| // © 2017 and later: Unicode, Inc. and others. |
| // License & terms of use: http://www.unicode.org/copyright.html |
| |
| #include "unicode/utypes.h" |
| |
| #if !UCONFIG_NO_FORMATTING |
| |
| #include <cstdlib> |
| #include <cmath> |
| #include <limits> |
| #include <stdlib.h> |
| |
| #include "unicode/plurrule.h" |
| #include "cmemory.h" |
| #include "number_decnum.h" |
| #include "putilimp.h" |
| #include "number_decimalquantity.h" |
| #include "number_roundingutils.h" |
| #include "double-conversion.h" |
| #include "charstr.h" |
| #include "number_utils.h" |
| #include "uassert.h" |
| #include "util.h" |
| |
| using namespace icu; |
| using namespace icu::number; |
| using namespace icu::number::impl; |
| |
| using icu::double_conversion::DoubleToStringConverter; |
| using icu::double_conversion::StringToDoubleConverter; |
| |
| namespace { |
| |
| int8_t NEGATIVE_FLAG = 1; |
| int8_t INFINITY_FLAG = 2; |
| int8_t NAN_FLAG = 4; |
| |
| /** Helper function for safe subtraction (no overflow). */ |
| inline int32_t safeSubtract(int32_t a, int32_t b) { |
| // Note: In C++, signed integer subtraction is undefined behavior. |
| int32_t diff = static_cast<int32_t>(static_cast<uint32_t>(a) - static_cast<uint32_t>(b)); |
| if (b < 0 && diff < a) { return INT32_MAX; } |
| if (b > 0 && diff > a) { return INT32_MIN; } |
| return diff; |
| } |
| |
| static double DOUBLE_MULTIPLIERS[] = { |
| 1e0, |
| 1e1, |
| 1e2, |
| 1e3, |
| 1e4, |
| 1e5, |
| 1e6, |
| 1e7, |
| 1e8, |
| 1e9, |
| 1e10, |
| 1e11, |
| 1e12, |
| 1e13, |
| 1e14, |
| 1e15, |
| 1e16, |
| 1e17, |
| 1e18, |
| 1e19, |
| 1e20, |
| 1e21}; |
| |
| } // namespace |
| |
| icu::IFixedDecimal::~IFixedDecimal() = default; |
| |
| DecimalQuantity::DecimalQuantity() { |
| setBcdToZero(); |
| flags = 0; |
| } |
| |
| DecimalQuantity::~DecimalQuantity() { |
| if (usingBytes) { |
| uprv_free(fBCD.bcdBytes.ptr); |
| fBCD.bcdBytes.ptr = nullptr; |
| usingBytes = false; |
| } |
| } |
| |
| DecimalQuantity::DecimalQuantity(const DecimalQuantity &other) { |
| *this = other; |
| } |
| |
| DecimalQuantity::DecimalQuantity(DecimalQuantity&& src) U_NOEXCEPT { |
| *this = std::move(src); |
| } |
| |
| DecimalQuantity &DecimalQuantity::operator=(const DecimalQuantity &other) { |
| if (this == &other) { |
| return *this; |
| } |
| copyBcdFrom(other); |
| copyFieldsFrom(other); |
| return *this; |
| } |
| |
| DecimalQuantity& DecimalQuantity::operator=(DecimalQuantity&& src) U_NOEXCEPT { |
| if (this == &src) { |
| return *this; |
| } |
| moveBcdFrom(src); |
| copyFieldsFrom(src); |
| return *this; |
| } |
| |
| void DecimalQuantity::copyFieldsFrom(const DecimalQuantity& other) { |
| bogus = other.bogus; |
| lReqPos = other.lReqPos; |
| rReqPos = other.rReqPos; |
| scale = other.scale; |
| precision = other.precision; |
| flags = other.flags; |
| origDouble = other.origDouble; |
| origDelta = other.origDelta; |
| isApproximate = other.isApproximate; |
| exponent = other.exponent; |
| } |
| |
| void DecimalQuantity::clear() { |
| lReqPos = 0; |
| rReqPos = 0; |
| flags = 0; |
| setBcdToZero(); // sets scale, precision, hasDouble, origDouble, origDelta, and BCD data |
| } |
| |
| void DecimalQuantity::setMinInteger(int32_t minInt) { |
| // Validation should happen outside of DecimalQuantity, e.g., in the Precision class. |
| U_ASSERT(minInt >= 0); |
| |
| // Special behavior: do not set minInt to be less than what is already set. |
| // This is so significant digits rounding can set the integer length. |
| if (minInt < lReqPos) { |
| minInt = lReqPos; |
| } |
| |
| // Save values into internal state |
| lReqPos = minInt; |
| } |
| |
| void DecimalQuantity::setMinFraction(int32_t minFrac) { |
| // Validation should happen outside of DecimalQuantity, e.g., in the Precision class. |
| U_ASSERT(minFrac >= 0); |
| |
| // Save values into internal state |
| // Negation is safe for minFrac/maxFrac because -Integer.MAX_VALUE > Integer.MIN_VALUE |
| rReqPos = -minFrac; |
| } |
| |
| void DecimalQuantity::applyMaxInteger(int32_t maxInt) { |
| // Validation should happen outside of DecimalQuantity, e.g., in the Precision class. |
| U_ASSERT(maxInt >= 0); |
| |
| if (precision == 0) { |
| return; |
| } |
| |
| if (maxInt <= scale) { |
| setBcdToZero(); |
| return; |
| } |
| |
| int32_t magnitude = getMagnitude(); |
| if (maxInt <= magnitude) { |
| popFromLeft(magnitude - maxInt + 1); |
| compact(); |
| } |
| } |
| |
| uint64_t DecimalQuantity::getPositionFingerprint() const { |
| uint64_t fingerprint = 0; |
| fingerprint ^= (lReqPos << 16); |
| fingerprint ^= (static_cast<uint64_t>(rReqPos) << 32); |
| return fingerprint; |
| } |
| |
| void DecimalQuantity::roundToIncrement(double roundingIncrement, RoundingMode roundingMode, |
| UErrorCode& status) { |
| // Do not call this method with an increment having only a 1 or a 5 digit! |
| // Use a more efficient call to either roundToMagnitude() or roundToNickel(). |
| // Check a few popular rounding increments; a more thorough check is in Java. |
| U_ASSERT(roundingIncrement != 0.01); |
| U_ASSERT(roundingIncrement != 0.05); |
| U_ASSERT(roundingIncrement != 0.1); |
| U_ASSERT(roundingIncrement != 0.5); |
| U_ASSERT(roundingIncrement != 1); |
| U_ASSERT(roundingIncrement != 5); |
| |
| DecNum incrementDN; |
| incrementDN.setTo(roundingIncrement, status); |
| if (U_FAILURE(status)) { return; } |
| |
| // Divide this DecimalQuantity by the increment, round, then multiply back. |
| divideBy(incrementDN, status); |
| if (U_FAILURE(status)) { return; } |
| roundToMagnitude(0, roundingMode, status); |
| if (U_FAILURE(status)) { return; } |
| multiplyBy(incrementDN, status); |
| if (U_FAILURE(status)) { return; } |
| } |
| |
| void DecimalQuantity::multiplyBy(const DecNum& multiplicand, UErrorCode& status) { |
| if (isZeroish()) { |
| return; |
| } |
| // Convert to DecNum, multiply, and convert back. |
| DecNum decnum; |
| toDecNum(decnum, status); |
| if (U_FAILURE(status)) { return; } |
| decnum.multiplyBy(multiplicand, status); |
| if (U_FAILURE(status)) { return; } |
| setToDecNum(decnum, status); |
| } |
| |
| void DecimalQuantity::divideBy(const DecNum& divisor, UErrorCode& status) { |
| if (isZeroish()) { |
| return; |
| } |
| // Convert to DecNum, multiply, and convert back. |
| DecNum decnum; |
| toDecNum(decnum, status); |
| if (U_FAILURE(status)) { return; } |
| decnum.divideBy(divisor, status); |
| if (U_FAILURE(status)) { return; } |
| setToDecNum(decnum, status); |
| } |
| |
| void DecimalQuantity::negate() { |
| flags ^= NEGATIVE_FLAG; |
| } |
| |
| int32_t DecimalQuantity::getMagnitude() const { |
| U_ASSERT(precision != 0); |
| return scale + precision - 1; |
| } |
| |
| bool DecimalQuantity::adjustMagnitude(int32_t delta) { |
| if (precision != 0) { |
| // i.e., scale += delta; origDelta += delta |
| bool overflow = uprv_add32_overflow(scale, delta, &scale); |
| overflow = uprv_add32_overflow(origDelta, delta, &origDelta) || overflow; |
| // Make sure that precision + scale won't overflow, either |
| int32_t dummy; |
| overflow = overflow || uprv_add32_overflow(scale, precision, &dummy); |
| return overflow; |
| } |
| return false; |
| } |
| |
| double DecimalQuantity::getPluralOperand(PluralOperand operand) const { |
| // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
| // See the comment at the top of this file explaining the "isApproximate" field. |
| U_ASSERT(!isApproximate); |
| |
| switch (operand) { |
| case PLURAL_OPERAND_I: |
| // Invert the negative sign if necessary |
| return static_cast<double>(isNegative() ? -toLong(true) : toLong(true)); |
| case PLURAL_OPERAND_F: |
| return static_cast<double>(toFractionLong(true)); |
| case PLURAL_OPERAND_T: |
| return static_cast<double>(toFractionLong(false)); |
| case PLURAL_OPERAND_V: |
| return fractionCount(); |
| case PLURAL_OPERAND_W: |
| return fractionCountWithoutTrailingZeros(); |
| case PLURAL_OPERAND_E: |
| return static_cast<double>(getExponent()); |
| default: |
| return std::abs(toDouble()); |
| } |
| } |
| |
| int32_t DecimalQuantity::getExponent() const { |
| return exponent; |
| } |
| |
| void DecimalQuantity::adjustExponent(int delta) { |
| exponent = exponent + delta; |
| } |
| |
| bool DecimalQuantity::hasIntegerValue() const { |
| return scale >= 0; |
| } |
| |
| int32_t DecimalQuantity::getUpperDisplayMagnitude() const { |
| // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
| // See the comment in the header file explaining the "isApproximate" field. |
| U_ASSERT(!isApproximate); |
| |
| int32_t magnitude = scale + precision; |
| int32_t result = (lReqPos > magnitude) ? lReqPos : magnitude; |
| return result - 1; |
| } |
| |
| int32_t DecimalQuantity::getLowerDisplayMagnitude() const { |
| // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
| // See the comment in the header file explaining the "isApproximate" field. |
| U_ASSERT(!isApproximate); |
| |
| int32_t magnitude = scale; |
| int32_t result = (rReqPos < magnitude) ? rReqPos : magnitude; |
| return result; |
| } |
| |
| int8_t DecimalQuantity::getDigit(int32_t magnitude) const { |
| // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
| // See the comment at the top of this file explaining the "isApproximate" field. |
| U_ASSERT(!isApproximate); |
| |
| return getDigitPos(magnitude - scale); |
| } |
| |
| int32_t DecimalQuantity::fractionCount() const { |
| int32_t fractionCountWithExponent = -getLowerDisplayMagnitude() - exponent; |
| return fractionCountWithExponent > 0 ? fractionCountWithExponent : 0; |
| } |
| |
| int32_t DecimalQuantity::fractionCountWithoutTrailingZeros() const { |
| int32_t fractionCountWithExponent = -scale - exponent; |
| return fractionCountWithExponent > 0 ? fractionCountWithExponent : 0; // max(-fractionCountWithExponent, 0) |
| } |
| |
| bool DecimalQuantity::isNegative() const { |
| return (flags & NEGATIVE_FLAG) != 0; |
| } |
| |
| Signum DecimalQuantity::signum() const { |
| bool isZero = (isZeroish() && !isInfinite()); |
| bool isNeg = isNegative(); |
| if (isZero && isNeg) { |
| return SIGNUM_NEG_ZERO; |
| } else if (isZero) { |
| return SIGNUM_POS_ZERO; |
| } else if (isNeg) { |
| return SIGNUM_NEG; |
| } else { |
| return SIGNUM_POS; |
| } |
| } |
| |
| bool DecimalQuantity::isInfinite() const { |
| return (flags & INFINITY_FLAG) != 0; |
| } |
| |
| bool DecimalQuantity::isNaN() const { |
| return (flags & NAN_FLAG) != 0; |
| } |
| |
| bool DecimalQuantity::isZeroish() const { |
| return precision == 0; |
| } |
| |
| DecimalQuantity &DecimalQuantity::setToInt(int32_t n) { |
| setBcdToZero(); |
| flags = 0; |
| if (n == INT32_MIN) { |
| flags |= NEGATIVE_FLAG; |
| // leave as INT32_MIN; handled below in _setToInt() |
| } else if (n < 0) { |
| flags |= NEGATIVE_FLAG; |
| n = -n; |
| } |
| if (n != 0) { |
| _setToInt(n); |
| compact(); |
| } |
| return *this; |
| } |
| |
| void DecimalQuantity::_setToInt(int32_t n) { |
| if (n == INT32_MIN) { |
| readLongToBcd(-static_cast<int64_t>(n)); |
| } else { |
| readIntToBcd(n); |
| } |
| } |
| |
| DecimalQuantity &DecimalQuantity::setToLong(int64_t n) { |
| setBcdToZero(); |
| flags = 0; |
| if (n < 0 && n > INT64_MIN) { |
| flags |= NEGATIVE_FLAG; |
| n = -n; |
| } |
| if (n != 0) { |
| _setToLong(n); |
| compact(); |
| } |
| return *this; |
| } |
| |
| void DecimalQuantity::_setToLong(int64_t n) { |
| if (n == INT64_MIN) { |
| DecNum decnum; |
| UErrorCode localStatus = U_ZERO_ERROR; |
| decnum.setTo("9.223372036854775808E+18", localStatus); |
| if (U_FAILURE(localStatus)) { return; } // unexpected |
| flags |= NEGATIVE_FLAG; |
| readDecNumberToBcd(decnum); |
| } else if (n <= INT32_MAX) { |
| readIntToBcd(static_cast<int32_t>(n)); |
| } else { |
| readLongToBcd(n); |
| } |
| } |
| |
| DecimalQuantity &DecimalQuantity::setToDouble(double n) { |
| setBcdToZero(); |
| flags = 0; |
| // signbit() from <math.h> handles +0.0 vs -0.0 |
| if (std::signbit(n)) { |
| flags |= NEGATIVE_FLAG; |
| n = -n; |
| } |
| if (std::isnan(n) != 0) { |
| flags |= NAN_FLAG; |
| } else if (std::isfinite(n) == 0) { |
| flags |= INFINITY_FLAG; |
| } else if (n != 0) { |
| _setToDoubleFast(n); |
| compact(); |
| } |
| return *this; |
| } |
| |
| void DecimalQuantity::_setToDoubleFast(double n) { |
| isApproximate = true; |
| origDouble = n; |
| origDelta = 0; |
| |
| // Make sure the double is an IEEE 754 double. If not, fall back to the slow path right now. |
| // TODO: Make a fast path for other types of doubles. |
| if (!std::numeric_limits<double>::is_iec559) { |
| convertToAccurateDouble(); |
| return; |
| } |
| |
| // To get the bits from the double, use memcpy, which takes care of endianness. |
| uint64_t ieeeBits; |
| uprv_memcpy(&ieeeBits, &n, sizeof(n)); |
| int32_t exponent = static_cast<int32_t>((ieeeBits & 0x7ff0000000000000L) >> 52) - 0x3ff; |
| |
| // Not all integers can be represented exactly for exponent > 52 |
| if (exponent <= 52 && static_cast<int64_t>(n) == n) { |
| _setToLong(static_cast<int64_t>(n)); |
| return; |
| } |
| |
| if (exponent == -1023 || exponent == 1024) { |
| // The extreme values of exponent are special; use slow path. |
| convertToAccurateDouble(); |
| return; |
| } |
| |
| // 3.3219... is log2(10) |
| auto fracLength = static_cast<int32_t> ((52 - exponent) / 3.32192809488736234787031942948939017586); |
| if (fracLength >= 0) { |
| int32_t i = fracLength; |
| // 1e22 is the largest exact double. |
| for (; i >= 22; i -= 22) n *= 1e22; |
| n *= DOUBLE_MULTIPLIERS[i]; |
| } else { |
| int32_t i = fracLength; |
| // 1e22 is the largest exact double. |
| for (; i <= -22; i += 22) n /= 1e22; |
| n /= DOUBLE_MULTIPLIERS[-i]; |
| } |
| auto result = static_cast<int64_t>(uprv_round(n)); |
| if (result != 0) { |
| _setToLong(result); |
| scale -= fracLength; |
| } |
| } |
| |
| void DecimalQuantity::convertToAccurateDouble() { |
| U_ASSERT(origDouble != 0); |
| int32_t delta = origDelta; |
| |
| // Call the slow oracle function (Double.toString in Java, DoubleToAscii in C++). |
| char buffer[DoubleToStringConverter::kBase10MaximalLength + 1]; |
| bool sign; // unused; always positive |
| int32_t length; |
| int32_t point; |
| DoubleToStringConverter::DoubleToAscii( |
| origDouble, |
| DoubleToStringConverter::DtoaMode::SHORTEST, |
| 0, |
| buffer, |
| sizeof(buffer), |
| &sign, |
| &length, |
| &point |
| ); |
| |
| setBcdToZero(); |
| readDoubleConversionToBcd(buffer, length, point); |
| scale += delta; |
| explicitExactDouble = true; |
| } |
| |
| DecimalQuantity &DecimalQuantity::setToDecNumber(StringPiece n, UErrorCode& status) { |
| setBcdToZero(); |
| flags = 0; |
| |
| // Compute the decNumber representation |
| DecNum decnum; |
| decnum.setTo(n, status); |
| |
| _setToDecNum(decnum, status); |
| return *this; |
| } |
| |
| DecimalQuantity& DecimalQuantity::setToDecNum(const DecNum& decnum, UErrorCode& status) { |
| setBcdToZero(); |
| flags = 0; |
| |
| _setToDecNum(decnum, status); |
| return *this; |
| } |
| |
| void DecimalQuantity::_setToDecNum(const DecNum& decnum, UErrorCode& status) { |
| if (U_FAILURE(status)) { return; } |
| if (decnum.isNegative()) { |
| flags |= NEGATIVE_FLAG; |
| } |
| if (!decnum.isZero()) { |
| readDecNumberToBcd(decnum); |
| compact(); |
| } |
| } |
| |
| int64_t DecimalQuantity::toLong(bool truncateIfOverflow) const { |
| // NOTE: Call sites should be guarded by fitsInLong(), like this: |
| // if (dq.fitsInLong()) { /* use dq.toLong() */ } else { /* use some fallback */ } |
| // Fallback behavior upon truncateIfOverflow is to truncate at 17 digits. |
| uint64_t result = 0L; |
| int32_t upperMagnitude = exponent + scale + precision - 1; |
| if (truncateIfOverflow) { |
| upperMagnitude = std::min(upperMagnitude, 17); |
| } |
| for (int32_t magnitude = upperMagnitude; magnitude >= 0; magnitude--) { |
| result = result * 10 + getDigitPos(magnitude - scale - exponent); |
| } |
| if (isNegative()) { |
| return static_cast<int64_t>(0LL - result); // i.e., -result |
| } |
| return static_cast<int64_t>(result); |
| } |
| |
| uint64_t DecimalQuantity::toFractionLong(bool includeTrailingZeros) const { |
| uint64_t result = 0L; |
| int32_t magnitude = -1 - exponent; |
| int32_t lowerMagnitude = scale; |
| if (includeTrailingZeros) { |
| lowerMagnitude = std::min(lowerMagnitude, rReqPos); |
| } |
| for (; magnitude >= lowerMagnitude && result <= 1e18L; magnitude--) { |
| result = result * 10 + getDigitPos(magnitude - scale); |
| } |
| // Remove trailing zeros; this can happen during integer overflow cases. |
| if (!includeTrailingZeros) { |
| while (result > 0 && (result % 10) == 0) { |
| result /= 10; |
| } |
| } |
| return result; |
| } |
| |
| bool DecimalQuantity::fitsInLong(bool ignoreFraction) const { |
| if (isInfinite() || isNaN()) { |
| return false; |
| } |
| if (isZeroish()) { |
| return true; |
| } |
| if (exponent + scale < 0 && !ignoreFraction) { |
| return false; |
| } |
| int magnitude = getMagnitude(); |
| if (magnitude < 18) { |
| return true; |
| } |
| if (magnitude > 18) { |
| return false; |
| } |
| // Hard case: the magnitude is 10^18. |
| // The largest int64 is: 9,223,372,036,854,775,807 |
| for (int p = 0; p < precision; p++) { |
| int8_t digit = getDigit(18 - p); |
| static int8_t INT64_BCD[] = { 9, 2, 2, 3, 3, 7, 2, 0, 3, 6, 8, 5, 4, 7, 7, 5, 8, 0, 8 }; |
| if (digit < INT64_BCD[p]) { |
| return true; |
| } else if (digit > INT64_BCD[p]) { |
| return false; |
| } |
| } |
| // Exactly equal to max long plus one. |
| return isNegative(); |
| } |
| |
| double DecimalQuantity::toDouble() const { |
| // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
| // See the comment in the header file explaining the "isApproximate" field. |
| U_ASSERT(!isApproximate); |
| |
| if (isNaN()) { |
| return NAN; |
| } else if (isInfinite()) { |
| return isNegative() ? -INFINITY : INFINITY; |
| } |
| |
| // We are processing well-formed input, so we don't need any special options to StringToDoubleConverter. |
| StringToDoubleConverter converter(0, 0, 0, "", ""); |
| UnicodeString numberString = this->toScientificString(); |
| int32_t count; |
| return converter.StringToDouble( |
| reinterpret_cast<const uint16_t*>(numberString.getBuffer()), |
| numberString.length(), |
| &count); |
| } |
| |
| DecNum& DecimalQuantity::toDecNum(DecNum& output, UErrorCode& status) const { |
| // Special handling for zero |
| if (precision == 0) { |
| output.setTo("0", status); |
| } |
| |
| // Use the BCD constructor. We need to do a little bit of work to convert, though. |
| // The decNumber constructor expects most-significant first, but we store least-significant first. |
| MaybeStackArray<uint8_t, 20> ubcd(precision, status); |
| if (U_FAILURE(status)) { |
| return output; |
| } |
| for (int32_t m = 0; m < precision; m++) { |
| ubcd[precision - m - 1] = static_cast<uint8_t>(getDigitPos(m)); |
| } |
| output.setTo(ubcd.getAlias(), precision, scale, isNegative(), status); |
| return output; |
| } |
| |
| void DecimalQuantity::truncate() { |
| if (scale < 0) { |
| shiftRight(-scale); |
| scale = 0; |
| compact(); |
| } |
| } |
| |
| void DecimalQuantity::roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) { |
| roundToMagnitude(magnitude, roundingMode, true, status); |
| } |
| |
| void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) { |
| roundToMagnitude(magnitude, roundingMode, false, status); |
| } |
| |
| void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status) { |
| // The position in the BCD at which rounding will be performed; digits to the right of position |
| // will be rounded away. |
| int position = safeSubtract(magnitude, scale); |
| |
| // "trailing" = least significant digit to the left of rounding |
| int8_t trailingDigit = getDigitPos(position); |
| |
| if (position <= 0 && !isApproximate && (!nickel || trailingDigit == 0 || trailingDigit == 5)) { |
| // All digits are to the left of the rounding magnitude. |
| } else if (precision == 0) { |
| // No rounding for zero. |
| } else { |
| // Perform rounding logic. |
| // "leading" = most significant digit to the right of rounding |
| int8_t leadingDigit = getDigitPos(safeSubtract(position, 1)); |
| |
| // Compute which section of the number we are in. |
| // EDGE means we are at the bottom or top edge, like 1.000 or 1.999 (used by doubles) |
| // LOWER means we are between the bottom edge and the midpoint, like 1.391 |
| // MIDPOINT means we are exactly in the middle, like 1.500 |
| // UPPER means we are between the midpoint and the top edge, like 1.916 |
| roundingutils::Section section; |
| if (!isApproximate) { |
| if (nickel && trailingDigit != 2 && trailingDigit != 7) { |
| // Nickel rounding, and not at .02x or .07x |
| if (trailingDigit < 2) { |
| // .00, .01 => down to .00 |
| section = roundingutils::SECTION_LOWER; |
| } else if (trailingDigit < 5) { |
| // .03, .04 => up to .05 |
| section = roundingutils::SECTION_UPPER; |
| } else if (trailingDigit < 7) { |
| // .05, .06 => down to .05 |
| section = roundingutils::SECTION_LOWER; |
| } else { |
| // .08, .09 => up to .10 |
| section = roundingutils::SECTION_UPPER; |
| } |
| } else if (leadingDigit < 5) { |
| // Includes nickel rounding .020-.024 and .070-.074 |
| section = roundingutils::SECTION_LOWER; |
| } else if (leadingDigit > 5) { |
| // Includes nickel rounding .026-.029 and .076-.079 |
| section = roundingutils::SECTION_UPPER; |
| } else { |
| // Includes nickel rounding .025 and .075 |
| section = roundingutils::SECTION_MIDPOINT; |
| for (int p = safeSubtract(position, 2); p >= 0; p--) { |
| if (getDigitPos(p) != 0) { |
| section = roundingutils::SECTION_UPPER; |
| break; |
| } |
| } |
| } |
| } else { |
| int32_t p = safeSubtract(position, 2); |
| int32_t minP = uprv_max(0, precision - 14); |
| if (leadingDigit == 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) { |
| section = roundingutils::SECTION_LOWER_EDGE; |
| for (; p >= minP; p--) { |
| if (getDigitPos(p) != 0) { |
| section = roundingutils::SECTION_LOWER; |
| break; |
| } |
| } |
| } else if (leadingDigit == 4 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) { |
| section = roundingutils::SECTION_MIDPOINT; |
| for (; p >= minP; p--) { |
| if (getDigitPos(p) != 9) { |
| section = roundingutils::SECTION_LOWER; |
| break; |
| } |
| } |
| } else if (leadingDigit == 5 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) { |
| section = roundingutils::SECTION_MIDPOINT; |
| for (; p >= minP; p--) { |
| if (getDigitPos(p) != 0) { |
| section = roundingutils::SECTION_UPPER; |
| break; |
| } |
| } |
| } else if (leadingDigit == 9 && (!nickel || trailingDigit == 4 || trailingDigit == 9)) { |
| section = roundingutils::SECTION_UPPER_EDGE; |
| for (; p >= minP; p--) { |
| if (getDigitPos(p) != 9) { |
| section = roundingutils::SECTION_UPPER; |
| break; |
| } |
| } |
| } else if (nickel && trailingDigit != 2 && trailingDigit != 7) { |
| // Nickel rounding, and not at .02x or .07x |
| if (trailingDigit < 2) { |
| // .00, .01 => down to .00 |
| section = roundingutils::SECTION_LOWER; |
| } else if (trailingDigit < 5) { |
| // .03, .04 => up to .05 |
| section = roundingutils::SECTION_UPPER; |
| } else if (trailingDigit < 7) { |
| // .05, .06 => down to .05 |
| section = roundingutils::SECTION_LOWER; |
| } else { |
| // .08, .09 => up to .10 |
| section = roundingutils::SECTION_UPPER; |
| } |
| } else if (leadingDigit < 5) { |
| // Includes nickel rounding .020-.024 and .070-.074 |
| section = roundingutils::SECTION_LOWER; |
| } else { |
| // Includes nickel rounding .026-.029 and .076-.079 |
| section = roundingutils::SECTION_UPPER; |
| } |
| |
| bool roundsAtMidpoint = roundingutils::roundsAtMidpoint(roundingMode); |
| if (safeSubtract(position, 1) < precision - 14 || |
| (roundsAtMidpoint && section == roundingutils::SECTION_MIDPOINT) || |
| (!roundsAtMidpoint && section < 0 /* i.e. at upper or lower edge */)) { |
| // Oops! This means that we have to get the exact representation of the double, |
| // because the zone of uncertainty is along the rounding boundary. |
| convertToAccurateDouble(); |
| roundToMagnitude(magnitude, roundingMode, nickel, status); // start over |
| return; |
| } |
| |
| // Turn off the approximate double flag, since the value is now confirmed to be exact. |
| isApproximate = false; |
| origDouble = 0.0; |
| origDelta = 0; |
| |
| if (position <= 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) { |
| // All digits are to the left of the rounding magnitude. |
| return; |
| } |
| |
| // Good to continue rounding. |
| if (section == -1) { section = roundingutils::SECTION_LOWER; } |
| if (section == -2) { section = roundingutils::SECTION_UPPER; } |
| } |
| |
| // Nickel rounding "half even" goes to the nearest whole (away from the 5). |
| bool isEven = nickel |
| ? (trailingDigit < 2 || trailingDigit > 7 |
| || (trailingDigit == 2 && section != roundingutils::SECTION_UPPER) |
| || (trailingDigit == 7 && section == roundingutils::SECTION_UPPER)) |
| : (trailingDigit % 2) == 0; |
| |
| bool roundDown = roundingutils::getRoundingDirection(isEven, |
| isNegative(), |
| section, |
| roundingMode, |
| status); |
| if (U_FAILURE(status)) { |
| return; |
| } |
| |
| // Perform truncation |
| if (position >= precision) { |
| setBcdToZero(); |
| scale = magnitude; |
| } else { |
| shiftRight(position); |
| } |
| |
| if (nickel) { |
| if (trailingDigit < 5 && roundDown) { |
| setDigitPos(0, 0); |
| compact(); |
| return; |
| } else if (trailingDigit >= 5 && !roundDown) { |
| setDigitPos(0, 9); |
| trailingDigit = 9; |
| // do not return: use the bubbling logic below |
| } else { |
| setDigitPos(0, 5); |
| // compact not necessary: digit at position 0 is nonzero |
| return; |
| } |
| } |
| |
| // Bubble the result to the higher digits |
| if (!roundDown) { |
| if (trailingDigit == 9) { |
| int bubblePos = 0; |
| // Note: in the long implementation, the most digits BCD can have at this point is |
| // 15, so bubblePos <= 15 and getDigitPos(bubblePos) is safe. |
| for (; getDigitPos(bubblePos) == 9; bubblePos++) {} |
| shiftRight(bubblePos); // shift off the trailing 9s |
| } |
| int8_t digit0 = getDigitPos(0); |
| U_ASSERT(digit0 != 9); |
| setDigitPos(0, static_cast<int8_t>(digit0 + 1)); |
| precision += 1; // in case an extra digit got added |
| } |
| |
| compact(); |
| } |
| } |
| |
| void DecimalQuantity::roundToInfinity() { |
| if (isApproximate) { |
| convertToAccurateDouble(); |
| } |
| } |
| |
| void DecimalQuantity::appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger) { |
| U_ASSERT(leadingZeros >= 0); |
| |
| // Zero requires special handling to maintain the invariant that the least-significant digit |
| // in the BCD is nonzero. |
| if (value == 0) { |
| if (appendAsInteger && precision != 0) { |
| scale += leadingZeros + 1; |
| } |
| return; |
| } |
| |
| // Deal with trailing zeros |
| if (scale > 0) { |
| leadingZeros += scale; |
| if (appendAsInteger) { |
| scale = 0; |
| } |
| } |
| |
| // Append digit |
| shiftLeft(leadingZeros + 1); |
| setDigitPos(0, value); |
| |
| // Fix scale if in integer mode |
| if (appendAsInteger) { |
| scale += leadingZeros + 1; |
| } |
| } |
| |
| UnicodeString DecimalQuantity::toPlainString() const { |
| U_ASSERT(!isApproximate); |
| UnicodeString sb; |
| if (isNegative()) { |
| sb.append(u'-'); |
| } |
| if (precision == 0) { |
| sb.append(u'0'); |
| return sb; |
| } |
| int32_t upper = scale + precision + exponent - 1; |
| int32_t lower = scale + exponent; |
| if (upper < lReqPos - 1) { |
| upper = lReqPos - 1; |
| } |
| if (lower > rReqPos) { |
| lower = rReqPos; |
| } |
| int32_t p = upper; |
| if (p < 0) { |
| sb.append(u'0'); |
| } |
| for (; p >= 0; p--) { |
| sb.append(u'0' + getDigitPos(p - scale - exponent)); |
| } |
| if (lower < 0) { |
| sb.append(u'.'); |
| } |
| for(; p >= lower; p--) { |
| sb.append(u'0' + getDigitPos(p - scale - exponent)); |
| } |
| return sb; |
| } |
| |
| UnicodeString DecimalQuantity::toScientificString() const { |
| U_ASSERT(!isApproximate); |
| UnicodeString result; |
| if (isNegative()) { |
| result.append(u'-'); |
| } |
| if (precision == 0) { |
| result.append(u"0E+0", -1); |
| return result; |
| } |
| int32_t upperPos = precision - 1; |
| int32_t lowerPos = 0; |
| int32_t p = upperPos; |
| result.append(u'0' + getDigitPos(p)); |
| if ((--p) >= lowerPos) { |
| result.append(u'.'); |
| for (; p >= lowerPos; p--) { |
| result.append(u'0' + getDigitPos(p)); |
| } |
| } |
| result.append(u'E'); |
| int32_t _scale = upperPos + scale + exponent; |
| if (_scale == INT32_MIN) { |
| result.append({u"-2147483648", -1}); |
| return result; |
| } else if (_scale < 0) { |
| _scale *= -1; |
| result.append(u'-'); |
| } else { |
| result.append(u'+'); |
| } |
| if (_scale == 0) { |
| result.append(u'0'); |
| } |
| int32_t insertIndex = result.length(); |
| while (_scale > 0) { |
| std::div_t res = std::div(_scale, 10); |
| result.insert(insertIndex, u'0' + res.rem); |
| _scale = res.quot; |
| } |
| return result; |
| } |
| |
| //////////////////////////////////////////////////// |
| /// End of DecimalQuantity_AbstractBCD.java /// |
| /// Start of DecimalQuantity_DualStorageBCD.java /// |
| //////////////////////////////////////////////////// |
| |
| int8_t DecimalQuantity::getDigitPos(int32_t position) const { |
| if (usingBytes) { |
| if (position < 0 || position >= precision) { return 0; } |
| return fBCD.bcdBytes.ptr[position]; |
| } else { |
| if (position < 0 || position >= 16) { return 0; } |
| return (int8_t) ((fBCD.bcdLong >> (position * 4)) & 0xf); |
| } |
| } |
| |
| void DecimalQuantity::setDigitPos(int32_t position, int8_t value) { |
| U_ASSERT(position >= 0); |
| if (usingBytes) { |
| ensureCapacity(position + 1); |
| fBCD.bcdBytes.ptr[position] = value; |
| } else if (position >= 16) { |
| switchStorage(); |
| ensureCapacity(position + 1); |
| fBCD.bcdBytes.ptr[position] = value; |
| } else { |
| int shift = position * 4; |
| fBCD.bcdLong = (fBCD.bcdLong & ~(0xfL << shift)) | ((long) value << shift); |
| } |
| } |
| |
| void DecimalQuantity::shiftLeft(int32_t numDigits) { |
| if (!usingBytes && precision + numDigits > 16) { |
| switchStorage(); |
| } |
| if (usingBytes) { |
| ensureCapacity(precision + numDigits); |
| uprv_memmove(fBCD.bcdBytes.ptr + numDigits, fBCD.bcdBytes.ptr, precision); |
| uprv_memset(fBCD.bcdBytes.ptr, 0, numDigits); |
| } else { |
| fBCD.bcdLong <<= (numDigits * 4); |
| } |
| scale -= numDigits; |
| precision += numDigits; |
| } |
| |
| void DecimalQuantity::shiftRight(int32_t numDigits) { |
| if (usingBytes) { |
| int i = 0; |
| for (; i < precision - numDigits; i++) { |
| fBCD.bcdBytes.ptr[i] = fBCD.bcdBytes.ptr[i + numDigits]; |
| } |
| for (; i < precision; i++) { |
| fBCD.bcdBytes.ptr[i] = 0; |
| } |
| } else { |
| fBCD.bcdLong >>= (numDigits * 4); |
| } |
| scale += numDigits; |
| precision -= numDigits; |
| } |
| |
| void DecimalQuantity::popFromLeft(int32_t numDigits) { |
| U_ASSERT(numDigits <= precision); |
| if (usingBytes) { |
| int i = precision - 1; |
| for (; i >= precision - numDigits; i--) { |
| fBCD.bcdBytes.ptr[i] = 0; |
| } |
| } else { |
| fBCD.bcdLong &= (static_cast<uint64_t>(1) << ((precision - numDigits) * 4)) - 1; |
| } |
| precision -= numDigits; |
| } |
| |
| void DecimalQuantity::setBcdToZero() { |
| if (usingBytes) { |
| uprv_free(fBCD.bcdBytes.ptr); |
| fBCD.bcdBytes.ptr = nullptr; |
| usingBytes = false; |
| } |
| fBCD.bcdLong = 0L; |
| scale = 0; |
| precision = 0; |
| isApproximate = false; |
| origDouble = 0; |
| origDelta = 0; |
| exponent = 0; |
| } |
| |
| void DecimalQuantity::readIntToBcd(int32_t n) { |
| U_ASSERT(n != 0); |
| // ints always fit inside the long implementation. |
| uint64_t result = 0L; |
| int i = 16; |
| for (; n != 0; n /= 10, i--) { |
| result = (result >> 4) + ((static_cast<uint64_t>(n) % 10) << 60); |
| } |
| U_ASSERT(!usingBytes); |
| fBCD.bcdLong = result >> (i * 4); |
| scale = 0; |
| precision = 16 - i; |
| } |
| |
| void DecimalQuantity::readLongToBcd(int64_t n) { |
| U_ASSERT(n != 0); |
| if (n >= 10000000000000000L) { |
| ensureCapacity(); |
| int i = 0; |
| for (; n != 0L; n /= 10L, i++) { |
| fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(n % 10); |
| } |
| U_ASSERT(usingBytes); |
| scale = 0; |
| precision = i; |
| } else { |
| uint64_t result = 0L; |
| int i = 16; |
| for (; n != 0L; n /= 10L, i--) { |
| result = (result >> 4) + ((n % 10) << 60); |
| } |
| U_ASSERT(i >= 0); |
| U_ASSERT(!usingBytes); |
| fBCD.bcdLong = result >> (i * 4); |
| scale = 0; |
| precision = 16 - i; |
| } |
| } |
| |
| void DecimalQuantity::readDecNumberToBcd(const DecNum& decnum) { |
| const decNumber* dn = decnum.getRawDecNumber(); |
| if (dn->digits > 16) { |
| ensureCapacity(dn->digits); |
| for (int32_t i = 0; i < dn->digits; i++) { |
| fBCD.bcdBytes.ptr[i] = dn->lsu[i]; |
| } |
| } else { |
| uint64_t result = 0L; |
| for (int32_t i = 0; i < dn->digits; i++) { |
| result |= static_cast<uint64_t>(dn->lsu[i]) << (4 * i); |
| } |
| fBCD.bcdLong = result; |
| } |
| scale = dn->exponent; |
| precision = dn->digits; |
| } |
| |
| void DecimalQuantity::readDoubleConversionToBcd( |
| const char* buffer, int32_t length, int32_t point) { |
| // NOTE: Despite the fact that double-conversion's API is called |
| // "DoubleToAscii", they actually use '0' (as opposed to u8'0'). |
| if (length > 16) { |
| ensureCapacity(length); |
| for (int32_t i = 0; i < length; i++) { |
| fBCD.bcdBytes.ptr[i] = buffer[length-i-1] - '0'; |
| } |
| } else { |
| uint64_t result = 0L; |
| for (int32_t i = 0; i < length; i++) { |
| result |= static_cast<uint64_t>(buffer[length-i-1] - '0') << (4 * i); |
| } |
| fBCD.bcdLong = result; |
| } |
| scale = point - length; |
| precision = length; |
| } |
| |
| void DecimalQuantity::compact() { |
| if (usingBytes) { |
| int32_t delta = 0; |
| for (; delta < precision && fBCD.bcdBytes.ptr[delta] == 0; delta++); |
| if (delta == precision) { |
| // Number is zero |
| setBcdToZero(); |
| return; |
| } else { |
| // Remove trailing zeros |
| shiftRight(delta); |
| } |
| |
| // Compute precision |
| int32_t leading = precision - 1; |
| for (; leading >= 0 && fBCD.bcdBytes.ptr[leading] == 0; leading--); |
| precision = leading + 1; |
| |
| // Switch storage mechanism if possible |
| if (precision <= 16) { |
| switchStorage(); |
| } |
| |
| } else { |
| if (fBCD.bcdLong == 0L) { |
| // Number is zero |
| setBcdToZero(); |
| return; |
| } |
| |
| // Compact the number (remove trailing zeros) |
| // TODO: Use a more efficient algorithm here and below. There is a logarithmic one. |
| int32_t delta = 0; |
| for (; delta < precision && getDigitPos(delta) == 0; delta++); |
| fBCD.bcdLong >>= delta * 4; |
| scale += delta; |
| |
| // Compute precision |
| int32_t leading = precision - 1; |
| for (; leading >= 0 && getDigitPos(leading) == 0; leading--); |
| precision = leading + 1; |
| } |
| } |
| |
| void DecimalQuantity::ensureCapacity() { |
| ensureCapacity(40); |
| } |
| |
| void DecimalQuantity::ensureCapacity(int32_t capacity) { |
| if (capacity == 0) { return; } |
| int32_t oldCapacity = usingBytes ? fBCD.bcdBytes.len : 0; |
| if (!usingBytes) { |
| // TODO: There is nothing being done to check for memory allocation failures. |
| // TODO: Consider indexing by nybbles instead of bytes in C++, so that we can |
| // make these arrays half the size. |
| fBCD.bcdBytes.ptr = static_cast<int8_t*>(uprv_malloc(capacity * sizeof(int8_t))); |
| fBCD.bcdBytes.len = capacity; |
| // Initialize the byte array to zeros (this is done automatically in Java) |
| uprv_memset(fBCD.bcdBytes.ptr, 0, capacity * sizeof(int8_t)); |
| } else if (oldCapacity < capacity) { |
| auto bcd1 = static_cast<int8_t*>(uprv_malloc(capacity * 2 * sizeof(int8_t))); |
| uprv_memcpy(bcd1, fBCD.bcdBytes.ptr, oldCapacity * sizeof(int8_t)); |
| // Initialize the rest of the byte array to zeros (this is done automatically in Java) |
| uprv_memset(bcd1 + oldCapacity, 0, (capacity - oldCapacity) * sizeof(int8_t)); |
| uprv_free(fBCD.bcdBytes.ptr); |
| fBCD.bcdBytes.ptr = bcd1; |
| fBCD.bcdBytes.len = capacity * 2; |
| } |
| usingBytes = true; |
| } |
| |
| void DecimalQuantity::switchStorage() { |
| if (usingBytes) { |
| // Change from bytes to long |
| uint64_t bcdLong = 0L; |
| for (int i = precision - 1; i >= 0; i--) { |
| bcdLong <<= 4; |
| bcdLong |= fBCD.bcdBytes.ptr[i]; |
| } |
| uprv_free(fBCD.bcdBytes.ptr); |
| fBCD.bcdBytes.ptr = nullptr; |
| fBCD.bcdLong = bcdLong; |
| usingBytes = false; |
| } else { |
| // Change from long to bytes |
| // Copy the long into a local variable since it will get munged when we allocate the bytes |
| uint64_t bcdLong = fBCD.bcdLong; |
| ensureCapacity(); |
| for (int i = 0; i < precision; i++) { |
| fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(bcdLong & 0xf); |
| bcdLong >>= 4; |
| } |
| U_ASSERT(usingBytes); |
| } |
| } |
| |
| void DecimalQuantity::copyBcdFrom(const DecimalQuantity &other) { |
| setBcdToZero(); |
| if (other.usingBytes) { |
| ensureCapacity(other.precision); |
| uprv_memcpy(fBCD.bcdBytes.ptr, other.fBCD.bcdBytes.ptr, other.precision * sizeof(int8_t)); |
| } else { |
| fBCD.bcdLong = other.fBCD.bcdLong; |
| } |
| } |
| |
| void DecimalQuantity::moveBcdFrom(DecimalQuantity &other) { |
| setBcdToZero(); |
| if (other.usingBytes) { |
| usingBytes = true; |
| fBCD.bcdBytes.ptr = other.fBCD.bcdBytes.ptr; |
| fBCD.bcdBytes.len = other.fBCD.bcdBytes.len; |
| // Take ownership away from the old instance: |
| other.fBCD.bcdBytes.ptr = nullptr; |
| other.usingBytes = false; |
| } else { |
| fBCD.bcdLong = other.fBCD.bcdLong; |
| } |
| } |
| |
| const char16_t* DecimalQuantity::checkHealth() const { |
| if (usingBytes) { |
| if (precision == 0) { return u"Zero precision but we are in byte mode"; } |
| int32_t capacity = fBCD.bcdBytes.len; |
| if (precision > capacity) { return u"Precision exceeds length of byte array"; } |
| if (getDigitPos(precision - 1) == 0) { return u"Most significant digit is zero in byte mode"; } |
| if (getDigitPos(0) == 0) { return u"Least significant digit is zero in long mode"; } |
| for (int i = 0; i < precision; i++) { |
| if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in byte array"; } |
| if (getDigitPos(i) < 0) { return u"Digit below 0 in byte array"; } |
| } |
| for (int i = precision; i < capacity; i++) { |
| if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in byte array"; } |
| } |
| } else { |
| if (precision == 0 && fBCD.bcdLong != 0) { |
| return u"Value in bcdLong even though precision is zero"; |
| } |
| if (precision > 16) { return u"Precision exceeds length of long"; } |
| if (precision != 0 && getDigitPos(precision - 1) == 0) { |
| return u"Most significant digit is zero in long mode"; |
| } |
| if (precision != 0 && getDigitPos(0) == 0) { |
| return u"Least significant digit is zero in long mode"; |
| } |
| for (int i = 0; i < precision; i++) { |
| if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in long"; } |
| if (getDigitPos(i) < 0) { return u"Digit below 0 in long (?!)"; } |
| } |
| for (int i = precision; i < 16; i++) { |
| if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in long"; } |
| } |
| } |
| |
| // No error |
| return nullptr; |
| } |
| |
| bool DecimalQuantity::operator==(const DecimalQuantity& other) const { |
| bool basicEquals = |
| scale == other.scale |
| && precision == other.precision |
| && flags == other.flags |
| && lReqPos == other.lReqPos |
| && rReqPos == other.rReqPos |
| && isApproximate == other.isApproximate; |
| if (!basicEquals) { |
| return false; |
| } |
| |
| if (precision == 0) { |
| return true; |
| } else if (isApproximate) { |
| return origDouble == other.origDouble && origDelta == other.origDelta; |
| } else { |
| for (int m = getUpperDisplayMagnitude(); m >= getLowerDisplayMagnitude(); m--) { |
| if (getDigit(m) != other.getDigit(m)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| } |
| |
| UnicodeString DecimalQuantity::toString() const { |
| UErrorCode localStatus = U_ZERO_ERROR; |
| MaybeStackArray<char, 30> digits(precision + 1, localStatus); |
| if (U_FAILURE(localStatus)) { |
| return ICU_Utility::makeBogusString(); |
| } |
| for (int32_t i = 0; i < precision; i++) { |
| digits[i] = getDigitPos(precision - i - 1) + '0'; |
| } |
| digits[precision] = 0; // terminate buffer |
| char buffer8[100]; |
| snprintf( |
| buffer8, |
| sizeof(buffer8), |
| "<DecimalQuantity %d:%d %s %s%s%s%d>", |
| lReqPos, |
| rReqPos, |
| (usingBytes ? "bytes" : "long"), |
| (isNegative() ? "-" : ""), |
| (precision == 0 ? "0" : digits.getAlias()), |
| "E", |
| scale); |
| return UnicodeString(buffer8, -1, US_INV); |
| } |
| |
| #endif /* #if !UCONFIG_NO_FORMATTING */ |