| //===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains definitons for the AST differencing interface. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Tooling/ASTDiff/ASTDiff.h" |
| |
| #include "clang/AST/RecursiveASTVisitor.h" |
| #include "clang/Lex/Lexer.h" |
| #include "llvm/ADT/PriorityQueue.h" |
| |
| #include <limits> |
| #include <memory> |
| #include <unordered_set> |
| |
| using namespace llvm; |
| using namespace clang; |
| |
| namespace clang { |
| namespace diff { |
| |
| namespace { |
| /// Maps nodes of the left tree to ones on the right, and vice versa. |
| class Mapping { |
| public: |
| Mapping() = default; |
| Mapping(Mapping &&Other) = default; |
| Mapping &operator=(Mapping &&Other) = default; |
| |
| Mapping(size_t Size) { |
| SrcToDst = llvm::make_unique<NodeId[]>(Size); |
| DstToSrc = llvm::make_unique<NodeId[]>(Size); |
| } |
| |
| void link(NodeId Src, NodeId Dst) { |
| SrcToDst[Src] = Dst, DstToSrc[Dst] = Src; |
| } |
| |
| NodeId getDst(NodeId Src) const { return SrcToDst[Src]; } |
| NodeId getSrc(NodeId Dst) const { return DstToSrc[Dst]; } |
| bool hasSrc(NodeId Src) const { return getDst(Src).isValid(); } |
| bool hasDst(NodeId Dst) const { return getSrc(Dst).isValid(); } |
| |
| private: |
| std::unique_ptr<NodeId[]> SrcToDst, DstToSrc; |
| }; |
| } // end anonymous namespace |
| |
| class ASTDiff::Impl { |
| public: |
| SyntaxTree::Impl &T1, &T2; |
| Mapping TheMapping; |
| |
| Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2, |
| const ComparisonOptions &Options); |
| |
| /// Matches nodes one-by-one based on their similarity. |
| void computeMapping(); |
| |
| // Compute Change for each node based on similarity. |
| void computeChangeKinds(Mapping &M); |
| |
| NodeId getMapped(const std::unique_ptr<SyntaxTree::Impl> &Tree, |
| NodeId Id) const { |
| if (&*Tree == &T1) |
| return TheMapping.getDst(Id); |
| assert(&*Tree == &T2 && "Invalid tree."); |
| return TheMapping.getSrc(Id); |
| } |
| |
| private: |
| // Returns true if the two subtrees are identical. |
| bool identical(NodeId Id1, NodeId Id2) const; |
| |
| // Returns false if the nodes must not be mached. |
| bool isMatchingPossible(NodeId Id1, NodeId Id2) const; |
| |
| // Returns true if the nodes' parents are matched. |
| bool haveSameParents(const Mapping &M, NodeId Id1, NodeId Id2) const; |
| |
| // Uses an optimal albeit slow algorithm to compute a mapping between two |
| // subtrees, but only if both have fewer nodes than MaxSize. |
| void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const; |
| |
| // Computes the ratio of common descendants between the two nodes. |
| // Descendants are only considered to be equal when they are mapped in M. |
| double getJaccardSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const; |
| |
| // Returns the node that has the highest degree of similarity. |
| NodeId findCandidate(const Mapping &M, NodeId Id1) const; |
| |
| // Returns a mapping of identical subtrees. |
| Mapping matchTopDown() const; |
| |
| // Tries to match any yet unmapped nodes, in a bottom-up fashion. |
| void matchBottomUp(Mapping &M) const; |
| |
| const ComparisonOptions &Options; |
| |
| friend class ZhangShashaMatcher; |
| }; |
| |
| /// Represents the AST of a TranslationUnit. |
| class SyntaxTree::Impl { |
| public: |
| Impl(SyntaxTree *Parent, ASTContext &AST); |
| /// Constructs a tree from an AST node. |
| Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST); |
| Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST); |
| template <class T> |
| Impl(SyntaxTree *Parent, |
| typename std::enable_if<std::is_base_of<Stmt, T>::value, T>::type *Node, |
| ASTContext &AST) |
| : Impl(Parent, dyn_cast<Stmt>(Node), AST) {} |
| template <class T> |
| Impl(SyntaxTree *Parent, |
| typename std::enable_if<std::is_base_of<Decl, T>::value, T>::type *Node, |
| ASTContext &AST) |
| : Impl(Parent, dyn_cast<Decl>(Node), AST) {} |
| |
| SyntaxTree *Parent; |
| ASTContext &AST; |
| PrintingPolicy TypePP; |
| /// Nodes in preorder. |
| std::vector<Node> Nodes; |
| std::vector<NodeId> Leaves; |
| // Maps preorder indices to postorder ones. |
| std::vector<int> PostorderIds; |
| std::vector<NodeId> NodesBfs; |
| |
| int getSize() const { return Nodes.size(); } |
| NodeId getRootId() const { return 0; } |
| PreorderIterator begin() const { return getRootId(); } |
| PreorderIterator end() const { return getSize(); } |
| |
| const Node &getNode(NodeId Id) const { return Nodes[Id]; } |
| Node &getMutableNode(NodeId Id) { return Nodes[Id]; } |
| bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); } |
| void addNode(Node &N) { Nodes.push_back(N); } |
| int getNumberOfDescendants(NodeId Id) const; |
| bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const; |
| int findPositionInParent(NodeId Id, bool Shifted = false) const; |
| |
| std::string getRelativeName(const NamedDecl *ND, |
| const DeclContext *Context) const; |
| std::string getRelativeName(const NamedDecl *ND) const; |
| |
| std::string getNodeValue(NodeId Id) const; |
| std::string getNodeValue(const Node &Node) const; |
| std::string getDeclValue(const Decl *D) const; |
| std::string getStmtValue(const Stmt *S) const; |
| |
| private: |
| void initTree(); |
| void setLeftMostDescendants(); |
| }; |
| |
| static bool isSpecializedNodeExcluded(const Decl *D) { return D->isImplicit(); } |
| static bool isSpecializedNodeExcluded(const Stmt *S) { return false; } |
| static bool isSpecializedNodeExcluded(CXXCtorInitializer *I) { |
| return !I->isWritten(); |
| } |
| |
| template <class T> |
| static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) { |
| if (!N) |
| return true; |
| SourceLocation SLoc = N->getSourceRange().getBegin(); |
| if (SLoc.isValid()) { |
| // Ignore everything from other files. |
| if (!SrcMgr.isInMainFile(SLoc)) |
| return true; |
| // Ignore macros. |
| if (SLoc != SrcMgr.getSpellingLoc(SLoc)) |
| return true; |
| } |
| return isSpecializedNodeExcluded(N); |
| } |
| |
| namespace { |
| // Sets Height, Parent and Children for each node. |
| struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> { |
| int Id = 0, Depth = 0; |
| NodeId Parent; |
| SyntaxTree::Impl &Tree; |
| |
| PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {} |
| |
| template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) { |
| NodeId MyId = Id; |
| Tree.Nodes.emplace_back(); |
| Node &N = Tree.getMutableNode(MyId); |
| N.Parent = Parent; |
| N.Depth = Depth; |
| N.ASTNode = DynTypedNode::create(*ASTNode); |
| assert(!N.ASTNode.getNodeKind().isNone() && |
| "Expected nodes to have a valid kind."); |
| if (Parent.isValid()) { |
| Node &P = Tree.getMutableNode(Parent); |
| P.Children.push_back(MyId); |
| } |
| Parent = MyId; |
| ++Id; |
| ++Depth; |
| return std::make_tuple(MyId, Tree.getNode(MyId).Parent); |
| } |
| void PostTraverse(std::tuple<NodeId, NodeId> State) { |
| NodeId MyId, PreviousParent; |
| std::tie(MyId, PreviousParent) = State; |
| assert(MyId.isValid() && "Expecting to only traverse valid nodes."); |
| Parent = PreviousParent; |
| --Depth; |
| Node &N = Tree.getMutableNode(MyId); |
| N.RightMostDescendant = Id - 1; |
| assert(N.RightMostDescendant >= 0 && |
| N.RightMostDescendant < Tree.getSize() && |
| "Rightmost descendant must be a valid tree node."); |
| if (N.isLeaf()) |
| Tree.Leaves.push_back(MyId); |
| N.Height = 1; |
| for (NodeId Child : N.Children) |
| N.Height = std::max(N.Height, 1 + Tree.getNode(Child).Height); |
| } |
| bool TraverseDecl(Decl *D) { |
| if (isNodeExcluded(Tree.AST.getSourceManager(), D)) |
| return true; |
| auto SavedState = PreTraverse(D); |
| RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D); |
| PostTraverse(SavedState); |
| return true; |
| } |
| bool TraverseStmt(Stmt *S) { |
| if (S) |
| S = S->IgnoreImplicit(); |
| if (isNodeExcluded(Tree.AST.getSourceManager(), S)) |
| return true; |
| auto SavedState = PreTraverse(S); |
| RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S); |
| PostTraverse(SavedState); |
| return true; |
| } |
| bool TraverseType(QualType T) { return true; } |
| bool TraverseConstructorInitializer(CXXCtorInitializer *Init) { |
| if (isNodeExcluded(Tree.AST.getSourceManager(), Init)) |
| return true; |
| auto SavedState = PreTraverse(Init); |
| RecursiveASTVisitor<PreorderVisitor>::TraverseConstructorInitializer(Init); |
| PostTraverse(SavedState); |
| return true; |
| } |
| }; |
| } // end anonymous namespace |
| |
| SyntaxTree::Impl::Impl(SyntaxTree *Parent, ASTContext &AST) |
| : Parent(Parent), AST(AST), TypePP(AST.getLangOpts()) { |
| TypePP.AnonymousTagLocations = false; |
| } |
| |
| SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST) |
| : Impl(Parent, AST) { |
| PreorderVisitor PreorderWalker(*this); |
| PreorderWalker.TraverseDecl(N); |
| initTree(); |
| } |
| |
| SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST) |
| : Impl(Parent, AST) { |
| PreorderVisitor PreorderWalker(*this); |
| PreorderWalker.TraverseStmt(N); |
| initTree(); |
| } |
| |
| static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree, |
| NodeId Root) { |
| std::vector<NodeId> Postorder; |
| std::function<void(NodeId)> Traverse = [&](NodeId Id) { |
| const Node &N = Tree.getNode(Id); |
| for (NodeId Child : N.Children) |
| Traverse(Child); |
| Postorder.push_back(Id); |
| }; |
| Traverse(Root); |
| return Postorder; |
| } |
| |
| static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree, |
| NodeId Root) { |
| std::vector<NodeId> Ids; |
| size_t Expanded = 0; |
| Ids.push_back(Root); |
| while (Expanded < Ids.size()) |
| for (NodeId Child : Tree.getNode(Ids[Expanded++]).Children) |
| Ids.push_back(Child); |
| return Ids; |
| } |
| |
| void SyntaxTree::Impl::initTree() { |
| setLeftMostDescendants(); |
| int PostorderId = 0; |
| PostorderIds.resize(getSize()); |
| std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) { |
| for (NodeId Child : getNode(Id).Children) |
| PostorderTraverse(Child); |
| PostorderIds[Id] = PostorderId; |
| ++PostorderId; |
| }; |
| PostorderTraverse(getRootId()); |
| NodesBfs = getSubtreeBfs(*this, getRootId()); |
| } |
| |
| void SyntaxTree::Impl::setLeftMostDescendants() { |
| for (NodeId Leaf : Leaves) { |
| getMutableNode(Leaf).LeftMostDescendant = Leaf; |
| NodeId Parent, Cur = Leaf; |
| while ((Parent = getNode(Cur).Parent).isValid() && |
| getNode(Parent).Children[0] == Cur) { |
| Cur = Parent; |
| getMutableNode(Cur).LeftMostDescendant = Leaf; |
| } |
| } |
| } |
| |
| int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const { |
| return getNode(Id).RightMostDescendant - Id + 1; |
| } |
| |
| bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const { |
| return Id >= SubtreeRoot && Id <= getNode(SubtreeRoot).RightMostDescendant; |
| } |
| |
| int SyntaxTree::Impl::findPositionInParent(NodeId Id, bool Shifted) const { |
| NodeId Parent = getNode(Id).Parent; |
| if (Parent.isInvalid()) |
| return 0; |
| const auto &Siblings = getNode(Parent).Children; |
| int Position = 0; |
| for (size_t I = 0, E = Siblings.size(); I < E; ++I) { |
| if (Shifted) |
| Position += getNode(Siblings[I]).Shift; |
| if (Siblings[I] == Id) { |
| Position += I; |
| return Position; |
| } |
| } |
| llvm_unreachable("Node not found in parent's children."); |
| } |
| |
| // Returns the qualified name of ND. If it is subordinate to Context, |
| // then the prefix of the latter is removed from the returned value. |
| std::string |
| SyntaxTree::Impl::getRelativeName(const NamedDecl *ND, |
| const DeclContext *Context) const { |
| std::string Val = ND->getQualifiedNameAsString(); |
| std::string ContextPrefix; |
| if (!Context) |
| return Val; |
| if (auto *Namespace = dyn_cast<NamespaceDecl>(Context)) |
| ContextPrefix = Namespace->getQualifiedNameAsString(); |
| else if (auto *Record = dyn_cast<RecordDecl>(Context)) |
| ContextPrefix = Record->getQualifiedNameAsString(); |
| else if (AST.getLangOpts().CPlusPlus11) |
| if (auto *Tag = dyn_cast<TagDecl>(Context)) |
| ContextPrefix = Tag->getQualifiedNameAsString(); |
| // Strip the qualifier, if Val refers to something in the current scope. |
| // But leave one leading ':' in place, so that we know that this is a |
| // relative path. |
| if (!ContextPrefix.empty() && StringRef(Val).startswith(ContextPrefix)) |
| Val = Val.substr(ContextPrefix.size() + 1); |
| return Val; |
| } |
| |
| std::string SyntaxTree::Impl::getRelativeName(const NamedDecl *ND) const { |
| return getRelativeName(ND, ND->getDeclContext()); |
| } |
| |
| static const DeclContext *getEnclosingDeclContext(ASTContext &AST, |
| const Stmt *S) { |
| while (S) { |
| const auto &Parents = AST.getParents(*S); |
| if (Parents.empty()) |
| return nullptr; |
| const auto &P = Parents[0]; |
| if (const auto *D = P.get<Decl>()) |
| return D->getDeclContext(); |
| S = P.get<Stmt>(); |
| } |
| return nullptr; |
| } |
| |
| static std::string getInitializerValue(const CXXCtorInitializer *Init, |
| const PrintingPolicy &TypePP) { |
| if (Init->isAnyMemberInitializer()) |
| return Init->getAnyMember()->getName(); |
| if (Init->isBaseInitializer()) |
| return QualType(Init->getBaseClass(), 0).getAsString(TypePP); |
| if (Init->isDelegatingInitializer()) |
| return Init->getTypeSourceInfo()->getType().getAsString(TypePP); |
| llvm_unreachable("Unknown initializer type"); |
| } |
| |
| std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const { |
| return getNodeValue(getNode(Id)); |
| } |
| |
| std::string SyntaxTree::Impl::getNodeValue(const Node &N) const { |
| const DynTypedNode &DTN = N.ASTNode; |
| if (auto *S = DTN.get<Stmt>()) |
| return getStmtValue(S); |
| if (auto *D = DTN.get<Decl>()) |
| return getDeclValue(D); |
| if (auto *Init = DTN.get<CXXCtorInitializer>()) |
| return getInitializerValue(Init, TypePP); |
| llvm_unreachable("Fatal: unhandled AST node.\n"); |
| } |
| |
| std::string SyntaxTree::Impl::getDeclValue(const Decl *D) const { |
| std::string Value; |
| if (auto *V = dyn_cast<ValueDecl>(D)) |
| return getRelativeName(V) + "(" + V->getType().getAsString(TypePP) + ")"; |
| if (auto *N = dyn_cast<NamedDecl>(D)) |
| Value += getRelativeName(N) + ";"; |
| if (auto *T = dyn_cast<TypedefNameDecl>(D)) |
| return Value + T->getUnderlyingType().getAsString(TypePP) + ";"; |
| if (auto *T = dyn_cast<TypeDecl>(D)) |
| if (T->getTypeForDecl()) |
| Value += |
| T->getTypeForDecl()->getCanonicalTypeInternal().getAsString(TypePP) + |
| ";"; |
| if (auto *U = dyn_cast<UsingDirectiveDecl>(D)) |
| return U->getNominatedNamespace()->getName(); |
| if (auto *A = dyn_cast<AccessSpecDecl>(D)) { |
| CharSourceRange Range(A->getSourceRange(), false); |
| return Lexer::getSourceText(Range, AST.getSourceManager(), |
| AST.getLangOpts()); |
| } |
| return Value; |
| } |
| |
| std::string SyntaxTree::Impl::getStmtValue(const Stmt *S) const { |
| if (auto *U = dyn_cast<UnaryOperator>(S)) |
| return UnaryOperator::getOpcodeStr(U->getOpcode()); |
| if (auto *B = dyn_cast<BinaryOperator>(S)) |
| return B->getOpcodeStr(); |
| if (auto *M = dyn_cast<MemberExpr>(S)) |
| return getRelativeName(M->getMemberDecl()); |
| if (auto *I = dyn_cast<IntegerLiteral>(S)) { |
| SmallString<256> Str; |
| I->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false); |
| return Str.str(); |
| } |
| if (auto *F = dyn_cast<FloatingLiteral>(S)) { |
| SmallString<256> Str; |
| F->getValue().toString(Str); |
| return Str.str(); |
| } |
| if (auto *D = dyn_cast<DeclRefExpr>(S)) |
| return getRelativeName(D->getDecl(), getEnclosingDeclContext(AST, S)); |
| if (auto *String = dyn_cast<StringLiteral>(S)) |
| return String->getString(); |
| if (auto *B = dyn_cast<CXXBoolLiteralExpr>(S)) |
| return B->getValue() ? "true" : "false"; |
| return ""; |
| } |
| |
| /// Identifies a node in a subtree by its postorder offset, starting at 1. |
| struct SNodeId { |
| int Id = 0; |
| |
| explicit SNodeId(int Id) : Id(Id) {} |
| explicit SNodeId() = default; |
| |
| operator int() const { return Id; } |
| SNodeId &operator++() { return ++Id, *this; } |
| SNodeId &operator--() { return --Id, *this; } |
| SNodeId operator+(int Other) const { return SNodeId(Id + Other); } |
| }; |
| |
| class Subtree { |
| private: |
| /// The parent tree. |
| const SyntaxTree::Impl &Tree; |
| /// Maps SNodeIds to original ids. |
| std::vector<NodeId> RootIds; |
| /// Maps subtree nodes to their leftmost descendants wtihin the subtree. |
| std::vector<SNodeId> LeftMostDescendants; |
| |
| public: |
| std::vector<SNodeId> KeyRoots; |
| |
| Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) { |
| RootIds = getSubtreePostorder(Tree, SubtreeRoot); |
| int NumLeaves = setLeftMostDescendants(); |
| computeKeyRoots(NumLeaves); |
| } |
| int getSize() const { return RootIds.size(); } |
| NodeId getIdInRoot(SNodeId Id) const { |
| assert(Id > 0 && Id <= getSize() && "Invalid subtree node index."); |
| return RootIds[Id - 1]; |
| } |
| const Node &getNode(SNodeId Id) const { |
| return Tree.getNode(getIdInRoot(Id)); |
| } |
| SNodeId getLeftMostDescendant(SNodeId Id) const { |
| assert(Id > 0 && Id <= getSize() && "Invalid subtree node index."); |
| return LeftMostDescendants[Id - 1]; |
| } |
| /// Returns the postorder index of the leftmost descendant in the subtree. |
| NodeId getPostorderOffset() const { |
| return Tree.PostorderIds[getIdInRoot(SNodeId(1))]; |
| } |
| std::string getNodeValue(SNodeId Id) const { |
| return Tree.getNodeValue(getIdInRoot(Id)); |
| } |
| |
| private: |
| /// Returns the number of leafs in the subtree. |
| int setLeftMostDescendants() { |
| int NumLeaves = 0; |
| LeftMostDescendants.resize(getSize()); |
| for (int I = 0; I < getSize(); ++I) { |
| SNodeId SI(I + 1); |
| const Node &N = getNode(SI); |
| NumLeaves += N.isLeaf(); |
| assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() && |
| "Postorder traversal in subtree should correspond to traversal in " |
| "the root tree by a constant offset."); |
| LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] - |
| getPostorderOffset()); |
| } |
| return NumLeaves; |
| } |
| void computeKeyRoots(int Leaves) { |
| KeyRoots.resize(Leaves); |
| std::unordered_set<int> Visited; |
| int K = Leaves - 1; |
| for (SNodeId I(getSize()); I > 0; --I) { |
| SNodeId LeftDesc = getLeftMostDescendant(I); |
| if (Visited.count(LeftDesc)) |
| continue; |
| assert(K >= 0 && "K should be non-negative"); |
| KeyRoots[K] = I; |
| Visited.insert(LeftDesc); |
| --K; |
| } |
| } |
| }; |
| |
| /// Implementation of Zhang and Shasha's Algorithm for tree edit distance. |
| /// Computes an optimal mapping between two trees using only insertion, |
| /// deletion and update as edit actions (similar to the Levenshtein distance). |
| class ZhangShashaMatcher { |
| const ASTDiff::Impl &DiffImpl; |
| Subtree S1; |
| Subtree S2; |
| std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist; |
| |
| public: |
| ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1, |
| const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2) |
| : DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) { |
| TreeDist = llvm::make_unique<std::unique_ptr<double[]>[]>( |
| size_t(S1.getSize()) + 1); |
| ForestDist = llvm::make_unique<std::unique_ptr<double[]>[]>( |
| size_t(S1.getSize()) + 1); |
| for (int I = 0, E = S1.getSize() + 1; I < E; ++I) { |
| TreeDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1); |
| ForestDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1); |
| } |
| } |
| |
| std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() { |
| std::vector<std::pair<NodeId, NodeId>> Matches; |
| std::vector<std::pair<SNodeId, SNodeId>> TreePairs; |
| |
| computeTreeDist(); |
| |
| bool RootNodePair = true; |
| |
| TreePairs.emplace_back(SNodeId(S1.getSize()), SNodeId(S2.getSize())); |
| |
| while (!TreePairs.empty()) { |
| SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col; |
| std::tie(LastRow, LastCol) = TreePairs.back(); |
| TreePairs.pop_back(); |
| |
| if (!RootNodePair) { |
| computeForestDist(LastRow, LastCol); |
| } |
| |
| RootNodePair = false; |
| |
| FirstRow = S1.getLeftMostDescendant(LastRow); |
| FirstCol = S2.getLeftMostDescendant(LastCol); |
| |
| Row = LastRow; |
| Col = LastCol; |
| |
| while (Row > FirstRow || Col > FirstCol) { |
| if (Row > FirstRow && |
| ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) { |
| --Row; |
| } else if (Col > FirstCol && |
| ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) { |
| --Col; |
| } else { |
| SNodeId LMD1 = S1.getLeftMostDescendant(Row); |
| SNodeId LMD2 = S2.getLeftMostDescendant(Col); |
| if (LMD1 == S1.getLeftMostDescendant(LastRow) && |
| LMD2 == S2.getLeftMostDescendant(LastCol)) { |
| NodeId Id1 = S1.getIdInRoot(Row); |
| NodeId Id2 = S2.getIdInRoot(Col); |
| assert(DiffImpl.isMatchingPossible(Id1, Id2) && |
| "These nodes must not be matched."); |
| Matches.emplace_back(Id1, Id2); |
| --Row; |
| --Col; |
| } else { |
| TreePairs.emplace_back(Row, Col); |
| Row = LMD1; |
| Col = LMD2; |
| } |
| } |
| } |
| } |
| return Matches; |
| } |
| |
| private: |
| /// We use a simple cost model for edit actions, which seems good enough. |
| /// Simple cost model for edit actions. This seems to make the matching |
| /// algorithm perform reasonably well. |
| /// The values range between 0 and 1, or infinity if this edit action should |
| /// always be avoided. |
| static constexpr double DeletionCost = 1; |
| static constexpr double InsertionCost = 1; |
| |
| double getUpdateCost(SNodeId Id1, SNodeId Id2) { |
| if (!DiffImpl.isMatchingPossible(S1.getIdInRoot(Id1), S2.getIdInRoot(Id2))) |
| return std::numeric_limits<double>::max(); |
| return S1.getNodeValue(Id1) != S2.getNodeValue(Id2); |
| } |
| |
| void computeTreeDist() { |
| for (SNodeId Id1 : S1.KeyRoots) |
| for (SNodeId Id2 : S2.KeyRoots) |
| computeForestDist(Id1, Id2); |
| } |
| |
| void computeForestDist(SNodeId Id1, SNodeId Id2) { |
| assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0."); |
| SNodeId LMD1 = S1.getLeftMostDescendant(Id1); |
| SNodeId LMD2 = S2.getLeftMostDescendant(Id2); |
| |
| ForestDist[LMD1][LMD2] = 0; |
| for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) { |
| ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost; |
| for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) { |
| ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost; |
| SNodeId DLMD1 = S1.getLeftMostDescendant(D1); |
| SNodeId DLMD2 = S2.getLeftMostDescendant(D2); |
| if (DLMD1 == LMD1 && DLMD2 == LMD2) { |
| double UpdateCost = getUpdateCost(D1, D2); |
| ForestDist[D1][D2] = |
| std::min({ForestDist[D1 - 1][D2] + DeletionCost, |
| ForestDist[D1][D2 - 1] + InsertionCost, |
| ForestDist[D1 - 1][D2 - 1] + UpdateCost}); |
| TreeDist[D1][D2] = ForestDist[D1][D2]; |
| } else { |
| ForestDist[D1][D2] = |
| std::min({ForestDist[D1 - 1][D2] + DeletionCost, |
| ForestDist[D1][D2 - 1] + InsertionCost, |
| ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]}); |
| } |
| } |
| } |
| } |
| }; |
| |
| ast_type_traits::ASTNodeKind Node::getType() const { |
| return ASTNode.getNodeKind(); |
| } |
| |
| StringRef Node::getTypeLabel() const { return getType().asStringRef(); } |
| |
| llvm::Optional<std::string> Node::getQualifiedIdentifier() const { |
| if (auto *ND = ASTNode.get<NamedDecl>()) { |
| if (ND->getDeclName().isIdentifier()) |
| return ND->getQualifiedNameAsString(); |
| } |
| return llvm::None; |
| } |
| |
| llvm::Optional<StringRef> Node::getIdentifier() const { |
| if (auto *ND = ASTNode.get<NamedDecl>()) { |
| if (ND->getDeclName().isIdentifier()) |
| return ND->getName(); |
| } |
| return llvm::None; |
| } |
| |
| namespace { |
| // Compares nodes by their depth. |
| struct HeightLess { |
| const SyntaxTree::Impl &Tree; |
| HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {} |
| bool operator()(NodeId Id1, NodeId Id2) const { |
| return Tree.getNode(Id1).Height < Tree.getNode(Id2).Height; |
| } |
| }; |
| } // end anonymous namespace |
| |
| namespace { |
| // Priority queue for nodes, sorted descendingly by their height. |
| class PriorityList { |
| const SyntaxTree::Impl &Tree; |
| HeightLess Cmp; |
| std::vector<NodeId> Container; |
| PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List; |
| |
| public: |
| PriorityList(const SyntaxTree::Impl &Tree) |
| : Tree(Tree), Cmp(Tree), List(Cmp, Container) {} |
| |
| void push(NodeId id) { List.push(id); } |
| |
| std::vector<NodeId> pop() { |
| int Max = peekMax(); |
| std::vector<NodeId> Result; |
| if (Max == 0) |
| return Result; |
| while (peekMax() == Max) { |
| Result.push_back(List.top()); |
| List.pop(); |
| } |
| // TODO this is here to get a stable output, not a good heuristic |
| llvm::sort(Result.begin(), Result.end()); |
| return Result; |
| } |
| int peekMax() const { |
| if (List.empty()) |
| return 0; |
| return Tree.getNode(List.top()).Height; |
| } |
| void open(NodeId Id) { |
| for (NodeId Child : Tree.getNode(Id).Children) |
| push(Child); |
| } |
| }; |
| } // end anonymous namespace |
| |
| bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const { |
| const Node &N1 = T1.getNode(Id1); |
| const Node &N2 = T2.getNode(Id2); |
| if (N1.Children.size() != N2.Children.size() || |
| !isMatchingPossible(Id1, Id2) || |
| T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) |
| return false; |
| for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id) |
| if (!identical(N1.Children[Id], N2.Children[Id])) |
| return false; |
| return true; |
| } |
| |
| bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const { |
| return Options.isMatchingAllowed(T1.getNode(Id1), T2.getNode(Id2)); |
| } |
| |
| bool ASTDiff::Impl::haveSameParents(const Mapping &M, NodeId Id1, |
| NodeId Id2) const { |
| NodeId P1 = T1.getNode(Id1).Parent; |
| NodeId P2 = T2.getNode(Id2).Parent; |
| return (P1.isInvalid() && P2.isInvalid()) || |
| (P1.isValid() && P2.isValid() && M.getDst(P1) == P2); |
| } |
| |
| void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1, |
| NodeId Id2) const { |
| if (std::max(T1.getNumberOfDescendants(Id1), T2.getNumberOfDescendants(Id2)) > |
| Options.MaxSize) |
| return; |
| ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2); |
| std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes(); |
| for (const auto Tuple : R) { |
| NodeId Src = Tuple.first; |
| NodeId Dst = Tuple.second; |
| if (!M.hasSrc(Src) && !M.hasDst(Dst)) |
| M.link(Src, Dst); |
| } |
| } |
| |
| double ASTDiff::Impl::getJaccardSimilarity(const Mapping &M, NodeId Id1, |
| NodeId Id2) const { |
| int CommonDescendants = 0; |
| const Node &N1 = T1.getNode(Id1); |
| // Count the common descendants, excluding the subtree root. |
| for (NodeId Src = Id1 + 1; Src <= N1.RightMostDescendant; ++Src) { |
| NodeId Dst = M.getDst(Src); |
| CommonDescendants += int(Dst.isValid() && T2.isInSubtree(Dst, Id2)); |
| } |
| // We need to subtract 1 to get the number of descendants excluding the root. |
| double Denominator = T1.getNumberOfDescendants(Id1) - 1 + |
| T2.getNumberOfDescendants(Id2) - 1 - CommonDescendants; |
| // CommonDescendants is less than the size of one subtree. |
| assert(Denominator >= 0 && "Expected non-negative denominator."); |
| if (Denominator == 0) |
| return 0; |
| return CommonDescendants / Denominator; |
| } |
| |
| NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const { |
| NodeId Candidate; |
| double HighestSimilarity = 0.0; |
| for (NodeId Id2 : T2) { |
| if (!isMatchingPossible(Id1, Id2)) |
| continue; |
| if (M.hasDst(Id2)) |
| continue; |
| double Similarity = getJaccardSimilarity(M, Id1, Id2); |
| if (Similarity >= Options.MinSimilarity && Similarity > HighestSimilarity) { |
| HighestSimilarity = Similarity; |
| Candidate = Id2; |
| } |
| } |
| return Candidate; |
| } |
| |
| void ASTDiff::Impl::matchBottomUp(Mapping &M) const { |
| std::vector<NodeId> Postorder = getSubtreePostorder(T1, T1.getRootId()); |
| for (NodeId Id1 : Postorder) { |
| if (Id1 == T1.getRootId() && !M.hasSrc(T1.getRootId()) && |
| !M.hasDst(T2.getRootId())) { |
| if (isMatchingPossible(T1.getRootId(), T2.getRootId())) { |
| M.link(T1.getRootId(), T2.getRootId()); |
| addOptimalMapping(M, T1.getRootId(), T2.getRootId()); |
| } |
| break; |
| } |
| bool Matched = M.hasSrc(Id1); |
| const Node &N1 = T1.getNode(Id1); |
| bool MatchedChildren = |
| std::any_of(N1.Children.begin(), N1.Children.end(), |
| [&](NodeId Child) { return M.hasSrc(Child); }); |
| if (Matched || !MatchedChildren) |
| continue; |
| NodeId Id2 = findCandidate(M, Id1); |
| if (Id2.isValid()) { |
| M.link(Id1, Id2); |
| addOptimalMapping(M, Id1, Id2); |
| } |
| } |
| } |
| |
| Mapping ASTDiff::Impl::matchTopDown() const { |
| PriorityList L1(T1); |
| PriorityList L2(T2); |
| |
| Mapping M(T1.getSize() + T2.getSize()); |
| |
| L1.push(T1.getRootId()); |
| L2.push(T2.getRootId()); |
| |
| int Max1, Max2; |
| while (std::min(Max1 = L1.peekMax(), Max2 = L2.peekMax()) > |
| Options.MinHeight) { |
| if (Max1 > Max2) { |
| for (NodeId Id : L1.pop()) |
| L1.open(Id); |
| continue; |
| } |
| if (Max2 > Max1) { |
| for (NodeId Id : L2.pop()) |
| L2.open(Id); |
| continue; |
| } |
| std::vector<NodeId> H1, H2; |
| H1 = L1.pop(); |
| H2 = L2.pop(); |
| for (NodeId Id1 : H1) { |
| for (NodeId Id2 : H2) { |
| if (identical(Id1, Id2) && !M.hasSrc(Id1) && !M.hasDst(Id2)) { |
| for (int I = 0, E = T1.getNumberOfDescendants(Id1); I < E; ++I) |
| M.link(Id1 + I, Id2 + I); |
| } |
| } |
| } |
| for (NodeId Id1 : H1) { |
| if (!M.hasSrc(Id1)) |
| L1.open(Id1); |
| } |
| for (NodeId Id2 : H2) { |
| if (!M.hasDst(Id2)) |
| L2.open(Id2); |
| } |
| } |
| return M; |
| } |
| |
| ASTDiff::Impl::Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2, |
| const ComparisonOptions &Options) |
| : T1(T1), T2(T2), Options(Options) { |
| computeMapping(); |
| computeChangeKinds(TheMapping); |
| } |
| |
| void ASTDiff::Impl::computeMapping() { |
| TheMapping = matchTopDown(); |
| if (Options.StopAfterTopDown) |
| return; |
| matchBottomUp(TheMapping); |
| } |
| |
| void ASTDiff::Impl::computeChangeKinds(Mapping &M) { |
| for (NodeId Id1 : T1) { |
| if (!M.hasSrc(Id1)) { |
| T1.getMutableNode(Id1).Change = Delete; |
| T1.getMutableNode(Id1).Shift -= 1; |
| } |
| } |
| for (NodeId Id2 : T2) { |
| if (!M.hasDst(Id2)) { |
| T2.getMutableNode(Id2).Change = Insert; |
| T2.getMutableNode(Id2).Shift -= 1; |
| } |
| } |
| for (NodeId Id1 : T1.NodesBfs) { |
| NodeId Id2 = M.getDst(Id1); |
| if (Id2.isInvalid()) |
| continue; |
| if (!haveSameParents(M, Id1, Id2) || |
| T1.findPositionInParent(Id1, true) != |
| T2.findPositionInParent(Id2, true)) { |
| T1.getMutableNode(Id1).Shift -= 1; |
| T2.getMutableNode(Id2).Shift -= 1; |
| } |
| } |
| for (NodeId Id2 : T2.NodesBfs) { |
| NodeId Id1 = M.getSrc(Id2); |
| if (Id1.isInvalid()) |
| continue; |
| Node &N1 = T1.getMutableNode(Id1); |
| Node &N2 = T2.getMutableNode(Id2); |
| if (Id1.isInvalid()) |
| continue; |
| if (!haveSameParents(M, Id1, Id2) || |
| T1.findPositionInParent(Id1, true) != |
| T2.findPositionInParent(Id2, true)) { |
| N1.Change = N2.Change = Move; |
| } |
| if (T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) { |
| N1.Change = N2.Change = (N1.Change == Move ? UpdateMove : Update); |
| } |
| } |
| } |
| |
| ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2, |
| const ComparisonOptions &Options) |
| : DiffImpl(llvm::make_unique<Impl>(*T1.TreeImpl, *T2.TreeImpl, Options)) {} |
| |
| ASTDiff::~ASTDiff() = default; |
| |
| NodeId ASTDiff::getMapped(const SyntaxTree &SourceTree, NodeId Id) const { |
| return DiffImpl->getMapped(SourceTree.TreeImpl, Id); |
| } |
| |
| SyntaxTree::SyntaxTree(ASTContext &AST) |
| : TreeImpl(llvm::make_unique<SyntaxTree::Impl>( |
| this, AST.getTranslationUnitDecl(), AST)) {} |
| |
| SyntaxTree::~SyntaxTree() = default; |
| |
| const ASTContext &SyntaxTree::getASTContext() const { return TreeImpl->AST; } |
| |
| const Node &SyntaxTree::getNode(NodeId Id) const { |
| return TreeImpl->getNode(Id); |
| } |
| |
| int SyntaxTree::getSize() const { return TreeImpl->getSize(); } |
| NodeId SyntaxTree::getRootId() const { return TreeImpl->getRootId(); } |
| SyntaxTree::PreorderIterator SyntaxTree::begin() const { |
| return TreeImpl->begin(); |
| } |
| SyntaxTree::PreorderIterator SyntaxTree::end() const { return TreeImpl->end(); } |
| |
| int SyntaxTree::findPositionInParent(NodeId Id) const { |
| return TreeImpl->findPositionInParent(Id); |
| } |
| |
| std::pair<unsigned, unsigned> |
| SyntaxTree::getSourceRangeOffsets(const Node &N) const { |
| const SourceManager &SrcMgr = TreeImpl->AST.getSourceManager(); |
| SourceRange Range = N.ASTNode.getSourceRange(); |
| SourceLocation BeginLoc = Range.getBegin(); |
| SourceLocation EndLoc = Lexer::getLocForEndOfToken( |
| Range.getEnd(), /*Offset=*/0, SrcMgr, TreeImpl->AST.getLangOpts()); |
| if (auto *ThisExpr = N.ASTNode.get<CXXThisExpr>()) { |
| if (ThisExpr->isImplicit()) |
| EndLoc = BeginLoc; |
| } |
| unsigned Begin = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(BeginLoc)); |
| unsigned End = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(EndLoc)); |
| return {Begin, End}; |
| } |
| |
| std::string SyntaxTree::getNodeValue(NodeId Id) const { |
| return TreeImpl->getNodeValue(Id); |
| } |
| |
| std::string SyntaxTree::getNodeValue(const Node &N) const { |
| return TreeImpl->getNodeValue(N); |
| } |
| |
| } // end namespace diff |
| } // end namespace clang |