| /* | 
 |  * Copyright 2012 Google Inc. | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 | #include "src/core/SkTSort.h" | 
 | #include "src/pathops/SkPathOpsBounds.h" | 
 | #include "src/pathops/SkPathOpsConic.h" | 
 | #include "src/pathops/SkPathOpsCubic.h" | 
 | #include "src/pathops/SkPathOpsLine.h" | 
 | #include "src/pathops/SkPathOpsQuad.h" | 
 | #include "src/pathops/SkPathOpsTSect.h" | 
 | #include "src/pathops/SkReduceOrder.h" | 
 | #include "tests/PathOpsTestCommon.h" | 
 |  | 
 | #include <utility> | 
 |  | 
 | static double calc_t_div(const SkDCubic& cubic, double precision, double start) { | 
 |     const double adjust = sqrt(3.) / 36; | 
 |     SkDCubic sub; | 
 |     const SkDCubic* cPtr; | 
 |     if (start == 0) { | 
 |         cPtr = &cubic; | 
 |     } else { | 
 |         // OPTIMIZE: special-case half-split ? | 
 |         sub = cubic.subDivide(start, 1); | 
 |         cPtr = ⊂ | 
 |     } | 
 |     const SkDCubic& c = *cPtr; | 
 |     double dx = c[3].fX - 3 * (c[2].fX - c[1].fX) - c[0].fX; | 
 |     double dy = c[3].fY - 3 * (c[2].fY - c[1].fY) - c[0].fY; | 
 |     double dist = sqrt(dx * dx + dy * dy); | 
 |     double tDiv3 = precision / (adjust * dist); | 
 |     double t = SkDCubeRoot(tDiv3); | 
 |     if (start > 0) { | 
 |         t = start + (1 - start) * t; | 
 |     } | 
 |     return t; | 
 | } | 
 |  | 
 | static bool add_simple_ts(const SkDCubic& cubic, double precision, SkTArray<double, true>* ts) { | 
 |     double tDiv = calc_t_div(cubic, precision, 0); | 
 |     if (tDiv >= 1) { | 
 |         return true; | 
 |     } | 
 |     if (tDiv >= 0.5) { | 
 |         ts->push_back(0.5); | 
 |         return true; | 
 |     } | 
 |     return false; | 
 | } | 
 |  | 
 | static void addTs(const SkDCubic& cubic, double precision, double start, double end, | 
 |         SkTArray<double, true>* ts) { | 
 |     double tDiv = calc_t_div(cubic, precision, 0); | 
 |     double parts = ceil(1.0 / tDiv); | 
 |     for (double index = 0; index < parts; ++index) { | 
 |         double newT = start + (index / parts) * (end - start); | 
 |         if (newT > 0 && newT < 1) { | 
 |             ts->push_back(newT); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void toQuadraticTs(const SkDCubic* cubic, double precision, SkTArray<double, true>* ts) { | 
 |     SkReduceOrder reducer; | 
 |     int order = reducer.reduce(*cubic, SkReduceOrder::kAllow_Quadratics); | 
 |     if (order < 3) { | 
 |         return; | 
 |     } | 
 |     double inflectT[5]; | 
 |     int inflections = cubic->findInflections(inflectT); | 
 |     SkASSERT(inflections <= 2); | 
 |     if (!cubic->endsAreExtremaInXOrY()) { | 
 |         inflections += cubic->findMaxCurvature(&inflectT[inflections]); | 
 |         SkASSERT(inflections <= 5); | 
 |     } | 
 |     SkTQSort<double>(inflectT, &inflectT[inflections - 1]); | 
 |     // OPTIMIZATION: is this filtering common enough that it needs to be pulled out into its | 
 |     // own subroutine? | 
 |     while (inflections && approximately_less_than_zero(inflectT[0])) { | 
 |         memmove(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections); | 
 |     } | 
 |     int start = 0; | 
 |     int next = 1; | 
 |     while (next < inflections) { | 
 |         if (!approximately_equal(inflectT[start], inflectT[next])) { | 
 |             ++start; | 
 |         ++next; | 
 |             continue; | 
 |         } | 
 |         memmove(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--inflections - start)); | 
 |     } | 
 |  | 
 |     while (inflections && approximately_greater_than_one(inflectT[inflections - 1])) { | 
 |         --inflections; | 
 |     } | 
 |     SkDCubicPair pair; | 
 |     if (inflections == 1) { | 
 |         pair = cubic->chopAt(inflectT[0]); | 
 |         int orderP1 = reducer.reduce(pair.first(), SkReduceOrder::kNo_Quadratics); | 
 |         if (orderP1 < 2) { | 
 |             --inflections; | 
 |         } else { | 
 |             int orderP2 = reducer.reduce(pair.second(), SkReduceOrder::kNo_Quadratics); | 
 |             if (orderP2 < 2) { | 
 |                 --inflections; | 
 |             } | 
 |         } | 
 |     } | 
 |     if (inflections == 0 && add_simple_ts(*cubic, precision, ts)) { | 
 |         return; | 
 |     } | 
 |     if (inflections == 1) { | 
 |         pair = cubic->chopAt(inflectT[0]); | 
 |         addTs(pair.first(), precision, 0, inflectT[0], ts); | 
 |         addTs(pair.second(), precision, inflectT[0], 1, ts); | 
 |         return; | 
 |     } | 
 |     if (inflections > 1) { | 
 |         SkDCubic part = cubic->subDivide(0, inflectT[0]); | 
 |         addTs(part, precision, 0, inflectT[0], ts); | 
 |         int last = inflections - 1; | 
 |         for (int idx = 0; idx < last; ++idx) { | 
 |             part = cubic->subDivide(inflectT[idx], inflectT[idx + 1]); | 
 |             addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts); | 
 |         } | 
 |         part = cubic->subDivide(inflectT[last], 1); | 
 |         addTs(part, precision, inflectT[last], 1, ts); | 
 |         return; | 
 |     } | 
 |     addTs(*cubic, precision, 0, 1, ts); | 
 | } | 
 |  | 
 | void CubicToQuads(const SkDCubic& cubic, double precision, SkTArray<SkDQuad, true>& quads) { | 
 |     SkTArray<double, true> ts; | 
 |     toQuadraticTs(&cubic, precision, &ts); | 
 |     if (ts.count() <= 0) { | 
 |         SkDQuad quad = cubic.toQuad(); | 
 |         quads.push_back(quad); | 
 |         return; | 
 |     } | 
 |     double tStart = 0; | 
 |     for (int i1 = 0; i1 <= ts.count(); ++i1) { | 
 |         const double tEnd = i1 < ts.count() ? ts[i1] : 1; | 
 |         SkDRect bounds; | 
 |         bounds.setBounds(cubic); | 
 |         SkDCubic part = cubic.subDivide(tStart, tEnd); | 
 |         SkDQuad quad = part.toQuad(); | 
 |         if (quad[1].fX < bounds.fLeft) { | 
 |             quad[1].fX = bounds.fLeft; | 
 |         } else if (quad[1].fX > bounds.fRight) { | 
 |             quad[1].fX = bounds.fRight; | 
 |         } | 
 |         if (quad[1].fY < bounds.fTop) { | 
 |             quad[1].fY = bounds.fTop; | 
 |         } else if (quad[1].fY > bounds.fBottom) { | 
 |             quad[1].fY = bounds.fBottom; | 
 |         } | 
 |         quads.push_back(quad); | 
 |         tStart = tEnd; | 
 |     } | 
 | } | 
 |  | 
 | void CubicPathToQuads(const SkPath& cubicPath, SkPath* quadPath) { | 
 |     quadPath->reset(); | 
 |     SkDCubic cubic; | 
 |     SkTArray<SkDQuad, true> quads; | 
 |     SkPath::RawIter iter(cubicPath); | 
 |     uint8_t verb; | 
 |     SkPoint pts[4]; | 
 |     while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { | 
 |         switch (verb) { | 
 |             case SkPath::kMove_Verb: | 
 |                 quadPath->moveTo(pts[0].fX, pts[0].fY); | 
 |                 continue; | 
 |             case SkPath::kLine_Verb: | 
 |                 quadPath->lineTo(pts[1].fX, pts[1].fY); | 
 |                 break; | 
 |             case SkPath::kQuad_Verb: | 
 |                 quadPath->quadTo(pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY); | 
 |                 break; | 
 |             case SkPath::kCubic_Verb: | 
 |                 quads.reset(); | 
 |                 cubic.set(pts); | 
 |                 CubicToQuads(cubic, cubic.calcPrecision(), quads); | 
 |                 for (int index = 0; index < quads.count(); ++index) { | 
 |                     SkPoint qPts[2] = { | 
 |                         quads[index][1].asSkPoint(), | 
 |                         quads[index][2].asSkPoint() | 
 |                     }; | 
 |                     quadPath->quadTo(qPts[0].fX, qPts[0].fY, qPts[1].fX, qPts[1].fY); | 
 |                 } | 
 |                 break; | 
 |             case SkPath::kClose_Verb: | 
 |                  quadPath->close(); | 
 |                 break; | 
 |             default: | 
 |                 SkDEBUGFAIL("bad verb"); | 
 |                 return; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void CubicPathToSimple(const SkPath& cubicPath, SkPath* simplePath) { | 
 |     simplePath->reset(); | 
 |     SkDCubic cubic; | 
 |     SkPath::RawIter iter(cubicPath); | 
 |     uint8_t verb; | 
 |     SkPoint pts[4]; | 
 |     while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { | 
 |         switch (verb) { | 
 |             case SkPath::kMove_Verb: | 
 |                 simplePath->moveTo(pts[0].fX, pts[0].fY); | 
 |                 continue; | 
 |             case SkPath::kLine_Verb: | 
 |                 simplePath->lineTo(pts[1].fX, pts[1].fY); | 
 |                 break; | 
 |             case SkPath::kQuad_Verb: | 
 |                 simplePath->quadTo(pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY); | 
 |                 break; | 
 |             case SkPath::kCubic_Verb: { | 
 |                 cubic.set(pts); | 
 |                 double tInflects[2]; | 
 |                 int inflections = cubic.findInflections(tInflects); | 
 |                 if (inflections > 1 && tInflects[0] > tInflects[1]) { | 
 |                     using std::swap; | 
 |                     swap(tInflects[0], tInflects[1]); | 
 |                 } | 
 |                 double lo = 0; | 
 |                 for (int index = 0; index <= inflections; ++index) { | 
 |                     double hi = index < inflections ? tInflects[index] : 1; | 
 |                     SkDCubic part = cubic.subDivide(lo, hi); | 
 |                     SkPoint cPts[3]; | 
 |                     cPts[0] = part[1].asSkPoint(); | 
 |                     cPts[1] = part[2].asSkPoint(); | 
 |                     cPts[2] = part[3].asSkPoint(); | 
 |                     simplePath->cubicTo(cPts[0].fX, cPts[0].fY, cPts[1].fX, cPts[1].fY, | 
 |                             cPts[2].fX, cPts[2].fY); | 
 |                     lo = hi; | 
 |                 } | 
 |                 break; | 
 |             } | 
 |             case SkPath::kClose_Verb: | 
 |                  simplePath->close(); | 
 |                 break; | 
 |             default: | 
 |                 SkDEBUGFAIL("bad verb"); | 
 |                 return; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | bool ValidBounds(const SkPathOpsBounds& bounds) { | 
 |     if (SkScalarIsNaN(bounds.fLeft)) { | 
 |         return false; | 
 |     } | 
 |     if (SkScalarIsNaN(bounds.fTop)) { | 
 |         return false; | 
 |     } | 
 |     if (SkScalarIsNaN(bounds.fRight)) { | 
 |         return false; | 
 |     } | 
 |     return !SkScalarIsNaN(bounds.fBottom); | 
 | } | 
 |  | 
 | bool ValidConic(const SkDConic& conic) { | 
 |     for (int index = 0; index < SkDConic::kPointCount; ++index) { | 
 |         if (!ValidPoint(conic[index])) { | 
 |             return false; | 
 |         } | 
 |     } | 
 |     if (SkDoubleIsNaN(conic.fWeight)) { | 
 |         return false; | 
 |     } | 
 |     return true; | 
 | } | 
 |  | 
 | bool ValidCubic(const SkDCubic& cubic) { | 
 |     for (int index = 0; index < 4; ++index) { | 
 |         if (!ValidPoint(cubic[index])) { | 
 |             return false; | 
 |         } | 
 |     } | 
 |     return true; | 
 | } | 
 |  | 
 | bool ValidLine(const SkDLine& line) { | 
 |     for (int index = 0; index < 2; ++index) { | 
 |         if (!ValidPoint(line[index])) { | 
 |             return false; | 
 |         } | 
 |     } | 
 |     return true; | 
 | } | 
 |  | 
 | bool ValidPoint(const SkDPoint& pt) { | 
 |     if (SkDoubleIsNaN(pt.fX)) { | 
 |         return false; | 
 |     } | 
 |     return !SkDoubleIsNaN(pt.fY); | 
 | } | 
 |  | 
 | bool ValidPoints(const SkPoint* pts, int count) { | 
 |     for (int index = 0; index < count; ++index) { | 
 |         if (SkScalarIsNaN(pts[index].fX)) { | 
 |             return false; | 
 |         } | 
 |         if (SkScalarIsNaN(pts[index].fY)) { | 
 |             return false; | 
 |         } | 
 |     } | 
 |     return true; | 
 | } | 
 |  | 
 | bool ValidQuad(const SkDQuad& quad) { | 
 |     for (int index = 0; index < 3; ++index) { | 
 |         if (!ValidPoint(quad[index])) { | 
 |             return false; | 
 |         } | 
 |     } | 
 |     return true; | 
 | } | 
 |  | 
 | bool ValidVector(const SkDVector& v) { | 
 |     if (SkDoubleIsNaN(v.fX)) { | 
 |         return false; | 
 |     } | 
 |     return !SkDoubleIsNaN(v.fY); | 
 | } |