| #include <glm/gtc/type_precision.hpp> |
| #include <glm/gtx/fast_trigonometry.hpp> |
| #include <glm/gtx/integer.hpp> |
| #include <glm/gtx/common.hpp> |
| #include <glm/gtc/constants.hpp> |
| #include <glm/gtc/ulp.hpp> |
| #include <glm/gtc/vec1.hpp> |
| #include <glm/trigonometric.hpp> |
| #include <cmath> |
| #include <ctime> |
| #include <cstdio> |
| #include <vector> |
| |
| namespace fastCos |
| { |
| int perf(bool NextFloat) |
| { |
| const float begin = -glm::pi<float>(); |
| const float end = glm::pi<float>(); |
| float result = 0.f; |
| |
| const std::clock_t timestamp1 = std::clock(); |
| for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f) |
| result = glm::fastCos(i); |
| |
| const std::clock_t timestamp2 = std::clock(); |
| for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f) |
| result = glm::cos(i); |
| |
| const std::clock_t timestamp3 = std::clock(); |
| const std::clock_t time_fast = timestamp2 - timestamp1; |
| const std::clock_t time_default = timestamp3 - timestamp2; |
| std::printf("fastCos Time %d clocks\n", static_cast<unsigned int>(time_fast)); |
| std::printf("cos Time %d clocks\n", static_cast<unsigned int>(time_default)); |
| |
| return time_fast <= time_default ? 0 : 1; |
| } |
| }//namespace fastCos |
| |
| namespace fastSin |
| { |
| /* |
| float sin(float x) { |
| float temp; |
| temp = (x + M_PI) / ((2 * M_PI) - M_PI); |
| return limited_sin((x + M_PI) - ((2 * M_PI) - M_PI) * temp)); |
| } |
| */ |
| |
| int perf(bool NextFloat) |
| { |
| const float begin = -glm::pi<float>(); |
| const float end = glm::pi<float>(); |
| float result = 0.f; |
| |
| const std::clock_t timestamp1 = std::clock(); |
| for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f) |
| result = glm::fastSin(i); |
| |
| const std::clock_t timestamp2 = std::clock(); |
| for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f) |
| result = glm::sin(i); |
| |
| const std::clock_t timestamp3 = std::clock(); |
| const std::clock_t time_fast = timestamp2 - timestamp1; |
| const std::clock_t time_default = timestamp3 - timestamp2; |
| std::printf("fastSin Time %d clocks\n", static_cast<unsigned int>(time_fast)); |
| std::printf("sin Time %d clocks\n", static_cast<unsigned int>(time_default)); |
| |
| return time_fast <= time_default ? 0 : 1; |
| } |
| }//namespace fastSin |
| |
| namespace fastTan |
| { |
| int perf(bool NextFloat) |
| { |
| const float begin = -glm::pi<float>(); |
| const float end = glm::pi<float>(); |
| float result = 0.f; |
| |
| const std::clock_t timestamp1 = std::clock(); |
| for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f) |
| result = glm::fastTan(i); |
| |
| const std::clock_t timestamp2 = std::clock(); |
| for (float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f) |
| result = glm::tan(i); |
| |
| const std::clock_t timestamp3 = std::clock(); |
| const std::clock_t time_fast = timestamp2 - timestamp1; |
| const std::clock_t time_default = timestamp3 - timestamp2; |
| std::printf("fastTan Time %d clocks\n", static_cast<unsigned int>(time_fast)); |
| std::printf("tan Time %d clocks\n", static_cast<unsigned int>(time_default)); |
| |
| return time_fast <= time_default ? 0 : 1; |
| } |
| }//namespace fastTan |
| |
| namespace fastAcos |
| { |
| int perf(bool NextFloat) |
| { |
| const float begin = -glm::pi<float>(); |
| const float end = glm::pi<float>(); |
| float result = 0.f; |
| |
| const std::clock_t timestamp1 = std::clock(); |
| for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f) |
| result = glm::fastAcos(i); |
| |
| const std::clock_t timestamp2 = std::clock(); |
| for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f) |
| result = glm::acos(i); |
| |
| const std::clock_t timestamp3 = std::clock(); |
| const std::clock_t time_fast = timestamp2 - timestamp1; |
| const std::clock_t time_default = timestamp3 - timestamp2; |
| |
| std::printf("fastAcos Time %d clocks\n", static_cast<unsigned int>(time_fast)); |
| std::printf("acos Time %d clocks\n", static_cast<unsigned int>(time_default)); |
| |
| return time_fast <= time_default ? 0 : 1; |
| } |
| }//namespace fastAcos |
| |
| namespace fastAsin |
| { |
| int perf(bool NextFloat) |
| { |
| const float begin = -glm::pi<float>(); |
| const float end = glm::pi<float>(); |
| float result = 0.f; |
| const std::clock_t timestamp1 = std::clock(); |
| for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f) |
| result = glm::fastAsin(i); |
| const std::clock_t timestamp2 = std::clock(); |
| for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f) |
| result = glm::asin(i); |
| const std::clock_t timestamp3 = std::clock(); |
| const std::clock_t time_fast = timestamp2 - timestamp1; |
| const std::clock_t time_default = timestamp3 - timestamp2; |
| std::printf("fastAsin Time %d clocks\n", static_cast<unsigned int>(time_fast)); |
| std::printf("asin Time %d clocks\n", static_cast<unsigned int>(time_default)); |
| |
| return time_fast <= time_default ? 0 : 1; |
| } |
| }//namespace fastAsin |
| |
| namespace fastAtan |
| { |
| int perf(bool NextFloat) |
| { |
| const float begin = -glm::pi<float>(); |
| const float end = glm::pi<float>(); |
| float result = 0.f; |
| const std::clock_t timestamp1 = std::clock(); |
| for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f) |
| result = glm::fastAtan(i); |
| const std::clock_t timestamp2 = std::clock(); |
| for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f) |
| result = glm::atan(i); |
| const std::clock_t timestamp3 = std::clock(); |
| const std::clock_t time_fast = timestamp2 - timestamp1; |
| const std::clock_t time_default = timestamp3 - timestamp2; |
| std::printf("fastAtan Time %d clocks\n", static_cast<unsigned int>(time_fast)); |
| std::printf("atan Time %d clocks\n", static_cast<unsigned int>(time_default)); |
| |
| return time_fast <= time_default ? 0 : 1; |
| } |
| }//namespace fastAtan |
| |
| namespace taylorCos |
| { |
| glm::vec4 const AngleShift(0.0f, glm::pi<float>() * 0.5f, glm::pi<float>() * 1.0f, glm::pi<float>() * 1.5f); |
| |
| template <typename T, glm::precision P, template <typename, glm::precision> class vecType> |
| GLM_FUNC_QUALIFIER vecType<T, P> taylorSeriesNewCos(vecType<T, P> const & x) |
| { |
| vecType<T, P> const Powed2(x * x); |
| vecType<T, P> const Powed4(Powed2 * Powed2); |
| vecType<T, P> const Powed6(Powed4 * Powed2); |
| vecType<T, P> const Powed8(Powed4 * Powed4); |
| |
| return static_cast<T>(1) |
| - Powed2 * static_cast<T>(0.5) |
| + Powed4 * static_cast<T>(0.04166666666666666666666666666667) |
| - Powed6 * static_cast<T>(0.00138888888888888888888888888889) |
| + Powed8 * static_cast<T>(2.4801587301587301587301587301587e-5); |
| } |
| |
| template <typename T, glm::precision P, template <typename, glm::precision> class vecType> |
| GLM_FUNC_QUALIFIER vecType<T, P> taylorSeriesNewCos6(vecType<T, P> const & x) |
| { |
| vecType<T, P> const Powed2(x * x); |
| vecType<T, P> const Powed4(Powed2 * Powed2); |
| vecType<T, P> const Powed6(Powed4 * Powed2); |
| |
| return static_cast<T>(1) |
| - Powed2 * static_cast<T>(0.5) |
| + Powed4 * static_cast<T>(0.04166666666666666666666666666667) |
| - Powed6 * static_cast<T>(0.00138888888888888888888888888889); |
| } |
| |
| template <glm::precision P, template <typename, glm::precision> class vecType> |
| GLM_FUNC_QUALIFIER vecType<float, P> fastAbs(vecType<float, P> x) |
| { |
| int* Pointer = reinterpret_cast<int*>(&x[0]); |
| Pointer[0] &= 0x7fffffff; |
| Pointer[1] &= 0x7fffffff; |
| Pointer[2] &= 0x7fffffff; |
| Pointer[3] &= 0x7fffffff; |
| return x; |
| } |
| |
| template <typename T, glm::precision P, template <typename, glm::precision> class vecType> |
| GLM_FUNC_QUALIFIER vecType<T, P> fastCosNew(vecType<T, P> const & x) |
| { |
| vecType<T, P> const Angle0_PI(fastAbs(fmod(x + glm::pi<T>(), glm::two_pi<T>()) - glm::pi<T>())); |
| return taylorSeriesNewCos6(x); |
| /* |
| vecType<bool, P> const FirstQuarterPi(lessThanEqual(Angle0_PI, vecType<T, P>(glm::half_pi<T>()))); |
| |
| vecType<T, P> const RevertAngle(mix(vecType<T, P>(glm::pi<T>()), vecType<T, P>(0), FirstQuarterPi)); |
| vecType<T, P> const ReturnSign(mix(vecType<T, P>(-1), vecType<T, P>(1), FirstQuarterPi)); |
| vecType<T, P> const SectionAngle(RevertAngle - Angle0_PI); |
| |
| return ReturnSign * taylorSeriesNewCos(SectionAngle); |
| */ |
| } |
| |
| int perf_fastCosNew(float Begin, float End, std::size_t Samples) |
| { |
| std::vector<glm::vec4> Results; |
| Results.resize(Samples); |
| |
| float Steps = (End - Begin) / Samples; |
| |
| std::clock_t const TimeStampBegin = std::clock(); |
| |
| for(std::size_t i = 0; i < Samples; ++i) |
| Results[i] = fastCosNew(AngleShift + glm::vec4(Begin + Steps * i)); |
| |
| std::clock_t const TimeStampEnd = std::clock(); |
| |
| std::printf("fastCosNew %ld clocks\n", TimeStampEnd - TimeStampBegin); |
| |
| int Error = 0; |
| for(std::size_t i = 0; i < Samples; ++i) |
| Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1; |
| return Error; |
| } |
| |
| template <typename T, glm::precision P, template <typename, glm::precision> class vecType> |
| GLM_FUNC_QUALIFIER vecType<T, P> deterministic_fmod(vecType<T, P> const & x, T y) |
| { |
| return x - y * trunc(x / y); |
| } |
| |
| template <typename T, glm::precision P, template <typename, glm::precision> class vecType> |
| GLM_FUNC_QUALIFIER vecType<T, P> fastCosDeterminisctic(vecType<T, P> const & x) |
| { |
| vecType<T, P> const Angle0_PI(abs(deterministic_fmod(x + glm::pi<T>(), glm::two_pi<T>()) - glm::pi<T>())); |
| vecType<bool, P> const FirstQuarterPi(lessThanEqual(Angle0_PI, vecType<T, P>(glm::half_pi<T>()))); |
| |
| vecType<T, P> const RevertAngle(mix(vecType<T, P>(glm::pi<T>()), vecType<T, P>(0), FirstQuarterPi)); |
| vecType<T, P> const ReturnSign(mix(vecType<T, P>(-1), vecType<T, P>(1), FirstQuarterPi)); |
| vecType<T, P> const SectionAngle(RevertAngle - Angle0_PI); |
| |
| return ReturnSign * taylorSeriesNewCos(SectionAngle); |
| } |
| |
| int perf_fastCosDeterminisctic(float Begin, float End, std::size_t Samples) |
| { |
| std::vector<glm::vec4> Results; |
| Results.resize(Samples); |
| |
| float Steps = (End - Begin) / Samples; |
| |
| std::clock_t const TimeStampBegin = std::clock(); |
| |
| for(std::size_t i = 0; i < Samples; ++i) |
| Results[i] = taylorCos::fastCosDeterminisctic(AngleShift + glm::vec4(Begin + Steps * i)); |
| |
| std::clock_t const TimeStampEnd = std::clock(); |
| |
| std::printf("fastCosDeterminisctic %ld clocks\n", TimeStampEnd - TimeStampBegin); |
| |
| int Error = 0; |
| for(std::size_t i = 0; i < Samples; ++i) |
| Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1; |
| return Error; |
| } |
| |
| template <typename T, glm::precision P, template <typename, glm::precision> class vecType> |
| GLM_FUNC_QUALIFIER vecType<T, P> taylorSeriesRefCos(vecType<T, P> const & x) |
| { |
| return static_cast<T>(1) |
| - (x * x) / glm::factorial(static_cast<T>(2)) |
| + (x * x * x * x) / glm::factorial(static_cast<T>(4)) |
| - (x * x * x * x * x * x) / glm::factorial(static_cast<T>(6)) |
| + (x * x * x * x * x * x * x * x) / glm::factorial(static_cast<T>(8)); |
| } |
| |
| template <typename T, glm::precision P, template <typename, glm::precision> class vecType> |
| GLM_FUNC_QUALIFIER vecType<T, P> fastRefCos(vecType<T, P> const & x) |
| { |
| vecType<T, P> const Angle0_PI(glm::abs(fmod(x + glm::pi<T>(), glm::two_pi<T>()) - glm::pi<T>())); |
| // return taylorSeriesRefCos(Angle0_PI); |
| |
| vecType<bool, P> const FirstQuarterPi(lessThanEqual(Angle0_PI, vecType<T, P>(glm::half_pi<T>()))); |
| |
| vecType<T, P> const RevertAngle(mix(vecType<T, P>(glm::pi<T>()), vecType<T, P>(0), FirstQuarterPi)); |
| vecType<T, P> const ReturnSign(mix(vecType<T, P>(-1), vecType<T, P>(1), FirstQuarterPi)); |
| vecType<T, P> const SectionAngle(RevertAngle - Angle0_PI); |
| |
| return ReturnSign * taylorSeriesRefCos(SectionAngle); |
| } |
| |
| int perf_fastCosRef(float Begin, float End, std::size_t Samples) |
| { |
| std::vector<glm::vec4> Results; |
| Results.resize(Samples); |
| |
| float Steps = (End - Begin) / Samples; |
| |
| std::clock_t const TimeStampBegin = std::clock(); |
| |
| for(std::size_t i = 0; i < Samples; ++i) |
| Results[i] = taylorCos::fastRefCos(AngleShift + glm::vec4(Begin + Steps * i)); |
| |
| std::clock_t const TimeStampEnd = std::clock(); |
| |
| std::printf("fastCosRef %ld clocks\n", TimeStampEnd - TimeStampBegin); |
| |
| int Error = 0; |
| for(std::size_t i = 0; i < Samples; ++i) |
| Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1; |
| return Error; |
| } |
| |
| int perf_fastCosOld(float Begin, float End, std::size_t Samples) |
| { |
| std::vector<glm::vec4> Results; |
| Results.resize(Samples); |
| |
| float Steps = (End - Begin) / Samples; |
| |
| std::clock_t const TimeStampBegin = std::clock(); |
| |
| for(std::size_t i = 0; i < Samples; ++i) |
| Results[i] = glm::fastCos(AngleShift + glm::vec4(Begin + Steps * i)); |
| |
| std::clock_t const TimeStampEnd = std::clock(); |
| |
| std::printf("fastCosOld %ld clocks\n", TimeStampEnd - TimeStampBegin); |
| |
| int Error = 0; |
| for(std::size_t i = 0; i < Samples; ++i) |
| Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1; |
| return Error; |
| } |
| |
| int perf_cos(float Begin, float End, std::size_t Samples) |
| { |
| std::vector<glm::vec4> Results; |
| Results.resize(Samples); |
| |
| float Steps = (End - Begin) / Samples; |
| |
| std::clock_t const TimeStampBegin = std::clock(); |
| |
| for(std::size_t i = 0; i < Samples; ++i) |
| Results[i] = glm::cos(AngleShift + glm::vec4(Begin + Steps * i)); |
| |
| std::clock_t const TimeStampEnd = std::clock(); |
| |
| std::printf("cos %ld clocks\n", TimeStampEnd - TimeStampBegin); |
| |
| int Error = 0; |
| for(std::size_t i = 0; i < Samples; ++i) |
| Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1; |
| return Error; |
| } |
| |
| int perf(std::size_t const Samples) |
| { |
| int Error = 0; |
| |
| float const Begin = -glm::pi<float>(); |
| float const End = glm::pi<float>(); |
| |
| Error += perf_cos(Begin, End, Samples); |
| Error += perf_fastCosOld(Begin, End, Samples); |
| Error += perf_fastCosRef(Begin, End, Samples); |
| //Error += perf_fastCosNew(Begin, End, Samples); |
| Error += perf_fastCosDeterminisctic(Begin, End, Samples); |
| |
| return Error; |
| } |
| |
| int test() |
| { |
| int Error = 0; |
| |
| //for(float Angle = -4.0f * glm::pi<float>(); Angle < 4.0f * glm::pi<float>(); Angle += 0.1f) |
| //for(float Angle = -720.0f; Angle < 720.0f; Angle += 0.1f) |
| for(float Angle = 0.0f; Angle < 180.0f; Angle += 0.1f) |
| { |
| float const modAngle = std::fmod(glm::abs(Angle), 360.f); |
| assert(modAngle >= 0.0f && modAngle <= 360.f); |
| float const radAngle = glm::radians(modAngle); |
| float const Cos0 = std::cos(radAngle); |
| |
| float const Cos1 = taylorCos::fastRefCos(glm::fvec1(radAngle)).x; |
| Error += glm::abs(Cos1 - Cos0) < 0.1f ? 0 : 1; |
| |
| float const Cos2 = taylorCos::fastCosNew(glm::fvec1(radAngle)).x; |
| //Error += glm::abs(Cos2 - Cos0) < 0.1f ? 0 : 1; |
| |
| assert(!Error); |
| } |
| |
| return Error; |
| } |
| }//namespace taylorCos |
| |
| int main() |
| { |
| int Error(0); |
| |
| Error += ::taylorCos::test(); |
| Error += ::taylorCos::perf(1000); |
| |
| # ifdef NDEBUG |
| ::fastCos::perf(false); |
| ::fastSin::perf(false); |
| ::fastTan::perf(false); |
| ::fastAcos::perf(false); |
| ::fastAsin::perf(false); |
| ::fastAtan::perf(false); |
| # endif//NDEBUG |
| |
| return Error; |
| } |