc) { |
| QualType PT1 = PS1->getInjectedSpecializationType(); |
| QualType PT2 = PS2->getInjectedSpecializationType(); |
| |
| TemplateDeductionInfo Info(Loc); |
| bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info); |
| bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info); |
| |
| if (Better1 == Better2) |
| return nullptr; |
| |
| return Better1 ? PS1 : PS2; |
| } |
| |
| bool Sema::isMoreSpecializedThanPrimary( |
| ClassTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) { |
| ClassTemplateDecl *Primary = Spec->getSpecializedTemplate(); |
| QualType PrimaryT = Primary->getInjectedClassNameSpecialization(); |
| QualType PartialT = Spec->getInjectedSpecializationType(); |
| if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info)) |
| return false; |
| if (isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info)) { |
| Info.clearSFINAEDiagnostic(); |
| return false; |
| } |
| return true; |
| } |
| |
| VarTemplatePartialSpecializationDecl * |
| Sema::getMoreSpecializedPartialSpecialization( |
| VarTemplatePartialSpecializationDecl *PS1, |
| VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) { |
| // Pretend the variable template specializations are class template |
| // specializations and form a fake injected class name type for comparison. |
| assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() && |
| "the partial specializations being compared should specialize" |
| " the same template."); |
| TemplateName Name(PS1->getSpecializedTemplate()); |
| TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); |
| QualType PT1 = Context.getTemplateSpecializationType( |
| CanonTemplate, PS1->getTemplateArgs().asArray()); |
| QualType PT2 = Context.getTemplateSpecializationType( |
| CanonTemplate, PS2->getTemplateArgs().asArray()); |
| |
| TemplateDeductionInfo Info(Loc); |
| bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info); |
| bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info); |
| |
| if (Better1 == Better2) |
| return nullptr; |
| |
| return Better1 ? PS1 : PS2; |
| } |
| |
| bool Sema::isMoreSpecializedThanPrimary( |
| VarTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) { |
| TemplateDecl *Primary = Spec->getSpecializedTemplate(); |
| // FIXME: Cache the injected template arguments rather than recomputing |
| // them for each partial specialization. |
| SmallVector<TemplateArgument, 8> PrimaryArgs; |
| Context.getInjectedTemplateArgs(Primary->getTemplateParameters(), |
| PrimaryArgs); |
| |
| TemplateName CanonTemplate = |
| Context.getCanonicalTemplateName(TemplateName(Primary)); |
| QualType PrimaryT = Context.getTemplateSpecializationType( |
| CanonTemplate, PrimaryArgs); |
| QualType PartialT = Context.getTemplateSpecializationType( |
| CanonTemplate, Spec->getTemplateArgs().asArray()); |
| if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info)) |
| return false; |
| if (isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info)) { |
| Info.clearSFINAEDiagnostic(); |
| return false; |
| } |
| return true; |
| } |
| |
| bool Sema::isTemplateTemplateParameterAtLeastAsSpecializedAs( |
| TemplateParameterList *P, TemplateDecl *AArg, SourceLocation Loc) { |
| // C++1z [temp.arg.template]p4: (DR 150) |
| // A template template-parameter P is at least as specialized as a |
| // template template-argument A if, given the following rewrite to two |
| // function templates... |
| |
| // Rather than synthesize function templates, we merely perform the |
| // equivalent partial ordering by performing deduction directly on |
| // the template parameter lists of the template template parameters. |
| // |
| // Given an invented class template X with the template parameter list of |
| // A (including default arguments): |
| TemplateName X = Context.getCanonicalTemplateName(TemplateName(AArg)); |
| TemplateParameterList *A = AArg->getTemplateParameters(); |
| |
| // - Each function template has a single function parameter whose type is |
| // a specialization of X with template arguments corresponding to the |
| // template parameters from the respective function template |
| SmallVector<TemplateArgument, 8> AArgs; |
| Context.getInjectedTemplateArgs(A, AArgs); |
| |
| // Check P's arguments against A's parameter list. This will fill in default |
| // template arguments as needed. AArgs are already correct by construction. |
| // We can't just use CheckTemplateIdType because that will expand alias |
| // templates. |
| SmallVector<TemplateArgument, 4> PArgs; |
| { |
| SFINAETrap Trap(*this); |
| |
| Context.getInjectedTemplateArgs(P, PArgs); |
| TemplateArgumentListInfo PArgList(P->getLAngleLoc(), P->getRAngleLoc()); |
| for (unsigned I = 0, N = P->size(); I != N; ++I) { |
| // Unwrap packs that getInjectedTemplateArgs wrapped around pack |
| // expansions, to form an "as written" argument list. |
| TemplateArgument Arg = PArgs[I]; |
| if (Arg.getKind() == TemplateArgument::Pack) { |
| assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion()); |
| Arg = *Arg.pack_begin(); |
| } |
| PArgList.addArgument(getTrivialTemplateArgumentLoc( |
| Arg, QualType(), P->getParam(I)->getLocation())); |
| } |
| PArgs.clear(); |
| |
| // C++1z [temp.arg.template]p3: |
| // If the rewrite produces an invalid type, then P is not at least as |
| // specialized as A. |
| if (CheckTemplateArgumentList(AArg, Loc, PArgList, false, PArgs) || |
| Trap.hasErrorOccurred()) |
| return false; |
| } |
| |
| QualType AType = Context.getTemplateSpecializationType(X, AArgs); |
| QualType PType = Context.getTemplateSpecializationType(X, PArgs); |
| |
| // ... the function template corresponding to P is at least as specialized |
| // as the function template corresponding to A according to the partial |
| // ordering rules for function templates. |
| TemplateDeductionInfo Info(Loc, A->getDepth()); |
| return isAtLeastAsSpecializedAs(*this, PType, AType, AArg, Info); |
| } |
| |
| /// Mark the template parameters that are used by the given |
| /// expression. |
| static void |
| MarkUsedTemplateParameters(ASTContext &Ctx, |
| const Expr *E, |
| bool OnlyDeduced, |
| unsigned Depth, |
| llvm::SmallBitVector &Used) { |
| // We can deduce from a pack expansion. |
| if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E)) |
| E = Expansion->getPattern(); |
| |
| // Skip through any implicit casts we added while type-checking, and any |
| // substitutions performed by template alias expansion. |
| while (true) { |
| if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) |
| E = ICE->getSubExpr(); |
| else if (const SubstNonTypeTemplateParmExpr *Subst = |
| dyn_cast<SubstNonTypeTemplateParmExpr>(E)) |
| E = Subst->getReplacement(); |
| else |
| break; |
| } |
| |
| // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to |
| // find other occurrences of template parameters. |
| const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); |
| if (!DRE) |
| return; |
| |
| const NonTypeTemplateParmDecl *NTTP |
| = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); |
| if (!NTTP) |
| return; |
| |
| if (NTTP->getDepth() == Depth) |
| Used[NTTP->getIndex()] = true; |
| |
| // In C++17 mode, additional arguments may be deduced from the type of a |
| // non-type argument. |
| if (Ctx.getLangOpts().CPlusPlus17) |
| MarkUsedTemplateParameters(Ctx, NTTP->getType(), OnlyDeduced, Depth, Used); |
| } |
| |
| /// Mark the template parameters that are used by the given |
| /// nested name specifier. |
| static void |
| MarkUsedTemplateParameters(ASTContext &Ctx, |
| NestedNameSpecifier *NNS, |
| bool OnlyDeduced, |
| unsigned Depth, |
| llvm::SmallBitVector &Used) { |
| if (!NNS) |
| return; |
| |
| MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth, |
| Used); |
| MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0), |
| OnlyDeduced, Depth, Used); |
| } |
| |
| /// Mark the template parameters that are used by the given |
| /// template name. |
| static void |
| MarkUsedTemplateParameters(ASTContext &Ctx, |
| TemplateName Name, |
| bool OnlyDeduced, |
| unsigned Depth, |
| llvm::SmallBitVector &Used) { |
| if (TemplateDecl *Template = Name.getAsTemplateDecl()) { |
| if (TemplateTemplateParmDecl *TTP |
| = dyn_cast<TemplateTemplateParmDecl>(Template)) { |
| if (TTP->getDepth() == Depth) |
| Used[TTP->getIndex()] = true; |
| } |
| return; |
| } |
| |
| if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) |
| MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced, |
| Depth, Used); |
| if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) |
| MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced, |
| Depth, Used); |
| } |
| |
| /// Mark the template parameters that are used by the given |
| /// type. |
| static void |
| MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, |
| bool OnlyDeduced, |
| unsigned Depth, |
| llvm::SmallBitVector &Used) { |
| if (T.isNull()) |
| return; |
| |
| // Non-dependent types have nothing deducible |
| if (!T->isDependentType()) |
| return; |
| |
| T = Ctx.getCanonicalType(T); |
| switch (T->getTypeClass()) { |
| case Type::Pointer: |
| MarkUsedTemplateParameters(Ctx, |
| cast<PointerType>(T)->getPointeeType(), |
| OnlyDeduced, |
| Depth, |
| Used); |
| break; |
| |
| case Type::BlockPointer: |
| MarkUsedTemplateParameters(Ctx, |
| cast<BlockPointerType>(T)->getPointeeType(), |
| OnlyDeduced, |
| Depth, |
| Used); |
| break; |
| |
| case Type::LValueReference: |
| case Type::RValueReference: |
| MarkUsedTemplateParameters(Ctx, |
| cast<ReferenceType>(T)->getPointeeType(), |
| OnlyDeduced, |
| Depth, |
| Used); |
| break; |
| |
| case Type::MemberPointer: { |
| const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr()); |
| MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced, |
| Depth, Used); |
| MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0), |
| OnlyDeduced, Depth, Used); |
| break; |
| } |
| |
| case Type::DependentSizedArray: |
| MarkUsedTemplateParameters(Ctx, |
| cast<DependentSizedArrayType>(T)->getSizeExpr(), |
| OnlyDeduced, Depth, Used); |
| // Fall through to check the element type |
| LLVM_FALLTHROUGH; |
| |
| case Type::ConstantArray: |
| case Type::IncompleteArray: |
| MarkUsedTemplateParameters(Ctx, |
| cast<ArrayType>(T)->getElementType(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::Vector: |
| case Type::ExtVector: |
| MarkUsedTemplateParameters(Ctx, |
| cast<VectorType>(T)->getElementType(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::DependentVector: { |
| const auto *VecType = cast<DependentVectorType>(T); |
| MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced, |
| Depth, Used); |
| MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, Depth, |
| Used); |
| break; |
| } |
| case Type::DependentSizedExtVector: { |
| const DependentSizedExtVectorType *VecType |
| = cast<DependentSizedExtVectorType>(T); |
| MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced, |
| Depth, Used); |
| MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, |
| Depth, Used); |
| break; |
| } |
| |
| case Type::DependentAddressSpace: { |
| const DependentAddressSpaceType *DependentASType = |
| cast<DependentAddressSpaceType>(T); |
| MarkUsedTemplateParameters(Ctx, DependentASType->getPointeeType(), |
| OnlyDeduced, Depth, Used); |
| MarkUsedTemplateParameters(Ctx, |
| DependentASType->getAddrSpaceExpr(), |
| OnlyDeduced, Depth, Used); |
| break; |
| } |
| |
| case Type::FunctionProto: { |
| const FunctionProtoType *Proto = cast<FunctionProtoType>(T); |
| MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth, |
| Used); |
| for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) { |
| // C++17 [temp.deduct.type]p5: |
| // The non-deduced contexts are: [...] |
| // -- A function parameter pack that does not occur at the end of the |
| // parameter-declaration-list. |
| if (!OnlyDeduced || I + 1 == N || |
| !Proto->getParamType(I)->getAs<PackExpansionType>()) { |
| MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced, |
| Depth, Used); |
| } else { |
| // FIXME: C++17 [temp.deduct.call]p1: |
| // When a function parameter pack appears in a non-deduced context, |
| // the type of that pack is never deduced. |
| // |
| // We should also track a set of "never deduced" parameters, and |
| // subtract that from the list of deduced parameters after marking. |
| } |
| } |
| if (auto *E = Proto->getNoexceptExpr()) |
| MarkUsedTemplateParameters(Ctx, E, OnlyDeduced, Depth, Used); |
| break; |
| } |
| |
| case Type::TemplateTypeParm: { |
| const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T); |
| if (TTP->getDepth() == Depth) |
| Used[TTP->getIndex()] = true; |
| break; |
| } |
| |
| case Type::SubstTemplateTypeParmPack: { |
| const SubstTemplateTypeParmPackType *Subst |
| = cast<SubstTemplateTypeParmPackType>(T); |
| MarkUsedTemplateParameters(Ctx, |
| QualType(Subst->getReplacedParameter(), 0), |
| OnlyDeduced, Depth, Used); |
| MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(), |
| OnlyDeduced, Depth, Used); |
| break; |
| } |
| |
| case Type::InjectedClassName: |
| T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType(); |
| LLVM_FALLTHROUGH; |
| |
| case Type::TemplateSpecialization: { |
| const TemplateSpecializationType *Spec |
| = cast<TemplateSpecializationType>(T); |
| MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced, |
| Depth, Used); |
| |
| // C++0x [temp.deduct.type]p9: |
| // If the template argument list of P contains a pack expansion that is |
| // not the last template argument, the entire template argument list is a |
| // non-deduced context. |
| if (OnlyDeduced && |
| hasPackExpansionBeforeEnd(Spec->template_arguments())) |
| break; |
| |
| for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I) |
| MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth, |
| Used); |
| break; |
| } |
| |
| case Type::Complex: |
| if (!OnlyDeduced) |
| MarkUsedTemplateParameters(Ctx, |
| cast<ComplexType>(T)->getElementType(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::Atomic: |
| if (!OnlyDeduced) |
| MarkUsedTemplateParameters(Ctx, |
| cast<AtomicType>(T)->getValueType(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::DependentName: |
| if (!OnlyDeduced) |
| MarkUsedTemplateParameters(Ctx, |
| cast<DependentNameType>(T)->getQualifier(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::DependentTemplateSpecialization: { |
| // C++14 [temp.deduct.type]p5: |
| // The non-deduced contexts are: |
| // -- The nested-name-specifier of a type that was specified using a |
| // qualified-id |
| // |
| // C++14 [temp.deduct.type]p6: |
| // When a type name is specified in a way that includes a non-deduced |
| // context, all of the types that comprise that type name are also |
| // non-deduced. |
| if (OnlyDeduced) |
| break; |
| |
| const DependentTemplateSpecializationType *Spec |
| = cast<DependentTemplateSpecializationType>(T); |
| |
| MarkUsedTemplateParameters(Ctx, Spec->getQualifier(), |
| OnlyDeduced, Depth, Used); |
| |
| for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I) |
| MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth, |
| Used); |
| break; |
| } |
| |
| case Type::TypeOf: |
| if (!OnlyDeduced) |
| MarkUsedTemplateParameters(Ctx, |
| cast<TypeOfType>(T)->getUnderlyingType(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::TypeOfExpr: |
| if (!OnlyDeduced) |
| MarkUsedTemplateParameters(Ctx, |
| cast<TypeOfExprType>(T)->getUnderlyingExpr(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::Decltype: |
| if (!OnlyDeduced) |
| MarkUsedTemplateParameters(Ctx, |
| cast<DecltypeType>(T)->getUnderlyingExpr(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::UnaryTransform: |
| if (!OnlyDeduced) |
| MarkUsedTemplateParameters(Ctx, |
| cast<UnaryTransformType>(T)->getUnderlyingType(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::PackExpansion: |
| MarkUsedTemplateParameters(Ctx, |
| cast<PackExpansionType>(T)->getPattern(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::Auto: |
| case Type::DeducedTemplateSpecialization: |
| MarkUsedTemplateParameters(Ctx, |
| cast<DeducedType>(T)->getDeducedType(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| // None of these types have any template parameters in them. |
| case Type::Builtin: |
| case Type::VariableArray: |
| case Type::FunctionNoProto: |
| case Type::Record: |
| case Type::Enum: |
| case Type::ObjCInterface: |
| case Type::ObjCObject: |
| case Type::ObjCObjectPointer: |
| case Type::UnresolvedUsing: |
| case Type::Pipe: |
| #define TYPE(Class, Base) |
| #define ABSTRACT_TYPE(Class, Base) |
| #define DEPENDENT_TYPE(Class, Base) |
| #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
| #include "clang/AST/TypeNodes.def" |
| break; |
| } |
| } |
| |
| /// Mark the template parameters that are used by this |
| /// template argument. |
| static void |
| MarkUsedTemplateParameters(ASTContext &Ctx, |
| const TemplateArgument &TemplateArg, |
| bool OnlyDeduced, |
| unsigned Depth, |
| llvm::SmallBitVector &Used) { |
| switch (TemplateArg.getKind()) { |
| case TemplateArgument::Null: |
| case TemplateArgument::Integral: |
| case TemplateArgument::Declaration: |
| break; |
| |
| case TemplateArgument::NullPtr: |
| MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced, |
| Depth, Used); |
| break; |
| |
| case TemplateArgument::Type: |
| MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced, |
| Depth, Used); |
| break; |
| |
| case TemplateArgument::Template: |
| case TemplateArgument::TemplateExpansion: |
| MarkUsedTemplateParameters(Ctx, |
| TemplateArg.getAsTemplateOrTemplatePattern(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case TemplateArgument::Expression: |
| MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced, |
| Depth, Used); |
| break; |
| |
| case TemplateArgument::Pack: |
| for (const auto &P : TemplateArg.pack_elements()) |
| MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used); |
| break; |
| } |
| } |
| |
| /// Mark which template parameters can be deduced from a given |
| /// template argument list. |
| /// |
| /// \param TemplateArgs the template argument list from which template |
| /// parameters will be deduced. |
| /// |
| /// \param Used a bit vector whose elements will be set to \c true |
| /// to indicate when the corresponding template parameter will be |
| /// deduced. |
| void |
| Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs, |
| bool OnlyDeduced, unsigned Depth, |
| llvm::SmallBitVector &Used) { |
| // C++0x [temp.deduct.type]p9: |
| // If the template argument list of P contains a pack expansion that is not |
| // the last template argument, the entire template argument list is a |
| // non-deduced context. |
| if (OnlyDeduced && |
| hasPackExpansionBeforeEnd(TemplateArgs.asArray())) |
| return; |
| |
| for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
| ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced, |
| Depth, Used); |
| } |
| |
| /// Marks all of the template parameters that will be deduced by a |
| /// call to the given function template. |
| void Sema::MarkDeducedTemplateParameters( |
| ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate, |
| llvm::SmallBitVector &Deduced) { |
| TemplateParameterList *TemplateParams |
| = FunctionTemplate->getTemplateParameters(); |
| Deduced.clear(); |
| Deduced.resize(TemplateParams->size()); |
| |
| FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); |
| for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I) |
| ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(), |
| true, TemplateParams->getDepth(), Deduced); |
| } |
| |
| bool hasDeducibleTemplateParameters(Sema &S, |
| FunctionTemplateDecl *FunctionTemplate, |
| QualType T) { |
| if (!T->isDependentType()) |
| return false; |
| |
| TemplateParameterList *TemplateParams |
| = FunctionTemplate->getTemplateParameters(); |
| llvm::SmallBitVector Deduced(TemplateParams->size()); |
| ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(), |
| Deduced); |
| |
| return Deduced.any(); |
| } |