blob: aaf76a8b65de828e7f1aa0ff702d321fc5d51782 [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/execution/arm64/simulator-arm64.h"
#if defined(USE_SIMULATOR)
#include <stdlib.h>
#include <cmath>
#include <cstdarg>
#include <type_traits>
#include "src/base/lazy-instance.h"
#include "src/base/overflowing-math.h"
#include "src/base/platform/platform.h"
#include "src/base/platform/wrappers.h"
#include "src/codegen/arm64/decoder-arm64-inl.h"
#include "src/codegen/assembler-inl.h"
#include "src/codegen/macro-assembler.h"
#include "src/diagnostics/disasm.h"
#include "src/heap/combined-heap.h"
#include "src/objects/objects-inl.h"
#include "src/runtime/runtime-utils.h"
#include "src/utils/ostreams.h"
namespace v8 {
namespace internal {
// This macro provides a platform independent use of sscanf. The reason for
// SScanF not being implemented in a platform independent way through
// ::v8::internal::OS in the same way as SNPrintF is that the
// Windows C Run-Time Library does not provide vsscanf.
#define SScanF sscanf // NOLINT
// Helpers for colors.
#define COLOUR(colour_code) "\033[0;" colour_code "m"
#define COLOUR_BOLD(colour_code) "\033[1;" colour_code "m"
#define NORMAL ""
#define GREY "30"
#define RED "31"
#define GREEN "32"
#define YELLOW "33"
#define BLUE "34"
#define MAGENTA "35"
#define CYAN "36"
#define WHITE "37"
using TEXT_COLOUR = char const* const;
TEXT_COLOUR clr_normal = FLAG_log_colour ? COLOUR(NORMAL) : "";
TEXT_COLOUR clr_flag_name = FLAG_log_colour ? COLOUR_BOLD(WHITE) : "";
TEXT_COLOUR clr_flag_value = FLAG_log_colour ? COLOUR(NORMAL) : "";
TEXT_COLOUR clr_reg_name = FLAG_log_colour ? COLOUR_BOLD(CYAN) : "";
TEXT_COLOUR clr_reg_value = FLAG_log_colour ? COLOUR(CYAN) : "";
TEXT_COLOUR clr_vreg_name = FLAG_log_colour ? COLOUR_BOLD(MAGENTA) : "";
TEXT_COLOUR clr_vreg_value = FLAG_log_colour ? COLOUR(MAGENTA) : "";
TEXT_COLOUR clr_memory_address = FLAG_log_colour ? COLOUR_BOLD(BLUE) : "";
TEXT_COLOUR clr_debug_number = FLAG_log_colour ? COLOUR_BOLD(YELLOW) : "";
TEXT_COLOUR clr_debug_message = FLAG_log_colour ? COLOUR(YELLOW) : "";
TEXT_COLOUR clr_printf = FLAG_log_colour ? COLOUR(GREEN) : "";
DEFINE_LAZY_LEAKY_OBJECT_GETTER(Simulator::GlobalMonitor,
Simulator::GlobalMonitor::Get)
// This is basically the same as PrintF, with a guard for FLAG_trace_sim.
void Simulator::TraceSim(const char* format, ...) {
if (FLAG_trace_sim) {
va_list arguments;
va_start(arguments, format);
base::OS::VFPrint(stream_, format, arguments);
va_end(arguments);
}
}
const Instruction* Simulator::kEndOfSimAddress = nullptr;
void SimSystemRegister::SetBits(int msb, int lsb, uint32_t bits) {
int width = msb - lsb + 1;
DCHECK(is_uintn(bits, width) || is_intn(bits, width));
bits <<= lsb;
uint32_t mask = ((1 << width) - 1) << lsb;
DCHECK_EQ(mask & write_ignore_mask_, 0);
value_ = (value_ & ~mask) | (bits & mask);
}
SimSystemRegister SimSystemRegister::DefaultValueFor(SystemRegister id) {
switch (id) {
case NZCV:
return SimSystemRegister(0x00000000, NZCVWriteIgnoreMask);
case FPCR:
return SimSystemRegister(0x00000000, FPCRWriteIgnoreMask);
default:
UNREACHABLE();
}
}
// Get the active Simulator for the current thread.
Simulator* Simulator::current(Isolate* isolate) {
Isolate::PerIsolateThreadData* isolate_data =
isolate->FindOrAllocatePerThreadDataForThisThread();
DCHECK_NOT_NULL(isolate_data);
Simulator* sim = isolate_data->simulator();
if (sim == nullptr) {
if (FLAG_trace_sim || FLAG_debug_sim) {
sim = new Simulator(new Decoder<DispatchingDecoderVisitor>(), isolate);
} else {
sim = new Decoder<Simulator>();
sim->isolate_ = isolate;
}
isolate_data->set_simulator(sim);
}
return sim;
}
void Simulator::CallImpl(Address entry, CallArgument* args) {
int index_x = 0;
int index_d = 0;
std::vector<int64_t> stack_args(0);
for (int i = 0; !args[i].IsEnd(); i++) {
CallArgument arg = args[i];
if (arg.IsX() && (index_x < 8)) {
set_xreg(index_x++, arg.bits());
} else if (arg.IsD() && (index_d < 8)) {
set_dreg_bits(index_d++, arg.bits());
} else {
DCHECK(arg.IsD() || arg.IsX());
stack_args.push_back(arg.bits());
}
}
// Process stack arguments, and make sure the stack is suitably aligned.
uintptr_t original_stack = sp();
uintptr_t entry_stack =
original_stack - stack_args.size() * sizeof(stack_args[0]);
if (base::OS::ActivationFrameAlignment() != 0) {
entry_stack &= -base::OS::ActivationFrameAlignment();
}
char* stack = reinterpret_cast<char*>(entry_stack);
std::vector<int64_t>::const_iterator it;
for (it = stack_args.begin(); it != stack_args.end(); it++) {
memcpy(stack, &(*it), sizeof(*it));
stack += sizeof(*it);
}
DCHECK(reinterpret_cast<uintptr_t>(stack) <= original_stack);
set_sp(entry_stack);
// Call the generated code.
set_pc(entry);
set_lr(kEndOfSimAddress);
CheckPCSComplianceAndRun();
set_sp(original_stack);
}
#ifdef DEBUG
namespace {
int PopLowestIndexAsCode(CPURegList* list) {
if (list->IsEmpty()) {
return -1;
}
RegList reg_list = list->list();
int index = base::bits::CountTrailingZeros(reg_list);
DCHECK((1LL << index) & reg_list);
list->Remove(index);
return index;
}
} // namespace
#endif
void Simulator::CheckPCSComplianceAndRun() {
// Adjust JS-based stack limit to C-based stack limit.
isolate_->stack_guard()->AdjustStackLimitForSimulator();
#ifdef DEBUG
DCHECK_EQ(kNumberOfCalleeSavedRegisters, kCalleeSaved.Count());
DCHECK_EQ(kNumberOfCalleeSavedVRegisters, kCalleeSavedV.Count());
int64_t saved_registers[kNumberOfCalleeSavedRegisters];
uint64_t saved_fpregisters[kNumberOfCalleeSavedVRegisters];
CPURegList register_list = kCalleeSaved;
CPURegList fpregister_list = kCalleeSavedV;
for (int i = 0; i < kNumberOfCalleeSavedRegisters; i++) {
// x31 is not a caller saved register, so no need to specify if we want
// the stack or zero.
saved_registers[i] = xreg(PopLowestIndexAsCode(&register_list));
}
for (int i = 0; i < kNumberOfCalleeSavedVRegisters; i++) {
saved_fpregisters[i] = dreg_bits(PopLowestIndexAsCode(&fpregister_list));
}
int64_t original_stack = sp();
int64_t original_fp = fp();
#endif
// Start the simulation!
Run();
#ifdef DEBUG
DCHECK_EQ(original_stack, sp());
DCHECK_EQ(original_fp, fp());
// Check that callee-saved registers have been preserved.
register_list = kCalleeSaved;
fpregister_list = kCalleeSavedV;
for (int i = 0; i < kNumberOfCalleeSavedRegisters; i++) {
DCHECK_EQ(saved_registers[i], xreg(PopLowestIndexAsCode(&register_list)));
}
for (int i = 0; i < kNumberOfCalleeSavedVRegisters; i++) {
DCHECK(saved_fpregisters[i] ==
dreg_bits(PopLowestIndexAsCode(&fpregister_list)));
}
// Corrupt caller saved register minus the return regiters.
// In theory x0 to x7 can be used for return values, but V8 only uses x0, x1
// for now .
register_list = kCallerSaved;
register_list.Remove(x0);
register_list.Remove(x1);
// In theory d0 to d7 can be used for return values, but V8 only uses d0
// for now .
fpregister_list = kCallerSavedV;
fpregister_list.Remove(d0);
CorruptRegisters(&register_list, kCallerSavedRegisterCorruptionValue);
CorruptRegisters(&fpregister_list, kCallerSavedVRegisterCorruptionValue);
#endif
}
#ifdef DEBUG
// The least significant byte of the curruption value holds the corresponding
// register's code.
void Simulator::CorruptRegisters(CPURegList* list, uint64_t value) {
if (list->type() == CPURegister::kRegister) {
while (!list->IsEmpty()) {
unsigned code = PopLowestIndexAsCode(list);
set_xreg(code, value | code);
}
} else {
DCHECK_EQ(list->type(), CPURegister::kVRegister);
while (!list->IsEmpty()) {
unsigned code = PopLowestIndexAsCode(list);
set_dreg_bits(code, value | code);
}
}
}
void Simulator::CorruptAllCallerSavedCPURegisters() {
// Corrupt alters its parameter so copy them first.
CPURegList register_list = kCallerSaved;
CPURegList fpregister_list = kCallerSavedV;
CorruptRegisters(&register_list, kCallerSavedRegisterCorruptionValue);
CorruptRegisters(&fpregister_list, kCallerSavedVRegisterCorruptionValue);
}
#endif
// Extending the stack by 2 * 64 bits is required for stack alignment purposes.
uintptr_t Simulator::PushAddress(uintptr_t address) {
DCHECK(sizeof(uintptr_t) < 2 * kXRegSize);
intptr_t new_sp = sp() - 2 * kXRegSize;
uintptr_t* alignment_slot = reinterpret_cast<uintptr_t*>(new_sp + kXRegSize);
memcpy(alignment_slot, &kSlotsZapValue, kSystemPointerSize);
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
memcpy(stack_slot, &address, kSystemPointerSize);
set_sp(new_sp);
return new_sp;
}
uintptr_t Simulator::PopAddress() {
intptr_t current_sp = sp();
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
uintptr_t address = *stack_slot;
DCHECK_LT(sizeof(uintptr_t), 2 * kXRegSize);
set_sp(current_sp + 2 * kXRegSize);
return address;
}
// Returns the limit of the stack area to enable checking for stack overflows.
uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
// The simulator uses a separate JS stack. If we have exhausted the C stack,
// we also drop down the JS limit to reflect the exhaustion on the JS stack.
if (base::Stack::GetCurrentStackPosition() < c_limit) {
return get_sp();
}
// Otherwise the limit is the JS stack. Leave a safety margin of 1024 bytes
// to prevent overrunning the stack when pushing values.
return stack_limit_ + 1024;
}
void Simulator::SetRedirectInstruction(Instruction* instruction) {
instruction->SetInstructionBits(
HLT | Assembler::ImmException(kImmExceptionIsRedirectedCall));
}
Simulator::Simulator(Decoder<DispatchingDecoderVisitor>* decoder,
Isolate* isolate, FILE* stream)
: decoder_(decoder),
guard_pages_(ENABLE_CONTROL_FLOW_INTEGRITY_BOOL),
last_debugger_input_(nullptr),
log_parameters_(NO_PARAM),
icount_for_stop_sim_at_(0),
isolate_(isolate) {
// Setup the decoder.
decoder_->AppendVisitor(this);
Init(stream);
if (FLAG_trace_sim) {
decoder_->InsertVisitorBefore(print_disasm_, this);
log_parameters_ = LOG_ALL;
}
}
Simulator::Simulator()
: decoder_(nullptr),
guard_pages_(ENABLE_CONTROL_FLOW_INTEGRITY_BOOL),
last_debugger_input_(nullptr),
log_parameters_(NO_PARAM),
isolate_(nullptr) {
Init(stdout);
CHECK(!FLAG_trace_sim);
}
void Simulator::Init(FILE* stream) {
ResetState();
// Allocate and setup the simulator stack.
stack_size_ = (FLAG_sim_stack_size * KB) + (2 * stack_protection_size_);
stack_ = reinterpret_cast<uintptr_t>(new byte[stack_size_]);
stack_limit_ = stack_ + stack_protection_size_;
uintptr_t tos = stack_ + stack_size_ - stack_protection_size_;
// The stack pointer must be 16-byte aligned.
set_sp(tos & ~0xFULL);
stream_ = stream;
print_disasm_ = new PrintDisassembler(stream_);
// The debugger needs to disassemble code without the simulator executing an
// instruction, so we create a dedicated decoder.
disassembler_decoder_ = new Decoder<DispatchingDecoderVisitor>();
disassembler_decoder_->AppendVisitor(print_disasm_);
}
void Simulator::ResetState() {
// Reset the system registers.
nzcv_ = SimSystemRegister::DefaultValueFor(NZCV);
fpcr_ = SimSystemRegister::DefaultValueFor(FPCR);
// Reset registers to 0.
pc_ = nullptr;
for (unsigned i = 0; i < kNumberOfRegisters; i++) {
set_xreg(i, 0xBADBEEF);
}
for (unsigned i = 0; i < kNumberOfVRegisters; i++) {
// Set FP registers to a value that is NaN in both 32-bit and 64-bit FP.
set_dreg_bits(i, 0x7FF000007F800001UL);
}
// Returning to address 0 exits the Simulator.
set_lr(kEndOfSimAddress);
// Reset debug helpers.
breakpoints_.clear();
break_on_next_ = false;
btype_ = DefaultBType;
}
Simulator::~Simulator() {
GlobalMonitor::Get()->RemoveProcessor(&global_monitor_processor_);
delete[] reinterpret_cast<byte*>(stack_);
delete disassembler_decoder_;
delete print_disasm_;
DeleteArray(last_debugger_input_);
delete decoder_;
}
void Simulator::Run() {
// Flush any written registers before executing anything, so that
// manually-set registers are logged _before_ the first instruction.
LogAllWrittenRegisters();
pc_modified_ = false;
if (::v8::internal::FLAG_stop_sim_at == 0) {
// Fast version of the dispatch loop without checking whether the simulator
// should be stopping at a particular executed instruction.
while (pc_ != kEndOfSimAddress) {
ExecuteInstruction();
}
} else {
// FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
// we reach the particular instruction count.
while (pc_ != kEndOfSimAddress) {
icount_for_stop_sim_at_ =
base::AddWithWraparound(icount_for_stop_sim_at_, 1);
if (icount_for_stop_sim_at_ == ::v8::internal::FLAG_stop_sim_at) {
Debug();
}
ExecuteInstruction();
}
}
}
void Simulator::RunFrom(Instruction* start) {
set_pc(start);
Run();
}
// Calls into the V8 runtime are based on this very simple interface.
// Note: To be able to return two values from some calls the code in runtime.cc
// uses the ObjectPair structure.
// The simulator assumes all runtime calls return two 64-bits values. If they
// don't, register x1 is clobbered. This is fine because x1 is caller-saved.
#if defined(V8_OS_WIN)
using SimulatorRuntimeCall_ReturnPtr = int64_t (*)(int64_t arg0, int64_t arg1,
int64_t arg2, int64_t arg3,
int64_t arg4, int64_t arg5,
int64_t arg6, int64_t arg7,
int64_t arg8, int64_t arg9);
#endif
using SimulatorRuntimeCall = ObjectPair (*)(int64_t arg0, int64_t arg1,
int64_t arg2, int64_t arg3,
int64_t arg4, int64_t arg5,
int64_t arg6, int64_t arg7,
int64_t arg8, int64_t arg9);
using SimulatorRuntimeCompareCall = int64_t (*)(double arg1, double arg2);
using SimulatorRuntimeFPFPCall = double (*)(double arg1, double arg2);
using SimulatorRuntimeFPCall = double (*)(double arg1);
using SimulatorRuntimeFPIntCall = double (*)(double arg1, int32_t arg2);
// This signature supports direct call in to API function native callback
// (refer to InvocationCallback in v8.h).
using SimulatorRuntimeDirectApiCall = void (*)(int64_t arg0);
using SimulatorRuntimeProfilingApiCall = void (*)(int64_t arg0, void* arg1);
// This signature supports direct call to accessor getter callback.
using SimulatorRuntimeDirectGetterCall = void (*)(int64_t arg0, int64_t arg1);
using SimulatorRuntimeProfilingGetterCall = void (*)(int64_t arg0, int64_t arg1,
void* arg2);
// Separate for fine-grained UBSan blocklisting. Casting any given C++
// function to {SimulatorRuntimeCall} is undefined behavior; but since
// the target function can indeed be any function that's exposed via
// the "fast C call" mechanism, we can't reconstruct its signature here.
ObjectPair UnsafeGenericFunctionCall(int64_t function, int64_t arg0,
int64_t arg1, int64_t arg2, int64_t arg3,
int64_t arg4, int64_t arg5, int64_t arg6,
int64_t arg7, int64_t arg8, int64_t arg9) {
SimulatorRuntimeCall target =
reinterpret_cast<SimulatorRuntimeCall>(function);
return target(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9);
}
void UnsafeDirectApiCall(int64_t function, int64_t arg0) {
SimulatorRuntimeDirectApiCall target =
reinterpret_cast<SimulatorRuntimeDirectApiCall>(function);
target(arg0);
}
void UnsafeProfilingApiCall(int64_t function, int64_t arg0, void* arg1) {
SimulatorRuntimeProfilingApiCall target =
reinterpret_cast<SimulatorRuntimeProfilingApiCall>(function);
target(arg0, arg1);
}
void UnsafeDirectGetterCall(int64_t function, int64_t arg0, int64_t arg1) {
SimulatorRuntimeDirectGetterCall target =
reinterpret_cast<SimulatorRuntimeDirectGetterCall>(function);
target(arg0, arg1);
}
void Simulator::DoRuntimeCall(Instruction* instr) {
Redirection* redirection = Redirection::FromInstruction(instr);
// The called C code might itself call simulated code, so any
// caller-saved registers (including lr) could still be clobbered by a
// redirected call.
Instruction* return_address = lr();
int64_t external =
reinterpret_cast<int64_t>(redirection->external_function());
TraceSim("Call to host function at %p\n", redirection->external_function());
// SP must be 16-byte-aligned at the call interface.
bool stack_alignment_exception = ((sp() & 0xF) != 0);
if (stack_alignment_exception) {
TraceSim(" with unaligned stack 0x%016" PRIx64 ".\n", sp());
FATAL("ALIGNMENT EXCEPTION");
}
int64_t* stack_pointer = reinterpret_cast<int64_t*>(sp());
const int64_t arg0 = xreg(0);
const int64_t arg1 = xreg(1);
const int64_t arg2 = xreg(2);
const int64_t arg3 = xreg(3);
const int64_t arg4 = xreg(4);
const int64_t arg5 = xreg(5);
const int64_t arg6 = xreg(6);
const int64_t arg7 = xreg(7);
const int64_t arg8 = stack_pointer[0];
const int64_t arg9 = stack_pointer[1];
STATIC_ASSERT(kMaxCParameters == 10);
switch (redirection->type()) {
default:
TraceSim("Type: Unknown.\n");
UNREACHABLE();
case ExternalReference::BUILTIN_CALL:
#if defined(V8_OS_WIN)
{
// Object f(v8::internal::Arguments).
TraceSim("Type: BUILTIN_CALL\n");
// When this simulator runs on Windows x64 host, function with ObjectPair
// return type accepts an implicit pointer to caller allocated memory for
// ObjectPair as return value. This diverges the calling convention from
// function which returns primitive type, so function returns ObjectPair
// and primitive type cannot share implementation.
// We don't know how many arguments are being passed, but we can
// pass 8 without touching the stack. They will be ignored by the
// host function if they aren't used.
TraceSim(
"Arguments: "
"0x%016" PRIx64 ", 0x%016" PRIx64
", "
"0x%016" PRIx64 ", 0x%016" PRIx64
", "
"0x%016" PRIx64 ", 0x%016" PRIx64
", "
"0x%016" PRIx64 ", 0x%016" PRIx64
", "
"0x%016" PRIx64 ", 0x%016" PRIx64,
arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9);
SimulatorRuntimeCall_ReturnPtr target =
reinterpret_cast<SimulatorRuntimeCall_ReturnPtr>(external);
int64_t result =
target(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9);
TraceSim("Returned: 0x%16\n", result);
#ifdef DEBUG
CorruptAllCallerSavedCPURegisters();
#endif
set_xreg(0, result);
break;
}
#endif
case ExternalReference::BUILTIN_CALL_PAIR: {
// Object f(v8::internal::Arguments) or
// ObjectPair f(v8::internal::Arguments).
TraceSim("Type: BUILTIN_CALL\n");
// We don't know how many arguments are being passed, but we can
// pass 8 without touching the stack. They will be ignored by the
// host function if they aren't used.
TraceSim(
"Arguments: "
"0x%016" PRIx64 ", 0x%016" PRIx64
", "
"0x%016" PRIx64 ", 0x%016" PRIx64
", "
"0x%016" PRIx64 ", 0x%016" PRIx64
", "
"0x%016" PRIx64 ", 0x%016" PRIx64
", "
"0x%016" PRIx64 ", 0x%016" PRIx64,
arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9);
ObjectPair result = UnsafeGenericFunctionCall(
external, arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9);
TraceSim("Returned: {%p, %p}\n", reinterpret_cast<void*>(result.x),
reinterpret_cast<void*>(result.y));
#ifdef DEBUG
CorruptAllCallerSavedCPURegisters();
#endif
set_xreg(0, static_cast<int64_t>(result.x));
set_xreg(1, static_cast<int64_t>(result.y));
break;
}
case ExternalReference::DIRECT_API_CALL: {
// void f(v8::FunctionCallbackInfo&)
TraceSim("Type: DIRECT_API_CALL\n");
TraceSim("Arguments: 0x%016" PRIx64 "\n", xreg(0));
UnsafeDirectApiCall(external, xreg(0));
TraceSim("No return value.");
#ifdef DEBUG
CorruptAllCallerSavedCPURegisters();
#endif
break;
}
case ExternalReference::BUILTIN_COMPARE_CALL: {
// int f(double, double)
TraceSim("Type: BUILTIN_COMPARE_CALL\n");
SimulatorRuntimeCompareCall target =
reinterpret_cast<SimulatorRuntimeCompareCall>(external);
TraceSim("Arguments: %f, %f\n", dreg(0), dreg(1));
int64_t result = target(dreg(0), dreg(1));
TraceSim("Returned: %" PRId64 "\n", result);
#ifdef DEBUG
CorruptAllCallerSavedCPURegisters();
#endif
set_xreg(0, result);
break;
}
case ExternalReference::BUILTIN_FP_CALL: {
// double f(double)
TraceSim("Type: BUILTIN_FP_CALL\n");
SimulatorRuntimeFPCall target =
reinterpret_cast<SimulatorRuntimeFPCall>(external);
TraceSim("Argument: %f\n", dreg(0));
double result = target(dreg(0));
TraceSim("Returned: %f\n", result);
#ifdef DEBUG
CorruptAllCallerSavedCPURegisters();
#endif
set_dreg(0, result);
break;
}
case ExternalReference::BUILTIN_FP_FP_CALL: {
// double f(double, double)
TraceSim("Type: BUILTIN_FP_FP_CALL\n");
SimulatorRuntimeFPFPCall target =
reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
TraceSim("Arguments: %f, %f\n", dreg(0), dreg(1));
double result = target(dreg(0), dreg(1));
TraceSim("Returned: %f\n", result);
#ifdef DEBUG
CorruptAllCallerSavedCPURegisters();
#endif
set_dreg(0, result);
break;
}
case ExternalReference::BUILTIN_FP_INT_CALL: {
// double f(double, int)
TraceSim("Type: BUILTIN_FP_INT_CALL\n");
SimulatorRuntimeFPIntCall target =
reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
TraceSim("Arguments: %f, %d\n", dreg(0), wreg(0));
double result = target(dreg(0), wreg(0));
TraceSim("Returned: %f\n", result);
#ifdef DEBUG
CorruptAllCallerSavedCPURegisters();
#endif
set_dreg(0, result);
break;
}
case ExternalReference::DIRECT_GETTER_CALL: {
// void f(Local<String> property, PropertyCallbackInfo& info)
TraceSim("Type: DIRECT_GETTER_CALL\n");
TraceSim("Arguments: 0x%016" PRIx64 ", 0x%016" PRIx64 "\n", xreg(0),
xreg(1));
UnsafeDirectGetterCall(external, xreg(0), xreg(1));
TraceSim("No return value.");
#ifdef DEBUG
CorruptAllCallerSavedCPURegisters();
#endif
break;
}
case ExternalReference::PROFILING_API_CALL: {
// void f(v8::FunctionCallbackInfo&, v8::FunctionCallback)
TraceSim("Type: PROFILING_API_CALL\n");
void* arg1 = Redirection::ReverseRedirection(xreg(1));
TraceSim("Arguments: 0x%016" PRIx64 ", %p\n", xreg(0), arg1);
UnsafeProfilingApiCall(external, xreg(0), arg1);
TraceSim("No return value.");
#ifdef DEBUG
CorruptAllCallerSavedCPURegisters();
#endif
break;
}
case ExternalReference::PROFILING_GETTER_CALL: {
// void f(Local<String> property, PropertyCallbackInfo& info,
// AccessorNameGetterCallback callback)
TraceSim("Type: PROFILING_GETTER_CALL\n");
SimulatorRuntimeProfilingGetterCall target =
reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
void* arg2 = Redirection::ReverseRedirection(xreg(2));
TraceSim("Arguments: 0x%016" PRIx64 ", 0x%016" PRIx64 ", %p\n", xreg(0),
xreg(1), arg2);
target(xreg(0), xreg(1), arg2);
TraceSim("No return value.");
#ifdef DEBUG
CorruptAllCallerSavedCPURegisters();
#endif
break;
}
}
set_lr(return_address);
set_pc(return_address);
}
const char* Simulator::xreg_names[] = {
"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10",
"x11", "x12", "x13", "x14", "x15", "ip0", "ip1", "x18", "x19", "x20", "x21",
"x22", "x23", "x24", "x25", "x26", "cp", "x28", "fp", "lr", "xzr", "sp"};
const char* Simulator::wreg_names[] = {
"w0", "w1", "w2", "w3", "w4", "w5", "w6", "w7", "w8",
"w9", "w10", "w11", "w12", "w13", "w14", "w15", "w16", "w17",
"w18", "w19", "w20", "w21", "w22", "w23", "w24", "w25", "w26",
"wcp", "w28", "wfp", "wlr", "wzr", "wsp"};
const char* Simulator::sreg_names[] = {
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "s8", "s9", "s10",
"s11", "s12", "s13", "s14", "s15", "s16", "s17", "s18", "s19", "s20", "s21",
"s22", "s23", "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31"};
const char* Simulator::dreg_names[] = {
"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d8", "d9", "d10",
"d11", "d12", "d13", "d14", "d15", "d16", "d17", "d18", "d19", "d20", "d21",
"d22", "d23", "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"};
const char* Simulator::vreg_names[] = {
"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10",
"v11", "v12", "v13", "v14", "v15", "v16", "v17", "v18", "v19", "v20", "v21",
"v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"};
const char* Simulator::WRegNameForCode(unsigned code, Reg31Mode mode) {
static_assert(arraysize(Simulator::wreg_names) == (kNumberOfRegisters + 1),
"Array must be large enough to hold all register names.");
DCHECK_LT(code, static_cast<unsigned>(kNumberOfRegisters));
// The modulo operator has no effect here, but it silences a broken GCC
// warning about out-of-bounds array accesses.
code %= kNumberOfRegisters;
// If the code represents the stack pointer, index the name after zr.
if ((code == kZeroRegCode) && (mode == Reg31IsStackPointer)) {
code = kZeroRegCode + 1;
}
return wreg_names[code];
}
const char* Simulator::XRegNameForCode(unsigned code, Reg31Mode mode) {
static_assert(arraysize(Simulator::xreg_names) == (kNumberOfRegisters + 1),
"Array must be large enough to hold all register names.");
DCHECK_LT(code, static_cast<unsigned>(kNumberOfRegisters));
code %= kNumberOfRegisters;
// If the code represents the stack pointer, index the name after zr.
if ((code == kZeroRegCode) && (mode == Reg31IsStackPointer)) {
code = kZeroRegCode + 1;
}
return xreg_names[code];
}
const char* Simulator::SRegNameForCode(unsigned code) {
static_assert(arraysize(Simulator::sreg_names) == kNumberOfVRegisters,
"Array must be large enough to hold all register names.");
DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters));
return sreg_names[code % kNumberOfVRegisters];
}
const char* Simulator::DRegNameForCode(unsigned code) {
static_assert(arraysize(Simulator::dreg_names) == kNumberOfVRegisters,
"Array must be large enough to hold all register names.");
DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters));
return dreg_names[code % kNumberOfVRegisters];
}
const char* Simulator::VRegNameForCode(unsigned code) {
static_assert(arraysize(Simulator::vreg_names) == kNumberOfVRegisters,
"Array must be large enough to hold all register names.");
DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters));
return vreg_names[code % kNumberOfVRegisters];
}
void LogicVRegister::ReadUintFromMem(VectorFormat vform, int index,
uint64_t addr) const {
switch (LaneSizeInBitsFromFormat(vform)) {
case 8:
register_.Insert(index, SimMemory::Read<uint8_t>(addr));
break;
case 16:
register_.Insert(index, SimMemory::Read<uint16_t>(addr));
break;
case 32:
register_.Insert(index, SimMemory::Read<uint32_t>(addr));
break;
case 64:
register_.Insert(index, SimMemory::Read<uint64_t>(addr));
break;
default:
UNREACHABLE();
}
}
void LogicVRegister::WriteUintToMem(VectorFormat vform, int index,
uint64_t addr) const {
switch (LaneSizeInBitsFromFormat(vform)) {
case 8:
SimMemory::Write<uint8_t>(addr, static_cast<uint8_t>(Uint(vform, index)));
break;
case 16:
SimMemory::Write<uint16_t>(addr,
static_cast<uint16_t>(Uint(vform, index)));
break;
case 32:
SimMemory::Write<uint32_t>(addr,
static_cast<uint32_t>(Uint(vform, index)));
break;
case 64:
SimMemory::Write<uint64_t>(addr, Uint(vform, index));
break;
default:
UNREACHABLE();
}
}
int Simulator::CodeFromName(const char* name) {
for (unsigned i = 0; i < kNumberOfRegisters; i++) {
if ((strcmp(xreg_names[i], name) == 0) ||
(strcmp(wreg_names[i], name) == 0)) {
return i;
}
}
for (unsigned i = 0; i < kNumberOfVRegisters; i++) {
if ((strcmp(vreg_names[i], name) == 0) ||
(strcmp(dreg_names[i], name) == 0) ||
(strcmp(sreg_names[i], name) == 0)) {
return i;
}
}
if ((strcmp("sp", name) == 0) || (strcmp("wsp", name) == 0)) {
return kSPRegInternalCode;
}
return -1;
}
// Helpers ---------------------------------------------------------------------
template <typename T>
T Simulator::AddWithCarry(bool set_flags, T left, T right, int carry_in) {
// Use unsigned types to avoid implementation-defined overflow behaviour.
static_assert(std::is_unsigned<T>::value, "operands must be unsigned");
static_assert((sizeof(T) == kWRegSize) || (sizeof(T) == kXRegSize),
"Only W- or X-sized operands are tested");
DCHECK((carry_in == 0) || (carry_in == 1));
T result = left + right + carry_in;
if (set_flags) {
nzcv().SetN(CalcNFlag(result));
nzcv().SetZ(CalcZFlag(result));
// Compute the C flag by comparing the result to the max unsigned integer.
T max_uint_2op = std::numeric_limits<T>::max() - carry_in;
nzcv().SetC((left > max_uint_2op) || ((max_uint_2op - left) < right));
// Overflow iff the sign bit is the same for the two inputs and different
// for the result.
T sign_mask = T(1) << (sizeof(T) * 8 - 1);
T left_sign = left & sign_mask;
T right_sign = right & sign_mask;
T result_sign = result & sign_mask;
nzcv().SetV((left_sign == right_sign) && (left_sign != result_sign));
LogSystemRegister(NZCV);
}
return result;
}
template <typename T>
void Simulator::AddSubWithCarry(Instruction* instr) {
// Use unsigned types to avoid implementation-defined overflow behaviour.
static_assert(std::is_unsigned<T>::value, "operands must be unsigned");
T op2 = reg<T>(instr->Rm());
T new_val;
if ((instr->Mask(AddSubOpMask) == SUB) || instr->Mask(AddSubOpMask) == SUBS) {
op2 = ~op2;
}
new_val = AddWithCarry<T>(instr->FlagsUpdate(), reg<T>(instr->Rn()), op2,
nzcv().C());
set_reg<T>(instr->Rd(), new_val);
}
template <typename T>
T Simulator::ShiftOperand(T value, Shift shift_type, unsigned amount) {
using unsignedT = typename std::make_unsigned<T>::type;
if (amount == 0) {
return value;
}
// Larger shift {amount}s would be undefined behavior in C++.
DCHECK(amount < sizeof(value) * kBitsPerByte);
switch (shift_type) {
case LSL:
return static_cast<unsignedT>(value) << amount;
case LSR:
return static_cast<unsignedT>(value) >> amount;
case ASR:
return value >> amount;
case ROR: {
unsignedT mask = (static_cast<unsignedT>(1) << amount) - 1;
return (static_cast<unsignedT>(value) >> amount) |
((value & mask) << (sizeof(mask) * 8 - amount));
}
default:
UNIMPLEMENTED();
return 0;
}
}
template <typename T>
T Simulator::ExtendValue(T value, Extend extend_type, unsigned left_shift) {
const unsigned kSignExtendBShift = (sizeof(T) - 1) * 8;
const unsigned kSignExtendHShift = (sizeof(T) - 2) * 8;
const unsigned kSignExtendWShift = (sizeof(T) - 4) * 8;
using unsignedT = typename std::make_unsigned<T>::type;
switch (extend_type) {
case UXTB:
value &= kByteMask;
break;
case UXTH:
value &= kHalfWordMask;
break;
case UXTW:
value &= kWordMask;
break;
case SXTB:
value =
static_cast<T>(static_cast<unsignedT>(value) << kSignExtendBShift) >>
kSignExtendBShift;
break;
case SXTH:
value =
static_cast<T>(static_cast<unsignedT>(value) << kSignExtendHShift) >>
kSignExtendHShift;
break;
case SXTW:
value =
static_cast<T>(static_cast<unsignedT>(value) << kSignExtendWShift) >>
kSignExtendWShift;
break;
case UXTX:
case SXTX:
break;
default:
UNREACHABLE();
}
return static_cast<T>(static_cast<unsignedT>(value) << left_shift);
}
template <typename T>
void Simulator::Extract(Instruction* instr) {
unsigned lsb = instr->ImmS();
T op2 = reg<T>(instr->Rm());
T result = op2;
if (lsb) {
T op1 = reg<T>(instr->Rn());
result = op2 >> lsb | (op1 << ((sizeof(T) * 8) - lsb));
}
set_reg<T>(instr->Rd(), result);
}
void Simulator::FPCompare(double val0, double val1) {
AssertSupportedFPCR();
// TODO(jbramley): This assumes that the C++ implementation handles
// comparisons in the way that we expect (as per AssertSupportedFPCR()).
if ((std::isnan(val0) != 0) || (std::isnan(val1) != 0)) {
nzcv().SetRawValue(FPUnorderedFlag);
} else if (val0 < val1) {
nzcv().SetRawValue(FPLessThanFlag);
} else if (val0 > val1) {
nzcv().SetRawValue(FPGreaterThanFlag);
} else if (val0 == val1) {
nzcv().SetRawValue(FPEqualFlag);
} else {
UNREACHABLE();
}
LogSystemRegister(NZCV);
}
Simulator::PrintRegisterFormat Simulator::GetPrintRegisterFormatForSize(
size_t reg_size, size_t lane_size) {
DCHECK_GE(reg_size, lane_size);
uint32_t format = 0;
if (reg_size != lane_size) {
switch (reg_size) {
default:
UNREACHABLE();
case kQRegSize:
format = kPrintRegAsQVector;
break;
case kDRegSize:
format = kPrintRegAsDVector;
break;
}
}
switch (lane_size) {
default:
UNREACHABLE();
case kQRegSize:
format |= kPrintReg1Q;
break;
case kDRegSize:
format |= kPrintReg1D;
break;
case kSRegSize:
format |= kPrintReg1S;
break;
case kHRegSize:
format |= kPrintReg1H;
break;
case kBRegSize:
format |= kPrintReg1B;
break;
}
// These sizes would be duplicate case labels.
static_assert(kXRegSize == kDRegSize, "X and D registers must be same size.");
static_assert(kWRegSize == kSRegSize, "W and S registers must be same size.");
static_assert(kPrintXReg == kPrintReg1D,
"X and D register printing code is shared.");
static_assert(kPrintWReg == kPrintReg1S,
"W and S register printing code is shared.");
return static_cast<PrintRegisterFormat>(format);
}
Simulator::PrintRegisterFormat Simulator::GetPrintRegisterFormat(
VectorFormat vform) {
switch (vform) {
default:
UNREACHABLE();
case kFormat16B:
return kPrintReg16B;
case kFormat8B:
return kPrintReg8B;
case kFormat8H:
return kPrintReg8H;
case kFormat4H:
return kPrintReg4H;
case kFormat4S:
return kPrintReg4S;
case kFormat2S:
return kPrintReg2S;
case kFormat2D:
return kPrintReg2D;
case kFormat1D:
return kPrintReg1D;
case kFormatB:
return kPrintReg1B;
case kFormatH:
return kPrintReg1H;
case kFormatS:
return kPrintReg1S;
case kFormatD:
return kPrintReg1D;
}
}
Simulator::PrintRegisterFormat Simulator::GetPrintRegisterFormatFP(
VectorFormat vform) {
switch (vform) {
default:
UNREACHABLE();
case kFormat4S:
return kPrintReg4SFP;
case kFormat2S:
return kPrintReg2SFP;
case kFormat2D:
return kPrintReg2DFP;
case kFormat1D:
return kPrintReg1DFP;
case kFormatS:
return kPrintReg1SFP;
case kFormatD:
return kPrintReg1DFP;
}
}
void Simulator::SetBreakpoint(Instruction* location) {
for (unsigned i = 0; i < breakpoints_.size(); i++) {
if (breakpoints_.at(i).location == location) {
PrintF(stream_, "Existing breakpoint at %p was %s\n",
reinterpret_cast<void*>(location),
breakpoints_.at(i).enabled ? "disabled" : "enabled");
breakpoints_.at(i).enabled = !breakpoints_.at(i).enabled;
return;
}
}
Breakpoint new_breakpoint = {location, true};
breakpoints_.push_back(new_breakpoint);
PrintF(stream_, "Set a breakpoint at %p\n",
reinterpret_cast<void*>(location));
}
void Simulator::ListBreakpoints() {
PrintF(stream_, "Breakpoints:\n");
for (unsigned i = 0; i < breakpoints_.size(); i++) {
PrintF(stream_, "%p : %s\n",
reinterpret_cast<void*>(breakpoints_.at(i).location),
breakpoints_.at(i).enabled ? "enabled" : "disabled");
}
}
void Simulator::CheckBreakpoints() {
bool hit_a_breakpoint = false;
for (unsigned i = 0; i < breakpoints_.size(); i++) {
if ((breakpoints_.at(i).location == pc_) && breakpoints_.at(i).enabled) {
hit_a_breakpoint = true;
// Disable this breakpoint.
breakpoints_.at(i).enabled = false;
}
}
if (hit_a_breakpoint) {
PrintF(stream_, "Hit and disabled a breakpoint at %p.\n",
reinterpret_cast<void*>(pc_));
Debug();
}
}
void Simulator::CheckBreakNext() {
// If the current instruction is a BL, insert a breakpoint just after it.
if (break_on_next_ && pc_->IsBranchAndLinkToRegister()) {
SetBreakpoint(pc_->following());
break_on_next_ = false;
}
}
void Simulator::PrintInstructionsAt(Instruction* start, uint64_t count) {
Instruction* end = start->InstructionAtOffset(count * kInstrSize);
for (Instruction* pc = start; pc < end; pc = pc->following()) {
disassembler_decoder_->Decode(pc);
}
}
void Simulator::PrintWrittenRegisters() {
for (unsigned i = 0; i < kNumberOfRegisters; i++) {
if (registers_[i].WrittenSinceLastLog()) PrintRegister(i);
}
}
void Simulator::PrintWrittenVRegisters() {
for (unsigned i = 0; i < kNumberOfVRegisters; i++) {
// At this point there is no type information, so print as a raw 1Q.
if (vregisters_[i].WrittenSinceLastLog()) PrintVRegister(i, kPrintReg1Q);
}
}
void Simulator::PrintSystemRegisters() {
PrintSystemRegister(NZCV);
PrintSystemRegister(FPCR);
}
void Simulator::PrintRegisters() {
for (unsigned i = 0; i < kNumberOfRegisters; i++) {
PrintRegister(i);
}
}
void Simulator::PrintVRegisters() {
for (unsigned i = 0; i < kNumberOfVRegisters; i++) {
// At this point there is no type information, so print as a raw 1Q.
PrintVRegister(i, kPrintReg1Q);
}
}
void Simulator::PrintRegister(unsigned code, Reg31Mode r31mode) {
registers_[code].NotifyRegisterLogged();
// Don't print writes into xzr.
if ((code == kZeroRegCode) && (r31mode == Reg31IsZeroRegister)) {
return;
}
// The template for all x and w registers:
// "# x{code}: 0x{value}"
// "# w{code}: 0x{value}"
PrintRegisterRawHelper(code, r31mode);
fprintf(stream_, "\n");
}
// Print a register's name and raw value.
//
// The `bytes` and `lsb` arguments can be used to limit the bytes that are
// printed. These arguments are intended for use in cases where register hasn't
// actually been updated (such as in PrintVWrite).
//
// No newline is printed. This allows the caller to print more details (such as
// a floating-point interpretation or a memory access annotation).
void Simulator::PrintVRegisterRawHelper(unsigned code, int bytes, int lsb) {
// The template for vector types:
// "# v{code}: 0xFFEEDDCCBBAA99887766554433221100".
// An example with bytes=4 and lsb=8:
// "# v{code}: 0xBBAA9988 ".
fprintf(stream_, "# %s%5s: %s", clr_vreg_name, VRegNameForCode(code),
clr_vreg_value);
int msb = lsb + bytes - 1;
int byte = kQRegSize - 1;
// Print leading padding spaces. (Two spaces per byte.)
while (byte > msb) {
fprintf(stream_, " ");
byte--;
}
// Print the specified part of the value, byte by byte.
qreg_t rawbits = qreg(code);
fprintf(stream_, "0x");
while (byte >= lsb) {
fprintf(stream_, "%02x", rawbits.val[byte]);
byte--;
}
// Print trailing padding spaces.
while (byte >= 0) {
fprintf(stream_, " ");
byte--;
}
fprintf(stream_, "%s", clr_normal);
}
// Print each of the specified lanes of a register as a float or double value.
//
// The `lane_count` and `lslane` arguments can be used to limit the lanes that
// are printed. These arguments are intended for use in cases where register
// hasn't actually been updated (such as in PrintVWrite).
//
// No newline is printed. This allows the caller to print more details (such as
// a memory access annotation).
void Simulator::PrintVRegisterFPHelper(unsigned code,
unsigned lane_size_in_bytes,
int lane_count, int rightmost_lane) {
DCHECK((lane_size_in_bytes == kSRegSize) ||
(lane_size_in_bytes == kDRegSize));
unsigned msb = (lane_count + rightmost_lane) * lane_size_in_bytes;
DCHECK_LE(msb, static_cast<unsigned>(kQRegSize));
// For scalar types ((lane_count == 1) && (rightmost_lane == 0)), a register
// name is used:
// " (s{code}: {value})"
// " (d{code}: {value})"
// For vector types, "..." is used to represent one or more omitted lanes.
// " (..., {value}, {value}, ...)"
if ((lane_count == 1) && (rightmost_lane == 0)) {
const char* name = (lane_size_in_bytes == kSRegSize)
? SRegNameForCode(code)
: DRegNameForCode(code);
fprintf(stream_, " (%s%s: ", clr_vreg_name, name);
} else {
if (msb < (kQRegSize - 1)) {
fprintf(stream_, " (..., ");
} else {
fprintf(stream_, " (");
}
}
// Print the list of values.
const char* separator = "";
int leftmost_lane = rightmost_lane + lane_count - 1;
for (int lane = leftmost_lane; lane >= rightmost_lane; lane--) {
double value = (lane_size_in_bytes == kSRegSize)
? vreg(code).Get<float>(lane)
: vreg(code).Get<double>(lane);
fprintf(stream_, "%s%s%#g%s", separator, clr_vreg_value, value, clr_normal);
separator = ", ";
}
if (rightmost_lane > 0) {
fprintf(stream_, ", ...");
}
fprintf(stream_, ")");
}
// Print a register's name and raw value.
//
// Only the least-significant `size_in_bytes` bytes of the register are printed,
// but the value is aligned as if the whole register had been printed.
//
// For typical register updates, size_in_bytes should be set to kXRegSize
// -- the default -- so that the whole register is printed. Other values of
// size_in_bytes are intended for use when the register hasn't actually been
// updated (such as in PrintWrite).
//
// No newline is printed. This allows the caller to print more details (such as
// a memory access annotation).
void Simulator::PrintRegisterRawHelper(unsigned code, Reg31Mode r31mode,
int size_in_bytes) {
// The template for all supported sizes.
// "# x{code}: 0xFFEEDDCCBBAA9988"
// "# w{code}: 0xBBAA9988"
// "# w{code}<15:0>: 0x9988"
// "# w{code}<7:0>: 0x88"
unsigned padding_chars = (kXRegSize - size_in_bytes) * 2;
const char* name = "";
const char* suffix = "";
switch (size_in_bytes) {
case kXRegSize:
name = XRegNameForCode(code, r31mode);
break;
case kWRegSize:
name = WRegNameForCode(code, r31mode);
break;
case 2:
name = WRegNameForCode(code, r31mode);
suffix = "<15:0>";
padding_chars -= strlen(suffix);
break;
case 1:
name = WRegNameForCode(code, r31mode);
suffix = "<7:0>";
padding_chars -= strlen(suffix);
break;
default:
UNREACHABLE();
}
fprintf(stream_, "# %s%5s%s: ", clr_reg_name, name, suffix);
// Print leading padding spaces.
DCHECK_LT(padding_chars, kXRegSize * 2U);
for (unsigned i = 0; i < padding_chars; i++) {
putc(' ', stream_);
}
// Print the specified bits in hexadecimal format.
uint64_t bits = reg<uint64_t>(code, r31mode);
bits &= kXRegMask >> ((kXRegSize - size_in_bytes) * 8);
static_assert(sizeof(bits) == kXRegSize,
"X registers and uint64_t must be the same size.");
int chars = size_in_bytes * 2;
fprintf(stream_, "%s0x%0*" PRIx64 "%s", clr_reg_value, chars, bits,
clr_normal);
}
void Simulator::PrintVRegister(unsigned code, PrintRegisterFormat format) {
vregisters_[code].NotifyRegisterLogged();
int lane_size_log2 = format & kPrintRegLaneSizeMask;
int reg_size_log2;
if (format & kPrintRegAsQVector) {
reg_size_log2 = kQRegSizeLog2;
} else if (format & kPrintRegAsDVector) {
reg_size_log2 = kDRegSizeLog2;
} else {
// Scalar types.
reg_size_log2 = lane_size_log2;
}
int lane_count = 1 << (reg_size_log2 - lane_size_log2);
int lane_size = 1 << lane_size_log2;
// The template for vector types:
// "# v{code}: 0x{rawbits} (..., {value}, ...)".
// The template for scalar types:
// "# v{code}: 0x{rawbits} ({reg}:{value})".
// The values in parentheses after the bit representations are floating-point
// interpretations. They are displayed only if the kPrintVRegAsFP bit is set.
PrintVRegisterRawHelper(code);
if (format & kPrintRegAsFP) {
PrintVRegisterFPHelper(code, lane_size, lane_count);
}
fprintf(stream_, "\n");
}
void Simulator::PrintSystemRegister(SystemRegister id) {
switch (id) {
case NZCV:
fprintf(stream_, "# %sNZCV: %sN:%d Z:%d C:%d V:%d%s\n", clr_flag_name,
clr_flag_value, nzcv().N(), nzcv().Z(), nzcv().C(), nzcv().V(),
clr_normal);
break;
case FPCR: {
static const char* rmode[] = {
"0b00 (Round to Nearest)", "0b01 (Round towards Plus Infinity)",
"0b10 (Round towards Minus Infinity)", "0b11 (Round towards Zero)"};
DCHECK(fpcr().RMode() < arraysize(rmode));
fprintf(stream_, "# %sFPCR: %sAHP:%d DN:%d FZ:%d RMode:%s%s\n",
clr_flag_name, clr_flag_value, fpcr().AHP(), fpcr().DN(),
fpcr().FZ(), rmode[fpcr().RMode()], clr_normal);
break;
}
default:
UNREACHABLE();
}
}
void Simulator::PrintRead(uintptr_t address, unsigned reg_code,
PrintRegisterFormat format) {
registers_[reg_code].NotifyRegisterLogged();
USE(format);
// The template is "# {reg}: 0x{value} <- {address}".
PrintRegisterRawHelper(reg_code, Reg31IsZeroRegister);
fprintf(stream_, " <- %s0x%016" PRIxPTR "%s\n", clr_memory_address, address,
clr_normal);
}
void Simulator::PrintVRead(uintptr_t address, unsigned reg_code,
PrintRegisterFormat format, unsigned lane) {
vregisters_[reg_code].NotifyRegisterLogged();
// The template is "# v{code}: 0x{rawbits} <- address".
PrintVRegisterRawHelper(reg_code);
if (format & kPrintRegAsFP) {
PrintVRegisterFPHelper(reg_code, GetPrintRegLaneSizeInBytes(format),
GetPrintRegLaneCount(format), lane);
}
fprintf(stream_, " <- %s0x%016" PRIxPTR "%s\n", clr_memory_address, address,
clr_normal);
}
void Simulator::PrintWrite(uintptr_t address, unsigned reg_code,
PrintRegisterFormat format) {
DCHECK_EQ(GetPrintRegLaneCount(format), 1U);
// The template is "# v{code}: 0x{value} -> {address}". To keep the trace tidy
// and readable, the value is aligned with the values in the register trace.
PrintRegisterRawHelper(reg_code, Reg31IsZeroRegister,
GetPrintRegSizeInBytes(format));
fprintf(stream_, " -> %s0x%016" PRIxPTR "%s\n", clr_memory_address, address,
clr_normal);
}
void Simulator::PrintVWrite(uintptr_t address, unsigned reg_code,
PrintRegisterFormat format, unsigned lane) {
// The templates:
// "# v{code}: 0x{rawbits} -> {address}"
// "# v{code}: 0x{rawbits} (..., {value}, ...) -> {address}".
// "# v{code}: 0x{rawbits} ({reg}:{value}) -> {address}"
// Because this trace doesn't represent a change to the source register's
// value, only the relevant part of the value is printed. To keep the trace
// tidy and readable, the raw value is aligned with the other values in the
// register trace.
int lane_count = GetPrintRegLaneCount(format);
int lane_size = GetPrintRegLaneSizeInBytes(format);
int reg_size = GetPrintRegSizeInBytes(format);
PrintVRegisterRawHelper(reg_code, reg_size, lane_size * lane);
if (format & kPrintRegAsFP) {
PrintVRegisterFPHelper(reg_code, lane_size, lane_count, lane);
}
fprintf(stream_, " -> %s0x%016" PRIxPTR "%s\n", clr_memory_address, address,
clr_normal);
}
// Visitors---------------------------------------------------------------------
void Simulator::VisitUnimplemented(Instruction* instr) {
fprintf(stream_, "Unimplemented instruction at %p: 0x%08" PRIx32 "\n",
reinterpret_cast<void*>(instr), instr->InstructionBits());
UNIMPLEMENTED();
}
void Simulator::VisitUnallocated(Instruction* instr) {
fprintf(stream_, "Unallocated instruction at %p: 0x%08" PRIx32 "\n",
reinterpret_cast<void*>(instr), instr->InstructionBits());
UNIMPLEMENTED();
}
void Simulator::VisitPCRelAddressing(Instruction* instr) {
switch (instr->Mask(PCRelAddressingMask)) {
case ADR:
set_reg(instr->Rd(), instr->ImmPCOffsetTarget());
break;
case ADRP: // Not implemented in the assembler.
UNIMPLEMENTED();
break;
default:
UNREACHABLE();
}
}
void Simulator::VisitUnconditionalBranch(Instruction* instr) {
switch (instr->Mask(UnconditionalBranchMask)) {
case BL:
set_lr(instr->following());
V8_FALLTHROUGH;
case B:
set_pc(instr->ImmPCOffsetTarget());
break;
default:
UNREACHABLE();
}
}
void Simulator::VisitConditionalBranch(Instruction* instr) {
DCHECK(instr->Mask(ConditionalBranchMask) == B_cond);
if (ConditionPassed(static_cast<Condition>(instr->ConditionBranch()))) {
set_pc(instr->ImmPCOffsetTarget());
}
}
Simulator::BType Simulator::GetBTypeFromInstruction(
const Instruction* instr) const {
switch (instr->Mask(UnconditionalBranchToRegisterMask)) {
case BLR:
return BranchAndLink;
case BR:
if (!PcIsInGuardedPage() || (instr->Rn() == 16) || (instr->Rn() == 17)) {
return BranchFromUnguardedOrToIP;
}
return BranchFromGuardedNotToIP;
}
return DefaultBType;
}
void Simulator::VisitUnconditionalBranchToRegister(Instruction* instr) {
Instruction* target = reg<Instruction*>(instr->Rn());
switch (instr->Mask(UnconditionalBranchToRegisterMask)) {
case BLR: {
set_lr(instr->following());
if (instr->Rn() == 31) {
// BLR XZR is used as a guard for the constant pool. We should never hit
// this, but if we do trap to allow debugging.
Debug();
}
V8_FALLTHROUGH;
}
case BR:
case RET:
set_pc(target);
break;
default:
UNIMPLEMENTED();
}
set_btype(GetBTypeFromInstruction(instr));
}
void Simulator::VisitTestBranch(Instruction* instr) {
unsigned bit_pos =
(instr->ImmTestBranchBit5() << 5) | instr->ImmTestBranchBit40();
bool take_branch = ((xreg(instr->Rt()) & (1ULL << bit_pos)) == 0);
switch (instr->Mask(TestBranchMask)) {
case TBZ:
break;
case TBNZ:
take_branch = !take_branch;
break;
default:
UNIMPLEMENTED();
}
if (take_branch) {
set_pc(instr->ImmPCOffsetTarget());
}
}
void Simulator::VisitCompareBranch(Instruction* instr) {
unsigned rt = instr->Rt();
bool take_branch = false;
switch (instr->Mask(CompareBranchMask)) {
case CBZ_w:
take_branch = (wreg(rt) == 0);
break;
case CBZ_x:
take_branch = (xreg(rt) == 0);
break;
case CBNZ_w:
take_branch = (wreg(rt) != 0);
break;
case CBNZ_x:
take_branch = (xreg(rt) != 0);
break;
default:
UNIMPLEMENTED();
}
if (take_branch) {
set_pc(instr->ImmPCOffsetTarget());
}
}
template <typename T>
void Simulator::AddSubHelper(Instruction* instr, T op2) {
// Use unsigned types to avoid implementation-defined overflow behaviour.
static_assert(std::is_unsigned<T>::value, "operands must be unsigned");
bool set_flags = instr->FlagsUpdate();
T new_val = 0;
Instr operation = instr->Mask(AddSubOpMask);
switch (operation) {
case ADD:
case ADDS: {
new_val =
AddWithCarry<T>(set_flags, reg<T>(instr->Rn(), instr->RnMode()), op2);
break;
}
case SUB:
case SUBS: {
new_val = AddWithCarry<T>(set_flags, reg<T>(instr->Rn(), instr->RnMode()),
~op2, 1);
break;
}
default:
UNREACHABLE();
}
set_reg<T>(instr->Rd(), new_val, instr->RdMode());
}
void Simulator::VisitAddSubShifted(Instruction* instr) {
Shift shift_type = static_cast<Shift>(instr->ShiftDP());
unsigned shift_amount = instr->ImmDPShift();
if (instr->SixtyFourBits()) {
uint64_t op2 = ShiftOperand(xreg(instr->Rm()), shift_type, shift_amount);
AddSubHelper(instr, op2);
} else {
uint32_t op2 = ShiftOperand(wreg(instr->Rm()), shift_type, shift_amount);
AddSubHelper(instr, op2);
}
}
void Simulator::VisitAddSubImmediate(Instruction* instr) {
int64_t op2 = instr->ImmAddSub() << ((instr->ShiftAddSub() == 1) ? 12 : 0);
if (instr->SixtyFourBits()) {
AddSubHelper(instr, static_cast<uint64_t>(op2));
} else {
AddSubHelper(instr, static_cast<uint32_t>(op2));
}
}
void Simulator::VisitAddSubExtended(Instruction* instr) {
Extend ext = static_cast<Extend>(instr->ExtendMode());
unsigned left_shift = instr->ImmExtendShift();
if (instr->SixtyFourBits()) {
uint64_t op2 = ExtendValue(xreg(instr->Rm()), ext, left_shift);
AddSubHelper(instr, op2);
} else {
uint32_t op2 = ExtendValue(wreg(instr->Rm()), ext, left_shift);
AddSubHelper(instr, op2);
}
}
void Simulator::VisitAddSubWithCarry(Instruction* instr) {
if (instr->SixtyFourBits()) {
AddSubWithCarry<uint64_t>(instr);
} else {
AddSubWithCarry<uint32_t>(instr);
}
}
void Simulator::VisitLogicalShifted(Instruction* instr) {
Shift shift_type = static_cast<Shift>(instr->ShiftDP());
unsigned shift_amount = instr->ImmDPShift();
if (instr->SixtyFourBits()) {
uint64_t op2 = ShiftOperand(xreg(instr->Rm()), shift_type, shift_amount);
op2 = (instr->Mask(NOT) == NOT) ? ~op2 : op2;
LogicalHelper(instr, op2);
} else {
uint32_t op2 = ShiftOperand(wreg(instr->Rm()), shift_type, shift_amount);
op2 = (instr->Mask(NOT) == NOT) ? ~op2 : op2;
LogicalHelper(instr, op2);
}
}
void Simulator::VisitLogicalImmediate(Instruction* instr) {
if (instr->SixtyFourBits()) {
LogicalHelper(instr, static_cast<uint64_t>(instr->ImmLogical()));
} else {
LogicalHelper(instr, static_cast<uint32_t>(instr->ImmLogical()));
}
}
template <typename T>
void Simulator::LogicalHelper(Instruction* instr, T op2) {
T op1 = reg<T>(instr->Rn());
T result = 0;
bool update_flags = false;
// Switch on the logical operation, stripping out the NOT bit, as it has a
// different meaning for logical immediate instructions.
switch (instr->Mask(LogicalOpMask & ~NOT)) {
case ANDS:
update_flags = true;
V8_FALLTHROUGH;
case AND:
result = op1 & op2;
break;
case ORR:
result = op1 | op2;
break;
case EOR:
result = op1 ^ op2;
break;
default:
UNIMPLEMENTED();
}
if (update_flags) {
nzcv().SetN(CalcNFlag(result));
nzcv().SetZ(CalcZFlag(result));
nzcv().SetC(0);
nzcv().SetV(0);
LogSystemRegister(NZCV);
}
set_reg<T>(instr->Rd(), result, instr->RdMode());
}
void Simulator::VisitConditionalCompareRegister(Instruction* instr) {
if (instr->SixtyFourBits()) {
ConditionalCompareHelper(instr, static_cast<uint64_t>(xreg(instr->Rm())));
} else {
ConditionalCompareHelper(instr, static_cast<uint32_t>(wreg(instr->Rm())));
}
}
void Simulator::VisitConditionalCompareImmediate(Instruction* instr) {
if (instr->SixtyFourBits()) {
ConditionalCompareHelper(instr, static_cast<uint64_t>(instr->ImmCondCmp()));
} else {
ConditionalCompareHelper(instr, static_cast<uint32_t>(instr->ImmCondCmp()));
}
}
template <typename T>
void Simulator::ConditionalCompareHelper(Instruction* instr, T op2) {
// Use unsigned types to avoid implementation-defined overflow behaviour.
static_assert(std::is_unsigned<T>::value, "operands must be unsigned");
T op1 = reg<T>(instr->Rn());
if (ConditionPassed(static_cast<Condition>(instr->Condition()))) {
// If the condition passes, set the status flags to the result of comparing
// the operands.
if (instr->Mask(ConditionalCompareMask) == CCMP) {
AddWithCarry<T>(true, op1, ~op2, 1);
} else {
DCHECK(instr->Mask(ConditionalCompareMask) == CCMN);
AddWithCarry<T>(true, op1, op2, 0);
}
} else {
// If the condition fails, set the status flags to the nzcv immediate.
nzcv().SetFlags(instr->Nzcv());
LogSystemRegister(NZCV);
}
}
void Simulator::VisitLoadStoreUnsignedOffset(Instruction* instr) {
int offset = instr->ImmLSUnsigned() << instr->SizeLS();
LoadStoreHelper(instr, offset, Offset);
}
void Simulator::VisitLoadStoreUnscaledOffset(Instruction* instr) {
LoadStoreHelper(instr, instr->ImmLS(), Offset);
}
void Simulator::VisitLoadStorePreIndex(Instruction* instr) {
LoadStoreHelper(instr, instr->ImmLS(), PreIndex);
}
void Simulator::VisitLoadStorePostIndex(Instruction* instr) {
LoadStoreHelper(instr, instr->ImmLS(), PostIndex);
}
void Simulator::VisitLoadStoreRegisterOffset(Instruction* instr) {
Extend ext = static_cast<Extend>(instr->ExtendMode());
DCHECK((ext == UXTW) || (ext == UXTX) || (ext == SXTW) || (ext == SXTX));
unsigned shift_amount = instr->ImmShiftLS() * instr->SizeLS();
int64_t offset = ExtendValue(xreg(instr->Rm()), ext, shift_amount);
LoadStoreHelper(instr, offset, Offset);
}
void Simulator::LoadStoreHelper(Instruction* instr, int64_t offset,
AddrMode addrmode) {
unsigned srcdst = instr->Rt();
unsigned addr_reg = instr->Rn();
uintptr_t address = LoadStoreAddress(addr_reg, offset, addrmode);
uintptr_t stack = 0;
{
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
if (instr->IsLoad()) {
local_monitor_.NotifyLoad();
} else {
local_monitor_.NotifyStore();
GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_processor_);
}
}
// Handle the writeback for stores before the store. On a CPU the writeback
// and the store are atomic, but when running on the simulator it is possible
// to be interrupted in between. The simulator is not thread safe and V8 does
// not require it to be to run JavaScript therefore the profiler may sample
// the "simulated" CPU in the middle of load/store with writeback. The code
// below ensures that push operations are safe even when interrupted: the
// stack pointer will be decremented before adding an element to the stack.
if (instr->IsStore()) {
LoadStoreWriteBack(addr_reg, offset, addrmode);
// For store the address post writeback is used to check access below the
// stack.
stack = sp();
}
LoadStoreOp op = static_cast<LoadStoreOp>(instr->Mask(LoadStoreMask));
switch (op) {
// Use _no_log variants to suppress the register trace (LOG_REGS,
// LOG_VREGS). We will print a more detailed log.
case LDRB_w:
set_wreg_no_log(srcdst, MemoryRead<uint8_t>(address));
break;
case LDRH_w:
set_wreg_no_log(srcdst, MemoryRead<uint16_t>(address));
break;
case LDR_w:
set_wreg_no_log(srcdst, MemoryRead<uint32_t>(address));
break;
case LDR_x:
set_xreg_no_log(srcdst, MemoryRead<uint64_t>(address));
break;
case LDRSB_w:
set_wreg_no_log(srcdst, MemoryRead<int8_t>(address));
break;
case LDRSH_w:
set_wreg_no_log(srcdst, MemoryRead<int16_t>(address));
break;
case LDRSB_x:
set_xreg_no_log(srcdst, MemoryRead<int8_t>(address));
break;
case LDRSH_x:
set_xreg_no_log(srcdst, MemoryRead<int16_t>(address));
break;
case LDRSW_x:
set_xreg_no_log(srcdst, MemoryRead<int32_t>(address));
break;
case LDR_b:
set_breg_no_log(srcdst, MemoryRead<uint8_t>(address));
break;
case LDR_h:
set_hreg_no_log(srcdst, MemoryRead<uint16_t>(address));
break;
case LDR_s:
set_sreg_no_log(srcdst, MemoryRead<float>(address));
break;
case LDR_d:
set_dreg_no_log(srcdst, MemoryRead<double>(address));
break;
case LDR_q:
set_qreg_no_log(srcdst, MemoryRead<qreg_t>(address));
break;
case STRB_w:
MemoryWrite<uint8_t>(address, wreg(srcdst));
break;
case STRH_w:
MemoryWrite<uint16_t>(address, wreg(srcdst));
break;
case STR_w:
MemoryWrite<uint32_t>(address, wreg(srcdst));
break;
case STR_x:
MemoryWrite<uint64_t>(address, xreg(srcdst));
break;
case STR_b:
MemoryWrite<uint8_t>(address, breg(srcdst));
break;
case STR_h:
MemoryWrite<uint16_t>(address, hreg(srcdst));
break;
case STR_s:
MemoryWrite<float>(address, sreg(srcdst));
break;
case STR_d:
MemoryWrite<double>(address, dreg(srcdst));
break;
case STR_q:
MemoryWrite<qreg_t>(address, qreg(srcdst));
break;
default:
UNIMPLEMENTED();
}
// Print a detailed trace (including the memory address) instead of the basic
// register:value trace generated by set_*reg().
unsigned access_size = 1 << instr->SizeLS();
if (instr->IsLoad()) {
if ((op == LDR_s) || (op == LDR_d)) {
LogVRead(address, srcdst, GetPrintRegisterFormatForSizeFP(access_size));
} else if ((op == LDR_b) || (op == LDR_h) || (op == LDR_q)) {
LogVRead(address, srcdst, GetPrintRegisterFormatForSize(access_size));
} else {
LogRead(address, srcdst, GetPrintRegisterFormatForSize(access_size));
}
} else {
if ((op == STR_s) || (op == STR_d)) {
LogVWrite(address, srcdst, GetPrintRegisterFormatForSizeFP(access_size));
} else if ((op == STR_b) || (op == STR_h) || (op == STR_q)) {
LogVWrite(address, srcdst, GetPrintRegisterFormatForSize(access_size));
} else {
LogWrite(address, srcdst, GetPrintRegisterFormatForSize(access_size));
}
}
// Handle the writeback for loads after the load to ensure safe pop
// operation even when interrupted in the middle of it. The stack pointer
// is only updated after the load so pop(fp) will never break the invariant
// sp <= fp expected while walking the stack in the sampler.
if (instr->IsLoad()) {
// For loads the address pre writeback is used to check access below the
// stack.
stack = sp();
LoadStoreWriteBack(addr_reg, offset, addrmode);
}
// Accesses below the stack pointer (but above the platform stack limit) are
// not allowed in the ABI.
CheckMemoryAccess(address, stack);
}
void Simulator::VisitLoadStorePairOffset(Instruction* instr) {
LoadStorePairHelper(instr, Offset);
}
void Simulator::VisitLoadStorePairPreIndex(Instruction* instr) {
LoadStorePairHelper(instr, PreIndex);
}
void Simulator::VisitLoadStorePairPostIndex(Instruction* instr) {
LoadStorePairHelper(instr, PostIndex);
}
void Simulator::LoadStorePairHelper(Instruction* instr, AddrMode addrmode) {
unsigned rt = instr->Rt();
unsigned rt2 = instr->Rt2();
unsigned addr_reg = instr->Rn();
size_t access_size = 1ULL << instr->SizeLSPair();
int64_t offset = instr->ImmLSPair() * access_size;
uintptr_t address = LoadStoreAddress(addr_reg, offset, addrmode);
uintptr_t address2 = address + access_size;
uintptr_t stack = 0;
{
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
if (instr->IsLoad()) {
local_monitor_.NotifyLoad();
} else {
local_monitor_.NotifyStore();
GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_processor_);
}
}
// Handle the writeback for stores before the store. On a CPU the writeback
// and the store are atomic, but when running on the simulator it is possible
// to be interrupted in between. The simulator is not thread safe and V8 does
// not require it to be to run JavaScript therefore the profiler may sample
// the "simulated" CPU in the middle of load/store with writeback. The code
// below ensures that push operations are safe even when interrupted: the
// stack pointer will be decremented before adding an element to the stack.
if (instr->IsStore()) {
LoadStoreWriteBack(addr_reg, offset, addrmode);
// For store the address post writeback is used to check access below the
// stack.
stack = sp();
}
LoadStorePairOp op =
static_cast<LoadStorePairOp>(instr->Mask(LoadStorePairMask));
// 'rt' and 'rt2' can only be aliased for stores.
DCHECK(((op & LoadStorePairLBit) == 0) || (rt != rt2));
switch (op) {
// Use _no_log variants to suppress the register trace (LOG_REGS,
// LOG_VREGS). We will print a more detailed log.
case LDP_w: {
DCHECK_EQ(access_size, static_cast<unsigned>(kWRegSize));
set_wreg_no_log(rt, MemoryRead<uint32_t>(address));
set_wreg_no_log(rt2, MemoryRead<uint32_t>(address2));
break;
}
case LDP_s: {
DCHECK_EQ(access_size, static_cast<unsigned>(kSRegSize));
set_sreg_no_log(rt, MemoryRead<float>(address));
set_sreg_no_log(rt2, MemoryRead<float>(address2));
break;
}
case LDP_x: {
DCHECK_EQ(access_size, static_cast<unsigned>(kXRegSize));
set_xreg_no_log(rt, MemoryRead<uint64_t>(address));
set_xreg_no_log(rt2, MemoryRead<uint64_t>(address2));
break;
}
case LDP_d: {
DCHECK_EQ(access_size, static_cast<unsigned>(kDRegSize));
set_dreg_no_log(rt, MemoryRead<double>(address));
set_dreg_no_log(rt2, MemoryRead<double>(address2));
break;
}
case LDP_q: {
DCHECK_EQ(access_size, static_cast<unsigned>(kQRegSize));
set_qreg(rt, MemoryRead<qreg_t>(address), NoRegLog);
set_qreg(rt2, MemoryRead<qreg_t>(address2), NoRegLog);
break;
}
case LDPSW_x: {
DCHECK_EQ(access_size, static_cast<unsigned>(kWRegSize));
set_xreg_no_log(rt, MemoryRead<int32_t>(address));
set_xreg_no_log(rt2, MemoryRead<int32_t>(address2));
break;
}
case STP_w: {
DCHECK_EQ(access_size, static_cast<unsigned>(kWRegSize));
MemoryWrite<uint32_t>(address, wreg(rt));
MemoryWrite<uint32_t>(address2, wreg(rt2));
break;
}
case STP_s: {
DCHECK_EQ(access_size, static_cast<unsigned>(kSRegSize));
MemoryWrite<float>(address, sreg(rt));
MemoryWrite<float>(address2, sreg(rt2));
break;
}
case STP_x: {
DCHECK_EQ(access_size, static_cast<unsigned>(kXRegSize));
MemoryWrite<uint64_t>(address, xreg(rt));
MemoryWrite<uint64_t>(address2, xreg(rt2));
break;
}
case STP_d: {
DCHECK_EQ(access_size, static_cast<unsigned>(kDRegSize));
MemoryWrite<double>(address, dreg(rt));
MemoryWrite<double>(address2, dreg(rt2));
break;
}
case STP_q: {
DCHECK_EQ(access_size, static_cast<unsigned>(kQRegSize));
MemoryWrite<qreg_t>(address, qreg(rt));
MemoryWrite<qreg_t>(address2, qreg(rt2));
break;
}
default:
UNREACHABLE();
}
// Print a detailed trace (including the memory address) instead of the basic
// register:value trace generated by set_*reg().
if (instr->IsLoad()) {
if ((op == LDP_s) || (op == LDP_d)) {
LogVRead(address, rt, GetPrintRegisterFormatForSizeFP(access_size));
LogVRead(address2, rt2, GetPrintRegisterFormatForSizeFP(access_size));
} else if (op == LDP_q) {
LogVRead(address, rt, GetPrintRegisterFormatForSize(access_size));
LogVRead(address2, rt2, GetPrintRegisterFormatForSize(access_size));
} else {
LogRead(address, rt, GetPrintRegisterFormatForSize(access_size));
LogRead(address2, rt2, GetPrintRegisterFormatForSize(access_size));
}
} else {
if ((op == STP_s) || (op == STP_d)) {
LogVWrite(address, rt, GetPrintRegisterFormatForSizeFP(access_size));
LogVWrite(address2, rt2, GetPrintRegisterFormatForSizeFP(access_size));
} else if (op == STP_q) {
LogVWrite(address, rt, GetPrintRegisterFormatForSize(access_size));
LogVWrite(address2, rt2, GetPrintRegisterFormatForSize(access_size));
} else {
LogWrite(address, rt, GetPrintRegisterFormatForSize(access_size));
LogWrite(address2, rt2, GetPrintRegisterFormatForSize(access_size));
}
}
// Handle the writeback for loads after the load to ensure safe pop
// operation even when interrupted in the middle of it. The stack pointer
// is only updated after the load so pop(fp) will never break the invariant
// sp <= fp expected while walking the stack in the sampler.
if (instr->IsLoad()) {
// For loads the address pre writeback is used to check access below the
// stack.
stack = sp();
LoadStoreWriteBack(addr_reg, offset, addrmode);
}
// Accesses below the stack pointer (but above the platform stack limit) are
// not allowed in the ABI.
CheckMemoryAccess(address, stack);
}
void Simulator::VisitLoadLiteral(Instruction* instr) {
uintptr_t address = instr->LiteralAddress();
unsigned rt = instr->Rt();
{
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
local_monitor_.NotifyLoad();
}
switch (instr->Mask(LoadLiteralMask)) {
// Use _no_log variants to suppress the register trace (LOG_REGS,
// LOG_VREGS), then print a more detailed log.
case LDR_w_lit:
set_wreg_no_log(rt, MemoryRead<uint32_t>(address));
LogRead(address, rt, kPrintWReg);
break;
case LDR_x_lit:
set_xreg_no_log(rt, MemoryRead<uint64_t>(address));
LogRead(address, rt, kPrintXReg);
break;
case LDR_s_lit:
set_sreg_no_log(rt, MemoryRead<float>(address));
LogVRead(address, rt, kPrintSReg);
break;
case LDR_d_lit:
set_dreg_no_log(rt, MemoryRead<double>(address));
LogVRead(address, rt, kPrintDReg);
break;
default:
UNREACHABLE();
}
}
uintptr_t Simulator::LoadStoreAddress(unsigned addr_reg, int64_t offset,
AddrMode addrmode) {
const unsigned kSPRegCode = kSPRegInternalCode & kRegCodeMask;
uint64_t address = xreg(addr_reg, Reg31IsStackPointer);
if ((addr_reg == kSPRegCode) && ((address % 16) != 0)) {
// When the base register is SP the stack pointer is required to be
// quadword aligned prior to the address calculation and write-backs.
// Misalignment will cause a stack alignment fault.
FATAL("ALIGNMENT EXCEPTION");
}
if ((addrmode == Offset) || (addrmode == PreIndex)) {
address += offset;
}
return address;
}
void Simulator::LoadStoreWriteBack(unsigned addr_reg, int64_t offset,
AddrMode addrmode) {
if ((addrmode == PreIndex) || (addrmode == PostIndex)) {
DCHECK_NE(offset, 0);
uint64_t address = xreg(addr_reg, Reg31IsStackPointer);
set_reg(addr_reg, address + offset, Reg31IsStackPointer);
}
}
Simulator::TransactionSize Simulator::get_transaction_size(unsigned size) {
switch (size) {
case 0:
return TransactionSize::None;
case 1:
return TransactionSize::Byte;
case 2:
return TransactionSize::HalfWord;
case 4:
return TransactionSize::Word;
case 8:
return TransactionSize::DoubleWord;
default:
UNREACHABLE();
}
return TransactionSize::None;
}
void Simulator::VisitLoadStoreAcquireRelease(Instruction* instr) {
unsigned rt = instr->Rt();
unsigned rn = instr->Rn();
LoadStoreAcquireReleaseOp op = static_cast<LoadStoreAcquireReleaseOp>(
instr->Mask(LoadStoreAcquireReleaseMask));
int32_t is_acquire_release = instr->LoadStoreXAcquireRelease();
int32_t is_exclusive = (instr->LoadStoreXNotExclusive() == 0);
int32_t is_load = instr->LoadStoreXLoad();
int32_t is_pair = instr->LoadStoreXPair();
USE(is_acquire_release);
USE(is_pair);
DCHECK_NE(is_acquire_release, 0); // Non-acquire/release unimplemented.
DCHECK_EQ(is_pair, 0); // Pair unimplemented.
unsigned access_size = 1 << instr->LoadStoreXSizeLog2();
uintptr_t address = LoadStoreAddress(rn, 0, AddrMode::Offset);
DCHECK_EQ(address % access_size, 0);
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
if (is_load != 0) {
if (is_exclusive) {
local_monitor_.NotifyLoadExcl(address, get_transaction_size(access_size));
GlobalMonitor::Get()->NotifyLoadExcl_Locked(address,
&global_monitor_processor_);
} else {
local_monitor_.NotifyLoad();
}
switch (op) {
case LDAR_b:
case LDAXR_b:
set_wreg_no_log(rt, MemoryRead<uint8_t>(address));
break;
case LDAR_h:
case LDAXR_h:
set_wreg_no_log(rt, MemoryRead<uint16_t>(address));
break;
case LDAR_w:
case LDAXR_w:
set_wreg_no_log(rt, MemoryRead<uint32_t>(address));
break;
case LDAR_x:
case LDAXR_x:
set_xreg_no_log(rt, MemoryRead<uint64_t>(address));
break;
default:
UNIMPLEMENTED();
}
LogRead(address, rt, GetPrintRegisterFormatForSize(access_size));
} else {
if (is_exclusive) {
unsigned rs = instr->Rs();
DCHECK_NE(rs, rt);
DCHECK_NE(rs, rn);
if (local_monitor_.NotifyStoreExcl(address,
get_transaction_size(access_size)) &&
GlobalMonitor::Get()->NotifyStoreExcl_Locked(
address, &global_monitor_processor_)) {
switch (op) {
case STLXR_b:
MemoryWrite<uint8_t>(address, wreg(rt));
break;
case STLXR_h:
MemoryWrite<uint16_t>(address, wreg(rt));
break;
case STLXR_w:
MemoryWrite<uint32_t>(address, wreg(rt));
break;
case STLXR_x:
MemoryWrite<uint64_t>(address, xreg(rt));
break;
default:
UNIMPLEMENTED();
}
LogWrite(address, rt, GetPrintRegisterFormatForSize(access_size));
set_wreg(rs, 0);
} else {
set_wreg(rs, 1);
}
} else {
local_monitor_.NotifyStore();
GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_processor_);
switch (op) {
case STLR_b:
MemoryWrite<uint8_t>(address, wreg(rt));
break;
case STLR_h:
MemoryWrite<uint16_t>(address, wreg(rt));
break;
case STLR_w:
MemoryWrite<uint32_t>(address, wreg(rt));
break;
case STLR_x:
MemoryWrite<uint64_t>(address, xreg(rt));
break;
default:
UNIMPLEMENTED();
}
}
}
}
void Simulator::CheckMemoryAccess(uintptr_t address, uintptr_t stack) {
if ((address >= stack_limit_) && (address < stack)) {
fprintf(stream_, "ACCESS BELOW STACK POINTER:\n");
fprintf(stream_, " sp is here: 0x%016" PRIx64 "\n",
static_cast<uint64_t>(stack));
fprintf(stream_, " access was here: 0x%016" PRIx64 "\n",
static_cast<uint64_t>(address));
fprintf(stream_, " stack limit is here: 0x%016" PRIx64 "\n",
static_cast<uint64_t>(stack_limit_));
fprintf(stream_, "\n");
FATAL("ACCESS BELOW STACK POINTER");
}
}
void Simulator::VisitMoveWideImmediate(Instruction* instr) {
MoveWideImmediateOp mov_op =
static_cast<MoveWideImmediateOp>(instr->Mask(MoveWideImmediateMask));
int64_t new_xn_val = 0;
bool is_64_bits = instr->SixtyFourBits() == 1;
// Shift is limited for W operations.
DCHECK(is_64_bits || (instr->ShiftMoveWide() < 2));
// Get the shifted immediate.
int64_t shift = instr->ShiftMoveWide() * 16;
int64_t shifted_imm16 = static_cast<int64_t>(instr->ImmMoveWide()) << shift;
// Compute the new value.
switch (mov_op) {
case MOVN_w:
case MOVN_x: {
new_xn_val = ~shifted_imm16;
if (!is_64_bits) new_xn_val &= kWRegMask;
break;
}
case MOVK_w:
case MOVK_x: {
unsigned reg_code = instr->Rd();
int64_t prev_xn_val = is_64_bits ? xreg(reg_code) : wreg(reg_code);
new_xn_val = (prev_xn_val & ~(INT64_C(0xFFFF) << shift)) | shifted_imm16;
break;
}
case MOVZ_w:
case MOVZ_x: {
new_xn_val = shifted_imm16;
break;
}
default:
UNREACHABLE();
}
// Update the destination register.
set_xreg(instr->Rd(), new_xn_val);
}
void Simulator::VisitConditionalSelect(Instruction* instr) {
uint64_t new_val = xreg(instr->Rn());
if (ConditionFailed(static_cast<Condition>(instr->Condition()))) {
new_val = xreg(instr->Rm());
switch (instr->Mask(ConditionalSelectMask)) {
case CSEL_w:
case CSEL_x:
break;
case CSINC_w:
case CSINC_x:
new_val++;
break;
case CSINV_w:
case CSINV_x:
new_val = ~new_val;
break;
case CSNEG_w:
case CSNEG_x:
// Simulate two's complement (instead of casting to signed and negating)
// to avoid undefined behavior on signed overflow.
new_val = (~new_val) + 1;
break;
default:
UNIMPLEMENTED();
}
}
if (instr->SixtyFourBits()) {
set_xreg(instr->Rd(), new_val);
} else {
set_wreg(instr->Rd(), static_cast<uint32_t>(new_val));
}
}
void Simulator::VisitDataProcessing1Source(Instruction* instr) {
unsigned dst = instr->Rd();
unsigned src = instr->Rn();
switch (instr->Mask(DataProcessing1SourceMask)) {
case RBIT_w:
set_wreg(dst, base::bits::ReverseBits(wreg(src)));
break;
case RBIT_x:
set_xreg(dst, base::bits::ReverseBits(xreg(src)));
break;
case REV16_w:
set_wreg(dst, ReverseBytes(wreg(src), 1));
break;
case REV16_x:
set_xreg(dst, ReverseBytes(xreg(src), 1));
break;
case REV_w:
set_wreg(dst, ReverseBytes(wreg(src), 2));
break;
case REV32_x:
set_xreg(dst, ReverseBytes(xreg(src), 2));
break;
case REV_x:
set_xreg(dst, ReverseBytes(xreg(src), 3));
break;
case CLZ_w:
set_wreg(dst, CountLeadingZeros(wreg(src), kWRegSizeInBits));
break;
case CLZ_x:
set_xreg(dst, CountLeadingZeros(xreg(src), kXRegSizeInBits));
break;
case CLS_w: {
set_wreg(dst, CountLeadingSignBits(wreg(src), kWRegSizeInBits));
break;
}
case CLS_x: {
set_xreg(dst, CountLeadingSignBits(xreg(src), kXRegSizeInBits));
break;
}
default:
UNIMPLEMENTED();
}
}
template <typename T>
void Simulator::DataProcessing2Source(Instruction* instr) {
Shift shift_op = NO_SHIFT;
T result = 0;
switch (instr->Mask(DataProcessing2SourceMask)) {
case SDIV_w:
case SDIV_x: {
T rn = reg<T>(instr->Rn());
T rm = reg<T>(instr->Rm());
if ((rn == std::numeric_limits<T>::min()) && (rm == -1)) {
result = std::numeric_limits<T>::min();
} else if (rm == 0) {
// Division by zero can be trapped, but not on A-class processors.
result = 0;
} else {
result = rn / rm;
}
break;
}
case UDIV_w:
case UDIV_x: {
using unsignedT = typename std::make_unsigned<T>::type;
unsignedT rn = static_cast<unsignedT>(reg<T>(instr->Rn()));
unsignedT rm = static_cast<unsignedT>(reg<T>(instr->Rm()));
if (rm == 0) {
// Division by zero can be trapped, but not on A-class processors.
result = 0;
} else {
result = rn / rm;
}
break;
}
case LSLV_w:
case LSLV_x:
shift_op = LSL;
break;
case LSRV_w:
case LSRV_x:
shift_op = LSR;
break;
case ASRV_w:
case ASRV_x:
shift_op = ASR;
break;
case RORV_w:
case RORV_x:
shift_op = ROR;
break;
default:
UNIMPLEMENTED();
}
if (shift_op != NO_SHIFT) {
// Shift distance encoded in the least-significant five/six bits of the
// register.
unsigned shift = wreg(instr->Rm());
if (sizeof(T) == kWRegSize) {
shift &= kShiftAmountWRegMask;
} else {
shift &= kShiftAmountXRegMask;
}
result = ShiftOperand(reg<T>(instr->Rn()), shift_op, shift);
}
set_reg<T>(instr->Rd(), result);
}
void Simulator::VisitDataProcessing2Source(Instruction* instr) {
if (instr->SixtyFourBits()) {
DataProcessing2Source<int64_t>(instr);
} else {
DataProcessing2Source<int32_t>(instr);
}
}
// The algorithm used is described in section 8.2 of
// Hacker's Delight, by Henry S. Warren, Jr.
// It assumes that a right shift on a signed integer is an arithmetic shift.
static int64_t MultiplyHighSigned(int64_t u, int64_t v) {
uint64_t u0, v0, w0;
int64_t u1, v1, w1, w2, t;
u0 = u & 0xFFFFFFFFLL;
u1 = u >> 32;
v0 = v & 0xFFFFFFFFLL;
v1 = v >> 32;
w0 = u0 * v0;
t = u1 * v0 + (w0 >> 32);
w1 = t & 0xFFFFFFFFLL;
w2 = t >> 32;
w1 = u0 * v1 + w1;
return u1 * v1 + w2 + (w1 >> 32);
}
void Simulator::VisitDataProcessing3Source(Instruction* instr) {
int64_t result = 0;
// Extract and sign- or zero-extend 32-bit arguments for widening operations.
uint64_t rn_u32 = reg<uint32_t>(instr->Rn());
uint64_t rm_u32 = reg<uint32_t>(instr->Rm());
int64_t rn_s32 = reg<int32_t>(instr->Rn());
int64_t rm_s32 = reg<int32_t>(instr->Rm());
switch (instr->Mask(DataProcessing3SourceMask)) {
case MADD_w:
case MADD_x:
result = base::AddWithWraparound(
xreg(instr->Ra()),
base::MulWithWraparound(xreg(instr->Rn()), xreg(instr->Rm())));
break;
case MSUB_w:
case MSUB_x:
result = base::SubWithWraparound(
xreg(instr->Ra()),
base::MulWithWraparound(xreg(instr->Rn()), xreg(instr->Rm())));
break;
case SMADDL_x:
result = base::AddWithWraparound(xreg(instr->Ra()), (rn_s32 * rm_s32));
break;
case SMSUBL_x:
result = base::SubWithWraparound(xreg(instr->Ra()), (rn_s32 * rm_s32));
break;
case UMADDL_x:
result = static_cast<uint64_t>(xreg(instr->Ra())) + (rn_u32 * rm_u32);
break;
case UMSUBL_x:
result = static_cast<uint64_t>(xreg(instr->Ra())) - (rn_u32 * rm_u32);
break;
case SMULH_x:
DCHECK_EQ(instr->Ra(), kZeroRegCode);
result = MultiplyHighSigned(xreg(instr->Rn()), xreg(instr->Rm()));
break;
default:
UNIMPLEMENTED();
}
if (instr->SixtyFourBits()) {
set_xreg(instr->Rd(), result);
} else {
set_wreg(instr->Rd(), static_cast<int32_t>(result));
}
}
template <typename T>
void Simulator::BitfieldHelper(Instruction* instr) {
using unsignedT = typename std::make_unsigned<T>::type;
T reg_size = sizeof(T) * 8;
T R = instr->ImmR();
T S = instr->ImmS();
T diff = S - R;
T mask;
if (diff >= 0) {
mask = diff < reg_size - 1 ? (static_cast<unsignedT>(1) << (diff + 1)) - 1
: static_cast<T>(-1);
} else {
uint64_t umask = ((1ULL << (S + 1)) - 1);
umask = (umask >> R) | (umask << (reg_size - R));
mask = static_cast<T>(umask);
diff += reg_size;
}
// inzero indicates if the extracted bitfield is inserted into the
// destination register value or in zero.
// If extend is true, extend the sign of the extracted bitfield.
bool inzero = false;
bool extend = false;
switch (instr->Mask(BitfieldMask)) {
case BFM_x:
case BFM_w:
break;
case SBFM_x:
case SBFM_w:
inzero = true;
extend = true;
break;
case UBFM_x:
case UBFM_w:
inzero = true;
break;
default:
UNIMPLEMENTED();
}
T dst = inzero ? 0 : reg<T>(instr->Rd());
T src = reg<T>(instr->Rn());
// Rotate source bitfield into place.
T result = R == 0 ? src
: (static_cast<unsignedT>(src) >> R) |
(static_cast<unsignedT>(src) << (reg_size - R));
// Determine the sign extension.
T topbits_preshift = (static_cast<unsignedT>(1) << (reg_size - diff - 1)) - 1;
T signbits =
diff >= reg_size - 1
? 0
: ((extend && ((src >> S) & 1) ? topbits_preshift : 0) << (diff + 1));
// Merge sign extension, dest/zero and bitfield.
result = signbits | (result & mask) | (dst & ~mask);
set_reg<T>(instr->Rd(), result);
}
void Simulator::VisitBitfield(Instruction* instr) {
if (instr->SixtyFourBits()) {
BitfieldHelper<int64_t>(instr);
} else {
BitfieldHelper<int32_t>(instr);
}
}
void Simulator::VisitExtract(Instruction* instr) {
if (instr->SixtyFourBits()) {
Extract<uint64_t>(instr);
} else {
Extract<uint32_t>(instr);
}
}
void Simulator::VisitFPImmediate(Instruction* instr) {
AssertSupportedFPCR();
unsigned dest = instr->Rd();
switch (instr->Mask(FPImmediateMask)) {
case FMOV_s_imm:
set_sreg(dest, instr->ImmFP32());
break;
case FMOV_d_imm:
set_dreg(dest, instr->ImmFP64());
break;
default:
UNREACHABLE();
}
}
void Simulator::VisitFPIntegerConvert(Instruction* instr) {
AssertSupportedFPCR();
unsigned dst = instr->Rd();
unsigned src = instr->Rn();
FPRounding round = fpcr().RMode();
switch (instr->Mask(FPIntegerConvertMask)) {
case FCVTAS_ws:
set_wreg(dst, FPToInt32(sreg(src), FPTieAway));
break;
case FCVTAS_xs:
set_xreg(dst, FPToInt64(sreg(src), FPTieAway));
break;
case FCVTAS_wd:
set_wreg(dst, FPToInt32(dreg(src), FPTieAway));
break;
case FCVTAS_xd:
set_xreg(dst, FPToInt64(dreg(src), FPTieAway));
break;
case FCVTAU_ws:
set_wreg(dst, FPToUInt32(sreg(src), FPTieAway));
break;
case FCVTAU_xs:
set_xreg(dst, FPToUInt64(sreg(src), FPTieAway));
break;
case FCVTAU_wd:
set_wreg(dst, FPToUInt32(dreg(src), FPTieAway));
break;
case FCVTAU_xd:
set_xreg(dst, FPToUInt64(dreg(src), FPTieAway));
break;
case FCVTMS_ws:
set_wreg(dst, FPToInt32(sreg(src), FPNegativeInfinity));
break;
case FCVTMS_xs:
set_xreg(dst, FPToInt64(sreg(src), FPNegativeInfinity));
break;
case FCVTMS_wd:
set_wreg(dst, FPToInt32(dreg(src), FPNegativeInfinity));
break;
case FCVTMS_xd:
set_xreg(dst, FPToInt64(dreg(src), FPNegativeInfinity));
break;
case FCVTMU_ws:
set_wreg(dst, FPToUInt32(sreg(src), FPNegativeInfinity));
break;
case FCVTMU_xs:
set_xreg(dst, FPToUInt64(sreg(src), FPNegativeInfinity));
break;
case FCVTMU_wd:
set_wreg(dst, FPToUInt32(dreg(src), FPNegativeInfinity));
break;
case FCVTMU_xd:
set_xreg(dst, FPToUInt64(dreg(src), FPNegativeInfinity));
break;
case FCVTNS_ws:
set_wreg(dst, FPToInt32(sreg(src), FPTieEven));
break;
case FCVTNS_xs:
set_xreg(dst, FPToInt64(sreg(src), FPTieEven));
break;
case FCVTNS_wd:
set_wreg(dst, FPToInt32(dreg(src), FPTieEven));
break;
case FCVTNS_xd:
set_xreg(dst, FPToInt64(dreg(src), FPTieEven));
break;
case FCVTNU_ws:
set_wreg(dst, FPToUInt32(sreg(src), FPTieEven));
break;
case FCVTNU_xs:
set_xreg(dst, FPToUInt64(sreg(src), FPTieEven));
break;
case FCVTNU_wd:
set_wreg(dst, FPToUInt32(dreg(src), FPTieEven));
break;
case FCVTNU_xd:
set_xreg(dst, FPToUInt64(dreg(src), FPTieEven));
break;
case FCVTZS_ws:
set_wreg(dst, FPToInt32(sreg(src), FPZero));
break;
case FCVTZS_xs:
set_xreg(dst, FPToInt64(sreg(src), FPZero));
break;
case FCVTZS_wd:
set_wreg(dst, FPToInt32(dreg(src), FPZero));
break;
case FCVTZS_xd:
set_xreg(dst, FPToInt64(dreg(src), FPZero));
break;
case FCVTZU_ws:
set_wreg(dst, FPToUInt32(sreg(src), FPZero));
break;
case FCVTZU_xs:
set_xreg(dst, FPToUInt64(sreg(src), FPZero));
break;
case FCVTZU_wd:
set_wreg(dst, FPToUInt32(dreg(src), FPZero));
break;
case FCVTZU_xd:
set_xreg(dst, FPToUInt64(dreg(src), FPZero));
break;
case FJCVTZS:
set_wreg(dst, FPToFixedJS(dreg(src)));
break;
case FMOV_ws:
set_wreg(dst, sreg_bits(src));
break;
case FMOV_xd:
set_xreg(dst, dreg_bits(src));
break;
case FMOV_sw:
set_sreg_bits(dst, wreg(src));
break;
case FMOV_dx:
set_dreg_bits(dst, xreg(src));
break;
// A 32-bit input can be handled in the same way as a 64-bit input, since
// the sign- or zero-extension will not affect the conversion.
case SCVTF_dx:
set_dreg(dst, FixedToDouble(xreg(src), 0, round));
break;
case SCVTF_dw:
set_dreg(dst, FixedToDouble(wreg(src), 0, round));
break;
case UCVTF_dx:
set_dreg(dst, UFixedToDouble(xreg(src), 0, round));
break;
case UCVTF_dw: {
set_dreg(dst, UFixedToDouble(reg<uint32_t>(src), 0, round));
break;
}
case SCVTF_sx:
set_sreg(dst, FixedToFloat(xreg(src), 0, round));
break;
case SCVTF_sw:
set_sreg(dst, FixedToFloat(wreg(src), 0, round));
break;
case UCVTF_sx:
set_sreg(dst, UFixedToFloat(xreg(src), 0, round));
break;
case UCVTF_sw: {
set_sreg(dst, UFixedToFloat(reg<uint32_t>(src), 0, round));
break;
}
default:
UNREACHABLE();
}
}
void Simulator::VisitFPFixedPointConvert(Instruction* instr) {
AssertSupportedFPCR();
unsigned dst = instr->Rd();
unsigned src = instr->Rn();
int fbits = 64 - instr->FPScale();
FPRounding round = fpcr().RMode();
switch (instr->Mask(FPFixedPointConvertMask)) {
// A 32-bit input can be handled in the same way as a 64-bit input, since
// the sign- or zero-extension will not affect the conversion.
case SCVTF_dx_fixed:
set_dreg(dst, FixedToDouble(xreg(src), fbits, round));
break;
case SCVTF_dw_fixed:
set_dreg(dst, FixedToDouble(wreg(src), fbits, round));
break;
case UCVTF_dx_fixed:
set_dreg(dst, UFixedToDouble(xreg(src), fbits, round));
break;
case UCVTF_dw_fixed: {
set_dreg(dst, UFixedToDouble(reg<uint32_t>(src), fbits, round));
break;
}
case SCVTF_sx_fixed:
set_sreg(dst, FixedToFloat(xreg(src), fbits, round));
break;
case SCVTF_sw_fixed:
set_sreg(dst, FixedToFloat(wreg(src), fbits, round));
break;
case UCVTF_sx_fixed:
set_sreg(dst, UFixedToFloat(xreg(src), fbits, round));
break;
case UCVTF_sw_fixed: {
set_sreg(dst, UFixedToFloat(reg<uint32_t>(src), fbits, round));
break;
}
default:
UNREACHABLE();
}
}
void Simulator::VisitFPCompare(Instruction* instr) {
AssertSupportedFPCR();
switch (instr->Mask(FPCompareMask)) {
case FCMP_s:
FPCompare(sreg(instr->Rn()), sreg(instr->Rm()));
break;
case FCMP_d:
FPCompare(dreg(instr->Rn()), dreg(instr->Rm()));
break;
case FCMP_s_zero:
FPCompare(sreg(instr->Rn()), 0.0f);
break;
case FCMP_d_zero:
FPCompare(dreg(instr->Rn()), 0.0);
break;
default:
UNIMPLEMENTED();
}
}
void Simulator::VisitFPConditionalCompare(Instruction* instr) {
AssertSupportedFPCR();
switch (instr->Mask(FPConditionalCompareMask)) {
case FCCMP_s:
if (ConditionPassed(static_cast<Condition>(instr->Condition()))) {
FPCompare(sreg(instr->Rn()), sreg(instr->Rm()));
} else {
nzcv().SetFlags(instr->Nzcv());
LogSystemRegister(NZCV);
}
break;
case FCCMP_d: {
if (ConditionPassed(static_cast<Condition>(instr->Condition()))) {
FPCompare(dreg(instr->Rn()), dreg(instr->Rm()));
} else {
// If the condition fails, set the status flags to the nzcv immediate.
nzcv().SetFlags(instr->Nzcv());
LogSystemRegister(NZCV);
}
break;
}
default:
UNIMPLEMENTED();
}
}
void Simulator::VisitFPConditionalSelect(Instruction* instr) {
AssertSupportedFPCR();
Instr selected;
if (ConditionPassed(static_cast<Condition>(instr->Condition()))) {
selected = instr->Rn();
} else {
selected = instr->Rm();
}
switch (instr->Mask(FPConditionalSelectMask)) {
case FCSEL_s:
set_sreg(instr->Rd(), sreg(selected));
break;
case FCSEL_d:
set_dreg(instr->Rd(), dreg(selected));
break;
default:
UNIMPLEMENTED();
}
}
void Simulator::VisitFPDataProcessing1Source(Instruction* instr) {
AssertSupportedFPCR();
FPRounding fpcr_rounding = static_cast<FPRounding>(fpcr().RMode());
VectorFormat vform = (instr->Mask(FP64) == FP64) ? kFormatD : kFormatS;
SimVRegister& rd = vreg(instr->Rd());
SimVRegister& rn = vreg(instr->Rn());
bool inexact_exception = false;
unsigned fd = instr->Rd();
unsigned fn = instr->Rn();
switch (instr->Mask(FPDataProcessing1SourceMask)) {
case FMOV_s:
set_sreg(fd, sreg(fn));
return;
case FMOV_d:
set_dreg(fd, dreg(fn));
return;
case FABS_s:
case FABS_d:
fabs_(vform, vreg(fd), vreg(fn));
// Explicitly log the register update whilst we have type information.
LogVRegister(fd, GetPrintRegisterFormatFP(vform));
return;
case FNEG_s:
case FNEG_d:
fneg(vform, vreg(fd), vreg(fn));
// Explicitly log the register update whilst we have type information.
LogVRegister(fd, GetPrintRegisterFormatFP(vform));
return;
case FCVT_ds:
set_dreg(fd, FPToDouble(sreg(fn)));
return;
case FCVT_sd:
set_sreg(fd, FPToFloat(dreg(fn), FPTieEven));
return;
case FCVT_hs:
set_hreg(fd, FPToFloat16(sreg(fn), FPTieEven));
return;
case FCVT_sh:
set_sreg(fd, FPToFloat(hreg(fn)));
return;
case FCVT_dh:
set_dreg(fd, FPToDouble(FPToFloat(hreg(fn))));
return;
case FCVT_hd:
set_hreg(fd, FPToFloat16(dreg(fn), FPTieEven));
return;
case FSQRT_s:
case FSQRT_d:
fsqrt(vform, rd, rn);
// Explicitly log the register update whilst we have type information.
LogVRegister(fd, GetPrintRegisterFormatFP(vform));
return;
case FRINTI_s:
case FRINTI_d:
break; // Use FPCR rounding mode.
case FRINTX_s:
case FRINTX_d:
inexact_exception = true;
break;
case FRINTA_s:
case FRINTA_d:
fpcr_rounding = FPTieAway;
break;
case FRINTM_s:
case FRINTM_d:
fpcr_rounding = FPNegativeInfinity;
break;
case FRINTN_s:
case FRINTN_d:
fpcr_rounding = FPTieEven;
break;
case FRINTP_s:
case FRINTP_d:
fpcr_rounding = FPPositiveInfinity;
break;
case FRINTZ_s:
case FRINTZ_d:
fpcr_rounding = FPZero;
break;
default:
UNIMPLEMENTED();
}
// Only FRINT* instructions fall through the switch above.
frint(vform, rd, rn, fpcr_rounding, inexact_exception);
// Explicitly log the register update whilst we have type information
LogVRegister(fd, GetPrintRegisterFormatFP(vform));
}
void Simulator::VisitFPDataProcessing2Source(Instruction* instr) {
AssertSupportedFPCR();
VectorFormat vform = (instr->Mask(FP64) == FP64) ? kFormatD : kFormatS;
SimVRegister& rd = vreg(instr->Rd());
SimVRegister& rn = vreg(instr->Rn());
SimVRegister& rm = vreg(instr->Rm());
switch (instr->Mask(FPDataProcessing2SourceMask)) {
case FADD_s:
case FADD_d:
fadd(vform, rd, rn, rm);
break;
case FSUB_s:
case FSUB_d:
fsub(vform, rd, rn, rm);
break;
case FMUL_s:
case FMUL_d:
fmul(vform, rd, rn, rm);
break;
case FNMUL_s:
case FNMUL_d:
fnmul(vform, rd, rn, rm);
break;
case FDIV_s:
case FDIV_d:
fdiv(vform, rd, rn, rm);
break;
case FMAX_s:
case FMAX_d:
fmax(vform, rd, rn, rm);
break;
case FMIN_s:
case FMIN_d:
fmin(vform, rd, rn, rm);
break;
case FMAXNM_s:
case FMAXNM_d:
fmaxnm(vform, rd, rn, rm);
break;
case FMINNM_s:
case FMINNM_d:
fminnm(vform, rd, rn, rm);
break;
default:
UNREACHABLE();
}
// Explicitly log the register update whilst we have type information.
LogVRegister(instr->Rd(), GetPrintRegisterFormatFP(vform));
}
void Simulator::VisitFPDataProcessing3Source(Instruction* instr) {
AssertSupportedFPCR();
unsigned fd = instr->Rd();
unsigned fn = instr->Rn();
unsigned fm = instr->Rm();
unsigned fa = instr->Ra();
switch (instr->Mask(FPDataProcessing3SourceMask)) {
// fd = fa +/- (fn * fm)
case FMADD_s:
set_sreg(fd, FPMulAdd(sreg(fa), sreg(fn), sreg(fm)));
break;
case FMSUB_s:
set_sreg(fd, FPMulAdd(sreg(fa), -sreg(fn), sreg(fm)));
break;
case FMADD_d:
set_dreg(fd, FPMulAdd(dreg(fa), dreg(fn), dreg(fm)));
break;
case FMSUB_d:
set_dreg(fd, FPMulAdd(dreg(fa), -dreg(fn), dreg(fm)));
break;
// Negated variants of the above.
case FNMADD_s:
set_sreg(fd, FPMulAdd(-sreg(fa), -sreg(fn), sreg(fm)));
break;
case FNMSUB_s:
set_sreg(fd, FPMulAdd(-sreg(fa), sreg(fn), sreg(fm)));
break;
case FNMADD_d:
set_dreg(fd, FPMulAdd(-dreg(fa), -dreg(fn), dreg(fm)));
break;
case FNMSUB_d:
set_dreg(fd, FPMulAdd(-dreg(fa), dreg(fn), dreg(fm)));
break;
default:
UNIMPLEMENTED();
}
}
bool Simulator::FPProcessNaNs(Instruction* instr) {
unsigned fd = instr->Rd();
unsigned fn = instr->Rn();
unsigned fm = instr->Rm();
bool done = false;
if (instr->Mask(FP64) == FP64) {
double result = FPProcessNaNs(dreg(fn), dreg(fm));
if (std::isnan(result)) {
set_dreg(fd, result);
done = true;
}
} else {
float result = FPProcessNaNs(sreg(fn), sreg(fm));
if (std::isnan(result)) {
set_sreg(fd, result);
done = true;
}
}
return done;
}
// clang-format off
#define PAUTH_SYSTEM_MODES(V) \
V(B1716, 17, xreg(16), kPACKeyIB) \
V(BSP, 30, xreg(31, Reg31IsStackPointer), kPACKeyIB)
// clang-format on
void Simulator::VisitSystem(Instruction* instr) {
// Some system instructions hijack their Op and Cp fields to represent a
// range of immediates instead of indicating a different instruction. This
// makes the decoding tricky.
if (instr->Mask(SystemPAuthFMask) == SystemPAuthFixed) {
// The BType check for PACIBSP happens in CheckBType().
switch (instr->Mask(SystemPAuthMask)) {
#define DEFINE_PAUTH_FUNCS(SUFFIX, DST, MOD, KEY) \
case PACI##SUFFIX: \
set_xreg(DST, AddPAC(xreg(DST), MOD, KEY, kInstructionPointer)); \
break; \
case AUTI##SUFFIX: \
set_xreg(DST, AuthPAC(xreg(DST), MOD, KEY, kInstructionPointer)); \
break;
PAUTH_SYSTEM_MODES(DEFINE_PAUTH_FUNCS)
#undef DEFINE_PAUTH_FUNCS
#undef PAUTH_SYSTEM_MODES
}
} else if (instr->Mask(SystemSysRegFMask) == SystemSysRegFixed) {
switch (instr->Mask(SystemSysRegMask)) {
case MRS: {
switch (instr->ImmSystemRegister()) {
case NZCV:
set_xreg(instr->Rt(), nzcv().RawValue());
break;
case FPCR:
set_xreg(instr->Rt(), fpcr().RawValue());
break;
default:
UNIMPLEMENTED();
}
break;
}
case MSR: {
switch (instr->ImmSystemRegister()) {
case NZCV:
nzcv().SetRawValue(wreg(instr->Rt()));
LogSystemRegister(NZCV);
break;
case FPCR:
fpcr().SetRawValue(wreg(instr->Rt()));
LogSystemRegister(FPCR);
break;
default:
UNIMPLEMENTED();
}
break;
}
}
} else if (instr->Mask(SystemHintFMask) == SystemHintFixed) {
DCHECK(instr->Mask(SystemHintMask) == HINT);
switch (instr->ImmHint()) {
case NOP:
case CSDB:
case BTI_jc:
case BTI:
case BTI_c:
case BTI_j:
// The BType checks happen in CheckBType().
break;
default:
UNIMPLEMENTED();
}
} else if (instr->Mask(MemBarrierFMask) == MemBarrierFixed) {
#if defined(V8_OS_WIN)
MemoryBarrier();
#else
__sync_synchronize();
#endif
} else {
UNIMPLEMENTED();
}
}
bool Simulator::GetValue(const char* desc, int64_t* value) {
int regnum = CodeFromName(desc);
if (regnum >= 0) {
unsigned code = regnum;
if (code == kZeroRegCode) {
// Catch the zero register and return 0.
*value = 0;
return true;
} else if (code == kSPRegInternalCode) {
// Translate the stack pointer code to 31, for Reg31IsStackPointer.
code = 31;
}
if (desc[0] == 'w') {
*value = wreg(code, Reg31IsStackPointer);
} else {
*value = xreg(code, Reg31IsStackPointer);
}
return true;
} else if (strncmp(desc, "0x", 2) == 0) {
return SScanF(desc + 2, "%" SCNx64, reinterpret_cast<uint64_t*>(value)) ==
1;
} else {
return SScanF(desc, "%" SCNu64, reinterpret_cast<uint64_t*>(value)) == 1;
}
}
bool Simulator::PrintValue(const char* desc) {
if (strcmp(desc, "sp") == 0) {
DCHECK(CodeFromName(desc) == static_cast<int>(kSPRegInternalCode));
PrintF(stream_, "%s sp:%s 0x%016" PRIx64 "%s\n", clr_reg_name,
clr_reg_value, xreg(31, Reg31IsStackPointer), clr_normal);
return true;
} else if (strcmp(desc, "wsp") == 0) {
DCHECK(CodeFromName(desc) == static_cast<int>(kSPRegInternalCode));
PrintF(stream_, "%s wsp:%s 0x%08" PRIx32 "%s\n", clr_reg_name,
clr_reg_value, wreg(31, Reg31IsStackPointer), clr_normal);
return true;
}
int i = CodeFromName(desc);
static_assert(kNumberOfRegisters == kNumberOfVRegisters,
"Must be same number of Registers as VRegisters.");
if (i < 0 || static_cast<unsigned>(i) >= kNumberOfVRegisters) return false;
if (desc[0] == 'v') {
PrintF(stream_, "%s %s:%s 0x%016" PRIx64 "%s (%s%s:%s %g%s %s:%s %g%s)\n",
clr_vreg_name, VRegNameForCode(i), clr_vreg_value,
bit_cast<uint64_t>(dreg(i)), clr_normal, clr_vreg_name,
DRegNameForCode(i), clr_vreg_value, dreg(i), clr_vreg_name,
SRegNameForCode(i), clr_vreg_value, sreg(i), clr_normal);
return true;
} else if (desc[0] == 'd') {
PrintF(stream_, "%s %s:%s %g%s\n", clr_vreg_name, DRegNameForCode(i),
clr_vreg_value, dreg(i), clr_normal);
return true;
} else if (desc[0] == 's') {
PrintF(stream_, "%s %s:%s %g%s\n", clr_vreg_name, SRegNameForCode(i),
clr_vreg_value, sreg(i), clr_normal);
return true;
} else if (desc[0] == 'w') {
PrintF(stream_, "%s %s:%s 0x%08" PRIx32 "%s\n", clr_reg_name,
WRegNameForCode(i), clr_reg_value, wreg(i), clr_normal);
return true;
} else {
// X register names have a wide variety of starting characters, but anything
// else will be an X register.
PrintF(stream_, "%s %s:%s 0x%016" PRIx64 "%s\n", clr_reg_name,
XRegNameForCode(i), clr_reg_value, xreg(i), clr_normal);
return true;
}
}
void Simulator::Debug() {
#define COMMAND_SIZE 63
#define ARG_SIZE 255
#define STR(a) #a
#define XSTR(a) STR(a)
char cmd[COMMAND_SIZE + 1];
char arg1[ARG_SIZE + 1];
char arg2[ARG_SIZE + 1];
char* argv[3] = {cmd, arg1, arg2};
// Make sure to have a proper terminating character if reaching the limit.
cmd[COMMAND_SIZE] = 0;
arg1[ARG_SIZE] = 0;
arg2[ARG_SIZE] = 0;
bool done = false;
bool cleared_log_disasm_bit = false;
while (!done) {
// Disassemble the next instruction to execute before doing anything else.
PrintInstructionsAt(pc_, 1);
// Read the command line.
char* line = ReadLine("sim> ");
if (line == nullptr) {
break;
} else {
// Repeat last command by default.
char* last_input = last_debugger_input();
if (strcmp(line, "\n") == 0 && (last_input != nullptr)) {
DeleteArray(line);
line = last_input;
} else {
// Update the latest command ran
set_last_debugger_input(line);
}
// Use sscanf to parse the individual parts of the command line. At the
// moment no command expects more than two parameters.
int argc = SScanF(line,
"%" XSTR(COMMAND_SIZE) "s "
"%" XSTR(ARG_SIZE) "s "
"%" XSTR(ARG_SIZE) "s",
cmd, arg1, arg2);
// stepi / si ------------------------------------------------------------
if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
// We are about to execute instructions, after which by default we
// should increment the pc_. If it was set when reaching this debug
// instruction, it has not been cleared because this instruction has not
// completed yet. So clear it manually.
pc_modified_ = false;
if (argc == 1) {
ExecuteInstruction();
} else {
int64_t number_of_instructions_to_execute = 1;
GetValue(arg1, &number_of_instructions_to_execute);
set_log_parameters(log_parameters() | LOG_DISASM);
while (number_of_instructions_to_execute-- > 0) {
ExecuteInstruction();
}
set_log_parameters(log_parameters() & ~LOG_DISASM);
PrintF("\n");
}
// If it was necessary, the pc has already been updated or incremented
// when executing the instruction. So we do not want it to be updated
// again. It will be cleared when exiting.
pc_modified_ = true;
// next / n
// --------------------------------------------------------------
} else if ((strcmp(cmd, "next") == 0) || (strcmp(cmd, "n") == 0)) {
// Tell the simulator to break after the next executed BL.
break_on_next_ = true;
// Continue.
done = true;
// continue / cont / c
// ---------------------------------------------------
} else if ((strcmp(cmd, "continue") == 0) || (strcmp(cmd, "cont") == 0) ||
(strcmp(cmd, "c") == 0)) {
// Leave the debugger shell.
done = true;
// disassemble / disasm / di
// ---------------------------------------------
} else if (strcmp(cmd, "disassemble") == 0 ||
strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
int64_t n_of_instrs_to_disasm = 10; // default value.
int64_t address = reinterpret_cast<int64_t>(pc_); // default value.
if (argc >= 2) { // disasm <n of instrs>
GetValue(arg1, &n_of_instrs_to_disasm);
}
if (argc >= 3) { // disasm <n of instrs> <address>
GetValue(arg2, &address);
}
// Disassemble.
PrintInstructionsAt(reinterpret_cast<Instruction*>(address),
n_of_instrs_to_disasm);
PrintF("\n");
// print / p
// -------------------------------------------------------------
} else if ((strcmp(cmd, "print") == 0) || (strcmp(cmd, "p") == 0)) {
if (argc == 2) {
if (strcmp(arg1, "all") == 0) {
PrintRegisters();
PrintVRegisters();
} else {
if (!PrintValue(arg1)) {
PrintF("%s unrecognized\n", arg1);
}
}
} else {
PrintF(
"print <register>\n"
" Print the content of a register. (alias 'p')\n"
" 'print all' will print all registers.\n"
" Use 'printobject' to get more details about the value.\n");
}
// printobject / po
// ------------------------------------------------------
} else if ((strcmp(cmd, "printobject") == 0) ||
(strcmp(cmd, "po") == 0)) {
if (argc == 2) {
int64_t value;
StdoutStream os;
if (GetValue(arg1, &value)) {
Object obj(value);
os << arg1 << ": \n";
#ifdef DEBUG
obj.Print(os);
os << "\n";
#else
os << Brief(obj) << "\n";
#endif
} else {
os << arg1 << " unrecognized\n";
}
} else {
PrintF(
"printobject <value>\n"
"printobject <register>\n"
" Print details about the value. (alias 'po')\n");
}
// stack / mem
// ----------------------------------------------------------
} else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0 ||
strcmp(cmd, "dump") == 0) {
int64_t* cur = nullptr;
int64_t* end = nullptr;
int next_arg = 1;
if (strcmp(cmd, "stack") == 0) {
cur = reinterpret_cast<int64_t*>(sp());
} else { // "mem"
int64_t value;
if (!GetValue(arg1, &value)) {
PrintF("%s unrecognized\n", arg1);
continue;
}
cur = reinterpret_cast<int64_t*>(value);
next_arg++;
}
int64_t words = 0;
if (argc == next_arg) {
words = 10;
} else if (argc == next_arg + 1) {
if (!GetValue(argv[next_arg], &words)) {
PrintF("%s unrecognized\n", argv[next_arg]);
PrintF("Printing 10 double words by default");
words = 10;
}
} else {
UNREACHABLE();
}
end = cur + words;
bool skip_obj_print = (strcmp(cmd, "dump") == 0);
while (cur < end) {
PrintF(" 0x%016" PRIx64 ": 0x%016" PRIx64 " %10" PRId64,
reinterpret_cast<uint64_t>(cur), *cur, *cur);
if (!skip_obj_print) {
Object obj(*cur);
Heap* current_heap = isolate_->heap();
if (obj.IsSmi() ||
IsValidHeapObject(current_heap, HeapObject::cast(obj))) {
PrintF(" (");
if (obj.IsSmi()) {
PrintF("smi %" PRId32, Smi::ToInt(obj));
} else {
obj.ShortPrint();
}
PrintF(")");
}
}
PrintF("\n");
cur++;
}
// trace / t
// -------------------------------------------------------------
} else if (strcmp(cmd, "trace") == 0 || strcmp(cmd, "t") == 0) {
if ((log_parameters() & LOG_ALL) != LOG_ALL) {
PrintF("Enabling disassembly, registers and memory write tracing\n");
set_log_parameters(log_parameters() | LOG_ALL);
} else {
PrintF("Disabling disassembly, registers and memory write tracing\n");
set_log_parameters(log_parameters() & ~LOG_ALL);
}
// break / b
// -------------------------------------------------------------
} else if (strcmp(cmd, "break") == 0 || strcmp(cmd, "b") == 0) {
if (argc == 2) {
int64_t value;
if (GetValue(arg1, &value)) {
SetBreakpoint(reinterpret_cast<Instruction*>(value));
} else {
PrintF("%s unrecognized\n", arg1);
}
} else {
ListBreakpoints();
PrintF("Use `break <address>` to set or disable a breakpoint\n");
}
// gdb
// -------------------------------------------------------------------
} else if (strcmp(cmd, "gdb") == 0) {
PrintF("Relinquishing control to gdb.\n");
base::OS::DebugBreak();
PrintF("Regaining control from gdb.\n");
// sysregs
// ---------------------------------------------------------------
} else if (strcmp(cmd, "sysregs") == 0) {
PrintSystemRegisters();
// help / h
// --------------------------------------------------------------
} else if (strcmp(cmd, "help") == 0 || strcmp(cmd, "h") == 0) {
PrintF(
"stepi / si\n"
" stepi <n>\n"
" Step <n> instructions.\n"
"next / n\n"
" Continue execution until a BL instruction is reached.\n"
" At this point a breakpoint is set just after this BL.\n"
" Then execution is resumed. It will probably later hit the\n"
" breakpoint just set.\n"
"continue / cont / c\n"
" Continue execution from here.\n"
"disassemble / disasm / di\n"
" disassemble <n> <address>\n"
" Disassemble <n> instructions from current <address>.\n"
" By default <n> is 20 and <address> is the current pc.\n"
"print / p\n"
" print <register>\n"
" Print the content of a register.\n"
" 'print all' will print all registers.\n"
" Use 'printobject' to get more details about the value.\n"
"printobject / po\n"
" printobject <value>\n"
" printobject <register>\n"
" Print details about the value.\n"
"stack\n"
" stack [<words>]\n"
" Dump stack content, default dump 10 words\n"
"mem\n"
" mem <address> [<words>]\n"
" Dump memory content, default dump 10 words\n"
"dump\n"
" dump <address> [<words>]\n"
" Dump memory content without pretty printing JS objects, "
"default dump 10 words\n"
"trace / t\n"
" Toggle disassembly and register tracing\n"
"break / b\n"
" break : list all breakpoints\n"
" break <address> : set / enable / disable a breakpoint.\n"
"gdb\n"
" Enter gdb.\n"
"sysregs\n"
" Print all system registers (including NZCV).\n");
} else {
PrintF("Unknown command: %s\n", cmd);
PrintF("Use 'help' for more information.\n");
}
}
if (cleared_log_disasm_bit == true) {
set_log_parameters(log_parameters_ | LOG_DISASM);
}
}
}
void Simulator::VisitException(Instruction* instr) {
switch (instr->Mask(ExceptionMask)) {
case HLT: {
if (instr->ImmException() == kImmExceptionIsDebug) {
// Read the arguments encoded inline in the instruction stream.
uint32_t code;
uint32_t parameters;
memcpy(&code, pc_->InstructionAtOffset(kDebugCodeOffset),
sizeof(code));
memcpy(&parameters, pc_->InstructionAtOffset(kDebugParamsOffset),
sizeof(parameters));
char const* message = reinterpret_cast<char const*>(
pc_->InstructionAtOffset(kDebugMessageOffset));
// Always print something when we hit a debug point that breaks.
// We are going to break, so printing something is not an issue in
// terms of speed.
if (FLAG_trace_sim_messages || FLAG_trace_sim || (parameters & BREAK)) {
if (message != nullptr) {
PrintF(stream_, "# %sDebugger hit %d: %s%s%s\n", clr_debug_number,
code, clr_debug_message, message, clr_normal);
} else {
PrintF(stream_, "# %sDebugger hit %d.%s\n", clr_debug_number, code,
clr_normal);
}
}
// Other options.
switch (parameters & kDebuggerTracingDirectivesMask) {
case TRACE_ENABLE:
set_log_parameters(log_parameters() | parameters);
if (parameters & LOG_SYS_REGS) {
PrintSystemRegisters();
}
if (parameters & LOG_REGS) {
PrintRegisters();
}
if (parameters & LOG_VREGS) {
PrintVRegisters();
}
break;
case TRACE_DISABLE:
set_log_parameters(log_parameters() & ~parameters);
break;
case TRACE_OVERRIDE:
set_log_parameters(parameters);
break;
default:
// We don't support a one-shot LOG_DISASM.
DCHECK_EQ(parameters & LOG_DISASM, 0);
// Don't print information that is already being traced.
parameters &= ~log_parameters();
// Print the requested information.
if (parameters & LOG_SYS_REGS) PrintSystemRegisters();
if (parameters & LOG_REGS) PrintRegisters();
if (parameters & LOG_VREGS) PrintVRegisters();
}
// The stop parameters are inlined in the code. Skip them:
// - Skip to the end of the message string.
size_t size = kDebugMessageOffset + strlen(message) + 1;
pc_ = pc_->InstructionAtOffset(RoundUp(size, kInstrSize));
// - Verify that the unreachable marker is present.
DCHECK(pc_->Mask(ExceptionMask) == HLT);
DCHECK_EQ(pc_->ImmException(), kImmExceptionIsUnreachable);
// - Skip past the unreachable marker.
set_pc(pc_->following());
// Check if the debugger should break.
if (parameters & BREAK) Debug();
} else if (instr->ImmException() == kImmExceptionIsRedirectedCall) {
DoRuntimeCall(instr);
} else if (instr->ImmException() == kImmExceptionIsPrintf) {
DoPrintf(instr);
} else if (instr->ImmException() == kImmExceptionIsUnreachable) {
fprintf(stream_, "Hit UNREACHABLE marker at PC=%p.\n",
reinterpret_cast<void*>(pc_));
abort();
} else {
base::OS::DebugBreak();
}
break;
}
case BRK:
base::OS::DebugBreak();
break;
default:
UNIMPLEMENTED();
}
}
void Simulator::VisitNEON2RegMisc(Instruction* instr) {
NEONFormatDecoder nfd(instr);
VectorFormat vf = nfd.GetVectorFormat();
// Format mapping for "long pair" instructions, [su]addlp, [su]adalp.
static const NEONFormatMap map_lp = {
{23, 22, 30}, {NF_4H, NF_8H, NF_2S, NF_4S, NF_1D, NF_2D}};
VectorFormat vf_lp = nfd.GetVectorFormat(&map_lp);
static const NEONFormatMap map_fcvtl = {{22}, {NF_4S, NF_2D}};
VectorFormat vf_fcvtl = nfd.GetVectorFormat(&map_fcvtl);
static const NEONFormatMap map_fcvtn = {{22, 30},
{NF_4H, NF_8H, NF_2S, NF_4S}};
VectorFormat vf_fcvtn = nfd.GetVectorFormat(&map_fcvtn);
SimVRegister& rd = vreg(instr->Rd());
SimVRegister& rn = vreg(instr->Rn());
if (instr->Mask(NEON2RegMiscOpcode) <= NEON_NEG_opcode) {
// These instructions all use a two bit size field, except NOT and RBIT,
// which use the field to encode the operation.
switch (instr->Mask(NEON2RegMiscMask)) {
case NEON_REV64:
rev64(vf, rd, rn);
break;
case NEON_REV32:
rev32(vf, rd, rn);
break;
case NEON_REV16:
rev16(vf, rd, rn);
break;
case NEON_SUQADD:
suqadd(vf, rd, rn);
break;
case NEON_USQADD:
usqadd(vf, rd, rn);
break;
case NEON_CLS:
cls(vf, rd, rn);
break;
case NEON_CLZ:
clz(vf, rd, rn);
break;
case NEON_CNT:
cnt(vf, rd, rn);
break;
case NEON_SQABS:
abs(vf, rd, rn).SignedSaturate(vf);
break;
case NEON_SQNEG:
neg(vf, rd, rn).SignedSaturate(vf);
break;
case NEON_CMGT_zero:
cmp(vf, rd, rn, 0, gt);
break;
case NEON_CMGE_zero:
cmp(vf, rd, rn, 0, ge);
break;
case NEON_CMEQ_zero:
cmp(vf, rd, rn, 0, eq);
break;
case NEON_CMLE_zero:
cmp(vf, rd, rn, 0, le);
break;
case NEON_CMLT_zero:
cmp(vf, rd, rn, 0, lt);
break;
case NEON_ABS:
abs(vf, rd, rn);
break;
case NEON_NEG:
neg(vf, rd, rn);
break;
case NEON_SADDLP:
saddlp(vf_lp, rd, rn);
break;
case NEON_UADDLP:
uaddlp(vf_lp, rd, rn);
break;
case NEON_SADALP:
sadalp(vf_lp, rd, rn);
break;
case NEON_UADALP:
uadalp(vf_lp, rd, rn);
break;
case NEON_RBIT_NOT:
vf = nfd.GetVectorFormat(nfd.LogicalFormatMap());
switch (instr->FPType()) {
case 0:
not_(vf, rd, rn);
break;
case 1:
rbit(vf, rd, rn);
break;
default:
UNIMPLEMENTED();
}
break;
}
} else {
VectorFormat fpf = nfd.GetVectorFormat(nfd.FPFormatMap());
FPRounding fpcr_rounding = static_cast<FPRounding>(fpcr().RMode());
bool inexact_exception = false;
// These instructions all use a one bit size field, except XTN, SQXTUN,
// SHLL, SQXTN and UQXTN, which use a two bit size field.
switch (instr->Mask(NEON2RegMiscFPMask)) {
case NEON_FABS:
fabs_(fpf, rd, rn);
return;
case NEON_FNEG:
fneg(fpf, rd, rn);
return;
case NEON_FSQRT:
fsqrt(fpf, rd, rn);
return;
case NEON_FCVTL:
if (instr->Mask(NEON_Q)) {
fcvtl2(vf_fcvtl, rd, rn);
} else {
fcvtl(vf_fcvtl, rd, rn);
}
return;
case NEON_FCVTN:
if (instr->Mask(NEON_Q)) {
fcvtn2(vf_fcvtn, rd, rn);
} else {
fcvtn(vf_fcvtn, rd, rn);
}
return;
case NEON_FCVTXN:
if (instr->Mask(NEON_Q)) {
fcvtxn2(vf_fcvtn, rd, rn);
} else {
fcvtxn(vf_fcvtn, rd, rn);
}
return;
// The following instructions break from the switch statement, rather
// than return.
case NEON_FRINTI:
break; // Use FPCR rounding mode.
case NEON_FRINTX:
inexact_exception = true;
break;
case NEON_FRINTA:
fpcr_rounding = FPTieAway;
break;
case NEON_FRINTM:
fpcr_rounding = FPNegativeInfinity;
break;
case NEON_FRINTN:
fpcr_rounding = FPTieEven;
break;
case NEON_FRINTP:
fpcr_rounding = FPPositiveInfinity;
break;
case NEON_FRINTZ:
fpcr_rounding = FPZero;
break;
// The remaining cases return to the caller.
case NEON_FCVTNS:
fcvts(fpf, rd, rn, FPTieEven);
return;
case NEON_FCVTNU:
fcvtu(fpf, rd, rn, FPTieEven);
return;
case NEON_FCVTPS:
fcvts(fpf, rd, rn, FPPositiveInfinity);
return;
case NEON_FCVTPU:
fcvtu(fpf, rd, rn, FPPositiveInfinity);
return;
case NEON_FCVTMS:
fcvts(fpf, rd, rn, FPNegativeInfinity);
return;
case NEON_FCVTMU:
fcvtu(fpf, rd, rn, FPNegativeInfinity);
return;
case NEON_FCVTZS:
fcvts(fpf, rd, rn, FPZero);
return;
case NEON_FCVTZU:
fcvtu(fpf, rd, rn, FPZero);
return;
case NEON_FCVTAS:
fcvts(fpf, rd, rn, FPTieAway);
return;
case NEON_FCVTAU:
fcvtu(fpf, rd, rn, FPTieAway);
return;
case NEON_SCVTF:
scvtf(fpf, rd, rn, 0, fpcr_rounding);
return;
case NEON_UCVTF:
ucvtf(fpf, rd, rn, 0, fpcr_rounding);
return;
case NEON_URSQRTE:
ursqrte(fpf, rd, rn);
return;
case NEON_URECPE:
urecpe(fpf, rd, rn);
return;
case NEON_FRSQRTE:
frsqrte(fpf, rd, rn);
return;
case NEON_FRECPE:
frecpe(fpf, rd, rn, fpcr_rounding);
return;
case NEON_FCMGT_zero:
fcmp_zero(fpf, rd, rn, gt);
return;
case NEON_FCMGE_zero:
fcmp_zero(fpf, rd, rn, ge);
return;
case NEON_FCMEQ_zero:
fcmp_zero(fpf, rd, rn, eq);
return;
case NEON_FCMLE_zero:
fcmp_zero(fpf, rd, rn, le);
return;
case NEON_FCMLT_zero:
fcmp_zero(fpf, rd, rn, lt);
return;
default:
if ((NEON_XTN_opcode <= instr->Mask(NEON2RegMiscOpcode)) &&
(instr->Mask(NEON2RegMiscOpcode) <= NEON_UQXTN_opcode)) {
switch (instr->Mask(NEON2RegMiscMask)) {
case NEON_XTN:
xtn(vf, rd, rn);
return;
case NEON_SQXTN:
sqxtn(vf, rd, rn);
return;
case NEON_UQXTN:
uqxtn(vf, rd, rn);
return;
case NEON_SQXTUN:
sqxtun(vf, rd, rn);
return;
case NEON_SHLL:
vf = nfd.GetVectorFormat(nfd.LongIntegerFormatMap());
if (instr->Mask(NEON_Q)) {
shll2(vf, rd, rn);
} else {
shll(vf, rd, rn);
}
return;
default:
UNIMPLEMENTED();
}
} else {
UNIMPLEMENTED();
}
}
// Only FRINT* instructions fall through the switch above.
frint(fpf, rd, rn, fpcr_rounding, inexact_exception);
}
}
void Simulator::VisitNEON3Same(Instruction* instr) {
NEONFormatDecoder nfd(instr);
SimVRegister& rd = vreg(instr->Rd());
SimVRegister& rn = vreg(instr->Rn());
SimVRegister& rm = vreg(instr->Rm());
if (instr->Mask(NEON3SameLogicalFMask) == NEON3SameLogicalFixed) {
VectorFormat vf = nfd.GetVectorFormat(nfd.LogicalFormatMap());
switch (instr->Mask(NEON3SameLogicalMask)) {
case NEON_AND:
and_(vf, rd, rn, rm);
break;
case NEON_ORR:
orr(vf, rd, rn, rm);
break;
case NEON_ORN:
orn(vf, rd, rn, rm);
break;
case NEON_EOR:
eor(vf, rd, rn, rm);
break;
case NEON_BIC:
bic(vf, rd, rn, rm);
break;
case NEON_BIF:
bif(vf, rd, rn, rm);
break;
case NEON_BIT:
bit(vf, rd, rn, rm);
break;
case NEON_BSL:
bsl(vf, rd, rn, rm);
break;
default:
UNIMPLEMENTED();
}
} else if (instr->Mask(NEON3SameFPFMask) == NEON3SameFPFixed) {
VectorFormat vf = nfd.GetVectorFormat(nfd.FPFormatMap());
switch (instr->Mask(NEON3SameFPMask)) {
case NEON_FADD:
fadd(vf, rd, rn, rm);
break;
case NEON_FSUB:
fsub(vf, rd, rn, rm);
break;
case NEON_FMUL:
fmul(vf, rd, rn, rm);
break;
case NEON_FDIV:
fdiv(vf, rd, rn, rm);
break;
case NEON_FMAX:
fmax(vf, rd, rn, rm);
break;
case NEON_FMIN:
fmin(vf, rd, rn, rm);
break;
case NEON_FMAXNM:
fmaxnm(vf, rd, rn, rm);
break;
case NEON_FMINNM:
fminnm(vf, rd, rn, rm);
break;
case NEON_FMLA:
fmla(vf, rd, rn, rm);
break;
case NEON_FMLS:
fmls(vf, rd, rn, rm);
break;
case NEON_FMULX:
fmulx(vf, rd, rn, rm);
break;
case NEON_FACGE:
fabscmp(vf, rd, rn, rm, ge);
break;
case NEON_FACGT:
fabscmp(vf, rd, rn, rm, gt);
break;
case NEON_FCMEQ:
fcmp(vf, rd, rn, rm, eq);
break;
case NEON_FCMGE:
fcmp(vf, rd, rn, rm, ge);
break;
case NEON_FCMGT:
fcmp(vf, rd, rn, rm, gt);
break;
case NEON_FRECPS:
frecps(vf, rd, rn, rm);
break;
case NEON_FRSQRTS:
frsqrts(vf, rd, rn, rm);
break;
case NEON_FABD:
fabd(vf, rd, rn, rm);
break;
case NEON_FADDP:
faddp(vf, rd, rn, rm);
break;
case NEON_FMAXP:
fmaxp(vf, rd, rn, rm);
break;
case NEON_FMAXNMP:
fmaxnmp(vf, rd, rn, rm);
break;
case NEON_FMINP:
fminp(vf, rd, rn, rm);
break;
case NEON_FMINNMP:
fminnmp(vf, rd, rn, rm);
break;
default:
UNIMPLEMENTED();
}
} else {
VectorFormat vf = nfd.GetVectorFormat();
switch (instr->Mask(NEON3SameMask)) {
case NEON_ADD:
add(vf, rd, rn, rm);
break;
case NEON_ADDP:
addp(vf, rd, rn, rm);
break;
case NEON_CMEQ:
cmp(vf, rd, rn, rm, eq);
break;
case NEON_CMGE:
cmp(vf, rd, rn, rm, ge);
break;
case NEON_CMGT:
cmp(vf, rd, rn, rm, gt);
break;
case NEON_CMHI:
cmp(vf, rd, rn, rm, hi);
break;
case NEON_CMHS:
cmp(vf, rd, rn, rm, hs);
break;
case NEON_CMTST:
cmptst(vf, rd, rn, rm);
break;
case NEON_MLS:
mls(vf, rd, rn, rm);
break;
case NEON_MLA:
mla(vf, rd, rn, rm);
break;
case NEON_MUL:
mul(vf, rd, rn, rm);
break;
case NEON_PMUL:
pmul(vf, rd, rn, rm);
break;
case NEON_SMAX:
smax(vf, rd, rn, rm);
break;
case NEON_SMAXP:
smaxp(vf, rd, rn, rm);
break;
case NEON_SMIN:
smin(vf, rd, rn, rm);
break;
case NEON_SMINP:
sminp(vf, rd, rn, rm);
break;
case NEON_SUB:
sub(vf, rd, rn, rm);
break;
case NEON_UMAX:
umax(vf, rd, rn, rm);
break;
case NEON_UMAXP:
umaxp(vf, rd, rn, rm);
break;
case NEON_UMIN:
umin(vf, rd, rn, rm);
break;
case NEON_UMINP:
uminp(vf, rd, rn, rm);
break;
case NEON_SSHL:
sshl(vf, rd, rn, rm);
break;
case NEON_USHL:
ushl(vf, rd, rn, rm);
break;
case NEON_SABD:
AbsDiff(vf, rd, rn, rm, true);
break;
case NEON_UABD:
AbsDiff(vf, rd, rn, rm, false);
break;
case NEON_SABA:
saba(vf, rd, rn, rm);
break;
case NEON_UABA:
uaba(vf, rd, rn, rm);
break;
case NEON_UQADD:
add(vf, rd, rn, rm).UnsignedSaturate(vf);
break;
case NEON_SQADD:
add(vf, rd, rn, rm).SignedSaturate(vf);
break;
case NEON_UQSUB:
sub(vf, rd, rn, rm).UnsignedSaturate(vf);
break;
case NEON_SQSUB:
sub(vf, rd, rn, rm).SignedSaturate(vf);
break;
case NEON_SQDMULH:
sqdmulh(vf, rd, rn, rm);
break;
case NEON_SQRDMULH:
sqrdmulh(vf, rd, rn, rm);
break;
case NEON_UQSHL:
ushl(vf, rd, rn, rm).UnsignedSaturate(vf);
break;
case NEON_SQSHL:
sshl(vf, rd, rn, rm).SignedSaturate(vf);
break;
case NEON_URSHL:
ushl(vf, rd, rn, rm).Round(vf);
break;
case NEON_SRSHL:
sshl(vf, rd, rn, rm).Round(vf);
break;
case NEON_UQRSHL:
ushl(vf, rd, rn, rm).Round(vf).UnsignedSaturate(vf);
break;
case NEON_SQRSHL:
sshl(vf, rd, rn, rm).Round(vf).SignedSaturate(vf);
break;
case NEON_UHADD:
add(vf, rd, rn, rm).Uhalve(vf);
break;
case NEON_URHADD:
add(vf, rd, rn, rm).Uhalve(vf).Round(vf);
break;
case NEON_SHADD:
add(vf, rd, rn, rm).Halve(vf);
break;
case NEON_SRHADD:
add(vf, rd, rn, rm).Halve(vf).Round(vf);
break;
case NEON_UHSUB:
sub(vf, rd, rn, rm).Uhalve(vf);
break;
case NEON_SHSUB:
sub(vf, rd, rn, rm).Halve(vf);
break;
default:
UNIMPLEMENTED();
}
}
}
void Simulator::VisitNEON3Different(Instruction* instr) {
NEONFormatDecoder nfd(instr);
VectorFormat vf = nfd.GetVectorFormat();
VectorFormat vf_l = nfd.GetVectorFormat(nfd.LongIntegerFormatMap());
SimVRegister& rd = vreg(instr->Rd());
SimVRegister& rn = vreg(instr->Rn());
SimVRegister& rm = vreg(instr->Rm());
switch (instr->Mask(NEON3DifferentMask)) {
case NEON_PMULL:
pmull(vf_l, rd, rn, rm);
break;
case NEON_PMULL2:
pmull2(vf_l, rd, rn, rm);
break;
case NEON_UADDL:
uaddl(vf_l, rd, rn, rm);
break;
case NEON_UADDL2:
uaddl2(vf_l, rd, rn, rm);
break;
case NEON_SADDL:
saddl(vf_l, rd, rn, rm);
break;
case NEON_SADDL2:
saddl2(vf_l, rd, rn, rm);
break;
case NEON_USUBL:
usubl(vf_l, rd, rn, rm);
break;
case NEON_USUBL2:
usubl2(vf_l, rd, rn, rm);
break;
case NEON_SSUBL:
ssubl(vf_l, rd, rn, rm);
break;
case NEON_SSUBL2:
ssubl2(vf_l, rd, rn, rm);
break;
case NEON_SABAL:
sabal(vf_l, rd, rn, rm);
break;
case NEON_SABAL2:
sabal2(vf_l, rd, rn, rm);
break;
case NEON_UABAL:
uabal(vf_l, rd, rn, rm);
break;
case NEON_UABAL2:
uabal2(vf_l, rd, rn, rm);
break;
case NEON_SABDL:
sabdl(vf_l, rd, rn, rm);
break;
case NEON_SABDL2:
sabdl2(vf_l, rd, rn, rm);
break;
case NEON_UABDL:
uabdl(vf_l, rd, rn, rm);
break;
case NEON_UABDL2:
uabdl2(vf_l, rd, rn, rm);
break;
case NEON_SMLAL:
smlal(vf_l, rd, rn, rm);
break;
case NEON_SMLAL2:
smlal2(vf_l, rd, rn, rm);
break;
case NEON_UMLAL:
umlal(vf_l, rd, rn, rm);
break;
case NEON_UMLAL2:
umlal2(vf_l, rd, rn, rm);
break;
case NEON_SMLSL:
smlsl(vf_l, rd, rn, rm);
break;
case NEON_SMLSL2:
smlsl2(vf_l, rd, rn, rm);
break;
case NEON_UMLSL:
umlsl(vf_l, rd, rn, rm);
break;
case NEON_UMLSL2:
umlsl2(vf_l, rd, rn, rm);
break;
case NEON_SMULL:
smull(vf_l, rd, rn, rm);
break;
case NEON_SMULL2:
smull2(vf_l, rd, rn, rm);
break;
case NEON_UMULL:
umull(vf_l, rd, rn, rm);
break;
case NEON_UMULL2:
umull2(vf_l, rd, rn, rm);
break;
case NEON_SQDMLAL:
sqdmlal(vf_l, rd, rn, rm);
break;
case NEON_SQDMLAL2:
sqdmlal2(vf_l, rd, rn, rm);
break;
case NEON_SQDMLSL:
sqdmlsl(vf_l, rd, rn, rm);
break;
case NEON_SQDMLSL2:
sqdmlsl2(vf_l, rd, rn, rm);
break;
case NEON_SQDMULL:
sqdmull(vf_l, rd, rn, rm);
break;
case NEON_SQDMULL2:
sqdmull2(vf_l, rd, rn, rm);
break;
case NEON_UADDW:
uaddw(vf_l, rd, rn, rm);
break;
case NEON_UADDW2:
uaddw2(vf_l, rd, rn, rm);
break;
case NEON_SADDW:
saddw(vf_l, rd, rn, rm);
break;
case NEON_SADDW2:
saddw2(vf_l, rd, rn, rm);
break;
case NEON_USUBW:
usubw(vf_l, rd, rn, rm);
break;
case NEON_USUBW2:
usubw2(vf_l, rd, rn, rm);
break;
case NEON_SSUBW:
ssubw(vf_l, rd, rn, rm);
break;
case NEON_SSUBW2:
ssubw2(vf_l, rd, rn, rm);
break;
case NEON_ADDHN:
addhn(vf, rd, rn, rm);
break;
case NEON_ADDHN2:
addhn2(vf, rd, rn, rm);
break;
case NEON_RADDHN:
raddhn(vf, rd, rn, rm);
break;
case NEON_RADDHN2:
raddhn2(vf, rd, rn, rm);
break;
case NEON_SUBHN:
subhn(vf, rd, rn, rm);
break;
case NEON_SUBHN2:
subhn2(vf, rd, rn, rm);
break;
case NEON_RSUBHN:
rsubhn(vf, rd, rn, rm);
break;
case NEON_RSUBHN2:
rsubhn2(vf, rd, rn, rm);
break;
default:
UNIMPLEMENTED();
}
}
void Simulator::VisitNEONAcrossLanes(Instruction* instr) {
NEONFormatDecoder nfd(instr);
SimVRegister& rd = vreg(instr->Rd());
SimVRegister& rn = vreg(instr->Rn());
// The input operand's VectorFormat is passed for these instructions.
if (instr->Mask(NEONAcrossLanesFPFMask) == NEONAcrossLanesFPFixed) {
VectorFormat vf = nfd.GetVectorFormat(nfd.FPFormatMap());
switch (instr->Mask(NEONAcrossLanesFPMask)) {
case NEON_FMAXV:
fmaxv(vf, rd, rn);
break;
case NEON_FMINV:
fminv(vf, rd, rn);
break;
case NEON_FMAXNMV:
fmaxnmv(vf, rd, rn);
break;
case NEON_FMINNMV:
fminnmv(vf, rd, rn);
break;
default:
UNIMPLEMENTED();
}
} else {
VectorFormat vf = nfd.GetVectorFormat();
switch (instr->Mask(NEONAcrossLanesMask)) {
case NEON_ADDV:
addv(vf, rd, rn);
break;
case NEON_SMAXV:
smaxv(vf, rd, rn);
break;
case NEON_SMINV:
sminv(vf, rd, rn);
break;
case NEON_UMAXV:
umaxv(vf, rd, rn);
break;
case NEON_UMINV:
uminv(vf, rd, rn);
break;
case NEON_SADDLV:
saddlv(vf, rd, rn);
break;
case NEON_UADDLV:
uaddlv(vf, rd, rn);
break;
default:
UNIMPLEMENTED();
}
}
}
void Simulator::VisitNEONByIndexedElement(Instruction* instr) {
NEONFormatDecoder nfd(instr);
VectorFormat vf_r = nfd.GetVectorFormat();
VectorFormat vf = nfd.GetVectorFormat(nfd.LongIntegerFormatMap());
SimVRegister& rd = vreg(instr->Rd());
SimVRegister& rn = vreg(instr->Rn());
ByElementOp Op = nullptr;
int rm_reg = instr->Rm();
int index = (instr->NEONH() << 1) | instr->NEONL();
if (instr->NEONSize() == 1) {
rm_reg &= 0xF;
index = (index << 1) | instr->NEONM();
}
switch (instr->Mask(NEONByIndexedElementMask)) {
case NEON_MUL_byelement:
Op = &Simulator::mul;
vf = vf_r;
break;
case NEON_MLA_byelement:
Op = &Simulator::mla;
vf = vf_r;
break;
case NEON_MLS_byelement:
Op = &Simulator::mls;
vf = vf_r;
break;
case NEON_SQDMULH_byelement:
Op = &Simulator::sqdmulh;
vf = vf_r;
break;
case NEON_SQRDMULH_byelement:
Op = &Simulator::sqrdmulh;
vf = vf_r;
break;
case NEON_SMULL_byelement:
if (instr->Mask(NEON_Q)) {
Op = &Simulator::smull2;
} else {
Op = &Simulator::smull;
}
break;
case NEON_UMULL_byelement:
if (instr->Mask(NEON_Q)) {
Op = &Simulator::umull2;
} else {
Op = &Simulator::umull;
}
break;
case NEON_SMLAL_byelement:
if (instr->Mask(NEON_Q)) {
Op = &Simulator::smlal2;
} else {
Op = &Simulator::smlal;
}
break;
case NEON_UMLAL_byelement:
if (instr->Mask(NEON_Q)) {
Op = &Simulator::umlal2;
} else {
Op = &Simulator::umlal;
}
break;
case NEON_SMLSL_byelement:
if (instr->Mask(NEON_Q)) {
Op = &Simulator::smlsl2;
} else {
Op = &Simulator::smlsl;
}
break;
case NEON_UMLSL_byelement:
if (instr->Mask(NEON_Q)) {
Op = &Simulator::umlsl2;
} else {
Op = &Simulator::umlsl;
}
break;
case NEON_SQDMULL_byelement:
if (instr->Mask(NEON_Q)) {
Op = &Simulator::sqdmull2;
} else {
Op = &Simulator::sqdmull;
}
break;
case NEON_SQDMLAL_byelement:
if (instr->Mask(NEON_Q)) {
Op = &Simulator::sqdmlal2;
} else {
Op = &Simulator::sqdmlal;
}
break;
case NEON_SQDMLSL_byelement:
if (instr->Mask(NEON_Q)) {
Op = &Simulator::sqdmlsl2;
} else {
Op = &Simulator::sqdmlsl;
}
break;
default:
index = instr->NEONH();
if ((instr->FPType() & 1) == 0) {
index = (index << 1) | instr->NEONL();
}
vf = nfd.GetVectorFormat(nfd.FPFormatMap());
switch (instr->Mask(NEONByIndexedElementFPMask)) {
case NEON_FMUL_byelement:
Op = &Simulator::fmul;
break;
case NEON_FMLA_byelement:
Op = &Simulator::fmla;
break;
case NEON_FMLS_byelement:
Op = &Simulator::fmls;
break;
case NEON_FMULX_byelement:
Op = &Simulator::fmulx;
break;
default:
UNIMPLEMENTED();
}
}
(this->*Op)(vf, rd, rn, vreg(rm_reg), index);
}
void Simulator::VisitNEONCopy(Instruction* instr) {
NEONFormatDecoder nfd(instr, NEONFormatDecoder::TriangularFormatMap());
VectorFormat vf = nfd.GetVectorFormat();
SimVRegister& rd = vreg(instr->Rd());
SimVRegister& rn = vreg(instr->Rn());
int imm5 = instr->ImmNEON5();
int lsb = LowestSetBitPosition(imm5);
int reg_index = imm5 >> lsb;
if (instr->Mask(NEONCopyInsElementMask) == NEON_INS_ELEMENT) {
int imm4 = instr->ImmNEON4();
DCHECK_GE(lsb, 1);
int rn_index = imm4 >> (lsb - 1);
ins_element(vf, rd, reg_index, rn, rn_index);
} else if (instr->Mask(NEONCopyInsGeneralMask) == NEON_INS_GENERAL) {
ins_immediate(vf, rd, reg_index, xreg(instr->Rn()));
} else if (instr->Mask(NEONCopyUmovMask) == NEON_UMOV) {
uint64_t value = LogicVRegister(rn).Uint(vf, reg_index);
value &= MaxUintFromFormat(vf);
set_xreg(instr->Rd(), value);
} else if (instr->Mask(NEONCopyUmovMask) == NEON_SMOV) {
int64_t value = LogicVRegister(rn).Int(vf, reg_index);
if (instr->NEONQ()) {
set_xreg(instr->Rd(), value);
} else {
DCHECK(is_int32(value));
set_wreg(instr->Rd(), static_cast<int32_t>(value));
}
} else if (instr->Mask(NEONCopyDupElementMask) == NEON_DUP_ELEMENT) {
dup_element(vf, rd, rn, reg_index);
} else if (instr->Mask(NEONCopyDupGeneralMask) == NEON_DUP_GENERAL) {
dup_immediate(vf, rd, xreg(instr->Rn()));
} else {
UNIMPLEMENTED();
}
}
void Simulator::VisitNEONExtract(Instruction* instr) {
NEONFormatDecoder nfd(instr, NEONFormatDecoder::LogicalFormatMap());
VectorFormat vf = nfd.GetVectorFormat();
SimVRegister& rd = vreg(instr->Rd());
SimVRegister& rn = vreg(instr->Rn());
SimVRegister& rm = vreg(instr->Rm());
if (instr->Mask(NEONExtractMask) == NEON_EXT) {
int index = instr->ImmNEONExt();
ext(vf, rd, rn, rm, index);
} else {
UNIMPLEMENTED();
}
}
void Simulator::NEONLoadStoreMultiStructHelper(const Instruction* instr,
AddrMode addr_mode) {
NEONFormatDecoder nfd(instr, NEONFormatDecoder::LoadStoreFormatMap());
VectorFormat vf = nfd.GetVectorFormat();
uint64_t addr_base = xreg(instr->Rn(), Reg31IsStackPointer);
int reg_size = RegisterSizeInBytesFromFormat(vf);
int reg[4];
uint64_t addr[4];
for (int i = 0; i < 4; i++) {
reg[i] = (instr->Rt() + i) % kNumberOfVRegisters;
addr[i] = addr_base + (i * reg_size);
}
int count = 1;
bool log_read = true;
// Bit 23 determines whether this is an offset or post-index addressing mode.
// In offset mode, bits 20 to 16 should be zero; these bits encode the
// register of immediate in post-index mode.
if ((instr->Bit(23) == 0) && (instr->Bits(20, 16) != 0)) {
UNREACHABLE();
}
// We use the PostIndex mask here, as it works in this case for both Offset
// and PostIndex addressing.
switch (instr->Mask(NEONLoadStoreMultiStructPostIndexMask)) {
case NEON_LD1_4v:
case NEON_LD1_4v_post:
ld1(vf, vreg(reg[3]), addr[3]);
count++;
V8_FALLTHROUGH;
case NEON_LD1_3v:
case NEON_LD1_3v_post:
ld1(vf, vreg(reg[2]), addr[2]);
count++;
V8_FALLTHROUGH;
case NEON_LD1_2v:
case NEON_LD1_2v_post:
ld1(vf, vreg(reg[1]), addr[1]);
count++;
V8_FALLTHROUGH;
case NEON_LD1_1v:
case NEON_LD1_1v_post:
ld1(vf, vreg(reg[0]), addr[0]);
break;
case NEON_ST1_4v:
case NEON_ST1_4v_post:
st1(vf, vreg(reg[3]), addr[3]);
count++;
V8_FALLTHROUGH;
case NEON_ST1_3v:
case NEON_ST1_3v_post:
st1(vf, vreg(reg[2]), addr[2]);
count++;
V8_FALLTHROUGH;
case NEON_ST1_2v:
case NEON_ST1_2v_post:
st1(vf, vreg(reg[1]), addr[1]);
count++;
V8_FALLTHROUGH;
case NEON_ST1_1v:
case NEON_ST1_1v_post:
st1(vf, vreg(reg[0]), addr[0]);
log_read = false;
break;
case NEON_LD2_post:
case NEON_LD2:
ld2(vf, vreg(reg[0]), vreg(reg[1]), addr[0]);
count = 2;
break;
case NEON_ST2:
case NEON_ST2_post:
st2(vf, vreg(reg[0]), vreg(reg[1]), addr[0]);
count = 2;
log_read = false;
break;
case NEON_LD3_post:
case NEON_LD3:
ld3(vf, vreg(reg[0]), vreg(reg[1]), vreg(reg[2]), addr[0]);
count = 3;
break;
case NEON_ST3:
case NEON_ST3_post:
st3(vf, vreg(reg[0]), vreg(reg[1]), vreg(reg[2]), addr[0]);
count = 3;
log_read = false;
break;
case NEON_LD4_post:
case NEON_LD4:
ld4(vf, vreg(reg[0]), vreg(reg[1]), vreg(reg[2]), vreg(reg[3]), addr[0]);
count = 4;
break;
case NEON_ST4:
case NEON_ST4_post:
st4(vf, vreg(reg[0]), vreg(reg[1]), vreg(reg[2]), vreg(reg[3]), addr[0]);
count = 4;
log_read = false;
break;
default:
UNIMPLEMENTED();
}
{
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
if (log_read) {
local_monitor_.NotifyLoad();
} else {
local_monitor_.NotifyStore();
GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_processor_);
}
}
// Explicitly log the register update whilst we have type information.
for (int i = 0; i < count; i++) {
// For de-interleaving loads, only print the base address.
int lane_size = LaneSizeInBytesFromFormat(vf);
PrintRegisterFormat format = GetPrintRegisterFormatTryFP(
GetPrintRegisterFormatForSize(reg_size, lane_size));
if (log_read) {
LogVRead(addr_base, reg[i], format);
} else {
LogVWrite(addr_base, reg[i], format);
}
}
if (addr_mode == PostIndex) {
int rm = instr->Rm();
// The immediate post index addressing mode is indicated by rm = 31.
// The immediate is implied by the number of vector registers used.
addr_base +=
(rm == 31) ? RegisterSizeInBytesFromFormat(vf) * count : xreg(rm);
set_xreg(instr->Rn(), addr_base);
} else {
DCHECK_EQ(addr_mode, Offset);
}
}
void Simulator::VisitNEONLoadStoreMultiStruct(Instruction* instr) {
NEONLoadStoreMultiStructHelper(instr, Offset);
}
void Simulator::VisitNEONLoadStoreMultiStructPostIndex(Instruction* instr) {
NEONLoadStoreMultiStructHelper(instr, PostIndex);
}
void Simulator::NEONLoadStoreSingleStructHelper(const Instruction* instr,
AddrMode addr_mode) {
uint64_t addr = xreg(instr->Rn(), Reg31IsStackPointer);
int rt = instr->Rt();
// Bit 23 determines whether this is an offset or post-index addressing mode.
// In offset mode, bits 20 to 16 should be zero; these bits encode the
// register of immediate in post-index mode.
DCHECK_IMPLIES(instr->Bit(23) == 0, instr->Bits(20, 16) == 0);
bool do_load = false;
NEONFormatDecoder nfd(instr, NEONFormatDecoder::LoadStoreFormatMap());
VectorFormat vf_t = nfd.GetVectorFormat();
VectorFormat vf = kFormat16B;
// We use the PostIndex mask here, as it works in this case for both Offset
// and PostIndex addressing.
switch (instr->Mask(NEONLoadStoreSingleStructPostIndexMask)) {
case NEON_LD1_b:
case NEON_LD1_b_post:
case NEON_LD2_b:
case NEON_LD2_b_post:
case NEON_LD3_b:
case NEON_LD3_b_post:
case NEON_LD4_b:
case NEON_LD4_b_post:
do_load = true;
V8_FALLTHROUGH;
case NEON_ST1_b:
case NEON_ST1_b_post:
case NEON_ST2_b:
case NEON_ST2_b_post:
case NEON_ST3_b:
case NEON_ST3_b_post:
case NEON_ST4_b:
case NEON_ST4_b_post:
break;
case NEON_LD1_h:
case NEON_LD1_h_post:
case NEON_LD2_h:
case NEON_LD2_h_post:
case NEON_LD3_h:
case NEON_LD3_h_post:
case NEON_LD4_h:
case NEON_LD4_h_post:
do_load = true;
V8_FALLTHROUGH;
case NEON_ST1_h:
case NEON_ST1_h_post:
case NEON_ST2_h:
case NEON_ST2_h_post:
case NEON_ST3_h:
case NEON_ST3_h_post:
case NEON_ST4_h:
case NEON_ST4_h_post:
vf = kFormat8H;
break;
case NEON_LD1_s:
case NEON_LD1_s_post:
case NEON_LD2_s:
case NEON_LD2_s_post:
case NEON_LD3_s:
case NEON_LD3_s_post:
case NEON_LD4_s:
case NEON_LD4_s_post:
do_load = true;
V8_FALLTHROUGH;
case NEON_ST1_s:
case NEON_ST1_s_post:
case NEON_ST2_s:
case NEON_ST2_s_post:
case NEON_ST3_s:
case NEON_ST3_s_post:
case NEON_ST4_s:
case NEON_ST4_s_post: {
static_assert((NEON_LD1_s | (1 << NEONLSSize_offset)) == NEON_LD1_d,
"LSB of size distinguishes S and D registers.");
static_assert(
(NEON_LD1_s_post | (1 << NEONLSSize_offset)) == NEON_LD1_d_post,
"LSB of size distinguishes S and D registers.");
static_assert((NEON_ST1_s | (1 << NEONLSSize_offset)) == NEON_ST1_d,
"LSB of size distinguishes S and D registers.");
static_assert(
(NEON_ST1_s_post | (1 << NEONLSSize_offset)) == NEON_ST1_d_post,
"LSB of size distinguishes S and D registers.");
vf = ((instr->NEONLSSize() & 1) == 0) ? kFormat4S : kFormat2D;
break;
}
case NEON_LD1R:
case NEON_LD1R_post: {
vf = vf_t;
ld1r(vf, vreg(rt), addr);
do_load = true;
break;
}
case NEON_LD2R:
case NEON_LD2R_post: {
vf = vf_t;
int rt2 = (rt + 1) % kNumberOfVRegisters;
ld2r(vf, vreg(rt), vreg(rt2), addr);
do_load = true;
break;
}
case NEON_LD3R:
case NEON_LD3R_post: {
vf = vf_t;
int rt2 = (rt + 1) % kNumberOfVRegisters;
int rt3 = (rt2 + 1) % kNumberOfVRegisters;
ld3r(vf, vreg(rt), vreg(rt2), vreg(rt3), addr);
do_load = true;
break;
}
case NEON_LD4R:
case NEON_LD4R_post: {
vf = vf_t;
int rt2 = (rt + 1) % kNumberOfVRegisters;
int rt3 = (rt2 + 1) % kNumberOfVRegisters;
int rt4 = (rt3 + 1) % kNumberOfVRegisters;
ld4r(vf, vreg(rt), vreg(rt2), vreg(rt3), vreg(rt4), addr);
do_load = true;
break;
}
default:
UNIMPLEMENTED();
}
PrintRegisterFormat print_format =
GetPrintRegisterFormatTryFP(GetPrintRegisterFormat(vf));
// Make sure that the print_format only includes a single lane.
print_format =
static_cast<PrintRegisterFormat>(print_format & ~kPrintRegAsVectorMask);
int esize = LaneSizeInBytesFromFormat(vf);
int index_shift = LaneSizeInBytesLog2FromFormat(vf);
int lane = instr->NEONLSIndex(index_shift);
int scale = 0;
int rt2 = (rt + 1) % kNumberOfVRegisters;
int rt3 = (rt2 + 1) % kNumberOfVRegisters;
int rt4 = (rt3 + 1) % kNumberOfVRegisters;
switch (instr->Mask(NEONLoadStoreSingleLenMask)) {
case NEONLoadStoreSingle1:
scale = 1;
if (do_load) {
ld1(vf, vreg(rt), lane, addr);
LogVRead(addr, rt, print_format, lane);
} else {
st1(vf, vreg(rt), lane, addr);
LogVWrite(addr, rt, print_format, lane);
}
break;
case NEONLoadStoreSingle2:
scale = 2;
if (do_load) {
ld2(vf, vreg(rt), vreg(rt2), lane, addr);
LogVRead(addr, rt, print_format, lane);
LogVRead(addr + esize, rt2, print_format, lane);
} else {
st2(vf, vreg(rt), vreg(rt2), lane, addr);
LogVWrite(addr, rt, print_format, lane);
LogVWrite(addr + esize, rt2, print_format, lane);
}
break;
case NEONLoadStoreSingle3:
scale = 3;
if (do_load) {
ld3(vf, vreg(rt), vreg(rt2), vreg(rt3), lane, addr);
LogVRead(addr, rt, print_format, lane);
LogVRead(addr + esize, rt2, print_format, lane);
LogVRead(addr + (2 * esize), rt3, print_format, lane);
} else {
st3(vf, vreg(rt), vreg(rt2), vreg(rt3), lane, addr);
LogVWrite(addr, rt, print_format, lane);
LogVWrite(addr + esize, rt2, print_format, lane);
LogVWrite(addr + (2 * esize), rt3, print_format, lane);
}
break;
case NEONLoadStoreSingle4:
scale = 4;
if (do_load) {
ld4(vf, vreg(rt), vreg(rt2), vreg(rt3), vreg(rt4), lane, addr);
LogVRead(addr, rt, print_format, lane);
LogVRead(addr + esize, rt2, print_format, lane);
LogVRead(addr + (2 * esize), rt3, print_format, lane);
LogVRead(addr + (3 * esize), rt4, print_format, lane);
} else {
st4(vf, vreg(rt), vreg(rt2), vreg(rt3), vreg(rt4), lane, addr);
LogVWrite(addr, rt, print_format, lane);
LogVWrite(addr + esize, rt2, print_format, lane);
LogVWrite(addr + (2 * esize), rt3, print_format, lane);
LogVWrite(addr + (3 * esize), rt4, print_format, lane);
}
break;
default:
UNIMPLEMENTED();
}
{
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
if (do_load) {
local_monitor_.NotifyLoad();
} else {
local_monitor_.NotifyStore();
GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_processor_);
}
}
if (addr_mode == PostIndex) {
int rm = instr->Rm();
int lane_size = LaneSizeInBytesFromFormat(vf);
set_xreg(instr->Rn(), addr + ((rm == 31) ? (scale * lane_size) : xreg(rm)));
}
}
void Simulator::VisitNEONLoadStoreSingleStruct(Instruction* instr) {
NEONLoadStoreSingleStructHelper(instr, Offset);
}
void Simulator::VisitNEONLoadStoreSingleStructPostIndex(Instruction* instr) {
NEONLoadStoreSingleStructHelper(instr, PostIndex);
}
void Simulator::VisitNEONModifiedImmediate(Instruction* instr) {
SimVRegister& rd = vreg(instr->Rd());
int cmode = instr->NEONCmode();
int cmode_3_1 = (cmode >> 1) & 7;
int cmode_3 = (cmode >> 3) & 1;
int cmode_2 = (cmode >> 2) & 1;
int cmode_1 = (cmode >> 1) & 1;
int cmode_0 = cmode & 1;
int q = instr->NEONQ();
int op_bit = instr->NEONModImmOp();
uint64_t imm8 = instr->ImmNEONabcdefgh();
// Find the format and immediate value
uint64_t imm = 0;
VectorFormat vform = kFormatUndefined;
switch (cmode_3_1) {
case 0x0:
case 0x1:
case 0x2:
case 0x3:
vform = (q == 1) ? kFormat4S : kFormat2S;
imm = imm8 << (8 * cmode_3_1);
break;
case 0x4:
case 0x5:
vform = (q == 1) ? kFormat8H : kFormat4H;
imm = imm8 << (8 * cmode_1);
break;
case 0x6:
vform = (q == 1) ? kFormat4S : kFormat2S;
if (cmode_0 == 0) {
imm = imm8 << 8 | 0x000000FF;
} else {
imm = imm8 << 16 | 0x0000FFFF;
}
break;
case 0x7:
if (cmode_0 == 0 && op_bit == 0) {
vform = q ? kFormat16B : kFormat8B;
imm = imm8;
} else if (cmode_0 == 0 && op_bit == 1) {
vform = q ? kFormat2D : kFormat1D;
imm = 0;
for (int i = 0; i < 8; ++i) {
if (imm8 & (1ULL << i)) {
imm |= (UINT64_C(0xFF) << (8 * i));
}
}
} else { // cmode_0 == 1, cmode == 0xF.
if (op_bit == 0) {
vform = q ? kFormat4S : kFormat2S;
imm = bit_cast<uint32_t>(instr->ImmNEONFP32());
} else if (q == 1) {
vform = kFormat2D;
imm = bit_cast<uint64_t>(instr->ImmNEONFP64());
} else {
DCHECK((q == 0) && (op_bit == 1) && (cmode == 0xF));
VisitUnallocated(instr);
}
}
break;
default:
UNREACHABLE();
}
// Find the operation.
NEONModifiedImmediateOp op;
if (cmode_3 == 0) {
if (cmode_0 == 0) {
op = op_bit ? NEONModifiedImmediate_MVNI : NEONModifiedImmediate_MOVI;
} else { // cmode<0> == '1'
op = op_bit ? NEONModifiedImmediate_BIC : NEONModifiedImmediate_ORR;
}
} else { // cmode<3> == '1'
if (cmode_2 == 0) {
if (cmode_0 == 0) {
op = op_bit ? NEONModifiedImmediate_MVNI : NEONModifiedImmediate_MOVI;
} else { // cmode<0> == '1'
op = op_bit ? NEONModifiedImmediate_BIC : NEONModifiedImmediate_ORR;
}
} else { // cmode<2> == '1'
if (cmode_1 == 0) {
op = op_bit ? NEONModifiedImmediate_MVNI : NEONModifiedImmediate_MOVI;
} else { // cmode<1> == '1'
if (cmode_0 == 0) {
op = NEONModifiedImmediate_MOVI;
} else { // cmode<0> == '1'
op = NEONModifiedImmediate_MOVI;
}
}
}
}
// Call the logic function.
switch (op) {
case NEONModifiedImmediate_ORR:
orr(vform, rd, rd, imm);
break;
case NEONModifiedImmediate_BIC:
bic(vform, rd, rd, imm);
break;
case NEONModifiedImmediate_MOVI:
movi(vform, rd, imm);
break;
case NEONModifiedImmediate_MVNI:
mvni(vform, rd, imm);
break;
default:
VisitUnimplemented(instr);
}
}
void Simulator::VisitNEONScalar2RegMisc(Instruction* instr) {
NEONFormatDecoder nfd(instr, NEONFormatDecoder::ScalarFormatMap());
VectorFormat vf = nfd.GetVectorFormat();
SimVRegister& rd = vreg(instr->Rd());
SimVRegister& rn = vreg(instr->Rn());
if (instr->Mask(NEON2RegMiscOpcode) <= NEON_NEG_scalar_opcode) {
// These instructions all use a two bit size field, except NOT and RBIT,
// which use the field to encode the operation.
switch (instr->Mask(NEONScalar2RegMiscMask)) {
case NEON_CMEQ_zero_scalar:
cmp(vf, rd, rn, 0, eq);
break;
case NEON_CMGE_zero_scalar:
cmp(vf, rd, rn, 0, ge);
break;
case NEON_CMGT_zero_scalar:
cmp(vf, rd, rn, 0, gt);
break;
case NEON_CMLT_zero_scalar:
cmp(vf, rd, rn, 0, lt);
break;
case NEON_CMLE_zero_scalar:
cmp(vf, rd, rn, 0, le);
break;
case NEON_ABS_scalar:
abs(vf, rd, rn);
break;
case NEON_SQABS_scalar:
abs(vf, rd, rn).SignedSaturate(vf);
break;
case NEON_NEG_scalar:
neg(vf, rd, rn);
break;
case NEON_SQNEG_scalar:
neg(vf, rd, rn).SignedSaturate(vf);
break;
case NEON_SUQADD_scalar:
suqadd(vf, rd, rn);
break;
case NEON_USQADD_scalar:
usqadd(vf, rd, rn);
break;
default:
UNIMPLEMENTED();
break;
}
} else {
VectorFormat fpf = nfd.GetVectorFormat(nfd.FPScalarFormatMap());
FPRounding fpcr_rounding = static_cast<FPRounding>(fpcr().RMode());
// These instructions all use a one bit size field, except SQXTUN, SQXTN
// and UQXTN, which use a two bit size field.
switch (instr->Mask(NEONScalar2RegMiscFPMask)) {
case NEON_FRECPE_scalar:
frecpe(fpf, rd, rn, fpcr_rounding);
break;
case NEON_FRECPX_scalar:
frecpx(fpf, rd, rn);
break;
case NEON_FRSQRTE_scalar:
frsqrte(fpf, rd, rn);
break;
case NEON_FCMGT_zero_scalar:
fcmp_zero(fpf, rd, rn, gt);
break;
case NEON_FCMGE_zero_scalar:
fcmp_zero(fpf, rd, rn, ge);
break;
case NEON_FCMEQ_zero_scalar:
fcmp_zero(fpf, rd, rn, eq);
break;
case NEON_FCMLE_zero_scalar:
fcmp_zero(fpf, rd, rn, le);
break;
case NEON_FCMLT_zero_scalar:
fcmp_zero(fpf, rd, rn, lt);
break;
case NEON_SCVTF_scalar:
scvtf(fpf, rd, rn, 0, fpcr_rounding);
break;
case NEON_UCVTF_scalar:
ucvtf(fpf, rd, rn, 0, fpcr_rounding);
break;
case NEON_FCVTNS_scalar:
fcvts(fpf, rd, rn, FPTieEven);
break;
case NEON_FCVTNU_scalar:
fcvtu(fpf, rd, rn, FPTieEven);
break;
case NEON_FCVTPS_scalar:
fcvts(fpf, rd, rn, FPPositiveInfinity);
break;
case NEON_FCVTPU_scalar:
fcvtu(fpf, rd, rn, FPPositiveInfinity);
break;
case NEON_FCVTMS_scalar:
fcvts(fpf, rd, rn, FPNegativeInfinity);
break;
case NEON_FCVTMU_scalar:
fcvtu(fpf, rd, rn, FPNegativeInfinity);
break;
case NEON_FCVTZS_scalar:
fcvts(fpf, rd, rn, FPZero);
break;
case NEON_FCVTZU_scalar:
fcvtu(fpf, rd, rn, FPZero);
break;
case NEON_FCVTAS_scalar:
fcvts(fpf, rd, rn, FPTieAway);
break;
case NEON_FCVTAU_scalar:
fcvtu(fpf, rd, rn, FPTieAway);
break;
case NEON_FCVTXN_scalar:
// Unlike all of the other FP instructions above, fcvtxn encodes dest
// size S as size<0>=1. There's only one case, so we ignore the form.
DCHECK_EQ(instr->Bit(22), 1);
fcvtxn(kFormatS, rd, rn);
break;
default:
switch (instr->Mask(NEONScalar2RegMiscMask)) {
case NEON_SQXTN_scalar:
sqxtn(vf, rd, rn);
break;
case NEON_UQXTN_scalar:
uqxtn(vf, rd, rn);
break;
case NEON_SQXTUN_scalar:
sqxtun(vf, rd, rn);
break;
default:
UNIMPLEMENTED();
}
}
}
}
void Simulator::VisitNEONScalar3Diff(Instruction* instr) {
NEONFormatDecoder nfd(instr, NEONFormatDecoder::LongScalarFormatMap());
VectorFormat vf = nfd.GetVectorFormat();
SimVRegister& rd = vreg(instr->Rd());
SimVRegister& rn = vreg(instr->Rn());
SimVRegister& rm = vreg(instr->Rm());
switch (instr->Mask(NEONScalar3DiffMask)) {
case NEON_SQDMLAL_scalar:
sqdmlal(vf, rd, rn, rm);
break;
case NEON_SQDMLSL_scalar:
sqdmlsl(vf, rd, rn, rm);
break;
case NEON_SQDMULL_scalar:
sqdmull(vf, rd, rn, rm);
break;
default:
UNIMPLEMENTED();
}
}
void Simulator::VisitNEONScalar3Same(Instruction* instr) {
NEONFormatDecoder nfd(instr, NEONFormatDecoder::ScalarFormatMap());
VectorFormat vf = nfd.GetVectorFormat();
SimVRegister& rd = vreg(instr->Rd());
SimVRegister& rn = vreg(instr->Rn());
SimVRegister& rm = vreg(instr->Rm());
if (instr->Mask(NEONScalar3SameFPFMask) == NEONScalar3SameFPFixed) {
vf = nfd.GetVectorFormat(nfd.FPScalarFormatMap());
switch (instr->Mask(NEONScalar3SameFPMask)) {
case NEON_FMULX_scalar:
fmulx(vf, rd, rn, rm);
break;
case NEON_FACGE_scalar:
fabscmp(vf, rd, rn, rm, ge);
break;
case NEON_FACGT_scalar:
fabscmp(vf, rd, rn, rm, gt);
break;
case NEON_FCMEQ_scalar:
fcmp(vf, rd, rn, rm, eq);
break;
case NEON_FCMGE_scalar:
fcmp(vf, rd, rn, rm, ge);
break;
case NEON_FCMGT_scalar:
fcmp(vf, rd, rn, rm, gt);
break;
case NEON_FRECPS_scalar:
frecps(vf, rd, rn, rm);
break;
case NEON_FRSQRTS_scalar:
frsqrts(vf, rd, rn, rm);
break;
case NEON_FABD_scalar:
fabd(vf, rd, rn, rm);
break;
default:
UNIMPLEMENTED();
}
} else {
switch (instr->Mask(NEONScalar3SameMask)) {
case NEON_ADD_scalar:
add(vf, rd, rn, rm);
break;
case NEON_SUB_scalar:
sub(vf, rd, rn, rm);
break;
case NEON_CMEQ_scalar:
cmp(vf, rd, rn, rm, eq);
break;
case NEON_CMGE_scalar:
cmp(vf, rd, rn, rm, ge);
break;
case NEON_CMGT_scalar:
cmp(vf, rd, rn, rm, gt);
break;
case NEON_CMHI_scalar:
cmp(vf, rd, rn, rm, hi);
break;
case NEON_CMHS_scalar:
cmp(vf, rd, rn, rm, hs);
break;
case NEON_CMTST_scalar:
cmptst(vf, rd, rn, rm);
break;
case NEON_USHL_scalar:
ushl(vf, rd, rn, rm);
break;
case NEON_SSHL_scalar:
sshl(vf, rd, rn, rm);
break;
case NEON_SQDMULH_scalar:
sqdmulh(vf, rd, rn, rm);
break;
case NEON_SQRDMULH_scalar:
sqrdmulh(vf, rd, rn, rm);
break;
case NEON_UQADD_scalar:
add(vf, rd, rn, rm).UnsignedSaturate(vf);
break;
case NEON_SQADD_scalar:
add(vf, rd, rn, rm).SignedSaturate(vf);
break;
case NEON_UQSUB_scalar:
sub(vf, rd, rn, rm).UnsignedSaturate(vf);
break;
case NEON_SQSUB_scalar:
sub(vf, rd, rn, rm).SignedSaturate(vf);
break;
case NEON_UQSHL_scalar:
ushl(vf, rd, rn, rm).UnsignedSaturate(vf);
break;
case NEON_SQSHL_scalar:
sshl(vf, rd, rn, rm).SignedSaturate(vf);
break;
case NEON_URSHL_scalar:
ushl(vf, rd, rn, rm).Round(vf);
break;
case NEON_SRSHL_scalar:
sshl(vf, rd, rn, rm).Round(vf);
break;
case NEON_UQRSHL_scalar:
ushl(vf, rd, rn, rm).Round(vf).UnsignedSaturate(vf);
break;
case NEON_SQRSHL_scalar:
sshl(vf, rd, rn, rm).Round(vf).SignedSaturate(vf);
break;
default:
UNIMPLEMENTED();
}
}
}
void Simulator::VisitNEONScalarByIndexedElement(Instruction* instr) {
NEONFormatDecoder nfd(instr, NEONFormatDecoder::LongScalarFormatMap());
VectorFormat vf = nfd.GetVectorFormat();
VectorFormat vf_r = nfd.GetVectorFormat(nfd.ScalarFormatMap());
SimVRegister& rd = vreg(instr->Rd());
SimVRegister& rn = vreg(instr->Rn());
ByElementOp Op = nullptr;
int rm_reg = instr->Rm();
int index = (instr->NEONH() << 1) | instr->NEONL();
if (instr->NEONSize() == 1) {
rm_reg &= 0xF;
index = (index << 1) | instr->NEONM();
}
switch (instr->Mask(NEONScalarByIndexedElementMask)) {
case NEON_SQDMULL_byelement_scalar:
Op = &Simulator::sqdmull;
break;
case NEON_SQDMLAL_byelement_scalar:
Op = &Simulator::sqdmlal;
break;
case NEON_SQDMLSL_byelement_scalar:
Op = &Simulator::sqdmlsl;
break;
case NEON_SQDMULH_byelement_scalar:
Op = &Simulator::sqdmulh;
vf = vf_r;
break;
case NEON_SQRDMULH_byelement_scalar:
Op = &Simulator::sqrdmulh;
vf = vf_r;
break;
default:
vf = nfd.GetVectorFormat(nfd.FPScalarFormatMap());
index = instr->NEONH();
if ((instr->FPType() & 1) == 0) {
index = (index << 1) | instr->NEONL();
}
switch (instr->Mask(NEONScalarByIndexedElementFPMask)) {
case NEON_FMUL_byelement_scalar:
Op = &Simulator::fmul;
break;
case NEON_FMLA_byelement_scalar:
Op = &Simulator::fmla;
break;
case NEON_FMLS_byelement_scalar:
Op = &Simulator::fmls;
break;
case NEON_FMULX_byelement_scalar:
Op = &Simulator::fmulx;
break;
default:
UNIMPLEMENTED();
}
}
(this->*Op)(vf, rd, rn, vreg(rm_reg), index);
}
void Simulator::VisitNEONScalarCopy(Instruction* instr) {
NEONFormatDecoder nfd(instr, NEONFormatDecoder::TriangularScalarFormatMap());
VectorFormat vf = nfd.GetVectorFormat();
SimVRegister& rd = vreg(instr->Rd());
SimVRegister& rn = vreg(instr->Rn());
if (instr->Mask(NEONScalarCopyMask) == NEON_DUP_ELEMENT_scalar) {
int imm5 = instr->ImmNEON5();
int lsb = LowestSetBitPosition(imm5);
int rn_index = imm5 >> lsb;
dup_element(vf, rd, rn, rn_index);
} else {
UNIMPLEMENTED();
}
}
void Simulator::VisitNEONScalarPairwise(Instruction* instr) {
NEONFormatDecoder nfd(instr, NEONFormatDecoder::FPScalarFormatMap());
VectorFormat vf = nfd.GetVectorFormat();
SimVRegister& rd = vreg(instr->Rd());
SimVRegister& rn = vreg(instr->Rn());
switch (instr->Mask(NEONScalarPairwiseMask)) {
case NEON_ADDP_scalar:
addp(vf, rd, rn);
break;
case NEON_FADDP_scalar:
faddp(vf, rd, rn);
break;
case NEON_FMAXP_scalar:
fmaxp(vf, rd, rn);
break;
case NEON_FMAXNMP_scalar:
fmaxnmp(vf, rd, rn);
break;
case NEON_FMINP_scalar:
fminp(vf, rd, rn);
break;
case NEON_FMINNMP_scalar:
fminnmp(vf, rd, rn);
break;
default:
UNIMPLEMENTED();
}
}
void Simulator::VisitNEONScalarShiftImmediate(Instruction* instr) {
SimVRegister& rd = vreg(instr->Rd());
SimVRegister& rn = vreg(instr->Rn());
FPRounding fpcr_rounding = static_cast<FPRounding>(fpcr().RMode());
static const NEONFormatMap map = {
{22, 21, 20, 19},
{NF_UNDEF, NF_B, NF_H, NF_H, NF_S, NF_S, NF_S, NF_S, NF_D, NF_D, NF_D,
NF_D, NF_D, NF_D, NF_D, NF_D}};
NEONFormatDecoder nfd(instr, &map);
VectorFormat vf = nfd.GetVectorFormat();
int highestSetBit = HighestSetBitPosition(instr->ImmNEONImmh());
int immhimmb = instr->ImmNEONImmhImmb();
int right_shift = (16 << highestSetBit) - immhimmb;
int left_shift = immhimmb - (8 << highestSetBit);
switch (instr->Mask(NEONScalarShiftImmediateMask)) {
case NEON_SHL_scalar:
shl(vf, rd, rn, left_shift);
break;
case NEON_SLI_scalar:
sli(vf, rd, rn, left_shift);
break;
case NEON_SQSHL_imm_scalar:
sqshl(vf, rd, rn, left_shift);
break;
case NEON_UQSHL_imm_scalar:
uqshl(vf, rd, rn, left_shift);
break;
case NEON_SQSHLU_scalar:
sqshlu(vf, rd, rn, left_shift);
break;
case NEON_SRI_scalar:
sri(vf, rd, rn, right_shift);
break;
case NEON_SSHR_scalar:
sshr(vf, rd, rn, right_shift);
break;
case NEON_USHR_scalar:
ushr(vf, rd, rn, right_shift);
break;
case NEON_SRSHR_scalar:
sshr(vf, rd, rn, right_shift).Round(vf);
break;
case NEON_URSHR_scalar:
ushr(vf, rd, rn, right_shift).Round(vf);
break;
case NEON_SSRA_scalar:
ssra(vf, rd, rn, right_shift);
break;
case NEON_USRA_scalar:
usra(vf, rd, rn, right_shift);
break;
case NEON_SRSRA_scalar:
srsra(vf, rd, rn, right_shift);
break;
case NEON_URSRA_scalar:
ursra(vf, rd, rn, right_shift);
break;
case NEON_UQSHRN_scalar:
uqshrn(vf, rd, rn, right_shift);
break;
case NEON_UQRSHRN_scalar:
uqrshrn(vf, rd, rn, right_shift);
break;
case NEON_SQSHRN_scalar:
sqshrn(vf, rd, rn, right_shift);
break;
case NEON_SQRSHRN_scalar:
sqrshrn(vf, rd, rn, right_shift);
break;
case NEON_SQSHRUN_scalar:
sqshrun(vf, rd, rn, right_shift);
break;
case NEON_SQRSHRUN_scalar:
sqrshrun(vf, rd, rn, right_shift);
break;
case NEON_FCVTZS_imm_scalar:
fcvts(vf, rd, rn, FPZero, right_shift);
break;
case NEON_FCVTZU_imm_scalar:
fcvtu(vf, rd, rn, FPZero, right_shift);
break;
case NEON_SCVTF_imm_scalar:
scvtf(vf, rd, rn, right_shift, fpcr_rounding);
break;
case NEON_UCVTF_imm_scalar:
ucvtf(vf, rd, rn, right_shift, fpcr_rounding);
break;
default:
UNIMPLEMENTED();
}
}
void Simulator::VisitNEONShiftImmediate(Instruction* instr) {
SimVRegister& rd = vreg(instr->Rd());
SimVRegister& rn = vreg(instr->Rn());
FPRounding fpcr_rounding = static_cast<FPRounding>(fpcr().RMode());
// 00010->8B, 00011->16B, 001x0->4H, 001x1->8H,
// 01xx0->2S, 01xx1->4S, 1xxx1->2D, all others undefined.
static const NEONFormatMap map = {
{22, 21, 20, 19, 30},
{NF_UNDEF, NF_UNDEF, NF_8B, NF_16B, NF_4H, NF_8H, NF_4H, NF_8H,
NF_2S, NF_4S, NF_2S, NF_4S, NF_2S, NF_4S, NF_2S, NF_4S,
NF_UNDEF, NF_2D, NF_UNDEF, NF_2D, NF_UNDEF, NF_2D, NF_UNDEF, NF_2D,
NF_UNDEF, NF_2D, NF_UNDEF, NF_2D, NF_UNDEF, NF_2D, NF_UNDEF, NF_2D}};
NEONFormatDecoder nfd(instr, &map);
VectorFormat vf = nfd.GetVectorFormat();
// 0001->8H, 001x->4S, 01xx->2D, all others undefined.
static const NEONFormatMap map_l = {
{22, 21, 20, 19},
{NF_UNDEF, NF_8H, NF_4S, NF_4S, NF_2D, NF_2D, NF_2D, NF_2D}};
VectorFormat vf_l = nfd.GetVectorFormat(&map_l);
int highestSetBit = HighestSetBitPosition(instr->ImmNEONImmh());
int immhimmb = instr->ImmNEONImmhImmb();
int right_shift = (16 << highestSetBit) - immhimmb;
int left_shift = immhimmb - (8 << highestSetBit);
switch (instr->Mask(NEONShiftImmediateMask)) {
case NEON_SHL:
shl(vf, rd, rn, left_shift);
break;
case NEON_SLI:
sli(vf, rd, rn, left_shift);
break;
case NEON_SQSHLU:
sqshlu(vf, rd, rn, left_shift);
break;
case NEON_SRI:
sri(vf, rd, rn, right_shift);
break;
case NEON_SSHR:
sshr(vf, rd, rn, right_shift);
break;
case NEON_USHR:
ushr(vf, rd, rn, right_shift);
break;
case NEON_SRSHR:
sshr(vf, rd, rn, right_shift).Round(vf);
break;
case NEON_URSHR:
ushr(vf, rd, rn, right_shift).Round(vf);
break;
case NEON_SSRA:
ssra(vf, rd, rn, right_shift);
break;
case NEON_USRA:
usra(vf, rd, rn, right_shift);
break;
case NEON_SRSRA:
srsra(vf, rd, rn, right_shift);
break;
case NEON_URSRA:
ursra(vf, rd, rn, right_shift);
break;
case NEON_SQSHL_imm:
sqshl(vf, rd, rn, left_shift);
break;
case NEON_UQSHL_imm:
uqshl(vf, rd, rn, left_shift);
break;
case NEON_SCVTF_imm:
scvtf(vf, rd, rn, right_shift, fpcr_rounding);
break;
case NEON_UCVTF_imm:
ucvtf(vf, rd, rn, right_shift, fpcr_rounding);
break;
case NEON_FCVTZS_imm:
fcvts(vf, rd, rn, FPZero, right_shift);
break;
case NEON_FCVTZU_imm:
fcvtu(vf, rd, rn, FPZero, right_shift);
break;
case NEON_SSHLL:
vf = vf_l;
if (instr->Mask(NEON_Q)) {
sshll2(vf, rd, rn, left_shift);
} else {
sshll(vf, rd, rn, left_shift);
}
break;
case NEON_USHLL:
vf = vf_l;
if (instr->Mask(NEON_Q)) {
ushll2(vf, rd, rn, left_shift);
} else {
ushll(vf, rd, rn, left_shift);
}
break;
case NEON_SHRN:
if (instr->Mask(NEON_Q)) {
shrn2(vf, rd, rn, right_shift);
} else {
shrn(vf, rd, rn, right_shift);
}
break;
case NEON_RSHRN:
if (instr->Mask(NEON_Q)) {
rshrn2(vf, rd, rn, right_shift);
} else {
rshrn(vf, rd, rn, right_shift);
}
break;
case NEON_UQSHRN:
if (instr->Mask(NEON_Q)) {
uqshrn2(vf, rd, rn, right_shift);
} else {
uqshrn(vf, rd, rn, right_shift);
}
break;
case NEON_UQRSHRN:
if (instr->Mask(NEON_Q)) {
uqrshrn2(vf, rd, rn, right_shift);
} else {
uqrshrn(vf, rd, rn, right_shift);
}
break;
case NEON_SQSHRN:
if (instr->Mask(NEON_Q)) {
sqshrn2(vf, rd, rn, right_shift);
} else {
sqshrn(vf, rd, rn, right_shift);
}
break;
case NEON_SQRSHRN:
if (instr->Mask(NEON_Q)) {
sqrshrn2(vf, rd, rn, right_shift);
} else {
sqrshrn(vf, rd, rn, right_shift);
}
break;
case NEON_SQSHRUN:
if (instr->Mask(NEON_Q)) {
sqshrun2(vf, rd, rn, right_shift);
} else {
sqshrun(vf, rd, rn, right_shift);
}
break;
case NEON_SQRSHRUN:
if (instr->Mask(NEON_Q)) {
sqrshrun2(vf, rd, rn, right_shift);
} else {
sqrshrun(vf, rd, rn, right_shift);
}
break;
default:
UNIMPLEMENTED();
}
}
void Simulator::VisitNEONTable(Instruction* instr) {
NEONFormatDecoder nfd(instr, NEONFormatDecoder::LogicalFormatMap());
VectorFormat vf = nfd.GetVectorFormat();
SimVRegister& rd = vreg(instr->Rd());
SimVRegister& rn = vreg(instr->Rn());
SimVRegister& rn2 = vreg((instr->Rn() + 1) % kNumberOfVRegisters);
SimVRegister& rn3 = vreg((instr->Rn() + 2) % kNumberOfVRegisters);
SimVRegister& rn4 = vreg((instr->Rn() + 3) % kNumberOfVRegisters);
SimVRegister& rm = vreg(instr->Rm());
switch (instr->Mask(NEONTableMask)) {
case NEON_TBL_1v:
tbl(vf, rd, rn, rm);
break;
case NEON_TBL_2v:
tbl(vf, rd, rn, rn2, rm);
break;
case NEON_TBL_3v:
tbl(vf, rd, rn, rn2, rn3, rm);
break;
case NEON_TBL_4v:
tbl(vf, rd, rn, rn2, rn3, rn4, rm);
break;
case NEON_TBX_1v:
tbx(vf, rd, rn, rm);
break;
case NEON_TBX_2v:
tbx(vf, rd, rn, rn2, rm);
break;
case NEON_TBX_3v:
tbx(vf, rd, rn, rn2, rn3, rm);
break;
case NEON_TBX_4v:
tbx(vf, rd, rn, rn2, rn3, rn4, rm);
break;
default:
UNIMPLEMENTED();
}
}
void Simulator::VisitNEONPerm(Instruction* instr) {
NEONFormatDecoder nfd(instr);
VectorFormat vf = nfd.GetVectorFormat();
SimVRegister& rd = vreg(instr->Rd());
SimVRegister& rn = vreg(instr->Rn());
SimVRegister& rm = vreg(instr->Rm());
switch (instr->Mask(NEONPermMask)) {
case NEON_TRN1:
trn1(vf, rd, rn, rm);
break;
case NEON_TRN2:
trn2(vf, rd, rn, rm);
break;
case NEON_UZP1:
uzp1(vf, rd, rn, rm);
break;
case NEON_UZP2:
uzp2(vf, rd, rn, rm);
break;
case NEON_ZIP1:
zip1(vf, rd, rn, rm);
break;
case NEON_ZIP2:
zip2(vf, rd, rn, rm);
break;
default:
UNIMPLEMENTED();
}
}
void Simulator::DoPrintf(Instruction* instr) {
DCHECK((instr->Mask(ExceptionMask) == HLT) &&
(instr->ImmException() == kImmExceptionIsPrintf));
// Read the arguments encoded inline in the instruction stream.
uint32_t arg_count;
uint32_t arg_pattern_list;
STATIC_ASSERT(sizeof(*instr) == 1);
memcpy(&arg_count, instr + kPrintfArgCountOffset, sizeof(arg_count));
memcpy(&arg_pattern_list, instr + kPrintfArgPatternListOffset,
sizeof(arg_pattern_list));
DCHECK_LE(arg_count, kPrintfMaxArgCount);
DCHECK_EQ(arg_pattern_list >> (kPrintfArgPatternBits * arg_count), 0);
// We need to call the host printf function with a set of arguments defined by
// arg_pattern_list. Because we don't know the types and sizes of the
// arguments, this is very difficult to do in a robust and portable way. To
// work around the problem, we pick apart the format string, and print one
// format placeholder at a time.
// Allocate space for the format string. We take a copy, so we can modify it.
// Leave enough space for one extra character per expected argument (plus the
// '\0' termination).
const char* format_base = reg<const char*>(0);
DCHECK_NOT_NULL(format_base);
size_t length = strlen(format_base) + 1;
char* const format = new char[length + arg_count];
// A list of chunks, each with exactly one format placeholder.
const char* chunks[kPrintfMaxArgCount];
// Copy the format string and search for format placeholders.
uint32_t placeholder_count = 0;
char* format_scratch = format;
for (size_t i = 0; i < length; i++) {
if (format_base[i] != '%') {
*format_scratch++ = format_base[i];
} else {
if (format_base[i + 1] == '%') {
// Ignore explicit "%%" sequences.
*format_scratch++ = format_base[i];
if (placeholder_count == 0) {
// The first chunk is passed to printf using "%s", so we need to
// unescape "%%" sequences in this chunk. (Just skip the next '%'.)
i++;
} else {
// Otherwise, pass through "%%" unchanged.
*format_scratch++ = format_base[++i];
}
} else {
CHECK(placeholder_count < arg_count);
// Insert '\0' before placeholders, and store their locations.
*format_scratch++ = '\0';
chunks[placeholder_count++] = format_scratch;
*format_scratch++ = format_base[i];
}
}
}
DCHECK(format_scratch <= (format + length + arg_count));
CHECK(placeholder_count == arg_count);
// Finally, call printf with each chunk, passing the appropriate register
// argument. Normally, printf returns the number of bytes transmitted, so we
// can emulate a single printf call by adding the result from each chunk. If
// any call returns a negative (error) value, though, just return that value.
fprintf(stream_, "%s", clr_printf);
// Because '\0' is inserted before each placeholder, the first string in
// 'format' contains no format placeholders and should be printed literally.
int result = fprintf(stream_, "%s", format);
int pcs_r = 1; // Start at x1. x0 holds the format string.
int pcs_f = 0; // Start at d0.
if (result >= 0) {
for (uint32_t i = 0; i < placeholder_count; i++) {
int part_result = -1;
uint32_t arg_pattern = arg_pattern_list >> (i * kPrintfArgPatternBits);
arg_pattern &= (1 << kPrintfArgPatternBits) - 1;
switch (arg_pattern) {
case kPrintfArgW:
part_result = fprintf(stream_, chunks[i], wreg(pcs_r++));
break;
case kPrintfArgX:
part_result = fprintf(stream_, chunks[i], xreg(pcs_r++));
break;
case kPrintfArgD:
part_result = fprintf(stream_, chunks[i], dreg(pcs_f++));
break;
default:
UNREACHABLE();
}
if (part_result < 0) {
// Handle error values.
result = part_result;
break;
}
result += part_result;
}
}
fprintf(stream_, "%s", clr_normal);
#ifdef DEBUG
CorruptAllCallerSavedCPURegisters();
#endif
// Printf returns its result in x0 (just like the C library's printf).
set_xreg(0, result);
// The printf parameters are inlined in the code, so skip them.
set_pc(instr->InstructionAtOffset(kPrintfLength));
// Set LR as if we'd just called a native printf function.
set_lr(pc());
delete[] format;
}
Simulator::LocalMonitor::LocalMonitor()
: access_state_(MonitorAccess::Open),
tagged_addr_(0),
size_(TransactionSize::None) {}
void Simulator::LocalMonitor::Clear() {
access_state_ = MonitorAccess::Open;
tagged_addr_ = 0;
size_ = TransactionSize::None;
}
void Simulator::LocalMonitor::NotifyLoad() {
if (access_state_ == MonitorAccess::Exclusive) {
// A non exclusive load could clear the local monitor. As a result, it's
// most strict to unconditionally clear the local monitor on load.
Clear();
}
}
void Simulator::LocalMonitor::NotifyLoadExcl(uintptr_t addr,
TransactionSize size) {
access_state_ = MonitorAccess::Exclusive;
tagged_addr_ = addr;
size_ = size;
}
void Simulator::LocalMonitor::NotifyStore() {
if (access_state_ == MonitorAccess::Exclusive) {
// A non exclusive store could clear the local monitor. As a result, it's
// most strict to unconditionally clear the local monitor on store.
Clear();
}
}
bool Simulator::LocalMonitor::NotifyStoreExcl(uintptr_t addr,
TransactionSize size) {
if (access_state_ == MonitorAccess::Exclusive) {
// It is allowed for a processor to require that the address matches
// exactly (B2.10.1), so this comparison does not mask addr.
if (addr == tagged_addr_ && size_ == size) {
Clear();
return true;
} else {
// It is implementation-defined whether an exclusive store to a
// non-tagged address will update memory. As a result, it's most strict
// to unconditionally clear the local monitor.
Clear();
return false;
}
} else {
DCHECK(access_state_ == MonitorAccess::Open);
return false;
}
}
Simulator::GlobalMonitor::Processor::Processor()
: access_state_(MonitorAccess::Open),
tagged_addr_(0),
next_(nullptr),
prev_(nullptr),
failure_counter_(0) {}
void Simulator::GlobalMonitor::Processor::Clear_Locked() {
access_state_ = MonitorAccess::Open;
tagged_addr_ = 0;
}
void Simulator::GlobalMonitor::Processor::NotifyLoadExcl_Locked(
uintptr_t addr) {
access_state_ = MonitorAccess::Exclusive;
tagged_addr_ = addr;
}
void Simulator::GlobalMonitor::Processor::NotifyStore_Locked(
bool is_requesting_processor) {
if (access_state_ == MonitorAccess::Exclusive) {
// A non exclusive store could clear the global monitor. As a result, it's
// most strict to unconditionally clear global monitors on store.
Clear_Locked();
}
}
bool Simulator::GlobalMonitor::Processor::NotifyStoreExcl_Locked(
uintptr_t addr, bool is_requesting_processor) {
if (access_state_ == MonitorAccess::Exclusive) {
if (is_requesting_processor) {
// It is allowed for a processor to require that the address matches
// exactly (B2.10.2), so this comparison does not mask addr.
if (addr == tagged_addr_) {
Clear_Locked();
// Introduce occasional stxr failures. This is to simulate the
// behavior of hardware, which can randomly fail due to background
// cache evictions.
if (failure_counter_++ >= kMaxFailureCounter) {
failure_counter_ = 0;
return false;
} else {
return true;
}
}
} else if ((addr & kExclusiveTaggedAddrMask) ==
(tagged_addr_ & kExclusiveTaggedAddrMask)) {
// Check the masked addresses when responding to a successful lock by
// another processor so the implementation is more conservative (i.e. the
// granularity of locking is as large as possible.)
Clear_Locked();
return false;
}
}
return false;
}
void Simulator::GlobalMonitor::NotifyLoadExcl_Locked(uintptr_t addr,
Processor* processor) {
processor->NotifyLoadExcl_Locked(addr);
PrependProcessor_Locked(processor);
}
void Simulator::GlobalMonitor::NotifyStore_Locked(Processor* processor) {
// Notify each processor of the store operation.
for (Processor* iter = head_; iter; iter = iter->next_) {
bool is_requesting_processor = iter == processor;
iter->NotifyStore_Locked(is_requesting_processor);
}
}
bool Simulator::GlobalMonitor::NotifyStoreExcl_Locked(uintptr_t addr,
Processor* processor) {
DCHECK(IsProcessorInLinkedList_Locked(processor));
if (processor->NotifyStoreExcl_Locked(addr, true)) {
// Notify the other processors that this StoreExcl succeeded.
for (Processor* iter = head_; iter; iter = iter->next_) {
if (iter != processor) {
iter->NotifyStoreExcl_Locked(addr, false);
}
}
return true;
} else {
return false;
}
}
bool Simulator::GlobalMonitor::IsProcessorInLinkedList_Locked(
Processor* processor) const {
return head_ == processor || processor->next_ || processor->prev_;
}
void Simulator::GlobalMonitor::PrependProcessor_Locked(Processor* processor) {
if (IsProcessorInLinkedList_Locked(processor)) {
return;
}
if (head_) {
head_->prev_ = processor;
}
processor->prev_ = nullptr;
processor->next_ = head_;
head_ = processor;
}
void Simulator::GlobalMonitor::RemoveProcessor(Processor* processor) {
base::MutexGuard lock_guard(&mutex);
if (!IsProcessorInLinkedList_Locked(processor)) {
return;
}
if (processor->prev_) {
processor->prev_->next_ = processor->next_;
} else {
head_ = processor->next_;
}
if (processor->next_) {
processor->next_->prev_ = processor->prev_;
}
processor->prev_ = nullptr;
processor->next_ = nullptr;
}
#undef SScanF
#undef COLOUR
#undef COLOUR_BOLD
#undef NORMAL
#undef GREY
#undef RED
#undef GREEN
#undef YELLOW
#undef BLUE
#undef MAGENTA
#undef CYAN
#undef WHITE
#undef COMMAND_SIZE
#undef ARG_SIZE
#undef STR
#undef XSTR
} // namespace internal
} // namespace v8
#endif // USE_SIMULATOR