| //===- AArch64ErrataFix.cpp -----------------------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // This file implements Section Patching for the purpose of working around |
| // errata in CPUs. The general principle is that an erratum sequence of one or |
| // more instructions is detected in the instruction stream, one of the |
| // instructions in the sequence is replaced with a branch to a patch sequence |
| // of replacement instructions. At the end of the replacement sequence the |
| // patch branches back to the instruction stream. |
| |
| // This technique is only suitable for fixing an erratum when: |
| // - There is a set of necessary conditions required to trigger the erratum that |
| // can be detected at static link time. |
| // - There is a set of replacement instructions that can be used to remove at |
| // least one of the necessary conditions that trigger the erratum. |
| // - We can overwrite an instruction in the erratum sequence with a branch to |
| // the replacement sequence. |
| // - We can place the replacement sequence within range of the branch. |
| |
| // FIXME: |
| // - The implementation here only supports one patch, the AArch64 Cortex-53 |
| // errata 843419 that affects r0p0, r0p1, r0p2 and r0p4 versions of the core. |
| // To keep the initial version simple there is no support for multiple |
| // architectures or selection of different patches. |
| //===----------------------------------------------------------------------===// |
| |
| #include "AArch64ErrataFix.h" |
| #include "Config.h" |
| #include "LinkerScript.h" |
| #include "OutputSections.h" |
| #include "Relocations.h" |
| #include "Symbols.h" |
| #include "SyntheticSections.h" |
| #include "Target.h" |
| #include "lld/Common/Memory.h" |
| #include "lld/Common/Strings.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::support; |
| using namespace llvm::support::endian; |
| |
| using namespace lld; |
| using namespace lld::elf; |
| |
| // Helper functions to identify instructions and conditions needed to trigger |
| // the Cortex-A53-843419 erratum. |
| |
| // ADRP |
| // | 1 | immlo (2) | 1 | 0 0 0 0 | immhi (19) | Rd (5) | |
| static bool isADRP(uint32_t Instr) { |
| return (Instr & 0x9f000000) == 0x90000000; |
| } |
| |
| // Load and store bit patterns from ARMv8-A ARM ARM. |
| // Instructions appear in order of appearance starting from table in |
| // C4.1.3 Loads and Stores. |
| |
| // All loads and stores have 1 (at bit postion 27), (0 at bit position 25). |
| // | op0 x op1 (2) | 1 op2 0 op3 (2) | x | op4 (5) | xxxx | op5 (2) | x (10) | |
| static bool isLoadStoreClass(uint32_t Instr) { |
| return (Instr & 0x0a000000) == 0x08000000; |
| } |
| |
| // LDN/STN multiple no offset |
| // | 0 Q 00 | 1100 | 0 L 00 | 0000 | opcode (4) | size (2) | Rn (5) | Rt (5) | |
| // LDN/STN multiple post-indexed |
| // | 0 Q 00 | 1100 | 1 L 0 | Rm (5)| opcode (4) | size (2) | Rn (5) | Rt (5) | |
| // L == 0 for stores. |
| |
| // Utility routine to decode opcode field of LDN/STN multiple structure |
| // instructions to find the ST1 instructions. |
| // opcode == 0010 ST1 4 registers. |
| // opcode == 0110 ST1 3 registers. |
| // opcode == 0111 ST1 1 register. |
| // opcode == 1010 ST1 2 registers. |
| static bool isST1MultipleOpcode(uint32_t Instr) { |
| return (Instr & 0x0000f000) == 0x00002000 || |
| (Instr & 0x0000f000) == 0x00006000 || |
| (Instr & 0x0000f000) == 0x00007000 || |
| (Instr & 0x0000f000) == 0x0000a000; |
| } |
| |
| static bool isST1Multiple(uint32_t Instr) { |
| return (Instr & 0xbfff0000) == 0x0c000000 && isST1MultipleOpcode(Instr); |
| } |
| |
| // Writes to Rn (writeback). |
| static bool isST1MultiplePost(uint32_t Instr) { |
| return (Instr & 0xbfe00000) == 0x0c800000 && isST1MultipleOpcode(Instr); |
| } |
| |
| // LDN/STN single no offset |
| // | 0 Q 00 | 1101 | 0 L R 0 | 0000 | opc (3) S | size (2) | Rn (5) | Rt (5)| |
| // LDN/STN single post-indexed |
| // | 0 Q 00 | 1101 | 1 L R | Rm (5) | opc (3) S | size (2) | Rn (5) | Rt (5)| |
| // L == 0 for stores |
| |
| // Utility routine to decode opcode field of LDN/STN single structure |
| // instructions to find the ST1 instructions. |
| // R == 0 for ST1 and ST3, R == 1 for ST2 and ST4. |
| // opcode == 000 ST1 8-bit. |
| // opcode == 010 ST1 16-bit. |
| // opcode == 100 ST1 32 or 64-bit (Size determines which). |
| static bool isST1SingleOpcode(uint32_t Instr) { |
| return (Instr & 0x0040e000) == 0x00000000 || |
| (Instr & 0x0040e000) == 0x00004000 || |
| (Instr & 0x0040e000) == 0x00008000; |
| } |
| |
| static bool isST1Single(uint32_t Instr) { |
| return (Instr & 0xbfff0000) == 0x0d000000 && isST1SingleOpcode(Instr); |
| } |
| |
| // Writes to Rn (writeback). |
| static bool isST1SinglePost(uint32_t Instr) { |
| return (Instr & 0xbfe00000) == 0x0d800000 && isST1SingleOpcode(Instr); |
| } |
| |
| static bool isST1(uint32_t Instr) { |
| return isST1Multiple(Instr) || isST1MultiplePost(Instr) || |
| isST1Single(Instr) || isST1SinglePost(Instr); |
| } |
| |
| // Load/store exclusive |
| // | size (2) 00 | 1000 | o2 L o1 | Rs (5) | o0 | Rt2 (5) | Rn (5) | Rt (5) | |
| // L == 0 for Stores. |
| static bool isLoadStoreExclusive(uint32_t Instr) { |
| return (Instr & 0x3f000000) == 0x08000000; |
| } |
| |
| static bool isLoadExclusive(uint32_t Instr) { |
| return (Instr & 0x3f400000) == 0x08400000; |
| } |
| |
| // Load register literal |
| // | opc (2) 01 | 1 V 00 | imm19 | Rt (5) | |
| static bool isLoadLiteral(uint32_t Instr) { |
| return (Instr & 0x3b000000) == 0x18000000; |
| } |
| |
| // Load/store no-allocate pair |
| // (offset) |
| // | opc (2) 10 | 1 V 00 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | |
| // L == 0 for stores. |
| // Never writes to register |
| static bool isSTNP(uint32_t Instr) { |
| return (Instr & 0x3bc00000) == 0x28000000; |
| } |
| |
| // Load/store register pair |
| // (post-indexed) |
| // | opc (2) 10 | 1 V 00 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | |
| // L == 0 for stores, V == 0 for Scalar, V == 1 for Simd/FP |
| // Writes to Rn. |
| static bool isSTPPost(uint32_t Instr) { |
| return (Instr & 0x3bc00000) == 0x28800000; |
| } |
| |
| // (offset) |
| // | opc (2) 10 | 1 V 01 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | |
| static bool isSTPOffset(uint32_t Instr) { |
| return (Instr & 0x3bc00000) == 0x29000000; |
| } |
| |
| // (pre-index) |
| // | opc (2) 10 | 1 V 01 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | |
| // Writes to Rn. |
| static bool isSTPPre(uint32_t Instr) { |
| return (Instr & 0x3bc00000) == 0x29800000; |
| } |
| |
| static bool isSTP(uint32_t Instr) { |
| return isSTPPost(Instr) || isSTPOffset(Instr) || isSTPPre(Instr); |
| } |
| |
| // Load/store register (unscaled immediate) |
| // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 00 | Rn (5) | Rt (5) | |
| // V == 0 for Scalar, V == 1 for Simd/FP. |
| static bool isLoadStoreUnscaled(uint32_t Instr) { |
| return (Instr & 0x3b000c00) == 0x38000000; |
| } |
| |
| // Load/store register (immediate post-indexed) |
| // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 01 | Rn (5) | Rt (5) | |
| static bool isLoadStoreImmediatePost(uint32_t Instr) { |
| return (Instr & 0x3b200c00) == 0x38000400; |
| } |
| |
| // Load/store register (unprivileged) |
| // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 10 | Rn (5) | Rt (5) | |
| static bool isLoadStoreUnpriv(uint32_t Instr) { |
| return (Instr & 0x3b200c00) == 0x38000800; |
| } |
| |
| // Load/store register (immediate pre-indexed) |
| // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 11 | Rn (5) | Rt (5) | |
| static bool isLoadStoreImmediatePre(uint32_t Instr) { |
| return (Instr & 0x3b200c00) == 0x38000c00; |
| } |
| |
| // Load/store register (register offset) |
| // | size (2) 11 | 1 V 00 | opc (2) 1 | Rm (5) | option (3) S | 10 | Rn | Rt | |
| static bool isLoadStoreRegisterOff(uint32_t Instr) { |
| return (Instr & 0x3b200c00) == 0x38200800; |
| } |
| |
| // Load/store register (unsigned immediate) |
| // | size (2) 11 | 1 V 01 | opc (2) | imm12 | Rn (5) | Rt (5) | |
| static bool isLoadStoreRegisterUnsigned(uint32_t Instr) { |
| return (Instr & 0x3b000000) == 0x39000000; |
| } |
| |
| // Rt is always in bit position 0 - 4. |
| static uint32_t getRt(uint32_t Instr) { return (Instr & 0x1f); } |
| |
| // Rn is always in bit position 5 - 9. |
| static uint32_t getRn(uint32_t Instr) { return (Instr >> 5) & 0x1f; } |
| |
| // C4.1.2 Branches, Exception Generating and System instructions |
| // | op0 (3) 1 | 01 op1 (4) | x (22) | |
| // op0 == 010 101 op1 == 0xxx Conditional Branch. |
| // op0 == 110 101 op1 == 1xxx Unconditional Branch Register. |
| // op0 == x00 101 op1 == xxxx Unconditional Branch immediate. |
| // op0 == x01 101 op1 == 0xxx Compare and branch immediate. |
| // op0 == x01 101 op1 == 1xxx Test and branch immediate. |
| static bool isBranch(uint32_t Instr) { |
| return ((Instr & 0xfe000000) == 0xd6000000) || // Cond branch. |
| ((Instr & 0xfe000000) == 0x54000000) || // Uncond branch reg. |
| ((Instr & 0x7c000000) == 0x14000000) || // Uncond branch imm. |
| ((Instr & 0x7c000000) == 0x34000000); // Compare and test branch. |
| } |
| |
| static bool isV8SingleRegisterNonStructureLoadStore(uint32_t Instr) { |
| return isLoadStoreUnscaled(Instr) || isLoadStoreImmediatePost(Instr) || |
| isLoadStoreUnpriv(Instr) || isLoadStoreImmediatePre(Instr) || |
| isLoadStoreRegisterOff(Instr) || isLoadStoreRegisterUnsigned(Instr); |
| } |
| |
| // Note that this function refers to v8.0 only and does not include the |
| // additional load and store instructions added for in later revisions of |
| // the architecture such as the Atomic memory operations introduced |
| // in v8.1. |
| static bool isV8NonStructureLoad(uint32_t Instr) { |
| if (isLoadExclusive(Instr)) |
| return true; |
| if (isLoadLiteral(Instr)) |
| return true; |
| else if (isV8SingleRegisterNonStructureLoadStore(Instr)) { |
| // For Load and Store single register, Loads are derived from a |
| // combination of the Size, V and Opc fields. |
| uint32_t Size = (Instr >> 30) & 0xff; |
| uint32_t V = (Instr >> 26) & 0x1; |
| uint32_t Opc = (Instr >> 22) & 0x3; |
| // For the load and store instructions that we are decoding. |
| // Opc == 0 are all stores. |
| // Opc == 1 with a couple of exceptions are loads. The exceptions are: |
| // Size == 00 (0), V == 1, Opc == 10 (2) which is a store and |
| // Size == 11 (3), V == 0, Opc == 10 (2) which is a prefetch. |
| return Opc != 0 && !(Size == 0 && V == 1 && Opc == 2) && |
| !(Size == 3 && V == 0 && Opc == 2); |
| } |
| return false; |
| } |
| |
| // The following decode instructions are only complete up to the instructions |
| // needed for errata 843419. |
| |
| // Instruction with writeback updates the index register after the load/store. |
| static bool hasWriteback(uint32_t Instr) { |
| return isLoadStoreImmediatePre(Instr) || isLoadStoreImmediatePost(Instr) || |
| isSTPPre(Instr) || isSTPPost(Instr) || isST1SinglePost(Instr) || |
| isST1MultiplePost(Instr); |
| } |
| |
| // For the load and store class of instructions, a load can write to the |
| // destination register, a load and a store can write to the base register when |
| // the instruction has writeback. |
| static bool doesLoadStoreWriteToReg(uint32_t Instr, uint32_t Reg) { |
| return (isV8NonStructureLoad(Instr) && getRt(Instr) == Reg) || |
| (hasWriteback(Instr) && getRn(Instr) == Reg); |
| } |
| |
| // Scanner for Cortex-A53 errata 843419 |
| // Full details are available in the Cortex A53 MPCore revision 0 Software |
| // Developers Errata Notice (ARM-EPM-048406). |
| // |
| // The instruction sequence that triggers the erratum is common in compiled |
| // AArch64 code, however it is sensitive to the offset of the sequence within |
| // a 4k page. This means that by scanning and fixing the patch after we have |
| // assigned addresses we only need to disassemble and fix instances of the |
| // sequence in the range of affected offsets. |
| // |
| // In summary the erratum conditions are a series of 4 instructions: |
| // 1.) An ADRP instruction that writes to register Rn with low 12 bits of |
| // address of instruction either 0xff8 or 0xffc. |
| // 2.) A load or store instruction that can be: |
| // - A single register load or store, of either integer or vector registers. |
| // - An STP or STNP, of either integer or vector registers. |
| // - An Advanced SIMD ST1 store instruction. |
| // - Must not write to Rn, but may optionally read from it. |
| // 3.) An optional instruction that is not a branch and does not write to Rn. |
| // 4.) A load or store from the Load/store register (unsigned immediate) class |
| // that uses Rn as the base address register. |
| // |
| // Note that we do not attempt to scan for Sequence 2 as described in the |
| // Software Developers Errata Notice as this has been assessed to be extremely |
| // unlikely to occur in compiled code. This matches gold and ld.bfd behavior. |
| |
| // Return true if the Instruction sequence Adrp, Instr2, and Instr4 match |
| // the erratum sequence. The Adrp, Instr2 and Instr4 correspond to 1.), 2.), |
| // and 4.) in the Scanner for Cortex-A53 errata comment above. |
| static bool is843419ErratumSequence(uint32_t Instr1, uint32_t Instr2, |
| uint32_t Instr4) { |
| if (!isADRP(Instr1)) |
| return false; |
| |
| uint32_t Rn = getRt(Instr1); |
| return isLoadStoreClass(Instr2) && |
| (isLoadStoreExclusive(Instr2) || isLoadLiteral(Instr2) || |
| isV8SingleRegisterNonStructureLoadStore(Instr2) || isSTP(Instr2) || |
| isSTNP(Instr2) || isST1(Instr2)) && |
| !doesLoadStoreWriteToReg(Instr2, Rn) && |
| isLoadStoreRegisterUnsigned(Instr4) && getRn(Instr4) == Rn; |
| } |
| |
| // Scan the instruction sequence starting at Offset Off from the base of |
| // InputSection IS. We update Off in this function rather than in the caller as |
| // we can skip ahead much further into the section when we know how many |
| // instructions we've scanned. |
| // Return the offset of the load or store instruction in IS that we want to |
| // patch or 0 if no patch required. |
| static uint64_t scanCortexA53Errata843419(InputSection *IS, uint64_t &Off, |
| uint64_t Limit) { |
| uint64_t ISAddr = IS->getVA(0); |
| |
| // Advance Off so that (ISAddr + Off) modulo 0x1000 is at least 0xff8. |
| uint64_t InitialPageOff = (ISAddr + Off) & 0xfff; |
| if (InitialPageOff < 0xff8) |
| Off += 0xff8 - InitialPageOff; |
| |
| bool OptionalAllowed = Limit - Off > 12; |
| if (Off >= Limit || Limit - Off < 12) { |
| // Need at least 3 4-byte sized instructions to trigger erratum. |
| Off = Limit; |
| return 0; |
| } |
| |
| uint64_t PatchOff = 0; |
| const uint8_t *Buf = IS->Data.begin(); |
| const ulittle32_t *InstBuf = reinterpret_cast<const ulittle32_t *>(Buf + Off); |
| uint32_t Instr1 = *InstBuf++; |
| uint32_t Instr2 = *InstBuf++; |
| uint32_t Instr3 = *InstBuf++; |
| if (is843419ErratumSequence(Instr1, Instr2, Instr3)) { |
| PatchOff = Off + 8; |
| } else if (OptionalAllowed && !isBranch(Instr3)) { |
| uint32_t Instr4 = *InstBuf++; |
| if (is843419ErratumSequence(Instr1, Instr2, Instr4)) |
| PatchOff = Off + 12; |
| } |
| if (((ISAddr + Off) & 0xfff) == 0xff8) |
| Off += 4; |
| else |
| Off += 0xffc; |
| return PatchOff; |
| } |
| |
| class lld::elf::Patch843419Section : public SyntheticSection { |
| public: |
| Patch843419Section(InputSection *P, uint64_t Off); |
| |
| void writeTo(uint8_t *Buf) override; |
| |
| size_t getSize() const override { return 8; } |
| |
| uint64_t getLDSTAddr() const; |
| |
| // The Section we are patching. |
| const InputSection *Patchee; |
| // The offset of the instruction in the Patchee section we are patching. |
| uint64_t PatcheeOffset; |
| // A label for the start of the Patch that we can use as a relocation target. |
| Symbol *PatchSym; |
| }; |
| |
| lld::elf::Patch843419Section::Patch843419Section(InputSection *P, uint64_t Off) |
| : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4, |
| ".text.patch"), |
| Patchee(P), PatcheeOffset(Off) { |
| this->Parent = P->getParent(); |
| PatchSym = addSyntheticLocal( |
| Saver.save("__CortexA53843419_" + utohexstr(getLDSTAddr())), STT_FUNC, 0, |
| getSize(), *this); |
| addSyntheticLocal(Saver.save("$x"), STT_NOTYPE, 0, 0, *this); |
| } |
| |
| uint64_t lld::elf::Patch843419Section::getLDSTAddr() const { |
| return Patchee->getVA(PatcheeOffset); |
| } |
| |
| void lld::elf::Patch843419Section::writeTo(uint8_t *Buf) { |
| // Copy the instruction that we will be replacing with a branch in the |
| // Patchee Section. |
| write32le(Buf, read32le(Patchee->Data.begin() + PatcheeOffset)); |
| |
| // Apply any relocation transferred from the original PatcheeSection. |
| // For a SyntheticSection Buf already has OutSecOff added, but relocateAlloc |
| // also adds OutSecOff so we need to subtract to avoid double counting. |
| this->relocateAlloc(Buf - OutSecOff, Buf - OutSecOff + getSize()); |
| |
| // Return address is the next instruction after the one we have just copied. |
| uint64_t S = getLDSTAddr() + 4; |
| uint64_t P = PatchSym->getVA() + 4; |
| Target->relocateOne(Buf + 4, R_AARCH64_JUMP26, S - P); |
| } |
| |
| void AArch64Err843419Patcher::init() { |
| // The AArch64 ABI permits data in executable sections. We must avoid scanning |
| // this data as if it were instructions to avoid false matches. We use the |
| // mapping symbols in the InputObjects to identify this data, caching the |
| // results in SectionMap so we don't have to recalculate it each pass. |
| |
| // The ABI Section 4.5.4 Mapping symbols; defines local symbols that describe |
| // half open intervals [Symbol Value, Next Symbol Value) of code and data |
| // within sections. If there is no next symbol then the half open interval is |
| // [Symbol Value, End of section). The type, code or data, is determined by |
| // the mapping symbol name, $x for code, $d for data. |
| auto IsCodeMapSymbol = [](const Symbol *B) { |
| return B->getName() == "$x" || B->getName().startswith("$x."); |
| }; |
| auto IsDataMapSymbol = [](const Symbol *B) { |
| return B->getName() == "$d" || B->getName().startswith("$d."); |
| }; |
| |
| // Collect mapping symbols for every executable InputSection. |
| for (InputFile *File : ObjectFiles) { |
| auto *F = cast<ObjFile<ELF64LE>>(File); |
| for (Symbol *B : F->getLocalSymbols()) { |
| auto *Def = dyn_cast<Defined>(B); |
| if (!Def) |
| continue; |
| if (!IsCodeMapSymbol(Def) && !IsDataMapSymbol(Def)) |
| continue; |
| if (auto *Sec = dyn_cast<InputSection>(Def->Section)) |
| if (Sec->Flags & SHF_EXECINSTR) |
| SectionMap[Sec].push_back(Def); |
| } |
| } |
| // For each InputSection make sure the mapping symbols are in sorted in |
| // ascending order and free from consecutive runs of mapping symbols with |
| // the same type. For example we must remove the redundant $d.1 from $x.0 |
| // $d.0 $d.1 $x.1. |
| for (auto &KV : SectionMap) { |
| std::vector<const Defined *> &MapSyms = KV.second; |
| if (MapSyms.size() <= 1) |
| continue; |
| std::stable_sort( |
| MapSyms.begin(), MapSyms.end(), |
| [](const Defined *A, const Defined *B) { return A->Value < B->Value; }); |
| MapSyms.erase( |
| std::unique(MapSyms.begin(), MapSyms.end(), |
| [=](const Defined *A, const Defined *B) { |
| return (IsCodeMapSymbol(A) && IsCodeMapSymbol(B)) || |
| (IsDataMapSymbol(A) && IsDataMapSymbol(B)); |
| }), |
| MapSyms.end()); |
| } |
| Initialized = true; |
| } |
| |
| // Insert the PatchSections we have created back into the |
| // InputSectionDescription. As inserting patches alters the addresses of |
| // InputSections that follow them, we try and place the patches after all the |
| // executable sections, although we may need to insert them earlier if the |
| // InputSectionDescription is larger than the maximum branch range. |
| void AArch64Err843419Patcher::insertPatches( |
| InputSectionDescription &ISD, std::vector<Patch843419Section *> &Patches) { |
| uint64_t ISLimit; |
| uint64_t PrevISLimit = ISD.Sections.front()->OutSecOff; |
| uint64_t PatchUpperBound = PrevISLimit + Target->ThunkSectionSpacing; |
| |
| // Set the OutSecOff of patches to the place where we want to insert them. |
| // We use a similar strategy to Thunk placement. Place patches roughly |
| // every multiple of maximum branch range. |
| auto PatchIt = Patches.begin(); |
| auto PatchEnd = Patches.end(); |
| for (const InputSection *IS : ISD.Sections) { |
| ISLimit = IS->OutSecOff + IS->getSize(); |
| if (ISLimit > PatchUpperBound) { |
| while (PatchIt != PatchEnd) { |
| if ((*PatchIt)->getLDSTAddr() >= PrevISLimit) |
| break; |
| (*PatchIt)->OutSecOff = PrevISLimit; |
| ++PatchIt; |
| } |
| PatchUpperBound = PrevISLimit + Target->ThunkSectionSpacing; |
| } |
| PrevISLimit = ISLimit; |
| } |
| for (; PatchIt != PatchEnd; ++PatchIt) { |
| (*PatchIt)->OutSecOff = ISLimit; |
| } |
| |
| // merge all patch sections. We use the OutSecOff assigned above to |
| // determine the insertion point. This is ok as we only merge into an |
| // InputSectionDescription once per pass, and at the end of the pass |
| // assignAddresses() will recalculate all the OutSecOff values. |
| std::vector<InputSection *> Tmp; |
| Tmp.reserve(ISD.Sections.size() + Patches.size()); |
| auto MergeCmp = [](const InputSection *A, const InputSection *B) { |
| if (A->OutSecOff < B->OutSecOff) |
| return true; |
| if (A->OutSecOff == B->OutSecOff && isa<Patch843419Section>(A) && |
| !isa<Patch843419Section>(B)) |
| return true; |
| return false; |
| }; |
| std::merge(ISD.Sections.begin(), ISD.Sections.end(), Patches.begin(), |
| Patches.end(), std::back_inserter(Tmp), MergeCmp); |
| ISD.Sections = std::move(Tmp); |
| } |
| |
| // Given an erratum sequence that starts at address AdrpAddr, with an |
| // instruction that we need to patch at PatcheeOffset from the start of |
| // InputSection IS, create a Patch843419 Section and add it to the |
| // Patches that we need to insert. |
| static void implementPatch(uint64_t AdrpAddr, uint64_t PatcheeOffset, |
| InputSection *IS, |
| std::vector<Patch843419Section *> &Patches) { |
| // There may be a relocation at the same offset that we are patching. There |
| // are three cases that we need to consider. |
| // Case 1: R_AARCH64_JUMP26 branch relocation. We have already patched this |
| // instance of the erratum on a previous patch and altered the relocation. We |
| // have nothing more to do. |
| // Case 2: A load/store register (unsigned immediate) class relocation. There |
| // are two of these R_AARCH_LD64_ABS_LO12_NC and R_AARCH_LD64_GOT_LO12_NC and |
| // they are both absolute. We need to add the same relocation to the patch, |
| // and replace the relocation with a R_AARCH_JUMP26 branch relocation. |
| // Case 3: No relocation. We must create a new R_AARCH64_JUMP26 branch |
| // relocation at the offset. |
| auto RelIt = std::find_if( |
| IS->Relocations.begin(), IS->Relocations.end(), |
| [=](const Relocation &R) { return R.Offset == PatcheeOffset; }); |
| if (RelIt != IS->Relocations.end() && RelIt->Type == R_AARCH64_JUMP26) |
| return; |
| |
| log("detected cortex-a53-843419 erratum sequence starting at " + |
| utohexstr(AdrpAddr) + " in unpatched output."); |
| |
| auto *PS = make<Patch843419Section>(IS, PatcheeOffset); |
| Patches.push_back(PS); |
| |
| auto MakeRelToPatch = [](uint64_t Offset, Symbol *PatchSym) { |
| return Relocation{R_PC, R_AARCH64_JUMP26, Offset, 0, PatchSym}; |
| }; |
| |
| if (RelIt != IS->Relocations.end()) { |
| PS->Relocations.push_back( |
| {RelIt->Expr, RelIt->Type, 0, RelIt->Addend, RelIt->Sym}); |
| *RelIt = MakeRelToPatch(PatcheeOffset, PS->PatchSym); |
| } else |
| IS->Relocations.push_back(MakeRelToPatch(PatcheeOffset, PS->PatchSym)); |
| } |
| |
| // Scan all the instructions in InputSectionDescription, for each instance of |
| // the erratum sequence create a Patch843419Section. We return the list of |
| // Patch843419Sections that need to be applied to ISD. |
| std::vector<Patch843419Section *> |
| AArch64Err843419Patcher::patchInputSectionDescription( |
| InputSectionDescription &ISD) { |
| std::vector<Patch843419Section *> Patches; |
| for (InputSection *IS : ISD.Sections) { |
| // LLD doesn't use the erratum sequence in SyntheticSections. |
| if (isa<SyntheticSection>(IS)) |
| continue; |
| // Use SectionMap to make sure we only scan code and not inline data. |
| // We have already sorted MapSyms in ascending order and removed consecutive |
| // mapping symbols of the same type. Our range of executable instructions to |
| // scan is therefore [CodeSym->Value, DataSym->Value) or [CodeSym->Value, |
| // section size). |
| std::vector<const Defined *> &MapSyms = SectionMap[IS]; |
| |
| auto CodeSym = llvm::find_if(MapSyms, [&](const Defined *MS) { |
| return MS->getName().startswith("$x"); |
| }); |
| |
| while (CodeSym != MapSyms.end()) { |
| auto DataSym = std::next(CodeSym); |
| uint64_t Off = (*CodeSym)->Value; |
| uint64_t Limit = |
| (DataSym == MapSyms.end()) ? IS->Data.size() : (*DataSym)->Value; |
| |
| while (Off < Limit) { |
| uint64_t StartAddr = IS->getVA(Off); |
| if (uint64_t PatcheeOffset = scanCortexA53Errata843419(IS, Off, Limit)) |
| implementPatch(StartAddr, PatcheeOffset, IS, Patches); |
| } |
| if (DataSym == MapSyms.end()) |
| break; |
| CodeSym = std::next(DataSym); |
| } |
| } |
| return Patches; |
| } |
| |
| // For each InputSectionDescription make one pass over the executable sections |
| // looking for the erratum sequence; creating a synthetic Patch843419Section |
| // for each instance found. We insert these synthetic patch sections after the |
| // executable code in each InputSectionDescription. |
| // |
| // PreConditions: |
| // The Output and Input Sections have had their final addresses assigned. |
| // |
| // PostConditions: |
| // Returns true if at least one patch was added. The addresses of the |
| // Ouptut and Input Sections may have been changed. |
| // Returns false if no patches were required and no changes were made. |
| bool AArch64Err843419Patcher::createFixes() { |
| if (Initialized == false) |
| init(); |
| |
| bool AddressesChanged = false; |
| for (OutputSection *OS : OutputSections) { |
| if (!(OS->Flags & SHF_ALLOC) || !(OS->Flags & SHF_EXECINSTR)) |
| continue; |
| for (BaseCommand *BC : OS->SectionCommands) |
| if (auto *ISD = dyn_cast<InputSectionDescription>(BC)) { |
| std::vector<Patch843419Section *> Patches = |
| patchInputSectionDescription(*ISD); |
| if (!Patches.empty()) { |
| insertPatches(*ISD, Patches); |
| AddressesChanged = true; |
| } |
| } |
| } |
| return AddressesChanged; |
| } |