| /////////////////////////////////////////////////////////////////////////////////// |
| /// OpenGL Mathematics (glm.g-truc.net) |
| /// |
| /// Copyright (c) 2005 - 2012 G-Truc Creation (www.g-truc.net) |
| /// Permission is hereby granted, free of charge, to any person obtaining a copy |
| /// of this software and associated documentation files (the "Software"), to deal |
| /// in the Software without restriction, including without limitation the rights |
| /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| /// copies of the Software, and to permit persons to whom the Software is |
| /// furnished to do so, subject to the following conditions: |
| /// |
| /// The above copyright notice and this permission notice shall be included in |
| /// all copies or substantial portions of the Software. |
| /// |
| /// Restrictions: |
| /// By making use of the Software for military purposes, you choose to make |
| /// a Bunny unhappy. |
| /// |
| /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| /// THE SOFTWARE. |
| /// |
| /// @file test/gtx/gtx_simd_mat4.cpp |
| /// @date 2010-09-16 / 2014-11-25 |
| /// @author Christophe Riccio |
| /////////////////////////////////////////////////////////////////////////////////// |
| |
| #include <glm/glm.hpp> |
| #include <glm/gtc/matrix_transform.hpp> |
| #include <glm/gtc/quaternion.hpp> |
| #include <glm/gtc/random.hpp> |
| #include <glm/gtx/simd_vec4.hpp> |
| #include <glm/gtx/simd_mat4.hpp> |
| #include <cstdio> |
| #include <ctime> |
| #include <vector> |
| |
| #if(GLM_ARCH != GLM_ARCH_PURE) |
| |
| std::vector<float> test_detA(std::vector<glm::mat4> const & Data) |
| { |
| std::vector<float> Test(Data.size()); |
| |
| std::clock_t TimeStart = clock(); |
| |
| for(std::size_t i = 0; i < Test.size() - 1; ++i) |
| Test[i] = glm::determinant(Data[i]); |
| |
| std::clock_t TimeEnd = clock(); |
| printf("Det A: %ld\n", TimeEnd - TimeStart); |
| |
| return Test; |
| } |
| |
| std::vector<float> test_detB(std::vector<glm::mat4> const & Data) |
| { |
| std::vector<float> Test(Data.size()); |
| |
| std::clock_t TimeStart = clock(); |
| |
| for(std::size_t i = 0; i < Test.size() - 1; ++i) |
| { |
| _mm_prefetch((char*)&Data[i + 1], _MM_HINT_T0); |
| glm::simdMat4 m(Data[i]); |
| glm::simdVec4 d(glm::detail::sse_slow_det_ps((__m128 const * const)&m)); |
| glm::vec4 v;//(d); |
| Test[i] = v.x; |
| } |
| |
| std::clock_t TimeEnd = clock(); |
| printf("Det B: %ld\n", TimeEnd - TimeStart); |
| |
| return Test; |
| } |
| |
| std::vector<float> test_detC(std::vector<glm::mat4> const & Data) |
| { |
| std::vector<float> Test(Data.size()); |
| |
| std::clock_t TimeStart = clock(); |
| |
| for(std::size_t i = 0; i < Test.size() - 1; ++i) |
| { |
| _mm_prefetch((char*)&Data[i + 1], _MM_HINT_T0); |
| glm::simdMat4 m(Data[i]); |
| glm::simdVec4 d(glm::detail::sse_det_ps((__m128 const * const)&m)); |
| glm::vec4 v;//(d); |
| Test[i] = v.x; |
| } |
| |
| std::clock_t TimeEnd = clock(); |
| printf("Det C: %ld\n", TimeEnd - TimeStart); |
| |
| return Test; |
| } |
| |
| std::vector<float> test_detD(std::vector<glm::mat4> const & Data) |
| { |
| std::vector<float> Test(Data.size()); |
| |
| std::clock_t TimeStart = clock(); |
| |
| for(std::size_t i = 0; i < Test.size() - 1; ++i) |
| { |
| _mm_prefetch((char*)&Data[i + 1], _MM_HINT_T0); |
| glm::simdMat4 m(Data[i]); |
| glm::simdVec4 d(glm::detail::sse_detd_ps((__m128 const * const)&m)); |
| glm::vec4 v;//(d); |
| Test[i] = v.x; |
| } |
| |
| std::clock_t TimeEnd = clock(); |
| printf("Det D: %ld\n", TimeEnd - TimeStart); |
| |
| return Test; |
| } |
| |
| void test_invA(std::vector<glm::mat4> const & Data, std::vector<glm::mat4> & Out) |
| { |
| //std::vector<float> Test(Data.size()); |
| Out.resize(Data.size()); |
| |
| std::clock_t TimeStart = clock(); |
| |
| for(std::size_t i = 0; i < Out.size() - 1; ++i) |
| { |
| Out[i] = glm::inverse(Data[i]); |
| } |
| |
| std::clock_t TimeEnd = clock(); |
| printf("Inv A: %ld\n", TimeEnd - TimeStart); |
| } |
| |
| void test_invC(std::vector<glm::mat4> const & Data, std::vector<glm::mat4> & Out) |
| { |
| //std::vector<float> Test(Data.size()); |
| Out.resize(Data.size()); |
| |
| std::clock_t TimeStart = clock(); |
| |
| for(std::size_t i = 0; i < Out.size() - 1; ++i) |
| { |
| _mm_prefetch((char*)&Data[i + 1], _MM_HINT_T0); |
| glm::simdMat4 m(Data[i]); |
| glm::simdMat4 o; |
| glm::detail::sse_inverse_fast_ps((__m128 const * const)&m, (__m128 *)&o); |
| Out[i] = *(glm::mat4*)&o; |
| } |
| |
| std::clock_t TimeEnd = clock(); |
| printf("Inv C: %ld\n", TimeEnd - TimeStart); |
| } |
| |
| void test_invD(std::vector<glm::mat4> const & Data, std::vector<glm::mat4> & Out) |
| { |
| //std::vector<float> Test(Data.size()); |
| Out.resize(Data.size()); |
| |
| std::clock_t TimeStart = clock(); |
| |
| for(std::size_t i = 0; i < Out.size() - 1; ++i) |
| { |
| _mm_prefetch((char*)&Data[i + 1], _MM_HINT_T0); |
| glm::simdMat4 m(Data[i]); |
| glm::simdMat4 o; |
| glm::detail::sse_inverse_ps((__m128 const * const)&m, (__m128 *)&o); |
| Out[i] = *(glm::mat4*)&o; |
| } |
| |
| std::clock_t TimeEnd = clock(); |
| printf("Inv D: %ld\n", TimeEnd - TimeStart); |
| } |
| |
| void test_mulA(std::vector<glm::mat4> const & Data, std::vector<glm::mat4> & Out) |
| { |
| //std::vector<float> Test(Data.size()); |
| Out.resize(Data.size()); |
| |
| std::clock_t TimeStart = clock(); |
| |
| for(std::size_t i = 0; i < Out.size() - 1; ++i) |
| { |
| Out[i] = Data[i] * Data[i]; |
| } |
| |
| std::clock_t TimeEnd = clock(); |
| printf("Mul A: %ld\n", TimeEnd - TimeStart); |
| } |
| |
| void test_mulD(std::vector<glm::mat4> const & Data, std::vector<glm::mat4> & Out) |
| { |
| //std::vector<float> Test(Data.size()); |
| Out.resize(Data.size()); |
| |
| std::clock_t TimeStart = clock(); |
| |
| for(std::size_t i = 0; i < Out.size() - 1; ++i) |
| { |
| _mm_prefetch((char*)&Data[i + 1], _MM_HINT_T0); |
| glm::simdMat4 m(Data[i]); |
| glm::simdMat4 o; |
| glm::detail::sse_mul_ps((__m128 const * const)&m, (__m128 const * const)&m, (__m128*)&o); |
| Out[i] = *(glm::mat4*)&o; |
| } |
| |
| std::clock_t TimeEnd = clock(); |
| printf("Mul D: %ld\n", TimeEnd - TimeStart); |
| } |
| |
| int test_compute_glm() |
| { |
| return 0; |
| } |
| |
| int test_compute_gtx() |
| { |
| std::vector<glm::vec4> Output(1000000); |
| |
| std::clock_t TimeStart = clock(); |
| |
| for(std::size_t k = 0; k < Output.size(); ++k) |
| { |
| float i = float(k) / 1000.f + 0.001f; |
| glm::vec3 A = glm::normalize(glm::vec3(i)); |
| glm::vec3 B = glm::cross(A, glm::normalize(glm::vec3(1, 1, 2))); |
| glm::mat4 C = glm::rotate(glm::mat4(1.0f), i, B); |
| glm::mat4 D = glm::scale(C, glm::vec3(0.8f, 1.0f, 1.2f)); |
| glm::mat4 E = glm::translate(D, glm::vec3(1.4f, 1.2f, 1.1f)); |
| glm::mat4 F = glm::perspective(i, 1.5f, 0.1f, 1000.f); |
| glm::mat4 G = glm::inverse(F * E); |
| glm::vec3 H = glm::unProject(glm::vec3(i), G, F, E[3]); |
| glm::vec3 I = glm::any(glm::isnan(glm::project(H, G, F, E[3]))) ? glm::vec3(2) : glm::vec3(1); |
| glm::mat4 J = glm::lookAt(glm::normalize(glm::max(B, glm::vec3(0.001f))), H, I); |
| glm::mat4 K = glm::transpose(J); |
| glm::quat L = glm::normalize(glm::quat_cast(K)); |
| glm::vec4 M = L * glm::smoothstep(K[3], J[3], glm::vec4(i)); |
| glm::mat4 N = glm::mat4(glm::normalize(glm::max(M, glm::vec4(0.001f))), K[3], J[3], glm::vec4(i)); |
| glm::mat4 O = N * glm::inverse(N); |
| glm::vec4 P = O * glm::reflect(N[3], glm::vec4(A, 1.0f)); |
| glm::vec4 Q = glm::vec4(glm::dot(M, P)); |
| glm::vec4 R = glm::quat(Q.w, glm::vec3(Q)) * P; |
| Output[k] = R; |
| } |
| |
| std::clock_t TimeEnd = clock(); |
| printf("test_compute_gtx: %ld\n", TimeEnd - TimeStart); |
| |
| return 0; |
| } |
| |
| int main() |
| { |
| int Error = 0; |
| |
| std::vector<glm::mat4> Data(64 * 64 * 1); |
| for(std::size_t i = 0; i < Data.size(); ++i) |
| Data[i] = glm::mat4( |
| glm::vec4(glm::linearRand(glm::vec4(-2.0f), glm::vec4(2.0f))), |
| glm::vec4(glm::linearRand(glm::vec4(-2.0f), glm::vec4(2.0f))), |
| glm::vec4(glm::linearRand(glm::vec4(-2.0f), glm::vec4(2.0f))), |
| glm::vec4(glm::linearRand(glm::vec4(-2.0f), glm::vec4(2.0f)))); |
| |
| { |
| std::vector<glm::mat4> TestInvA; |
| test_invA(Data, TestInvA); |
| } |
| { |
| std::vector<glm::mat4> TestInvC; |
| test_invC(Data, TestInvC); |
| } |
| { |
| std::vector<glm::mat4> TestInvD; |
| test_invD(Data, TestInvD); |
| } |
| |
| { |
| std::vector<glm::mat4> TestA; |
| test_mulA(Data, TestA); |
| } |
| { |
| std::vector<glm::mat4> TestD; |
| test_mulD(Data, TestD); |
| } |
| |
| { |
| std::vector<float> TestDetA = test_detA(Data); |
| std::vector<float> TestDetB = test_detB(Data); |
| std::vector<float> TestDetD = test_detD(Data); |
| std::vector<float> TestDetC = test_detC(Data); |
| |
| for(std::size_t i = 0; i < TestDetA.size(); ++i) |
| if(TestDetA[i] != TestDetB[i] && TestDetC[i] != TestDetB[i] && TestDetC[i] != TestDetD[i]) |
| return 1; |
| } |
| |
| // shuffle test |
| glm::simdVec4 A(1.0f, 2.0f, 3.0f, 4.0f); |
| glm::simdVec4 B(5.0f, 6.0f, 7.0f, 8.0f); |
| //__m128 C = _mm_shuffle_ps(A.Data, B.Data, _MM_SHUFFLE(1, 0, 1, 0)); |
| |
| Error += test_compute_glm(); |
| Error += test_compute_gtx(); |
| float Det = glm::determinant(glm::simdMat4(1.0)); |
| Error += Det == 1.0f ? 0 : 1; |
| |
| glm::simdMat4 D = glm::matrixCompMult(glm::simdMat4(1.0), glm::simdMat4(1.0)); |
| |
| return Error; |
| } |
| |
| #else |
| |
| int main() |
| { |
| int Error = 0; |
| |
| return Error; |
| } |
| |
| #endif//(GLM_ARCH != GLM_ARCH_PURE) |