blob: 4ced7aa0cec356e49cdcfd4d4e08dd2d72426030 [file] [log] [blame]
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// renderer_utils:
// Helper methods pertaining to most or all back-ends.
//
#include "libANGLE/renderer/renderer_utils.h"
#include "image_util/copyimage.h"
#include "image_util/imageformats.h"
#include "libANGLE/AttributeMap.h"
#include "libANGLE/Context.h"
#include "libANGLE/Display.h"
#include "libANGLE/formatutils.h"
#include "libANGLE/renderer/ContextImpl.h"
#include "libANGLE/renderer/Format.h"
#include "platform/Feature.h"
#include <string.h>
#include "common/utilities.h"
namespace rx
{
namespace
{
// Both D3D and Vulkan support the same set of standard sample positions for 1, 2, 4, 8, and 16
// samples. See:
//
// - https://msdn.microsoft.com/en-us/library/windows/desktop/ff476218.aspx
//
// -
// https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#primsrast-multisampling
using SamplePositionsArray = std::array<float, 32>;
constexpr std::array<SamplePositionsArray, 5> kSamplePositions = {
{{{0.5f, 0.5f}},
{{0.75f, 0.75f, 0.25f, 0.25f}},
{{0.375f, 0.125f, 0.875f, 0.375f, 0.125f, 0.625f, 0.625f, 0.875f}},
{{0.5625f, 0.3125f, 0.4375f, 0.6875f, 0.8125f, 0.5625f, 0.3125f, 0.1875f, 0.1875f, 0.8125f,
0.0625f, 0.4375f, 0.6875f, 0.9375f, 0.9375f, 0.0625f}},
{{0.5625f, 0.5625f, 0.4375f, 0.3125f, 0.3125f, 0.625f, 0.75f, 0.4375f,
0.1875f, 0.375f, 0.625f, 0.8125f, 0.8125f, 0.6875f, 0.6875f, 0.1875f,
0.375f, 0.875f, 0.5f, 0.0625f, 0.25f, 0.125f, 0.125f, 0.75f,
0.0f, 0.5f, 0.9375f, 0.25f, 0.875f, 0.9375f, 0.0625f, 0.0f}}}};
void CopyColor(gl::ColorF *color)
{
// No-op
}
void PremultiplyAlpha(gl::ColorF *color)
{
color->red *= color->alpha;
color->green *= color->alpha;
color->blue *= color->alpha;
}
void UnmultiplyAlpha(gl::ColorF *color)
{
if (color->alpha != 0.0f)
{
float invAlpha = 1.0f / color->alpha;
color->red *= invAlpha;
color->green *= invAlpha;
color->blue *= invAlpha;
}
}
void ClipChannelsR(gl::ColorF *color)
{
color->green = 0.0f;
color->blue = 0.0f;
color->alpha = 1.0f;
}
void ClipChannelsRG(gl::ColorF *color)
{
color->blue = 0.0f;
color->alpha = 1.0f;
}
void ClipChannelsRGB(gl::ColorF *color)
{
color->alpha = 1.0f;
}
void ClipChannelsLuminance(gl::ColorF *color)
{
color->alpha = 1.0f;
}
void ClipChannelsAlpha(gl::ColorF *color)
{
color->red = 0.0f;
color->green = 0.0f;
color->blue = 0.0f;
}
void ClipChannelsNoOp(gl::ColorF *color) {}
void WriteUintColor(const gl::ColorF &color,
PixelWriteFunction colorWriteFunction,
uint8_t *destPixelData)
{
gl::ColorUI destColor(
static_cast<unsigned int>(color.red * 255), static_cast<unsigned int>(color.green * 255),
static_cast<unsigned int>(color.blue * 255), static_cast<unsigned int>(color.alpha * 255));
colorWriteFunction(reinterpret_cast<const uint8_t *>(&destColor), destPixelData);
}
void WriteFloatColor(const gl::ColorF &color,
PixelWriteFunction colorWriteFunction,
uint8_t *destPixelData)
{
colorWriteFunction(reinterpret_cast<const uint8_t *>(&color), destPixelData);
}
template <int cols, int rows, bool IsColumnMajor>
inline int GetFlattenedIndex(int col, int row)
{
if (IsColumnMajor)
{
return col * rows + row;
}
else
{
return row * cols + col;
}
}
template <typename T,
bool IsSrcColumnMajor,
int colsSrc,
int rowsSrc,
bool IsDstColumnMajor,
int colsDst,
int rowsDst>
void ExpandMatrix(T *target, const GLfloat *value)
{
static_assert(colsSrc <= colsDst && rowsSrc <= rowsDst, "Can only expand!");
constexpr int kDstFlatSize = colsDst * rowsDst;
T staging[kDstFlatSize] = {0};
for (int r = 0; r < rowsSrc; r++)
{
for (int c = 0; c < colsSrc; c++)
{
int srcIndex = GetFlattenedIndex<colsSrc, rowsSrc, IsSrcColumnMajor>(c, r);
int dstIndex = GetFlattenedIndex<colsDst, rowsDst, IsDstColumnMajor>(c, r);
staging[dstIndex] = static_cast<T>(value[srcIndex]);
}
}
memcpy(target, staging, kDstFlatSize * sizeof(T));
}
template <bool IsSrcColumMajor,
int colsSrc,
int rowsSrc,
bool IsDstColumnMajor,
int colsDst,
int rowsDst>
void SetFloatUniformMatrix(unsigned int arrayElementOffset,
unsigned int elementCount,
GLsizei countIn,
const GLfloat *value,
uint8_t *targetData)
{
unsigned int count =
std::min(elementCount - arrayElementOffset, static_cast<unsigned int>(countIn));
const unsigned int targetMatrixStride = colsDst * rowsDst;
GLfloat *target = reinterpret_cast<GLfloat *>(
targetData + arrayElementOffset * sizeof(GLfloat) * targetMatrixStride);
for (unsigned int i = 0; i < count; i++)
{
ExpandMatrix<GLfloat, IsSrcColumMajor, colsSrc, rowsSrc, IsDstColumnMajor, colsDst,
rowsDst>(target, value);
target += targetMatrixStride;
value += colsSrc * rowsSrc;
}
}
void SetFloatUniformMatrixFast(unsigned int arrayElementOffset,
unsigned int elementCount,
GLsizei countIn,
size_t matrixSize,
const GLfloat *value,
uint8_t *targetData)
{
const unsigned int count =
std::min(elementCount - arrayElementOffset, static_cast<unsigned int>(countIn));
const uint8_t *valueData = reinterpret_cast<const uint8_t *>(value);
targetData = targetData + arrayElementOffset * matrixSize;
memcpy(targetData, valueData, matrixSize * count);
}
} // anonymous namespace
PackPixelsParams::PackPixelsParams()
: destFormat(nullptr), outputPitch(0), packBuffer(nullptr), offset(0)
{}
PackPixelsParams::PackPixelsParams(const gl::Rectangle &areaIn,
const angle::Format &destFormat,
GLuint outputPitchIn,
bool reverseRowOrderIn,
gl::Buffer *packBufferIn,
ptrdiff_t offsetIn)
: area(areaIn),
destFormat(&destFormat),
outputPitch(outputPitchIn),
packBuffer(packBufferIn),
reverseRowOrder(reverseRowOrderIn),
offset(offsetIn)
{}
void PackPixels(const PackPixelsParams &params,
const angle::Format &sourceFormat,
int inputPitchIn,
const uint8_t *sourceIn,
uint8_t *destWithoutOffset)
{
uint8_t *destWithOffset = destWithoutOffset + params.offset;
const uint8_t *source = sourceIn;
int inputPitch = inputPitchIn;
if (params.reverseRowOrder)
{
source += inputPitch * (params.area.height - 1);
inputPitch = -inputPitch;
}
if (sourceFormat == *params.destFormat)
{
// Direct copy possible
for (int y = 0; y < params.area.height; ++y)
{
memcpy(destWithOffset + y * params.outputPitch, source + y * inputPitch,
params.area.width * sourceFormat.pixelBytes);
}
return;
}
PixelCopyFunction fastCopyFunc = sourceFormat.fastCopyFunctions.get(params.destFormat->id);
if (fastCopyFunc)
{
// Fast copy is possible through some special function
for (int y = 0; y < params.area.height; ++y)
{
for (int x = 0; x < params.area.width; ++x)
{
uint8_t *dest =
destWithOffset + y * params.outputPitch + x * params.destFormat->pixelBytes;
const uint8_t *src = source + y * inputPitch + x * sourceFormat.pixelBytes;
fastCopyFunc(src, dest);
}
}
return;
}
PixelWriteFunction pixelWriteFunction = params.destFormat->pixelWriteFunction;
ASSERT(pixelWriteFunction != nullptr);
// Maximum size of any Color<T> type used.
uint8_t temp[16];
static_assert(sizeof(temp) >= sizeof(gl::ColorF) && sizeof(temp) >= sizeof(gl::ColorUI) &&
sizeof(temp) >= sizeof(gl::ColorI) &&
sizeof(temp) >= sizeof(angle::DepthStencil),
"Unexpected size of pixel struct.");
PixelReadFunction pixelReadFunction = sourceFormat.pixelReadFunction;
ASSERT(pixelReadFunction != nullptr);
for (int y = 0; y < params.area.height; ++y)
{
for (int x = 0; x < params.area.width; ++x)
{
uint8_t *dest =
destWithOffset + y * params.outputPitch + x * params.destFormat->pixelBytes;
const uint8_t *src = source + y * inputPitch + x * sourceFormat.pixelBytes;
// readFunc and writeFunc will be using the same type of color, CopyTexImage
// will not allow the copy otherwise.
pixelReadFunction(src, temp);
pixelWriteFunction(temp, dest);
}
}
}
bool FastCopyFunctionMap::has(angle::FormatID formatID) const
{
return (get(formatID) != nullptr);
}
PixelCopyFunction FastCopyFunctionMap::get(angle::FormatID formatID) const
{
for (size_t index = 0; index < mSize; ++index)
{
if (mData[index].formatID == formatID)
{
return mData[index].func;
}
}
return nullptr;
}
bool ShouldUseDebugLayers(const egl::AttributeMap &attribs)
{
EGLAttrib debugSetting =
attribs.get(EGL_PLATFORM_ANGLE_DEBUG_LAYERS_ENABLED_ANGLE, EGL_DONT_CARE);
// Prefer to enable debug layers when available.
#if defined(ANGLE_ENABLE_ASSERTS)
return (debugSetting != EGL_FALSE);
#else
return (debugSetting == EGL_TRUE);
#endif // defined(ANGLE_ENABLE_ASSERTS)
}
bool ShouldUseVirtualizedContexts(const egl::AttributeMap &attribs, bool defaultValue)
{
EGLAttrib virtualizedContextRequest =
attribs.get(EGL_PLATFORM_ANGLE_CONTEXT_VIRTUALIZATION_ANGLE, EGL_DONT_CARE);
if (defaultValue)
{
return (virtualizedContextRequest != EGL_FALSE);
}
else
{
return (virtualizedContextRequest == EGL_TRUE);
}
}
void CopyImageCHROMIUM(const uint8_t *sourceData,
size_t sourceRowPitch,
size_t sourcePixelBytes,
size_t sourceDepthPitch,
PixelReadFunction pixelReadFunction,
uint8_t *destData,
size_t destRowPitch,
size_t destPixelBytes,
size_t destDepthPitch,
PixelWriteFunction pixelWriteFunction,
GLenum destUnsizedFormat,
GLenum destComponentType,
size_t width,
size_t height,
size_t depth,
bool unpackFlipY,
bool unpackPremultiplyAlpha,
bool unpackUnmultiplyAlpha)
{
using ConversionFunction = void (*)(gl::ColorF *);
ConversionFunction conversionFunction = CopyColor;
if (unpackPremultiplyAlpha != unpackUnmultiplyAlpha)
{
if (unpackPremultiplyAlpha)
{
conversionFunction = PremultiplyAlpha;
}
else
{
conversionFunction = UnmultiplyAlpha;
}
}
auto clipChannelsFunction = ClipChannelsNoOp;
switch (destUnsizedFormat)
{
case GL_RED:
clipChannelsFunction = ClipChannelsR;
break;
case GL_RG:
clipChannelsFunction = ClipChannelsRG;
break;
case GL_RGB:
clipChannelsFunction = ClipChannelsRGB;
break;
case GL_LUMINANCE:
clipChannelsFunction = ClipChannelsLuminance;
break;
case GL_ALPHA:
clipChannelsFunction = ClipChannelsAlpha;
break;
}
auto writeFunction = (destComponentType == GL_UNSIGNED_INT) ? WriteUintColor : WriteFloatColor;
for (size_t z = 0; z < depth; z++)
{
for (size_t y = 0; y < height; y++)
{
for (size_t x = 0; x < width; x++)
{
const uint8_t *sourcePixelData =
sourceData + y * sourceRowPitch + x * sourcePixelBytes + z * sourceDepthPitch;
gl::ColorF sourceColor;
pixelReadFunction(sourcePixelData, reinterpret_cast<uint8_t *>(&sourceColor));
conversionFunction(&sourceColor);
clipChannelsFunction(&sourceColor);
size_t destY = 0;
if (unpackFlipY)
{
destY += (height - 1);
destY -= y;
}
else
{
destY += y;
}
uint8_t *destPixelData =
destData + destY * destRowPitch + x * destPixelBytes + z * destDepthPitch;
writeFunction(sourceColor, pixelWriteFunction, destPixelData);
}
}
}
}
// IncompleteTextureSet implementation.
IncompleteTextureSet::IncompleteTextureSet() {}
IncompleteTextureSet::~IncompleteTextureSet() {}
void IncompleteTextureSet::onDestroy(const gl::Context *context)
{
// Clear incomplete textures.
for (auto &incompleteTexture : mIncompleteTextures)
{
if (incompleteTexture.get() != nullptr)
{
incompleteTexture->onDestroy(context);
incompleteTexture.set(context, nullptr);
}
}
}
angle::Result IncompleteTextureSet::getIncompleteTexture(
const gl::Context *context,
gl::TextureType type,
MultisampleTextureInitializer *multisampleInitializer,
gl::Texture **textureOut)
{
*textureOut = mIncompleteTextures[type].get();
if (*textureOut != nullptr)
{
return angle::Result::Continue;
}
ContextImpl *implFactory = context->getImplementation();
const GLubyte color[] = {0, 0, 0, 255};
const gl::Extents colorSize(1, 1, 1);
gl::PixelUnpackState unpack;
unpack.alignment = 1;
const gl::Box area(0, 0, 0, 1, 1, 1);
// If a texture is external use a 2D texture for the incomplete texture
gl::TextureType createType = (type == gl::TextureType::External) ? gl::TextureType::_2D : type;
gl::Texture *tex =
new gl::Texture(implFactory, {std::numeric_limits<GLuint>::max()}, createType);
angle::UniqueObjectPointer<gl::Texture, gl::Context> t(tex, context);
// This is a bit of a kludge but is necessary to consume the error.
gl::Context *mutableContext = const_cast<gl::Context *>(context);
if (createType == gl::TextureType::_2DMultisample)
{
ANGLE_TRY(
t->setStorageMultisample(mutableContext, createType, 1, GL_RGBA8, colorSize, true));
}
else
{
ANGLE_TRY(t->setStorage(mutableContext, createType, 1, GL_RGBA8, colorSize));
}
if (type == gl::TextureType::CubeMap)
{
for (gl::TextureTarget face : gl::AllCubeFaceTextureTargets())
{
ANGLE_TRY(t->setSubImage(mutableContext, unpack, nullptr, face, 0, area, GL_RGBA,
GL_UNSIGNED_BYTE, color));
}
}
else if (type == gl::TextureType::_2DMultisample)
{
// Call a specialized clear function to init a multisample texture.
ANGLE_TRY(multisampleInitializer->initializeMultisampleTextureToBlack(context, t.get()));
}
else
{
ANGLE_TRY(t->setSubImage(mutableContext, unpack, nullptr,
gl::NonCubeTextureTypeToTarget(createType), 0, area, GL_RGBA,
GL_UNSIGNED_BYTE, color));
}
ANGLE_TRY(t->syncState(context));
mIncompleteTextures[type].set(context, t.release());
*textureOut = mIncompleteTextures[type].get();
return angle::Result::Continue;
}
#define ANGLE_INSTANTIATE_SET_UNIFORM_MATRIX_FUNC(api, cols, rows) \
template void SetFloatUniformMatrix##api<cols, rows>::Run( \
unsigned int, unsigned int, GLsizei, GLboolean, const GLfloat *, uint8_t *)
ANGLE_INSTANTIATE_SET_UNIFORM_MATRIX_FUNC(GLSL, 2, 2);
ANGLE_INSTANTIATE_SET_UNIFORM_MATRIX_FUNC(GLSL, 3, 3);
ANGLE_INSTANTIATE_SET_UNIFORM_MATRIX_FUNC(GLSL, 2, 3);
ANGLE_INSTANTIATE_SET_UNIFORM_MATRIX_FUNC(GLSL, 3, 2);
ANGLE_INSTANTIATE_SET_UNIFORM_MATRIX_FUNC(GLSL, 4, 2);
ANGLE_INSTANTIATE_SET_UNIFORM_MATRIX_FUNC(GLSL, 4, 3);
ANGLE_INSTANTIATE_SET_UNIFORM_MATRIX_FUNC(HLSL, 2, 2);
ANGLE_INSTANTIATE_SET_UNIFORM_MATRIX_FUNC(HLSL, 3, 3);
ANGLE_INSTANTIATE_SET_UNIFORM_MATRIX_FUNC(HLSL, 2, 3);
ANGLE_INSTANTIATE_SET_UNIFORM_MATRIX_FUNC(HLSL, 3, 2);
ANGLE_INSTANTIATE_SET_UNIFORM_MATRIX_FUNC(HLSL, 2, 4);
ANGLE_INSTANTIATE_SET_UNIFORM_MATRIX_FUNC(HLSL, 3, 4);
#undef ANGLE_INSTANTIATE_SET_UNIFORM_MATRIX_FUNC
#define ANGLE_SPECIALIZATION_ROWS_SET_UNIFORM_MATRIX_FUNC(api, cols, rows) \
template void SetFloatUniformMatrix##api<cols, 4>::Run(unsigned int, unsigned int, GLsizei, \
GLboolean, const GLfloat *, uint8_t *)
template <int cols>
struct SetFloatUniformMatrixGLSL<cols, 4>
{
static void Run(unsigned int arrayElementOffset,
unsigned int elementCount,
GLsizei countIn,
GLboolean transpose,
const GLfloat *value,
uint8_t *targetData);
};
ANGLE_SPECIALIZATION_ROWS_SET_UNIFORM_MATRIX_FUNC(GLSL, 2, 4);
ANGLE_SPECIALIZATION_ROWS_SET_UNIFORM_MATRIX_FUNC(GLSL, 3, 4);
ANGLE_SPECIALIZATION_ROWS_SET_UNIFORM_MATRIX_FUNC(GLSL, 4, 4);
#undef ANGLE_SPECIALIZATION_ROWS_SET_UNIFORM_MATRIX_FUNC
#define ANGLE_SPECIALIZATION_COLS_SET_UNIFORM_MATRIX_FUNC(api, cols, rows) \
template void SetFloatUniformMatrix##api<4, rows>::Run(unsigned int, unsigned int, GLsizei, \
GLboolean, const GLfloat *, uint8_t *)
template <int rows>
struct SetFloatUniformMatrixHLSL<4, rows>
{
static void Run(unsigned int arrayElementOffset,
unsigned int elementCount,
GLsizei countIn,
GLboolean transpose,
const GLfloat *value,
uint8_t *targetData);
};
ANGLE_SPECIALIZATION_COLS_SET_UNIFORM_MATRIX_FUNC(HLSL, 4, 2);
ANGLE_SPECIALIZATION_COLS_SET_UNIFORM_MATRIX_FUNC(HLSL, 4, 3);
ANGLE_SPECIALIZATION_COLS_SET_UNIFORM_MATRIX_FUNC(HLSL, 4, 4);
#undef ANGLE_SPECIALIZATION_COLS_SET_UNIFORM_MATRIX_FUNC
template <int cols>
void SetFloatUniformMatrixGLSL<cols, 4>::Run(unsigned int arrayElementOffset,
unsigned int elementCount,
GLsizei countIn,
GLboolean transpose,
const GLfloat *value,
uint8_t *targetData)
{
const bool isSrcColumnMajor = !transpose;
if (isSrcColumnMajor)
{
// Both src and dst matrixs are has same layout,
// a single memcpy updates all the matrices
constexpr size_t srcMatrixSize = sizeof(GLfloat) * cols * 4;
SetFloatUniformMatrixFast(arrayElementOffset, elementCount, countIn, srcMatrixSize, value,
targetData);
}
else
{
// fallback to general cases
SetFloatUniformMatrix<false, cols, 4, true, cols, 4>(arrayElementOffset, elementCount,
countIn, value, targetData);
}
}
template <int cols, int rows>
void SetFloatUniformMatrixGLSL<cols, rows>::Run(unsigned int arrayElementOffset,
unsigned int elementCount,
GLsizei countIn,
GLboolean transpose,
const GLfloat *value,
uint8_t *targetData)
{
const bool isSrcColumnMajor = !transpose;
// GLSL expects matrix uniforms to be column-major, and each column is padded to 4 rows.
if (isSrcColumnMajor)
{
SetFloatUniformMatrix<true, cols, rows, true, cols, 4>(arrayElementOffset, elementCount,
countIn, value, targetData);
}
else
{
SetFloatUniformMatrix<false, cols, rows, true, cols, 4>(arrayElementOffset, elementCount,
countIn, value, targetData);
}
}
template <int rows>
void SetFloatUniformMatrixHLSL<4, rows>::Run(unsigned int arrayElementOffset,
unsigned int elementCount,
GLsizei countIn,
GLboolean transpose,
const GLfloat *value,
uint8_t *targetData)
{
const bool isSrcColumnMajor = !transpose;
if (!isSrcColumnMajor)
{
// Both src and dst matrixs are has same layout,
// a single memcpy updates all the matrices
constexpr size_t srcMatrixSize = sizeof(GLfloat) * 4 * rows;
SetFloatUniformMatrixFast(arrayElementOffset, elementCount, countIn, srcMatrixSize, value,
targetData);
}
else
{
// fallback to general cases
SetFloatUniformMatrix<true, 4, rows, false, 4, rows>(arrayElementOffset, elementCount,
countIn, value, targetData);
}
}
template <int cols, int rows>
void SetFloatUniformMatrixHLSL<cols, rows>::Run(unsigned int arrayElementOffset,
unsigned int elementCount,
GLsizei countIn,
GLboolean transpose,
const GLfloat *value,
uint8_t *targetData)
{
const bool isSrcColumnMajor = !transpose;
// Internally store matrices as row-major to accomodate HLSL matrix indexing. Each row is
// padded to 4 columns.
if (!isSrcColumnMajor)
{
SetFloatUniformMatrix<false, cols, rows, false, 4, rows>(arrayElementOffset, elementCount,
countIn, value, targetData);
}
else
{
SetFloatUniformMatrix<true, cols, rows, false, 4, rows>(arrayElementOffset, elementCount,
countIn, value, targetData);
}
}
template void GetMatrixUniform<GLint>(GLenum, GLint *, const GLint *, bool);
template void GetMatrixUniform<GLuint>(GLenum, GLuint *, const GLuint *, bool);
void GetMatrixUniform(GLenum type, GLfloat *dataOut, const GLfloat *source, bool transpose)
{
int columns = gl::VariableColumnCount(type);
int rows = gl::VariableRowCount(type);
for (GLint col = 0; col < columns; ++col)
{
for (GLint row = 0; row < rows; ++row)
{
GLfloat *outptr = dataOut + ((col * rows) + row);
const GLfloat *inptr =
transpose ? source + ((row * 4) + col) : source + ((col * 4) + row);
*outptr = *inptr;
}
}
}
template <typename NonFloatT>
void GetMatrixUniform(GLenum type, NonFloatT *dataOut, const NonFloatT *source, bool transpose)
{
UNREACHABLE();
}
const angle::Format &GetFormatFromFormatType(GLenum format, GLenum type)
{
GLenum sizedInternalFormat = gl::GetInternalFormatInfo(format, type).sizedInternalFormat;
angle::FormatID angleFormatID = angle::Format::InternalFormatToID(sizedInternalFormat);
return angle::Format::Get(angleFormatID);
}
angle::Result ComputeStartVertex(ContextImpl *contextImpl,
const gl::IndexRange &indexRange,
GLint baseVertex,
GLint *firstVertexOut)
{
// The entire index range should be within the limits of a 32-bit uint because the largest
// GL index type is GL_UNSIGNED_INT.
ASSERT(indexRange.start <= std::numeric_limits<uint32_t>::max() &&
indexRange.end <= std::numeric_limits<uint32_t>::max());
// The base vertex is only used in DrawElementsIndirect. Given the assertion above and the
// type of mBaseVertex (GLint), adding them both as 64-bit ints is safe.
int64_t startVertexInt64 =
static_cast<int64_t>(baseVertex) + static_cast<int64_t>(indexRange.start);
// OpenGL ES 3.2 spec section 10.5: "Behavior of DrawElementsOneInstance is undefined if the
// vertex ID is negative for any element"
ANGLE_CHECK_GL_MATH(contextImpl, startVertexInt64 >= 0);
// OpenGL ES 3.2 spec section 10.5: "If the vertex ID is larger than the maximum value
// representable by type, it should behave as if the calculation were upconverted to 32-bit
// unsigned integers(with wrapping on overflow conditions)." ANGLE does not fully handle
// these rules, an overflow error is returned if the start vertex cannot be stored in a
// 32-bit signed integer.
ANGLE_CHECK_GL_MATH(contextImpl, startVertexInt64 <= std::numeric_limits<GLint>::max());
*firstVertexOut = static_cast<GLint>(startVertexInt64);
return angle::Result::Continue;
}
angle::Result GetVertexRangeInfo(const gl::Context *context,
GLint firstVertex,
GLsizei vertexOrIndexCount,
gl::DrawElementsType indexTypeOrInvalid,
const void *indices,
GLint baseVertex,
GLint *startVertexOut,
size_t *vertexCountOut)
{
if (indexTypeOrInvalid != gl::DrawElementsType::InvalidEnum)
{
gl::IndexRange indexRange;
ANGLE_TRY(context->getState().getVertexArray()->getIndexRange(
context, indexTypeOrInvalid, vertexOrIndexCount, indices, &indexRange));
ANGLE_TRY(ComputeStartVertex(context->getImplementation(), indexRange, baseVertex,
startVertexOut));
*vertexCountOut = indexRange.vertexCount();
}
else
{
*startVertexOut = firstVertex;
*vertexCountOut = vertexOrIndexCount;
}
return angle::Result::Continue;
}
gl::Rectangle ClipRectToScissor(const gl::State &glState, const gl::Rectangle &rect, bool invertY)
{
if (glState.isScissorTestEnabled())
{
gl::Rectangle clippedRect;
if (!gl::ClipRectangle(glState.getScissor(), rect, &clippedRect))
{
return gl::Rectangle();
}
if (invertY)
{
clippedRect.y = rect.height - clippedRect.y - clippedRect.height;
}
return clippedRect;
}
// If the scissor test isn't enabled, assume it has infinite size. Its intersection with the
// rect would be the rect itself.
//
// Note that on Vulkan, returning this (as opposed to a fixed max-int-sized rect) could lead to
// unnecessary pipeline creations if two otherwise identical pipelines are used on framebuffers
// with different sizes. If such usage is observed in an application, we should investigate
// possible optimizations.
return rect;
}
void OverrideFeaturesWithDisplayState(angle::FeatureSetBase *features,
const egl::DisplayState &state)
{
features->overrideFeatures(state.featureOverridesEnabled, true);
features->overrideFeatures(state.featureOverridesDisabled, false);
}
void GetSamplePosition(GLsizei sampleCount, size_t index, GLfloat *xy)
{
if (sampleCount > 16)
{
// Vulkan (and D3D11) doesn't have standard sample positions for 32 and 64 samples (and no
// drivers are known to support that many samples)
xy[0] = 0.5f;
xy[1] = 0.5f;
}
else
{
size_t indexKey = static_cast<size_t>(gl::log2(sampleCount));
ASSERT(indexKey < kSamplePositions.size() &&
(2 * index + 1) < kSamplePositions[indexKey].size());
xy[0] = kSamplePositions[indexKey][2 * index];
xy[1] = kSamplePositions[indexKey][2 * index + 1];
}
}
} // namespace rx