| // Copyright 2010 Google Inc. All Rights Reserved. |
| // |
| // Use of this source code is governed by a BSD-style license |
| // that can be found in the COPYING file in the root of the source |
| // tree. An additional intellectual property rights grant can be found |
| // in the file PATENTS. All contributing project authors may |
| // be found in the AUTHORS file in the root of the source tree. |
| // ----------------------------------------------------------------------------- |
| // |
| // Frame-reconstruction function. Memory allocation. |
| // |
| // Author: Skal (pascal.massimino@gmail.com) |
| |
| #if defined(STARBOARD) |
| #include "starboard/client_porting/poem/assert_poem.h" |
| #include "starboard/client_porting/poem/string_poem.h" |
| #endif |
| |
| #include <stdlib.h> |
| |
| #include "src/dec/vp8i_dec.h" |
| #include "src/utils/utils.h" |
| |
| //------------------------------------------------------------------------------ |
| // Main reconstruction function. |
| |
| static const uint16_t kScan[16] = { |
| 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, |
| 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, |
| 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, |
| 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS |
| }; |
| |
| static int CheckMode(int mb_x, int mb_y, int mode) { |
| if (mode == B_DC_PRED) { |
| if (mb_x == 0) { |
| return (mb_y == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT; |
| } else { |
| return (mb_y == 0) ? B_DC_PRED_NOTOP : B_DC_PRED; |
| } |
| } |
| return mode; |
| } |
| |
| static void Copy32b(uint8_t* const dst, const uint8_t* const src) { |
| memcpy(dst, src, 4); |
| } |
| |
| static WEBP_INLINE void DoTransform(uint32_t bits, const int16_t* const src, |
| uint8_t* const dst) { |
| switch (bits >> 30) { |
| case 3: |
| VP8Transform(src, dst, 0); |
| break; |
| case 2: |
| VP8TransformAC3(src, dst); |
| break; |
| case 1: |
| VP8TransformDC(src, dst); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void DoUVTransform(uint32_t bits, const int16_t* const src, |
| uint8_t* const dst) { |
| if (bits & 0xff) { // any non-zero coeff at all? |
| if (bits & 0xaa) { // any non-zero AC coefficient? |
| VP8TransformUV(src, dst); // note we don't use the AC3 variant for U/V |
| } else { |
| VP8TransformDCUV(src, dst); |
| } |
| } |
| } |
| |
| static void ReconstructRow(const VP8Decoder* const dec, |
| const VP8ThreadContext* ctx) { |
| int j; |
| int mb_x; |
| const int mb_y = ctx->mb_y_; |
| const int cache_id = ctx->id_; |
| uint8_t* const y_dst = dec->yuv_b_ + Y_OFF; |
| uint8_t* const u_dst = dec->yuv_b_ + U_OFF; |
| uint8_t* const v_dst = dec->yuv_b_ + V_OFF; |
| |
| // Initialize left-most block. |
| for (j = 0; j < 16; ++j) { |
| y_dst[j * BPS - 1] = 129; |
| } |
| for (j = 0; j < 8; ++j) { |
| u_dst[j * BPS - 1] = 129; |
| v_dst[j * BPS - 1] = 129; |
| } |
| |
| // Init top-left sample on left column too. |
| if (mb_y > 0) { |
| y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129; |
| } else { |
| // we only need to do this init once at block (0,0). |
| // Afterward, it remains valid for the whole topmost row. |
| memset(y_dst - BPS - 1, 127, 16 + 4 + 1); |
| memset(u_dst - BPS - 1, 127, 8 + 1); |
| memset(v_dst - BPS - 1, 127, 8 + 1); |
| } |
| |
| // Reconstruct one row. |
| for (mb_x = 0; mb_x < dec->mb_w_; ++mb_x) { |
| const VP8MBData* const block = ctx->mb_data_ + mb_x; |
| |
| // Rotate in the left samples from previously decoded block. We move four |
| // pixels at a time for alignment reason, and because of in-loop filter. |
| if (mb_x > 0) { |
| for (j = -1; j < 16; ++j) { |
| Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]); |
| } |
| for (j = -1; j < 8; ++j) { |
| Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]); |
| Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]); |
| } |
| } |
| { |
| // bring top samples into the cache |
| VP8TopSamples* const top_yuv = dec->yuv_t_ + mb_x; |
| const int16_t* const coeffs = block->coeffs_; |
| uint32_t bits = block->non_zero_y_; |
| int n; |
| |
| if (mb_y > 0) { |
| memcpy(y_dst - BPS, top_yuv[0].y, 16); |
| memcpy(u_dst - BPS, top_yuv[0].u, 8); |
| memcpy(v_dst - BPS, top_yuv[0].v, 8); |
| } |
| |
| // predict and add residuals |
| if (block->is_i4x4_) { // 4x4 |
| uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16); |
| |
| if (mb_y > 0) { |
| if (mb_x >= dec->mb_w_ - 1) { // on rightmost border |
| memset(top_right, top_yuv[0].y[15], sizeof(*top_right)); |
| } else { |
| memcpy(top_right, top_yuv[1].y, sizeof(*top_right)); |
| } |
| } |
| // replicate the top-right pixels below |
| top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0]; |
| |
| // predict and add residuals for all 4x4 blocks in turn. |
| for (n = 0; n < 16; ++n, bits <<= 2) { |
| uint8_t* const dst = y_dst + kScan[n]; |
| VP8PredLuma4[block->imodes_[n]](dst); |
| DoTransform(bits, coeffs + n * 16, dst); |
| } |
| } else { // 16x16 |
| const int pred_func = CheckMode(mb_x, mb_y, block->imodes_[0]); |
| VP8PredLuma16[pred_func](y_dst); |
| if (bits != 0) { |
| for (n = 0; n < 16; ++n, bits <<= 2) { |
| DoTransform(bits, coeffs + n * 16, y_dst + kScan[n]); |
| } |
| } |
| } |
| { |
| // Chroma |
| const uint32_t bits_uv = block->non_zero_uv_; |
| const int pred_func = CheckMode(mb_x, mb_y, block->uvmode_); |
| VP8PredChroma8[pred_func](u_dst); |
| VP8PredChroma8[pred_func](v_dst); |
| DoUVTransform(bits_uv >> 0, coeffs + 16 * 16, u_dst); |
| DoUVTransform(bits_uv >> 8, coeffs + 20 * 16, v_dst); |
| } |
| |
| // stash away top samples for next block |
| if (mb_y < dec->mb_h_ - 1) { |
| memcpy(top_yuv[0].y, y_dst + 15 * BPS, 16); |
| memcpy(top_yuv[0].u, u_dst + 7 * BPS, 8); |
| memcpy(top_yuv[0].v, v_dst + 7 * BPS, 8); |
| } |
| } |
| // Transfer reconstructed samples from yuv_b_ cache to final destination. |
| { |
| const int y_offset = cache_id * 16 * dec->cache_y_stride_; |
| const int uv_offset = cache_id * 8 * dec->cache_uv_stride_; |
| uint8_t* const y_out = dec->cache_y_ + mb_x * 16 + y_offset; |
| uint8_t* const u_out = dec->cache_u_ + mb_x * 8 + uv_offset; |
| uint8_t* const v_out = dec->cache_v_ + mb_x * 8 + uv_offset; |
| for (j = 0; j < 16; ++j) { |
| memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16); |
| } |
| for (j = 0; j < 8; ++j) { |
| memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8); |
| memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8); |
| } |
| } |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Filtering |
| |
| // kFilterExtraRows[] = How many extra lines are needed on the MB boundary |
| // for caching, given a filtering level. |
| // Simple filter: up to 2 luma samples are read and 1 is written. |
| // Complex filter: up to 4 luma samples are read and 3 are written. Same for |
| // U/V, so it's 8 samples total (because of the 2x upsampling). |
| static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 }; |
| |
| static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) { |
| const VP8ThreadContext* const ctx = &dec->thread_ctx_; |
| const int cache_id = ctx->id_; |
| const int y_bps = dec->cache_y_stride_; |
| const VP8FInfo* const f_info = ctx->f_info_ + mb_x; |
| uint8_t* const y_dst = dec->cache_y_ + cache_id * 16 * y_bps + mb_x * 16; |
| const int ilevel = f_info->f_ilevel_; |
| const int limit = f_info->f_limit_; |
| if (limit == 0) { |
| return; |
| } |
| assert(limit >= 3); |
| if (dec->filter_type_ == 1) { // simple |
| if (mb_x > 0) { |
| VP8SimpleHFilter16(y_dst, y_bps, limit + 4); |
| } |
| if (f_info->f_inner_) { |
| VP8SimpleHFilter16i(y_dst, y_bps, limit); |
| } |
| if (mb_y > 0) { |
| VP8SimpleVFilter16(y_dst, y_bps, limit + 4); |
| } |
| if (f_info->f_inner_) { |
| VP8SimpleVFilter16i(y_dst, y_bps, limit); |
| } |
| } else { // complex |
| const int uv_bps = dec->cache_uv_stride_; |
| uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8; |
| uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8; |
| const int hev_thresh = f_info->hev_thresh_; |
| if (mb_x > 0) { |
| VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); |
| VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); |
| } |
| if (f_info->f_inner_) { |
| VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); |
| VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); |
| } |
| if (mb_y > 0) { |
| VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); |
| VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); |
| } |
| if (f_info->f_inner_) { |
| VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); |
| VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); |
| } |
| } |
| } |
| |
| // Filter the decoded macroblock row (if needed) |
| static void FilterRow(const VP8Decoder* const dec) { |
| int mb_x; |
| const int mb_y = dec->thread_ctx_.mb_y_; |
| assert(dec->thread_ctx_.filter_row_); |
| for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) { |
| DoFilter(dec, mb_x, mb_y); |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Precompute the filtering strength for each segment and each i4x4/i16x16 mode. |
| |
| static void PrecomputeFilterStrengths(VP8Decoder* const dec) { |
| if (dec->filter_type_ > 0) { |
| int s; |
| const VP8FilterHeader* const hdr = &dec->filter_hdr_; |
| for (s = 0; s < NUM_MB_SEGMENTS; ++s) { |
| int i4x4; |
| // First, compute the initial level |
| int base_level; |
| if (dec->segment_hdr_.use_segment_) { |
| base_level = dec->segment_hdr_.filter_strength_[s]; |
| if (!dec->segment_hdr_.absolute_delta_) { |
| base_level += hdr->level_; |
| } |
| } else { |
| base_level = hdr->level_; |
| } |
| for (i4x4 = 0; i4x4 <= 1; ++i4x4) { |
| VP8FInfo* const info = &dec->fstrengths_[s][i4x4]; |
| int level = base_level; |
| if (hdr->use_lf_delta_) { |
| level += hdr->ref_lf_delta_[0]; |
| if (i4x4) { |
| level += hdr->mode_lf_delta_[0]; |
| } |
| } |
| level = (level < 0) ? 0 : (level > 63) ? 63 : level; |
| if (level > 0) { |
| int ilevel = level; |
| if (hdr->sharpness_ > 0) { |
| if (hdr->sharpness_ > 4) { |
| ilevel >>= 2; |
| } else { |
| ilevel >>= 1; |
| } |
| if (ilevel > 9 - hdr->sharpness_) { |
| ilevel = 9 - hdr->sharpness_; |
| } |
| } |
| if (ilevel < 1) ilevel = 1; |
| info->f_ilevel_ = ilevel; |
| info->f_limit_ = 2 * level + ilevel; |
| info->hev_thresh_ = (level >= 40) ? 2 : (level >= 15) ? 1 : 0; |
| } else { |
| info->f_limit_ = 0; // no filtering |
| } |
| info->f_inner_ = i4x4; |
| } |
| } |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Dithering |
| |
| // minimal amp that will provide a non-zero dithering effect |
| #define MIN_DITHER_AMP 4 |
| |
| #define DITHER_AMP_TAB_SIZE 12 |
| static const uint8_t kQuantToDitherAmp[DITHER_AMP_TAB_SIZE] = { |
| // roughly, it's dqm->uv_mat_[1] |
| 8, 7, 6, 4, 4, 2, 2, 2, 1, 1, 1, 1 |
| }; |
| |
| void VP8InitDithering(const WebPDecoderOptions* const options, |
| VP8Decoder* const dec) { |
| assert(dec != NULL); |
| if (options != NULL) { |
| const int d = options->dithering_strength; |
| const int max_amp = (1 << VP8_RANDOM_DITHER_FIX) - 1; |
| const int f = (d < 0) ? 0 : (d > 100) ? max_amp : (d * max_amp / 100); |
| if (f > 0) { |
| int s; |
| int all_amp = 0; |
| for (s = 0; s < NUM_MB_SEGMENTS; ++s) { |
| VP8QuantMatrix* const dqm = &dec->dqm_[s]; |
| if (dqm->uv_quant_ < DITHER_AMP_TAB_SIZE) { |
| // TODO(skal): should we specially dither more for uv_quant_ < 0? |
| const int idx = (dqm->uv_quant_ < 0) ? 0 : dqm->uv_quant_; |
| dqm->dither_ = (f * kQuantToDitherAmp[idx]) >> 3; |
| } |
| all_amp |= dqm->dither_; |
| } |
| if (all_amp != 0) { |
| VP8InitRandom(&dec->dithering_rg_, 1.0f); |
| dec->dither_ = 1; |
| } |
| } |
| // potentially allow alpha dithering |
| dec->alpha_dithering_ = options->alpha_dithering_strength; |
| if (dec->alpha_dithering_ > 100) { |
| dec->alpha_dithering_ = 100; |
| } else if (dec->alpha_dithering_ < 0) { |
| dec->alpha_dithering_ = 0; |
| } |
| } |
| } |
| |
| // Convert to range: [-2,2] for dither=50, [-4,4] for dither=100 |
| static void Dither8x8(VP8Random* const rg, uint8_t* dst, int bps, int amp) { |
| uint8_t dither[64]; |
| int i; |
| for (i = 0; i < 8 * 8; ++i) { |
| dither[i] = VP8RandomBits2(rg, VP8_DITHER_AMP_BITS + 1, amp); |
| } |
| VP8DitherCombine8x8(dither, dst, bps); |
| } |
| |
| static void DitherRow(VP8Decoder* const dec) { |
| int mb_x; |
| assert(dec->dither_); |
| for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) { |
| const VP8ThreadContext* const ctx = &dec->thread_ctx_; |
| const VP8MBData* const data = ctx->mb_data_ + mb_x; |
| const int cache_id = ctx->id_; |
| const int uv_bps = dec->cache_uv_stride_; |
| if (data->dither_ >= MIN_DITHER_AMP) { |
| uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8; |
| uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8; |
| Dither8x8(&dec->dithering_rg_, u_dst, uv_bps, data->dither_); |
| Dither8x8(&dec->dithering_rg_, v_dst, uv_bps, data->dither_); |
| } |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| // This function is called after a row of macroblocks is finished decoding. |
| // It also takes into account the following restrictions: |
| // * In case of in-loop filtering, we must hold off sending some of the bottom |
| // pixels as they are yet unfiltered. They will be when the next macroblock |
| // row is decoded. Meanwhile, we must preserve them by rotating them in the |
| // cache area. This doesn't hold for the very bottom row of the uncropped |
| // picture of course. |
| // * we must clip the remaining pixels against the cropping area. The VP8Io |
| // struct must have the following fields set correctly before calling put(): |
| |
| #define MACROBLOCK_VPOS(mb_y) ((mb_y) * 16) // vertical position of a MB |
| |
| // Finalize and transmit a complete row. Return false in case of user-abort. |
| static int FinishRow(void* arg1, void* arg2) { |
| VP8Decoder* const dec = (VP8Decoder*)arg1; |
| VP8Io* const io = (VP8Io*)arg2; |
| int ok = 1; |
| const VP8ThreadContext* const ctx = &dec->thread_ctx_; |
| const int cache_id = ctx->id_; |
| const int extra_y_rows = kFilterExtraRows[dec->filter_type_]; |
| const int ysize = extra_y_rows * dec->cache_y_stride_; |
| const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_; |
| const int y_offset = cache_id * 16 * dec->cache_y_stride_; |
| const int uv_offset = cache_id * 8 * dec->cache_uv_stride_; |
| uint8_t* const ydst = dec->cache_y_ - ysize + y_offset; |
| uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset; |
| uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset; |
| const int mb_y = ctx->mb_y_; |
| const int is_first_row = (mb_y == 0); |
| const int is_last_row = (mb_y >= dec->br_mb_y_ - 1); |
| |
| if (dec->mt_method_ == 2) { |
| ReconstructRow(dec, ctx); |
| } |
| |
| if (ctx->filter_row_) { |
| FilterRow(dec); |
| } |
| |
| if (dec->dither_) { |
| DitherRow(dec); |
| } |
| |
| if (io->put != NULL) { |
| int y_start = MACROBLOCK_VPOS(mb_y); |
| int y_end = MACROBLOCK_VPOS(mb_y + 1); |
| if (!is_first_row) { |
| y_start -= extra_y_rows; |
| io->y = ydst; |
| io->u = udst; |
| io->v = vdst; |
| } else { |
| io->y = dec->cache_y_ + y_offset; |
| io->u = dec->cache_u_ + uv_offset; |
| io->v = dec->cache_v_ + uv_offset; |
| } |
| |
| if (!is_last_row) { |
| y_end -= extra_y_rows; |
| } |
| if (y_end > io->crop_bottom) { |
| y_end = io->crop_bottom; // make sure we don't overflow on last row. |
| } |
| // If dec->alpha_data_ is not NULL, we have some alpha plane present. |
| io->a = NULL; |
| if (dec->alpha_data_ != NULL && y_start < y_end) { |
| io->a = VP8DecompressAlphaRows(dec, io, y_start, y_end - y_start); |
| if (io->a == NULL) { |
| return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, |
| "Could not decode alpha data."); |
| } |
| } |
| if (y_start < io->crop_top) { |
| const int delta_y = io->crop_top - y_start; |
| y_start = io->crop_top; |
| assert(!(delta_y & 1)); |
| io->y += dec->cache_y_stride_ * delta_y; |
| io->u += dec->cache_uv_stride_ * (delta_y >> 1); |
| io->v += dec->cache_uv_stride_ * (delta_y >> 1); |
| if (io->a != NULL) { |
| io->a += io->width * delta_y; |
| } |
| } |
| if (y_start < y_end) { |
| io->y += io->crop_left; |
| io->u += io->crop_left >> 1; |
| io->v += io->crop_left >> 1; |
| if (io->a != NULL) { |
| io->a += io->crop_left; |
| } |
| io->mb_y = y_start - io->crop_top; |
| io->mb_w = io->crop_right - io->crop_left; |
| io->mb_h = y_end - y_start; |
| ok = io->put(io); |
| } |
| } |
| // rotate top samples if needed |
| if (cache_id + 1 == dec->num_caches_) { |
| if (!is_last_row) { |
| memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize); |
| memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize); |
| memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize); |
| } |
| } |
| |
| return ok; |
| } |
| |
| #undef MACROBLOCK_VPOS |
| |
| //------------------------------------------------------------------------------ |
| |
| int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) { |
| int ok = 1; |
| VP8ThreadContext* const ctx = &dec->thread_ctx_; |
| const int filter_row = |
| (dec->filter_type_ > 0) && |
| (dec->mb_y_ >= dec->tl_mb_y_) && (dec->mb_y_ <= dec->br_mb_y_); |
| if (dec->mt_method_ == 0) { |
| // ctx->id_ and ctx->f_info_ are already set |
| ctx->mb_y_ = dec->mb_y_; |
| ctx->filter_row_ = filter_row; |
| ReconstructRow(dec, ctx); |
| ok = FinishRow(dec, io); |
| } else { |
| WebPWorker* const worker = &dec->worker_; |
| // Finish previous job *before* updating context |
| ok &= WebPGetWorkerInterface()->Sync(worker); |
| assert(worker->status_ == OK); |
| if (ok) { // spawn a new deblocking/output job |
| ctx->io_ = *io; |
| ctx->id_ = dec->cache_id_; |
| ctx->mb_y_ = dec->mb_y_; |
| ctx->filter_row_ = filter_row; |
| if (dec->mt_method_ == 2) { // swap macroblock data |
| VP8MBData* const tmp = ctx->mb_data_; |
| ctx->mb_data_ = dec->mb_data_; |
| dec->mb_data_ = tmp; |
| } else { |
| // perform reconstruction directly in main thread |
| ReconstructRow(dec, ctx); |
| } |
| if (filter_row) { // swap filter info |
| VP8FInfo* const tmp = ctx->f_info_; |
| ctx->f_info_ = dec->f_info_; |
| dec->f_info_ = tmp; |
| } |
| // (reconstruct)+filter in parallel |
| WebPGetWorkerInterface()->Launch(worker); |
| if (++dec->cache_id_ == dec->num_caches_) { |
| dec->cache_id_ = 0; |
| } |
| } |
| } |
| return ok; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Finish setting up the decoding parameter once user's setup() is called. |
| |
| VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) { |
| // Call setup() first. This may trigger additional decoding features on 'io'. |
| // Note: Afterward, we must call teardown() no matter what. |
| if (io->setup != NULL && !io->setup(io)) { |
| VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed"); |
| return dec->status_; |
| } |
| |
| // Disable filtering per user request |
| if (io->bypass_filtering) { |
| dec->filter_type_ = 0; |
| } |
| |
| // Define the area where we can skip in-loop filtering, in case of cropping. |
| // |
| // 'Simple' filter reads two luma samples outside of the macroblock |
| // and filters one. It doesn't filter the chroma samples. Hence, we can |
| // avoid doing the in-loop filtering before crop_top/crop_left position. |
| // For the 'Complex' filter, 3 samples are read and up to 3 are filtered. |
| // Means: there's a dependency chain that goes all the way up to the |
| // top-left corner of the picture (MB #0). We must filter all the previous |
| // macroblocks. |
| { |
| const int extra_pixels = kFilterExtraRows[dec->filter_type_]; |
| if (dec->filter_type_ == 2) { |
| // For complex filter, we need to preserve the dependency chain. |
| dec->tl_mb_x_ = 0; |
| dec->tl_mb_y_ = 0; |
| } else { |
| // For simple filter, we can filter only the cropped region. |
| // We include 'extra_pixels' on the other side of the boundary, since |
| // vertical or horizontal filtering of the previous macroblock can |
| // modify some abutting pixels. |
| dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4; |
| dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4; |
| if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0; |
| if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0; |
| } |
| // We need some 'extra' pixels on the right/bottom. |
| dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4; |
| dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4; |
| if (dec->br_mb_x_ > dec->mb_w_) { |
| dec->br_mb_x_ = dec->mb_w_; |
| } |
| if (dec->br_mb_y_ > dec->mb_h_) { |
| dec->br_mb_y_ = dec->mb_h_; |
| } |
| } |
| PrecomputeFilterStrengths(dec); |
| return VP8_STATUS_OK; |
| } |
| |
| int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) { |
| int ok = 1; |
| if (dec->mt_method_ > 0) { |
| ok = WebPGetWorkerInterface()->Sync(&dec->worker_); |
| } |
| |
| if (io->teardown != NULL) { |
| io->teardown(io); |
| } |
| return ok; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line. |
| // |
| // Reason is: the deblocking filter cannot deblock the bottom horizontal edges |
| // immediately, and needs to wait for first few rows of the next macroblock to |
| // be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending |
| // on strength). |
| // With two threads, the vertical positions of the rows being decoded are: |
| // Decode: [ 0..15][16..31][32..47][48..63][64..79][... |
| // Deblock: [ 0..11][12..27][28..43][44..59][... |
| // If we use two threads and two caches of 16 pixels, the sequence would be: |
| // Decode: [ 0..15][16..31][ 0..15!!][16..31][ 0..15][... |
| // Deblock: [ 0..11][12..27!!][-4..11][12..27][... |
| // The problem occurs during row [12..15!!] that both the decoding and |
| // deblocking threads are writing simultaneously. |
| // With 3 cache lines, one get a safe write pattern: |
| // Decode: [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0.. |
| // Deblock: [ 0..11][12..27][28..43][-4..11][12..27][28... |
| // Note that multi-threaded output _without_ deblocking can make use of two |
| // cache lines of 16 pixels only, since there's no lagging behind. The decoding |
| // and output process have non-concurrent writing: |
| // Decode: [ 0..15][16..31][ 0..15][16..31][... |
| // io->put: [ 0..15][16..31][ 0..15][... |
| |
| #define MT_CACHE_LINES 3 |
| #define ST_CACHE_LINES 1 // 1 cache row only for single-threaded case |
| |
| // Initialize multi/single-thread worker |
| static int InitThreadContext(VP8Decoder* const dec) { |
| dec->cache_id_ = 0; |
| if (dec->mt_method_ > 0) { |
| WebPWorker* const worker = &dec->worker_; |
| if (!WebPGetWorkerInterface()->Reset(worker)) { |
| return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, |
| "thread initialization failed."); |
| } |
| worker->data1 = dec; |
| worker->data2 = (void*)&dec->thread_ctx_.io_; |
| worker->hook = FinishRow; |
| dec->num_caches_ = |
| (dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1; |
| } else { |
| dec->num_caches_ = ST_CACHE_LINES; |
| } |
| return 1; |
| } |
| |
| int VP8GetThreadMethod(const WebPDecoderOptions* const options, |
| const WebPHeaderStructure* const headers, |
| int width, int height) { |
| if (options == NULL || options->use_threads == 0) { |
| return 0; |
| } |
| (void)headers; |
| (void)width; |
| (void)height; |
| assert(headers == NULL || !headers->is_lossless); |
| #if defined(WEBP_USE_THREAD) |
| if (width < MIN_WIDTH_FOR_THREADS) return 0; |
| // TODO(skal): tune the heuristic further |
| #if 0 |
| if (height < 2 * width) return 2; |
| #endif |
| return 2; |
| #else // !WEBP_USE_THREAD |
| return 0; |
| #endif |
| } |
| |
| #undef MT_CACHE_LINES |
| #undef ST_CACHE_LINES |
| |
| //------------------------------------------------------------------------------ |
| // Memory setup |
| |
| static int AllocateMemory(VP8Decoder* const dec) { |
| const int num_caches = dec->num_caches_; |
| const int mb_w = dec->mb_w_; |
| // Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise. |
| const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t); |
| const size_t top_size = sizeof(VP8TopSamples) * mb_w; |
| const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB); |
| const size_t f_info_size = |
| (dec->filter_type_ > 0) ? |
| mb_w * (dec->mt_method_ > 0 ? 2 : 1) * sizeof(VP8FInfo) |
| : 0; |
| const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_); |
| const size_t mb_data_size = |
| (dec->mt_method_ == 2 ? 2 : 1) * mb_w * sizeof(*dec->mb_data_); |
| const size_t cache_height = (16 * num_caches |
| + kFilterExtraRows[dec->filter_type_]) * 3 / 2; |
| const size_t cache_size = top_size * cache_height; |
| // alpha_size is the only one that scales as width x height. |
| const uint64_t alpha_size = (dec->alpha_data_ != NULL) ? |
| (uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL; |
| const uint64_t needed = (uint64_t)intra_pred_mode_size |
| + top_size + mb_info_size + f_info_size |
| + yuv_size + mb_data_size |
| + cache_size + alpha_size + WEBP_ALIGN_CST; |
| uint8_t* mem; |
| |
| if (needed != (size_t)needed) return 0; // check for overflow |
| if (needed > dec->mem_size_) { |
| WebPSafeFree(dec->mem_); |
| dec->mem_size_ = 0; |
| dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t)); |
| if (dec->mem_ == NULL) { |
| return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, |
| "no memory during frame initialization."); |
| } |
| // down-cast is ok, thanks to WebPSafeMalloc() above. |
| dec->mem_size_ = (size_t)needed; |
| } |
| |
| mem = (uint8_t*)dec->mem_; |
| dec->intra_t_ = mem; |
| mem += intra_pred_mode_size; |
| |
| dec->yuv_t_ = (VP8TopSamples*)mem; |
| mem += top_size; |
| |
| dec->mb_info_ = ((VP8MB*)mem) + 1; |
| mem += mb_info_size; |
| |
| dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL; |
| mem += f_info_size; |
| dec->thread_ctx_.id_ = 0; |
| dec->thread_ctx_.f_info_ = dec->f_info_; |
| if (dec->mt_method_ > 0) { |
| // secondary cache line. The deblocking process need to make use of the |
| // filtering strength from previous macroblock row, while the new ones |
| // are being decoded in parallel. We'll just swap the pointers. |
| dec->thread_ctx_.f_info_ += mb_w; |
| } |
| |
| mem = (uint8_t*)WEBP_ALIGN(mem); |
| assert((yuv_size & WEBP_ALIGN_CST) == 0); |
| dec->yuv_b_ = mem; |
| mem += yuv_size; |
| |
| dec->mb_data_ = (VP8MBData*)mem; |
| dec->thread_ctx_.mb_data_ = (VP8MBData*)mem; |
| if (dec->mt_method_ == 2) { |
| dec->thread_ctx_.mb_data_ += mb_w; |
| } |
| mem += mb_data_size; |
| |
| dec->cache_y_stride_ = 16 * mb_w; |
| dec->cache_uv_stride_ = 8 * mb_w; |
| { |
| const int extra_rows = kFilterExtraRows[dec->filter_type_]; |
| const int extra_y = extra_rows * dec->cache_y_stride_; |
| const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_; |
| dec->cache_y_ = mem + extra_y; |
| dec->cache_u_ = dec->cache_y_ |
| + 16 * num_caches * dec->cache_y_stride_ + extra_uv; |
| dec->cache_v_ = dec->cache_u_ |
| + 8 * num_caches * dec->cache_uv_stride_ + extra_uv; |
| dec->cache_id_ = 0; |
| } |
| mem += cache_size; |
| |
| // alpha plane |
| dec->alpha_plane_ = alpha_size ? mem : NULL; |
| mem += alpha_size; |
| assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_); |
| |
| // note: left/top-info is initialized once for all. |
| memset(dec->mb_info_ - 1, 0, mb_info_size); |
| VP8InitScanline(dec); // initialize left too. |
| |
| // initialize top |
| memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size); |
| |
| return 1; |
| } |
| |
| static void InitIo(VP8Decoder* const dec, VP8Io* io) { |
| // prepare 'io' |
| io->mb_y = 0; |
| io->y = dec->cache_y_; |
| io->u = dec->cache_u_; |
| io->v = dec->cache_v_; |
| io->y_stride = dec->cache_y_stride_; |
| io->uv_stride = dec->cache_uv_stride_; |
| io->a = NULL; |
| } |
| |
| int VP8InitFrame(VP8Decoder* const dec, VP8Io* const io) { |
| if (!InitThreadContext(dec)) return 0; // call first. Sets dec->num_caches_. |
| if (!AllocateMemory(dec)) return 0; |
| InitIo(dec, io); |
| VP8DspInit(); // Init critical function pointers and look-up tables. |
| return 1; |
| } |
| |
| //------------------------------------------------------------------------------ |