| //===- HexagonMCDuplexInfo.cpp - Instruction bundle checking --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements duplexing of instructions to reduce code size |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "MCTargetDesc/HexagonBaseInfo.h" |
| #include "MCTargetDesc/HexagonMCInstrInfo.h" |
| #include "MCTargetDesc/HexagonMCTargetDesc.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/MC/MCSubtargetInfo.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <map> |
| #include <utility> |
| |
| using namespace llvm; |
| using namespace Hexagon; |
| |
| #define DEBUG_TYPE "hexagon-mcduplex-info" |
| |
| // pair table of subInstructions with opcodes |
| static const std::pair<unsigned, unsigned> opcodeData[] = { |
| std::make_pair((unsigned)SA1_addi, 0), |
| std::make_pair((unsigned)SA1_addrx, 6144), |
| std::make_pair((unsigned)SA1_addsp, 3072), |
| std::make_pair((unsigned)SA1_and1, 4608), |
| std::make_pair((unsigned)SA1_clrf, 6768), |
| std::make_pair((unsigned)SA1_clrfnew, 6736), |
| std::make_pair((unsigned)SA1_clrt, 6752), |
| std::make_pair((unsigned)SA1_clrtnew, 6720), |
| std::make_pair((unsigned)SA1_cmpeqi, 6400), |
| std::make_pair((unsigned)SA1_combine0i, 7168), |
| std::make_pair((unsigned)SA1_combine1i, 7176), |
| std::make_pair((unsigned)SA1_combine2i, 7184), |
| std::make_pair((unsigned)SA1_combine3i, 7192), |
| std::make_pair((unsigned)SA1_combinerz, 7432), |
| std::make_pair((unsigned)SA1_combinezr, 7424), |
| std::make_pair((unsigned)SA1_dec, 4864), |
| std::make_pair((unsigned)SA1_inc, 4352), |
| std::make_pair((unsigned)SA1_seti, 2048), |
| std::make_pair((unsigned)SA1_setin1, 6656), |
| std::make_pair((unsigned)SA1_sxtb, 5376), |
| std::make_pair((unsigned)SA1_sxth, 5120), |
| std::make_pair((unsigned)SA1_tfr, 4096), |
| std::make_pair((unsigned)SA1_zxtb, 5888), |
| std::make_pair((unsigned)SA1_zxth, 5632), |
| std::make_pair((unsigned)SL1_loadri_io, 0), |
| std::make_pair((unsigned)SL1_loadrub_io, 4096), |
| std::make_pair((unsigned)SL2_deallocframe, 7936), |
| std::make_pair((unsigned)SL2_jumpr31, 8128), |
| std::make_pair((unsigned)SL2_jumpr31_f, 8133), |
| std::make_pair((unsigned)SL2_jumpr31_fnew, 8135), |
| std::make_pair((unsigned)SL2_jumpr31_t, 8132), |
| std::make_pair((unsigned)SL2_jumpr31_tnew, 8134), |
| std::make_pair((unsigned)SL2_loadrb_io, 4096), |
| std::make_pair((unsigned)SL2_loadrd_sp, 7680), |
| std::make_pair((unsigned)SL2_loadrh_io, 0), |
| std::make_pair((unsigned)SL2_loadri_sp, 7168), |
| std::make_pair((unsigned)SL2_loadruh_io, 2048), |
| std::make_pair((unsigned)SL2_return, 8000), |
| std::make_pair((unsigned)SL2_return_f, 8005), |
| std::make_pair((unsigned)SL2_return_fnew, 8007), |
| std::make_pair((unsigned)SL2_return_t, 8004), |
| std::make_pair((unsigned)SL2_return_tnew, 8006), |
| std::make_pair((unsigned)SS1_storeb_io, 4096), |
| std::make_pair((unsigned)SS1_storew_io, 0), |
| std::make_pair((unsigned)SS2_allocframe, 7168), |
| std::make_pair((unsigned)SS2_storebi0, 4608), |
| std::make_pair((unsigned)SS2_storebi1, 4864), |
| std::make_pair((unsigned)SS2_stored_sp, 2560), |
| std::make_pair((unsigned)SS2_storeh_io, 0), |
| std::make_pair((unsigned)SS2_storew_sp, 2048), |
| std::make_pair((unsigned)SS2_storewi0, 4096), |
| std::make_pair((unsigned)SS2_storewi1, 4352)}; |
| |
| bool HexagonMCInstrInfo::isDuplexPairMatch(unsigned Ga, unsigned Gb) { |
| switch (Ga) { |
| case HexagonII::HSIG_None: |
| default: |
| return false; |
| case HexagonII::HSIG_L1: |
| return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A); |
| case HexagonII::HSIG_L2: |
| return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 || |
| Gb == HexagonII::HSIG_A); |
| case HexagonII::HSIG_S1: |
| return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 || |
| Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A); |
| case HexagonII::HSIG_S2: |
| return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 || |
| Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 || |
| Gb == HexagonII::HSIG_A); |
| case HexagonII::HSIG_A: |
| return (Gb == HexagonII::HSIG_A); |
| case HexagonII::HSIG_Compound: |
| return (Gb == HexagonII::HSIG_Compound); |
| } |
| return false; |
| } |
| |
| unsigned HexagonMCInstrInfo::iClassOfDuplexPair(unsigned Ga, unsigned Gb) { |
| switch (Ga) { |
| case HexagonII::HSIG_None: |
| default: |
| break; |
| case HexagonII::HSIG_L1: |
| switch (Gb) { |
| default: |
| break; |
| case HexagonII::HSIG_L1: |
| return 0; |
| case HexagonII::HSIG_A: |
| return 0x4; |
| } |
| case HexagonII::HSIG_L2: |
| switch (Gb) { |
| default: |
| break; |
| case HexagonII::HSIG_L1: |
| return 0x1; |
| case HexagonII::HSIG_L2: |
| return 0x2; |
| case HexagonII::HSIG_A: |
| return 0x5; |
| } |
| case HexagonII::HSIG_S1: |
| switch (Gb) { |
| default: |
| break; |
| case HexagonII::HSIG_L1: |
| return 0x8; |
| case HexagonII::HSIG_L2: |
| return 0x9; |
| case HexagonII::HSIG_S1: |
| return 0xA; |
| case HexagonII::HSIG_A: |
| return 0x6; |
| } |
| case HexagonII::HSIG_S2: |
| switch (Gb) { |
| default: |
| break; |
| case HexagonII::HSIG_L1: |
| return 0xC; |
| case HexagonII::HSIG_L2: |
| return 0xD; |
| case HexagonII::HSIG_S1: |
| return 0xB; |
| case HexagonII::HSIG_S2: |
| return 0xE; |
| case HexagonII::HSIG_A: |
| return 0x7; |
| } |
| case HexagonII::HSIG_A: |
| switch (Gb) { |
| default: |
| break; |
| case HexagonII::HSIG_A: |
| return 0x3; |
| } |
| case HexagonII::HSIG_Compound: |
| switch (Gb) { |
| case HexagonII::HSIG_Compound: |
| return 0xFFFFFFFF; |
| } |
| } |
| return 0xFFFFFFFF; |
| } |
| |
| unsigned HexagonMCInstrInfo::getDuplexCandidateGroup(MCInst const &MCI) { |
| unsigned DstReg, PredReg, SrcReg, Src1Reg, Src2Reg; |
| |
| switch (MCI.getOpcode()) { |
| default: |
| return HexagonII::HSIG_None; |
| // |
| // Group L1: |
| // |
| // Rd = memw(Rs+#u4:2) |
| // Rd = memub(Rs+#u4:0) |
| case Hexagon::L2_loadri_io: |
| DstReg = MCI.getOperand(0).getReg(); |
| SrcReg = MCI.getOperand(1).getReg(); |
| // Special case this one from Group L2. |
| // Rd = memw(r29+#u5:2) |
| if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg)) { |
| if (HexagonMCInstrInfo::isIntReg(SrcReg) && |
| Hexagon::R29 == SrcReg && inRange<5, 2>(MCI, 2)) { |
| return HexagonII::HSIG_L2; |
| } |
| // Rd = memw(Rs+#u4:2) |
| if (HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) && |
| inRange<4, 2>(MCI, 2)) { |
| return HexagonII::HSIG_L1; |
| } |
| } |
| break; |
| case Hexagon::L2_loadrub_io: |
| // Rd = memub(Rs+#u4:0) |
| DstReg = MCI.getOperand(0).getReg(); |
| SrcReg = MCI.getOperand(1).getReg(); |
| if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) && |
| HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) && |
| inRange<4>(MCI, 2)) { |
| return HexagonII::HSIG_L1; |
| } |
| break; |
| // |
| // Group L2: |
| // |
| // Rd = memh/memuh(Rs+#u3:1) |
| // Rd = memb(Rs+#u3:0) |
| // Rd = memw(r29+#u5:2) - Handled above. |
| // Rdd = memd(r29+#u5:3) |
| // deallocframe |
| // [if ([!]p0[.new])] dealloc_return |
| // [if ([!]p0[.new])] jumpr r31 |
| case Hexagon::L2_loadrh_io: |
| case Hexagon::L2_loadruh_io: |
| // Rd = memh/memuh(Rs+#u3:1) |
| DstReg = MCI.getOperand(0).getReg(); |
| SrcReg = MCI.getOperand(1).getReg(); |
| if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) && |
| HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) && |
| inRange<3, 1>(MCI, 2)) { |
| return HexagonII::HSIG_L2; |
| } |
| break; |
| case Hexagon::L2_loadrb_io: |
| // Rd = memb(Rs+#u3:0) |
| DstReg = MCI.getOperand(0).getReg(); |
| SrcReg = MCI.getOperand(1).getReg(); |
| if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) && |
| HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) && |
| inRange<3>(MCI, 2)) { |
| return HexagonII::HSIG_L2; |
| } |
| break; |
| case Hexagon::L2_loadrd_io: |
| // Rdd = memd(r29+#u5:3) |
| DstReg = MCI.getOperand(0).getReg(); |
| SrcReg = MCI.getOperand(1).getReg(); |
| if (HexagonMCInstrInfo::isDblRegForSubInst(DstReg) && |
| HexagonMCInstrInfo::isIntReg(SrcReg) && Hexagon::R29 == SrcReg && |
| inRange<5, 3>(MCI, 2)) { |
| return HexagonII::HSIG_L2; |
| } |
| break; |
| |
| case Hexagon::L4_return: |
| case Hexagon::L2_deallocframe: |
| return HexagonII::HSIG_L2; |
| |
| case Hexagon::EH_RETURN_JMPR: |
| case Hexagon::J2_jumpr: |
| case Hexagon::PS_jmpret: |
| // jumpr r31 |
| // Actual form JMPR implicit-def %pc, implicit %r31, implicit internal %r0. |
| DstReg = MCI.getOperand(0).getReg(); |
| if (Hexagon::R31 == DstReg) |
| return HexagonII::HSIG_L2; |
| break; |
| |
| case Hexagon::J2_jumprt: |
| case Hexagon::J2_jumprf: |
| case Hexagon::J2_jumprtnew: |
| case Hexagon::J2_jumprfnew: |
| case Hexagon::J2_jumprtnewpt: |
| case Hexagon::J2_jumprfnewpt: |
| case Hexagon::PS_jmprett: |
| case Hexagon::PS_jmpretf: |
| case Hexagon::PS_jmprettnew: |
| case Hexagon::PS_jmpretfnew: |
| case Hexagon::PS_jmprettnewpt: |
| case Hexagon::PS_jmpretfnewpt: |
| DstReg = MCI.getOperand(1).getReg(); |
| SrcReg = MCI.getOperand(0).getReg(); |
| // [if ([!]p0[.new])] jumpr r31 |
| if ((HexagonMCInstrInfo::isPredReg(SrcReg) && (Hexagon::P0 == SrcReg)) && |
| (Hexagon::R31 == DstReg)) { |
| return HexagonII::HSIG_L2; |
| } |
| break; |
| case Hexagon::L4_return_t: |
| case Hexagon::L4_return_f: |
| case Hexagon::L4_return_tnew_pnt: |
| case Hexagon::L4_return_fnew_pnt: |
| case Hexagon::L4_return_tnew_pt: |
| case Hexagon::L4_return_fnew_pt: |
| // [if ([!]p0[.new])] dealloc_return |
| SrcReg = MCI.getOperand(1).getReg(); |
| if (Hexagon::P0 == SrcReg) { |
| return HexagonII::HSIG_L2; |
| } |
| break; |
| // |
| // Group S1: |
| // |
| // memw(Rs+#u4:2) = Rt |
| // memb(Rs+#u4:0) = Rt |
| case Hexagon::S2_storeri_io: |
| // Special case this one from Group S2. |
| // memw(r29+#u5:2) = Rt |
| Src1Reg = MCI.getOperand(0).getReg(); |
| Src2Reg = MCI.getOperand(2).getReg(); |
| if (HexagonMCInstrInfo::isIntReg(Src1Reg) && |
| HexagonMCInstrInfo::isIntRegForSubInst(Src2Reg) && |
| Hexagon::R29 == Src1Reg && inRange<5, 2>(MCI, 1)) { |
| return HexagonII::HSIG_S2; |
| } |
| // memw(Rs+#u4:2) = Rt |
| if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) && |
| HexagonMCInstrInfo::isIntRegForSubInst(Src2Reg) && |
| inRange<4, 2>(MCI, 1)) { |
| return HexagonII::HSIG_S1; |
| } |
| break; |
| case Hexagon::S2_storerb_io: |
| // memb(Rs+#u4:0) = Rt |
| Src1Reg = MCI.getOperand(0).getReg(); |
| Src2Reg = MCI.getOperand(2).getReg(); |
| if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) && |
| HexagonMCInstrInfo::isIntRegForSubInst(Src2Reg) && |
| inRange<4>(MCI, 1)) { |
| return HexagonII::HSIG_S1; |
| } |
| break; |
| // |
| // Group S2: |
| // |
| // memh(Rs+#u3:1) = Rt |
| // memw(r29+#u5:2) = Rt |
| // memd(r29+#s6:3) = Rtt |
| // memw(Rs+#u4:2) = #U1 |
| // memb(Rs+#u4) = #U1 |
| // allocframe(#u5:3) |
| case Hexagon::S2_storerh_io: |
| // memh(Rs+#u3:1) = Rt |
| Src1Reg = MCI.getOperand(0).getReg(); |
| Src2Reg = MCI.getOperand(2).getReg(); |
| if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) && |
| HexagonMCInstrInfo::isIntRegForSubInst(Src2Reg) && |
| inRange<3, 1>(MCI, 1)) { |
| return HexagonII::HSIG_S2; |
| } |
| break; |
| case Hexagon::S2_storerd_io: |
| // memd(r29+#s6:3) = Rtt |
| Src1Reg = MCI.getOperand(0).getReg(); |
| Src2Reg = MCI.getOperand(2).getReg(); |
| if (HexagonMCInstrInfo::isDblRegForSubInst(Src2Reg) && |
| HexagonMCInstrInfo::isIntReg(Src1Reg) && Hexagon::R29 == Src1Reg && |
| inSRange<6, 3>(MCI, 1)) { |
| return HexagonII::HSIG_S2; |
| } |
| break; |
| case Hexagon::S4_storeiri_io: |
| // memw(Rs+#u4:2) = #U1 |
| Src1Reg = MCI.getOperand(0).getReg(); |
| if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) && |
| inRange<4, 2>(MCI, 1) && inRange<1>(MCI, 2)) { |
| return HexagonII::HSIG_S2; |
| } |
| break; |
| case Hexagon::S4_storeirb_io: |
| // memb(Rs+#u4) = #U1 |
| Src1Reg = MCI.getOperand(0).getReg(); |
| if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) && |
| inRange<4>(MCI, 1) && inRange<1>(MCI, 2)) { |
| return HexagonII::HSIG_S2; |
| } |
| break; |
| case Hexagon::S2_allocframe: |
| if (inRange<5, 3>(MCI, 2)) |
| return HexagonII::HSIG_S2; |
| break; |
| // |
| // Group A: |
| // |
| // Rx = add(Rx,#s7) |
| // Rd = Rs |
| // Rd = #u6 |
| // Rd = #-1 |
| // if ([!]P0[.new]) Rd = #0 |
| // Rd = add(r29,#u6:2) |
| // Rx = add(Rx,Rs) |
| // P0 = cmp.eq(Rs,#u2) |
| // Rdd = combine(#0,Rs) |
| // Rdd = combine(Rs,#0) |
| // Rdd = combine(#u2,#U2) |
| // Rd = add(Rs,#1) |
| // Rd = add(Rs,#-1) |
| // Rd = sxth/sxtb/zxtb/zxth(Rs) |
| // Rd = and(Rs,#1) |
| case Hexagon::A2_addi: |
| DstReg = MCI.getOperand(0).getReg(); |
| SrcReg = MCI.getOperand(1).getReg(); |
| if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg)) { |
| // Rd = add(r29,#u6:2) |
| if (HexagonMCInstrInfo::isIntReg(SrcReg) && Hexagon::R29 == SrcReg && |
| inRange<6, 2>(MCI, 2)) { |
| return HexagonII::HSIG_A; |
| } |
| // Rx = add(Rx,#s7) |
| if (DstReg == SrcReg) { |
| return HexagonII::HSIG_A; |
| } |
| // Rd = add(Rs,#1) |
| // Rd = add(Rs,#-1) |
| if (HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) && |
| (minConstant(MCI, 2) == 1 || minConstant(MCI, 2) == -1)) { |
| return HexagonII::HSIG_A; |
| } |
| } |
| break; |
| case Hexagon::A2_add: |
| // Rx = add(Rx,Rs) |
| DstReg = MCI.getOperand(0).getReg(); |
| Src1Reg = MCI.getOperand(1).getReg(); |
| Src2Reg = MCI.getOperand(2).getReg(); |
| if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) && |
| HexagonMCInstrInfo::isIntRegForSubInst(Src2Reg)) { |
| return HexagonII::HSIG_A; |
| } |
| break; |
| case Hexagon::A2_andir: |
| DstReg = MCI.getOperand(0).getReg(); |
| SrcReg = MCI.getOperand(1).getReg(); |
| if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) && |
| HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) && |
| (minConstant(MCI, 2) == 1 || minConstant(MCI, 2) == 255)) { |
| return HexagonII::HSIG_A; |
| } |
| break; |
| case Hexagon::A2_tfr: |
| // Rd = Rs |
| DstReg = MCI.getOperand(0).getReg(); |
| SrcReg = MCI.getOperand(1).getReg(); |
| if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) && |
| HexagonMCInstrInfo::isIntRegForSubInst(SrcReg)) { |
| return HexagonII::HSIG_A; |
| } |
| break; |
| case Hexagon::A2_tfrsi: |
| DstReg = MCI.getOperand(0).getReg(); |
| |
| if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg)) { |
| return HexagonII::HSIG_A; |
| } |
| break; |
| case Hexagon::C2_cmoveit: |
| case Hexagon::C2_cmovenewit: |
| case Hexagon::C2_cmoveif: |
| case Hexagon::C2_cmovenewif: |
| // if ([!]P0[.new]) Rd = #0 |
| // Actual form: |
| // %r16 = C2_cmovenewit internal %p0, 0, implicit undef %r16; |
| DstReg = MCI.getOperand(0).getReg(); // Rd |
| PredReg = MCI.getOperand(1).getReg(); // P0 |
| if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) && |
| Hexagon::P0 == PredReg && minConstant(MCI, 2) == 0) { |
| return HexagonII::HSIG_A; |
| } |
| break; |
| case Hexagon::C2_cmpeqi: |
| // P0 = cmp.eq(Rs,#u2) |
| DstReg = MCI.getOperand(0).getReg(); |
| SrcReg = MCI.getOperand(1).getReg(); |
| if (Hexagon::P0 == DstReg && |
| HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) && |
| inRange<2>(MCI, 2)) { |
| return HexagonII::HSIG_A; |
| } |
| break; |
| case Hexagon::A2_combineii: |
| case Hexagon::A4_combineii: |
| // Rdd = combine(#u2,#U2) |
| DstReg = MCI.getOperand(0).getReg(); |
| if (HexagonMCInstrInfo::isDblRegForSubInst(DstReg) && |
| inRange<2>(MCI, 1) && inRange<2>(MCI, 2)) { |
| return HexagonII::HSIG_A; |
| } |
| break; |
| case Hexagon::A4_combineri: |
| // Rdd = combine(Rs,#0) |
| DstReg = MCI.getOperand(0).getReg(); |
| SrcReg = MCI.getOperand(1).getReg(); |
| if (HexagonMCInstrInfo::isDblRegForSubInst(DstReg) && |
| HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) && |
| minConstant(MCI, 2) == 0) { |
| return HexagonII::HSIG_A; |
| } |
| break; |
| case Hexagon::A4_combineir: |
| // Rdd = combine(#0,Rs) |
| DstReg = MCI.getOperand(0).getReg(); |
| SrcReg = MCI.getOperand(2).getReg(); |
| if (HexagonMCInstrInfo::isDblRegForSubInst(DstReg) && |
| HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) && |
| minConstant(MCI, 1) == 0) { |
| return HexagonII::HSIG_A; |
| } |
| break; |
| case Hexagon::A2_sxtb: |
| case Hexagon::A2_sxth: |
| case Hexagon::A2_zxtb: |
| case Hexagon::A2_zxth: |
| // Rd = sxth/sxtb/zxtb/zxth(Rs) |
| DstReg = MCI.getOperand(0).getReg(); |
| SrcReg = MCI.getOperand(1).getReg(); |
| if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) && |
| HexagonMCInstrInfo::isIntRegForSubInst(SrcReg)) { |
| return HexagonII::HSIG_A; |
| } |
| break; |
| } |
| |
| return HexagonII::HSIG_None; |
| } |
| |
| bool HexagonMCInstrInfo::subInstWouldBeExtended(MCInst const &potentialDuplex) { |
| unsigned DstReg, SrcReg; |
| switch (potentialDuplex.getOpcode()) { |
| case Hexagon::A2_addi: |
| // testing for case of: Rx = add(Rx,#s7) |
| DstReg = potentialDuplex.getOperand(0).getReg(); |
| SrcReg = potentialDuplex.getOperand(1).getReg(); |
| if (DstReg == SrcReg && HexagonMCInstrInfo::isIntRegForSubInst(DstReg)) { |
| int64_t Value; |
| if (!potentialDuplex.getOperand(2).getExpr()->evaluateAsAbsolute(Value)) |
| return true; |
| if (!isShiftedInt<7, 0>(Value)) |
| return true; |
| } |
| break; |
| case Hexagon::A2_tfrsi: |
| DstReg = potentialDuplex.getOperand(0).getReg(); |
| |
| if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg)) { |
| int64_t Value; |
| if (!potentialDuplex.getOperand(1).getExpr()->evaluateAsAbsolute(Value)) |
| return true; |
| // Check for case of Rd = #-1. |
| if (Value == -1) |
| return false; |
| // Check for case of Rd = #u6. |
| if (!isShiftedUInt<6, 0>(Value)) |
| return true; |
| } |
| break; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| /// non-Symmetrical. See if these two instructions are fit for duplex pair. |
| bool HexagonMCInstrInfo::isOrderedDuplexPair(MCInstrInfo const &MCII, |
| MCInst const &MIa, bool ExtendedA, |
| MCInst const &MIb, bool ExtendedB, |
| bool bisReversable, |
| MCSubtargetInfo const &STI) { |
| // Slot 1 cannot be extended in duplexes PRM 10.5 |
| if (ExtendedA) |
| return false; |
| // Only A2_addi and A2_tfrsi can be extended in duplex form PRM 10.5 |
| if (ExtendedB) { |
| unsigned Opcode = MIb.getOpcode(); |
| if ((Opcode != Hexagon::A2_addi) && (Opcode != Hexagon::A2_tfrsi)) |
| return false; |
| } |
| unsigned MIaG = HexagonMCInstrInfo::getDuplexCandidateGroup(MIa), |
| MIbG = HexagonMCInstrInfo::getDuplexCandidateGroup(MIb); |
| |
| static std::map<unsigned, unsigned> subinstOpcodeMap(std::begin(opcodeData), |
| std::end(opcodeData)); |
| |
| // If a duplex contains 2 insns in the same group, the insns must be |
| // ordered such that the numerically smaller opcode is in slot 1. |
| if ((MIaG != HexagonII::HSIG_None) && (MIaG == MIbG) && bisReversable) { |
| MCInst SubInst0 = HexagonMCInstrInfo::deriveSubInst(MIa); |
| MCInst SubInst1 = HexagonMCInstrInfo::deriveSubInst(MIb); |
| |
| unsigned zeroedSubInstS0 = |
| subinstOpcodeMap.find(SubInst0.getOpcode())->second; |
| unsigned zeroedSubInstS1 = |
| subinstOpcodeMap.find(SubInst1.getOpcode())->second; |
| |
| if (zeroedSubInstS0 < zeroedSubInstS1) |
| // subinstS0 (maps to slot 0) must be greater than |
| // subinstS1 (maps to slot 1) |
| return false; |
| } |
| |
| // allocframe must always be in slot 0 |
| if (MIb.getOpcode() == Hexagon::S2_allocframe) |
| return false; |
| |
| if ((MIaG != HexagonII::HSIG_None) && (MIbG != HexagonII::HSIG_None)) { |
| // Prevent 2 instructions with extenders from duplexing |
| // Note that MIb (slot1) can be extended and MIa (slot0) |
| // can never be extended |
| if (subInstWouldBeExtended(MIa)) |
| return false; |
| |
| // If duplexing produces an extender, but the original did not |
| // have an extender, do not duplex. |
| if (subInstWouldBeExtended(MIb) && !ExtendedB) |
| return false; |
| } |
| |
| // If jumpr r31 appears, it must be in slot 0, and never slot 1 (MIb). |
| if (MIbG == HexagonII::HSIG_L2) { |
| if ((MIb.getNumOperands() > 1) && MIb.getOperand(1).isReg() && |
| (MIb.getOperand(1).getReg() == Hexagon::R31)) |
| return false; |
| if ((MIb.getNumOperands() > 0) && MIb.getOperand(0).isReg() && |
| (MIb.getOperand(0).getReg() == Hexagon::R31)) |
| return false; |
| } |
| |
| if (STI.getCPU().equals_lower("hexagonv4") || |
| STI.getCPU().equals_lower("hexagonv5") || |
| STI.getCPU().equals_lower("hexagonv55") || |
| STI.getCPU().equals_lower("hexagonv60")) { |
| // If a store appears, it must be in slot 0 (MIa) 1st, and then slot 1 (MIb); |
| // therefore, not duplexable if slot 1 is a store, and slot 0 is not. |
| if ((MIbG == HexagonII::HSIG_S1) || (MIbG == HexagonII::HSIG_S2)) { |
| if ((MIaG != HexagonII::HSIG_S1) && (MIaG != HexagonII::HSIG_S2)) |
| return false; |
| } |
| } |
| |
| return (isDuplexPairMatch(MIaG, MIbG)); |
| } |
| |
| /// Symmetrical. See if these two instructions are fit for duplex pair. |
| bool HexagonMCInstrInfo::isDuplexPair(MCInst const &MIa, MCInst const &MIb) { |
| unsigned MIaG = getDuplexCandidateGroup(MIa), |
| MIbG = getDuplexCandidateGroup(MIb); |
| return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG)); |
| } |
| |
| inline static void addOps(MCInst &subInstPtr, MCInst const &Inst, |
| unsigned opNum) { |
| if (Inst.getOperand(opNum).isReg()) { |
| switch (Inst.getOperand(opNum).getReg()) { |
| default: |
| llvm_unreachable("Not Duplexable Register"); |
| break; |
| case Hexagon::R0: |
| case Hexagon::R1: |
| case Hexagon::R2: |
| case Hexagon::R3: |
| case Hexagon::R4: |
| case Hexagon::R5: |
| case Hexagon::R6: |
| case Hexagon::R7: |
| case Hexagon::D0: |
| case Hexagon::D1: |
| case Hexagon::D2: |
| case Hexagon::D3: |
| case Hexagon::R16: |
| case Hexagon::R17: |
| case Hexagon::R18: |
| case Hexagon::R19: |
| case Hexagon::R20: |
| case Hexagon::R21: |
| case Hexagon::R22: |
| case Hexagon::R23: |
| case Hexagon::D8: |
| case Hexagon::D9: |
| case Hexagon::D10: |
| case Hexagon::D11: |
| case Hexagon::P0: |
| subInstPtr.addOperand(Inst.getOperand(opNum)); |
| break; |
| } |
| } else |
| subInstPtr.addOperand(Inst.getOperand(opNum)); |
| } |
| |
| MCInst HexagonMCInstrInfo::deriveSubInst(MCInst const &Inst) { |
| MCInst Result; |
| bool Absolute; |
| int64_t Value; |
| switch (Inst.getOpcode()) { |
| default: |
| // dbgs() << "opcode: "<< Inst->getOpcode() << "\n"; |
| llvm_unreachable("Unimplemented subinstruction \n"); |
| break; |
| case Hexagon::A2_addi: |
| Absolute = Inst.getOperand(2).getExpr()->evaluateAsAbsolute(Value); |
| if (Absolute) { |
| if (Value == 1) { |
| Result.setOpcode(Hexagon::SA1_inc); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| break; |
| } // 1,2 SUBInst $Rd = add($Rs, #1) |
| if (Value == -1) { |
| Result.setOpcode(Hexagon::SA1_dec); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| addOps(Result, Inst, 2); |
| break; |
| } // 1,2 SUBInst $Rd = add($Rs,#-1) |
| if (Inst.getOperand(1).getReg() == Hexagon::R29) { |
| Result.setOpcode(Hexagon::SA1_addsp); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 2); |
| break; |
| } // 1,3 SUBInst $Rd = add(r29, #$u6_2) |
| } |
| Result.setOpcode(Hexagon::SA1_addi); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| addOps(Result, Inst, 2); |
| break; // 1,2,3 SUBInst $Rx = add($Rx, #$s7) |
| case Hexagon::A2_add: |
| Result.setOpcode(Hexagon::SA1_addrx); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| addOps(Result, Inst, 2); |
| break; // 1,2,3 SUBInst $Rx = add($_src_, $Rs) |
| case Hexagon::S2_allocframe: |
| Result.setOpcode(Hexagon::SS2_allocframe); |
| addOps(Result, Inst, 2); |
| break; // 1 SUBInst allocframe(#$u5_3) |
| case Hexagon::A2_andir: |
| if (minConstant(Inst, 2) == 255) { |
| Result.setOpcode(Hexagon::SA1_zxtb); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| break; // 1,2 $Rd = and($Rs, #255) |
| } else { |
| Result.setOpcode(Hexagon::SA1_and1); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| break; // 1,2 SUBInst $Rd = and($Rs, #1) |
| } |
| case Hexagon::C2_cmpeqi: |
| Result.setOpcode(Hexagon::SA1_cmpeqi); |
| addOps(Result, Inst, 1); |
| addOps(Result, Inst, 2); |
| break; // 2,3 SUBInst p0 = cmp.eq($Rs, #$u2) |
| case Hexagon::A4_combineii: |
| case Hexagon::A2_combineii: |
| Absolute = Inst.getOperand(1).getExpr()->evaluateAsAbsolute(Value); |
| assert(Absolute);(void)Absolute; |
| if (Value == 1) { |
| Result.setOpcode(Hexagon::SA1_combine1i); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 2); |
| break; // 1,3 SUBInst $Rdd = combine(#1, #$u2) |
| } |
| if (Value == 3) { |
| Result.setOpcode(Hexagon::SA1_combine3i); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 2); |
| break; // 1,3 SUBInst $Rdd = combine(#3, #$u2) |
| } |
| if (Value == 0) { |
| Result.setOpcode(Hexagon::SA1_combine0i); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 2); |
| break; // 1,3 SUBInst $Rdd = combine(#0, #$u2) |
| } |
| if (Value == 2) { |
| Result.setOpcode(Hexagon::SA1_combine2i); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 2); |
| break; // 1,3 SUBInst $Rdd = combine(#2, #$u2) |
| } |
| break; |
| case Hexagon::A4_combineir: |
| Result.setOpcode(Hexagon::SA1_combinezr); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 2); |
| break; // 1,3 SUBInst $Rdd = combine(#0, $Rs) |
| case Hexagon::A4_combineri: |
| Result.setOpcode(Hexagon::SA1_combinerz); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| break; // 1,2 SUBInst $Rdd = combine($Rs, #0) |
| case Hexagon::L4_return_tnew_pnt: |
| case Hexagon::L4_return_tnew_pt: |
| Result.setOpcode(Hexagon::SL2_return_tnew); |
| break; // none SUBInst if (p0.new) dealloc_return:nt |
| case Hexagon::L4_return_fnew_pnt: |
| case Hexagon::L4_return_fnew_pt: |
| Result.setOpcode(Hexagon::SL2_return_fnew); |
| break; // none SUBInst if (!p0.new) dealloc_return:nt |
| case Hexagon::L4_return_f: |
| Result.setOpcode(Hexagon::SL2_return_f); |
| break; // none SUBInst if (!p0) dealloc_return |
| case Hexagon::L4_return_t: |
| Result.setOpcode(Hexagon::SL2_return_t); |
| break; // none SUBInst if (p0) dealloc_return |
| case Hexagon::L4_return: |
| Result.setOpcode(Hexagon::SL2_return); |
| break; // none SUBInst dealloc_return |
| case Hexagon::L2_deallocframe: |
| Result.setOpcode(Hexagon::SL2_deallocframe); |
| break; // none SUBInst deallocframe |
| case Hexagon::EH_RETURN_JMPR: |
| case Hexagon::J2_jumpr: |
| case Hexagon::PS_jmpret: |
| Result.setOpcode(Hexagon::SL2_jumpr31); |
| break; // none SUBInst jumpr r31 |
| case Hexagon::J2_jumprf: |
| case Hexagon::PS_jmpretf: |
| Result.setOpcode(Hexagon::SL2_jumpr31_f); |
| break; // none SUBInst if (!p0) jumpr r31 |
| case Hexagon::J2_jumprfnew: |
| case Hexagon::J2_jumprfnewpt: |
| case Hexagon::PS_jmpretfnewpt: |
| case Hexagon::PS_jmpretfnew: |
| Result.setOpcode(Hexagon::SL2_jumpr31_fnew); |
| break; // none SUBInst if (!p0.new) jumpr:nt r31 |
| case Hexagon::J2_jumprt: |
| case Hexagon::PS_jmprett: |
| Result.setOpcode(Hexagon::SL2_jumpr31_t); |
| break; // none SUBInst if (p0) jumpr r31 |
| case Hexagon::J2_jumprtnew: |
| case Hexagon::J2_jumprtnewpt: |
| case Hexagon::PS_jmprettnewpt: |
| case Hexagon::PS_jmprettnew: |
| Result.setOpcode(Hexagon::SL2_jumpr31_tnew); |
| break; // none SUBInst if (p0.new) jumpr:nt r31 |
| case Hexagon::L2_loadrb_io: |
| Result.setOpcode(Hexagon::SL2_loadrb_io); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| addOps(Result, Inst, 2); |
| break; // 1,2,3 SUBInst $Rd = memb($Rs + #$u3_0) |
| case Hexagon::L2_loadrd_io: |
| Result.setOpcode(Hexagon::SL2_loadrd_sp); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 2); |
| break; // 1,3 SUBInst $Rdd = memd(r29 + #$u5_3) |
| case Hexagon::L2_loadrh_io: |
| Result.setOpcode(Hexagon::SL2_loadrh_io); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| addOps(Result, Inst, 2); |
| break; // 1,2,3 SUBInst $Rd = memh($Rs + #$u3_1) |
| case Hexagon::L2_loadrub_io: |
| Result.setOpcode(Hexagon::SL1_loadrub_io); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| addOps(Result, Inst, 2); |
| break; // 1,2,3 SUBInst $Rd = memub($Rs + #$u4_0) |
| case Hexagon::L2_loadruh_io: |
| Result.setOpcode(Hexagon::SL2_loadruh_io); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| addOps(Result, Inst, 2); |
| break; // 1,2,3 SUBInst $Rd = memuh($Rs + #$u3_1) |
| case Hexagon::L2_loadri_io: |
| if (Inst.getOperand(1).getReg() == Hexagon::R29) { |
| Result.setOpcode(Hexagon::SL2_loadri_sp); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 2); |
| break; // 2 1,3 SUBInst $Rd = memw(r29 + #$u5_2) |
| } else { |
| Result.setOpcode(Hexagon::SL1_loadri_io); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| addOps(Result, Inst, 2); |
| break; // 1,2,3 SUBInst $Rd = memw($Rs + #$u4_2) |
| } |
| case Hexagon::S4_storeirb_io: |
| Absolute = Inst.getOperand(2).getExpr()->evaluateAsAbsolute(Value); |
| assert(Absolute);(void)Absolute; |
| if (Value == 0) { |
| Result.setOpcode(Hexagon::SS2_storebi0); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| break; // 1,2 SUBInst memb($Rs + #$u4_0)=#0 |
| } else if (Value == 1) { |
| Result.setOpcode(Hexagon::SS2_storebi1); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| break; // 2 1,2 SUBInst memb($Rs + #$u4_0)=#1 |
| } |
| break; |
| case Hexagon::S2_storerb_io: |
| Result.setOpcode(Hexagon::SS1_storeb_io); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| addOps(Result, Inst, 2); |
| break; // 1,2,3 SUBInst memb($Rs + #$u4_0) = $Rt |
| case Hexagon::S2_storerd_io: |
| Result.setOpcode(Hexagon::SS2_stored_sp); |
| addOps(Result, Inst, 1); |
| addOps(Result, Inst, 2); |
| break; // 2,3 SUBInst memd(r29 + #$s6_3) = $Rtt |
| case Hexagon::S2_storerh_io: |
| Result.setOpcode(Hexagon::SS2_storeh_io); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| addOps(Result, Inst, 2); |
| break; // 1,2,3 SUBInst memb($Rs + #$u4_0) = $Rt |
| case Hexagon::S4_storeiri_io: |
| Absolute = Inst.getOperand(2).getExpr()->evaluateAsAbsolute(Value); |
| assert(Absolute);(void)Absolute; |
| if (Value == 0) { |
| Result.setOpcode(Hexagon::SS2_storewi0); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| break; // 3 1,2 SUBInst memw($Rs + #$u4_2)=#0 |
| } else if (Value == 1) { |
| Result.setOpcode(Hexagon::SS2_storewi1); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| break; // 3 1,2 SUBInst memw($Rs + #$u4_2)=#1 |
| } else if (Inst.getOperand(0).getReg() == Hexagon::R29) { |
| Result.setOpcode(Hexagon::SS2_storew_sp); |
| addOps(Result, Inst, 1); |
| addOps(Result, Inst, 2); |
| break; // 1 2,3 SUBInst memw(r29 + #$u5_2) = $Rt |
| } |
| break; |
| case Hexagon::S2_storeri_io: |
| if (Inst.getOperand(0).getReg() == Hexagon::R29) { |
| Result.setOpcode(Hexagon::SS2_storew_sp); |
| addOps(Result, Inst, 1); |
| addOps(Result, Inst, 2); // 1,2,3 SUBInst memw(sp + #$u5_2) = $Rt |
| } else { |
| Result.setOpcode(Hexagon::SS1_storew_io); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| addOps(Result, Inst, 2); // 1,2,3 SUBInst memw($Rs + #$u4_2) = $Rt |
| } |
| break; |
| case Hexagon::A2_sxtb: |
| Result.setOpcode(Hexagon::SA1_sxtb); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| break; // 1,2 SUBInst $Rd = sxtb($Rs) |
| case Hexagon::A2_sxth: |
| Result.setOpcode(Hexagon::SA1_sxth); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| break; // 1,2 SUBInst $Rd = sxth($Rs) |
| case Hexagon::A2_tfr: |
| Result.setOpcode(Hexagon::SA1_tfr); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| break; // 1,2 SUBInst $Rd = $Rs |
| case Hexagon::C2_cmovenewif: |
| Result.setOpcode(Hexagon::SA1_clrfnew); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| break; // 2 SUBInst if (!p0.new) $Rd = #0 |
| case Hexagon::C2_cmovenewit: |
| Result.setOpcode(Hexagon::SA1_clrtnew); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| break; // 2 SUBInst if (p0.new) $Rd = #0 |
| case Hexagon::C2_cmoveif: |
| Result.setOpcode(Hexagon::SA1_clrf); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| break; // 2 SUBInst if (!p0) $Rd = #0 |
| case Hexagon::C2_cmoveit: |
| Result.setOpcode(Hexagon::SA1_clrt); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| break; // 2 SUBInst if (p0) $Rd = #0 |
| case Hexagon::A2_tfrsi: |
| Absolute = Inst.getOperand(1).getExpr()->evaluateAsAbsolute(Value); |
| if (Absolute && Value == -1) { |
| Result.setOpcode(Hexagon::SA1_setin1); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| break; // 2 1 SUBInst $Rd = #-1 |
| } else { |
| Result.setOpcode(Hexagon::SA1_seti); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| break; // 1,2 SUBInst $Rd = #$u6 |
| } |
| case Hexagon::A2_zxtb: |
| Result.setOpcode(Hexagon::SA1_zxtb); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| break; // 1,2 $Rd = and($Rs, #255) |
| |
| case Hexagon::A2_zxth: |
| Result.setOpcode(Hexagon::SA1_zxth); |
| addOps(Result, Inst, 0); |
| addOps(Result, Inst, 1); |
| break; // 1,2 SUBInst $Rd = zxth($Rs) |
| } |
| return Result; |
| } |
| |
| static bool isStoreInst(unsigned opCode) { |
| switch (opCode) { |
| case Hexagon::S2_storeri_io: |
| case Hexagon::S2_storerb_io: |
| case Hexagon::S2_storerh_io: |
| case Hexagon::S2_storerd_io: |
| case Hexagon::S4_storeiri_io: |
| case Hexagon::S4_storeirb_io: |
| case Hexagon::S2_allocframe: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| SmallVector<DuplexCandidate, 8> |
| HexagonMCInstrInfo::getDuplexPossibilties(MCInstrInfo const &MCII, |
| MCSubtargetInfo const &STI, |
| MCInst const &MCB) { |
| assert(isBundle(MCB)); |
| SmallVector<DuplexCandidate, 8> duplexToTry; |
| // Use an "order matters" version of isDuplexPair. |
| unsigned numInstrInPacket = MCB.getNumOperands(); |
| |
| for (unsigned distance = 1; distance < numInstrInPacket; ++distance) { |
| for (unsigned j = HexagonMCInstrInfo::bundleInstructionsOffset, |
| k = j + distance; |
| (j < numInstrInPacket) && (k < numInstrInPacket); ++j, ++k) { |
| |
| // Check if reversible. |
| bool bisReversable = true; |
| if (isStoreInst(MCB.getOperand(j).getInst()->getOpcode()) && |
| isStoreInst(MCB.getOperand(k).getInst()->getOpcode())) { |
| LLVM_DEBUG(dbgs() << "skip out of order write pair: " << k << "," << j |
| << "\n"); |
| bisReversable = false; |
| } |
| if (HexagonMCInstrInfo::isMemReorderDisabled(MCB)) // }:mem_noshuf |
| bisReversable = false; |
| |
| // Try in order. |
| if (isOrderedDuplexPair( |
| MCII, *MCB.getOperand(k).getInst(), |
| HexagonMCInstrInfo::hasExtenderForIndex(MCB, k - 1), |
| *MCB.getOperand(j).getInst(), |
| HexagonMCInstrInfo::hasExtenderForIndex(MCB, j - 1), |
| bisReversable, STI)) { |
| // Get iClass. |
| unsigned iClass = iClassOfDuplexPair( |
| getDuplexCandidateGroup(*MCB.getOperand(k).getInst()), |
| getDuplexCandidateGroup(*MCB.getOperand(j).getInst())); |
| |
| // Save off pairs for duplex checking. |
| duplexToTry.push_back(DuplexCandidate(j, k, iClass)); |
| LLVM_DEBUG(dbgs() << "adding pair: " << j << "," << k << ":" |
| << MCB.getOperand(j).getInst()->getOpcode() << "," |
| << MCB.getOperand(k).getInst()->getOpcode() << "\n"); |
| continue; |
| } else { |
| LLVM_DEBUG(dbgs() << "skipping pair: " << j << "," << k << ":" |
| << MCB.getOperand(j).getInst()->getOpcode() << "," |
| << MCB.getOperand(k).getInst()->getOpcode() << "\n"); |
| } |
| |
| // Try reverse. |
| if (bisReversable) { |
| if (isOrderedDuplexPair( |
| MCII, *MCB.getOperand(j).getInst(), |
| HexagonMCInstrInfo::hasExtenderForIndex(MCB, j - 1), |
| *MCB.getOperand(k).getInst(), |
| HexagonMCInstrInfo::hasExtenderForIndex(MCB, k - 1), |
| bisReversable, STI)) { |
| // Get iClass. |
| unsigned iClass = iClassOfDuplexPair( |
| getDuplexCandidateGroup(*MCB.getOperand(j).getInst()), |
| getDuplexCandidateGroup(*MCB.getOperand(k).getInst())); |
| |
| // Save off pairs for duplex checking. |
| duplexToTry.push_back(DuplexCandidate(k, j, iClass)); |
| LLVM_DEBUG(dbgs() |
| << "adding pair:" << k << "," << j << ":" |
| << MCB.getOperand(j).getInst()->getOpcode() << "," |
| << MCB.getOperand(k).getInst()->getOpcode() << "\n"); |
| } else { |
| LLVM_DEBUG(dbgs() |
| << "skipping pair: " << k << "," << j << ":" |
| << MCB.getOperand(j).getInst()->getOpcode() << "," |
| << MCB.getOperand(k).getInst()->getOpcode() << "\n"); |
| } |
| } |
| } |
| } |
| return duplexToTry; |
| } |