| //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This contains code to emit Stmt nodes as LLVM code. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "CodeGenFunction.h" | 
 | #include "CGDebugInfo.h" | 
 | #include "CodeGenModule.h" | 
 | #include "TargetInfo.h" | 
 | #include "clang/AST/StmtVisitor.h" | 
 | #include "clang/Basic/Builtins.h" | 
 | #include "clang/Basic/PrettyStackTrace.h" | 
 | #include "clang/Basic/TargetInfo.h" | 
 | #include "clang/Sema/LoopHint.h" | 
 | #include "clang/Sema/SemaDiagnostic.h" | 
 | #include "llvm/ADT/StringExtras.h" | 
 | #include "llvm/IR/CallSite.h" | 
 | #include "llvm/IR/DataLayout.h" | 
 | #include "llvm/IR/InlineAsm.h" | 
 | #include "llvm/IR/Intrinsics.h" | 
 | #include "llvm/IR/MDBuilder.h" | 
 |  | 
 | using namespace clang; | 
 | using namespace CodeGen; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                              Statement Emission | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void CodeGenFunction::EmitStopPoint(const Stmt *S) { | 
 |   if (CGDebugInfo *DI = getDebugInfo()) { | 
 |     SourceLocation Loc; | 
 |     Loc = S->getLocStart(); | 
 |     DI->EmitLocation(Builder, Loc); | 
 |  | 
 |     LastStopPoint = Loc; | 
 |   } | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { | 
 |   assert(S && "Null statement?"); | 
 |   PGO.setCurrentStmt(S); | 
 |  | 
 |   // These statements have their own debug info handling. | 
 |   if (EmitSimpleStmt(S)) | 
 |     return; | 
 |  | 
 |   // Check if we are generating unreachable code. | 
 |   if (!HaveInsertPoint()) { | 
 |     // If so, and the statement doesn't contain a label, then we do not need to | 
 |     // generate actual code. This is safe because (1) the current point is | 
 |     // unreachable, so we don't need to execute the code, and (2) we've already | 
 |     // handled the statements which update internal data structures (like the | 
 |     // local variable map) which could be used by subsequent statements. | 
 |     if (!ContainsLabel(S)) { | 
 |       // Verify that any decl statements were handled as simple, they may be in | 
 |       // scope of subsequent reachable statements. | 
 |       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); | 
 |       return; | 
 |     } | 
 |  | 
 |     // Otherwise, make a new block to hold the code. | 
 |     EnsureInsertPoint(); | 
 |   } | 
 |  | 
 |   // Generate a stoppoint if we are emitting debug info. | 
 |   EmitStopPoint(S); | 
 |  | 
 |   // Ignore all OpenMP directives except for simd if OpenMP with Simd is | 
 |   // enabled. | 
 |   if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { | 
 |     if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { | 
 |       EmitSimpleOMPExecutableDirective(*D); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   switch (S->getStmtClass()) { | 
 |   case Stmt::NoStmtClass: | 
 |   case Stmt::CXXCatchStmtClass: | 
 |   case Stmt::SEHExceptStmtClass: | 
 |   case Stmt::SEHFinallyStmtClass: | 
 |   case Stmt::MSDependentExistsStmtClass: | 
 |     llvm_unreachable("invalid statement class to emit generically"); | 
 |   case Stmt::NullStmtClass: | 
 |   case Stmt::CompoundStmtClass: | 
 |   case Stmt::DeclStmtClass: | 
 |   case Stmt::LabelStmtClass: | 
 |   case Stmt::AttributedStmtClass: | 
 |   case Stmt::GotoStmtClass: | 
 |   case Stmt::BreakStmtClass: | 
 |   case Stmt::ContinueStmtClass: | 
 |   case Stmt::DefaultStmtClass: | 
 |   case Stmt::CaseStmtClass: | 
 |   case Stmt::SEHLeaveStmtClass: | 
 |     llvm_unreachable("should have emitted these statements as simple"); | 
 |  | 
 | #define STMT(Type, Base) | 
 | #define ABSTRACT_STMT(Op) | 
 | #define EXPR(Type, Base) \ | 
 |   case Stmt::Type##Class: | 
 | #include "clang/AST/StmtNodes.inc" | 
 |   { | 
 |     // Remember the block we came in on. | 
 |     llvm::BasicBlock *incoming = Builder.GetInsertBlock(); | 
 |     assert(incoming && "expression emission must have an insertion point"); | 
 |  | 
 |     EmitIgnoredExpr(cast<Expr>(S)); | 
 |  | 
 |     llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); | 
 |     assert(outgoing && "expression emission cleared block!"); | 
 |  | 
 |     // The expression emitters assume (reasonably!) that the insertion | 
 |     // point is always set.  To maintain that, the call-emission code | 
 |     // for noreturn functions has to enter a new block with no | 
 |     // predecessors.  We want to kill that block and mark the current | 
 |     // insertion point unreachable in the common case of a call like | 
 |     // "exit();".  Since expression emission doesn't otherwise create | 
 |     // blocks with no predecessors, we can just test for that. | 
 |     // However, we must be careful not to do this to our incoming | 
 |     // block, because *statement* emission does sometimes create | 
 |     // reachable blocks which will have no predecessors until later in | 
 |     // the function.  This occurs with, e.g., labels that are not | 
 |     // reachable by fallthrough. | 
 |     if (incoming != outgoing && outgoing->use_empty()) { | 
 |       outgoing->eraseFromParent(); | 
 |       Builder.ClearInsertionPoint(); | 
 |     } | 
 |     break; | 
 |   } | 
 |  | 
 |   case Stmt::IndirectGotoStmtClass: | 
 |     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; | 
 |  | 
 |   case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break; | 
 |   case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; | 
 |   case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break; | 
 |   case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break; | 
 |  | 
 |   case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break; | 
 |  | 
 |   case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break; | 
 |   case Stmt::GCCAsmStmtClass:  // Intentional fall-through. | 
 |   case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break; | 
 |   case Stmt::CoroutineBodyStmtClass: | 
 |     EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); | 
 |     break; | 
 |   case Stmt::CoreturnStmtClass: | 
 |     EmitCoreturnStmt(cast<CoreturnStmt>(*S)); | 
 |     break; | 
 |   case Stmt::CapturedStmtClass: { | 
 |     const CapturedStmt *CS = cast<CapturedStmt>(S); | 
 |     EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); | 
 |     } | 
 |     break; | 
 |   case Stmt::ObjCAtTryStmtClass: | 
 |     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); | 
 |     break; | 
 |   case Stmt::ObjCAtCatchStmtClass: | 
 |     llvm_unreachable( | 
 |                     "@catch statements should be handled by EmitObjCAtTryStmt"); | 
 |   case Stmt::ObjCAtFinallyStmtClass: | 
 |     llvm_unreachable( | 
 |                   "@finally statements should be handled by EmitObjCAtTryStmt"); | 
 |   case Stmt::ObjCAtThrowStmtClass: | 
 |     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); | 
 |     break; | 
 |   case Stmt::ObjCAtSynchronizedStmtClass: | 
 |     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); | 
 |     break; | 
 |   case Stmt::ObjCForCollectionStmtClass: | 
 |     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); | 
 |     break; | 
 |   case Stmt::ObjCAutoreleasePoolStmtClass: | 
 |     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); | 
 |     break; | 
 |  | 
 |   case Stmt::CXXTryStmtClass: | 
 |     EmitCXXTryStmt(cast<CXXTryStmt>(*S)); | 
 |     break; | 
 |   case Stmt::CXXForRangeStmtClass: | 
 |     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); | 
 |     break; | 
 |   case Stmt::SEHTryStmtClass: | 
 |     EmitSEHTryStmt(cast<SEHTryStmt>(*S)); | 
 |     break; | 
 |   case Stmt::OMPParallelDirectiveClass: | 
 |     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPSimdDirectiveClass: | 
 |     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPForDirectiveClass: | 
 |     EmitOMPForDirective(cast<OMPForDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPForSimdDirectiveClass: | 
 |     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPSectionsDirectiveClass: | 
 |     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPSectionDirectiveClass: | 
 |     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPSingleDirectiveClass: | 
 |     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPMasterDirectiveClass: | 
 |     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPCriticalDirectiveClass: | 
 |     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPParallelForDirectiveClass: | 
 |     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPParallelForSimdDirectiveClass: | 
 |     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPParallelSectionsDirectiveClass: | 
 |     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTaskDirectiveClass: | 
 |     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTaskyieldDirectiveClass: | 
 |     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPBarrierDirectiveClass: | 
 |     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTaskwaitDirectiveClass: | 
 |     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTaskgroupDirectiveClass: | 
 |     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPFlushDirectiveClass: | 
 |     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPOrderedDirectiveClass: | 
 |     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPAtomicDirectiveClass: | 
 |     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTargetDirectiveClass: | 
 |     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTeamsDirectiveClass: | 
 |     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPCancellationPointDirectiveClass: | 
 |     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPCancelDirectiveClass: | 
 |     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTargetDataDirectiveClass: | 
 |     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTargetEnterDataDirectiveClass: | 
 |     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTargetExitDataDirectiveClass: | 
 |     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTargetParallelDirectiveClass: | 
 |     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTargetParallelForDirectiveClass: | 
 |     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTaskLoopDirectiveClass: | 
 |     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTaskLoopSimdDirectiveClass: | 
 |     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPDistributeDirectiveClass: | 
 |     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTargetUpdateDirectiveClass: | 
 |     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPDistributeParallelForDirectiveClass: | 
 |     EmitOMPDistributeParallelForDirective( | 
 |         cast<OMPDistributeParallelForDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPDistributeParallelForSimdDirectiveClass: | 
 |     EmitOMPDistributeParallelForSimdDirective( | 
 |         cast<OMPDistributeParallelForSimdDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPDistributeSimdDirectiveClass: | 
 |     EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTargetParallelForSimdDirectiveClass: | 
 |     EmitOMPTargetParallelForSimdDirective( | 
 |         cast<OMPTargetParallelForSimdDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTargetSimdDirectiveClass: | 
 |     EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTeamsDistributeDirectiveClass: | 
 |     EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTeamsDistributeSimdDirectiveClass: | 
 |     EmitOMPTeamsDistributeSimdDirective( | 
 |         cast<OMPTeamsDistributeSimdDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: | 
 |     EmitOMPTeamsDistributeParallelForSimdDirective( | 
 |         cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTeamsDistributeParallelForDirectiveClass: | 
 |     EmitOMPTeamsDistributeParallelForDirective( | 
 |         cast<OMPTeamsDistributeParallelForDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTargetTeamsDirectiveClass: | 
 |     EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTargetTeamsDistributeDirectiveClass: | 
 |     EmitOMPTargetTeamsDistributeDirective( | 
 |         cast<OMPTargetTeamsDistributeDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: | 
 |     EmitOMPTargetTeamsDistributeParallelForDirective( | 
 |         cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: | 
 |     EmitOMPTargetTeamsDistributeParallelForSimdDirective( | 
 |         cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); | 
 |     break; | 
 |   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: | 
 |     EmitOMPTargetTeamsDistributeSimdDirective( | 
 |         cast<OMPTargetTeamsDistributeSimdDirective>(*S)); | 
 |     break; | 
 |   } | 
 | } | 
 |  | 
 | bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { | 
 |   switch (S->getStmtClass()) { | 
 |   default: return false; | 
 |   case Stmt::NullStmtClass: break; | 
 |   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; | 
 |   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break; | 
 |   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break; | 
 |   case Stmt::AttributedStmtClass: | 
 |                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break; | 
 |   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break; | 
 |   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break; | 
 |   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; | 
 |   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break; | 
 |   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break; | 
 |   case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true, | 
 | /// this captures the expression result of the last sub-statement and returns it | 
 | /// (for use by the statement expression extension). | 
 | Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, | 
 |                                           AggValueSlot AggSlot) { | 
 |   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), | 
 |                              "LLVM IR generation of compound statement ('{}')"); | 
 |  | 
 |   // Keep track of the current cleanup stack depth, including debug scopes. | 
 |   LexicalScope Scope(*this, S.getSourceRange()); | 
 |  | 
 |   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); | 
 | } | 
 |  | 
 | Address | 
 | CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, | 
 |                                               bool GetLast, | 
 |                                               AggValueSlot AggSlot) { | 
 |  | 
 |   for (CompoundStmt::const_body_iterator I = S.body_begin(), | 
 |        E = S.body_end()-GetLast; I != E; ++I) | 
 |     EmitStmt(*I); | 
 |  | 
 |   Address RetAlloca = Address::invalid(); | 
 |   if (GetLast) { | 
 |     // We have to special case labels here.  They are statements, but when put | 
 |     // at the end of a statement expression, they yield the value of their | 
 |     // subexpression.  Handle this by walking through all labels we encounter, | 
 |     // emitting them before we evaluate the subexpr. | 
 |     const Stmt *LastStmt = S.body_back(); | 
 |     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { | 
 |       EmitLabel(LS->getDecl()); | 
 |       LastStmt = LS->getSubStmt(); | 
 |     } | 
 |  | 
 |     EnsureInsertPoint(); | 
 |  | 
 |     QualType ExprTy = cast<Expr>(LastStmt)->getType(); | 
 |     if (hasAggregateEvaluationKind(ExprTy)) { | 
 |       EmitAggExpr(cast<Expr>(LastStmt), AggSlot); | 
 |     } else { | 
 |       // We can't return an RValue here because there might be cleanups at | 
 |       // the end of the StmtExpr.  Because of that, we have to emit the result | 
 |       // here into a temporary alloca. | 
 |       RetAlloca = CreateMemTemp(ExprTy); | 
 |       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), | 
 |                        /*IsInit*/false); | 
 |     } | 
 |  | 
 |   } | 
 |  | 
 |   return RetAlloca; | 
 | } | 
 |  | 
 | void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { | 
 |   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); | 
 |  | 
 |   // If there is a cleanup stack, then we it isn't worth trying to | 
 |   // simplify this block (we would need to remove it from the scope map | 
 |   // and cleanup entry). | 
 |   if (!EHStack.empty()) | 
 |     return; | 
 |  | 
 |   // Can only simplify direct branches. | 
 |   if (!BI || !BI->isUnconditional()) | 
 |     return; | 
 |  | 
 |   // Can only simplify empty blocks. | 
 |   if (BI->getIterator() != BB->begin()) | 
 |     return; | 
 |  | 
 |   BB->replaceAllUsesWith(BI->getSuccessor(0)); | 
 |   BI->eraseFromParent(); | 
 |   BB->eraseFromParent(); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { | 
 |   llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); | 
 |  | 
 |   // Fall out of the current block (if necessary). | 
 |   EmitBranch(BB); | 
 |  | 
 |   if (IsFinished && BB->use_empty()) { | 
 |     delete BB; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Place the block after the current block, if possible, or else at | 
 |   // the end of the function. | 
 |   if (CurBB && CurBB->getParent()) | 
 |     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); | 
 |   else | 
 |     CurFn->getBasicBlockList().push_back(BB); | 
 |   Builder.SetInsertPoint(BB); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { | 
 |   // Emit a branch from the current block to the target one if this | 
 |   // was a real block.  If this was just a fall-through block after a | 
 |   // terminator, don't emit it. | 
 |   llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); | 
 |  | 
 |   if (!CurBB || CurBB->getTerminator()) { | 
 |     // If there is no insert point or the previous block is already | 
 |     // terminated, don't touch it. | 
 |   } else { | 
 |     // Otherwise, create a fall-through branch. | 
 |     Builder.CreateBr(Target); | 
 |   } | 
 |  | 
 |   Builder.ClearInsertionPoint(); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { | 
 |   bool inserted = false; | 
 |   for (llvm::User *u : block->users()) { | 
 |     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { | 
 |       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), | 
 |                                              block); | 
 |       inserted = true; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   if (!inserted) | 
 |     CurFn->getBasicBlockList().push_back(block); | 
 |  | 
 |   Builder.SetInsertPoint(block); | 
 | } | 
 |  | 
 | CodeGenFunction::JumpDest | 
 | CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { | 
 |   JumpDest &Dest = LabelMap[D]; | 
 |   if (Dest.isValid()) return Dest; | 
 |  | 
 |   // Create, but don't insert, the new block. | 
 |   Dest = JumpDest(createBasicBlock(D->getName()), | 
 |                   EHScopeStack::stable_iterator::invalid(), | 
 |                   NextCleanupDestIndex++); | 
 |   return Dest; | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitLabel(const LabelDecl *D) { | 
 |   // Add this label to the current lexical scope if we're within any | 
 |   // normal cleanups.  Jumps "in" to this label --- when permitted by | 
 |   // the language --- may need to be routed around such cleanups. | 
 |   if (EHStack.hasNormalCleanups() && CurLexicalScope) | 
 |     CurLexicalScope->addLabel(D); | 
 |  | 
 |   JumpDest &Dest = LabelMap[D]; | 
 |  | 
 |   // If we didn't need a forward reference to this label, just go | 
 |   // ahead and create a destination at the current scope. | 
 |   if (!Dest.isValid()) { | 
 |     Dest = getJumpDestInCurrentScope(D->getName()); | 
 |  | 
 |   // Otherwise, we need to give this label a target depth and remove | 
 |   // it from the branch-fixups list. | 
 |   } else { | 
 |     assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); | 
 |     Dest.setScopeDepth(EHStack.stable_begin()); | 
 |     ResolveBranchFixups(Dest.getBlock()); | 
 |   } | 
 |  | 
 |   EmitBlock(Dest.getBlock()); | 
 |   incrementProfileCounter(D->getStmt()); | 
 | } | 
 |  | 
 | /// Change the cleanup scope of the labels in this lexical scope to | 
 | /// match the scope of the enclosing context. | 
 | void CodeGenFunction::LexicalScope::rescopeLabels() { | 
 |   assert(!Labels.empty()); | 
 |   EHScopeStack::stable_iterator innermostScope | 
 |     = CGF.EHStack.getInnermostNormalCleanup(); | 
 |  | 
 |   // Change the scope depth of all the labels. | 
 |   for (SmallVectorImpl<const LabelDecl*>::const_iterator | 
 |          i = Labels.begin(), e = Labels.end(); i != e; ++i) { | 
 |     assert(CGF.LabelMap.count(*i)); | 
 |     JumpDest &dest = CGF.LabelMap.find(*i)->second; | 
 |     assert(dest.getScopeDepth().isValid()); | 
 |     assert(innermostScope.encloses(dest.getScopeDepth())); | 
 |     dest.setScopeDepth(innermostScope); | 
 |   } | 
 |  | 
 |   // Reparent the labels if the new scope also has cleanups. | 
 |   if (innermostScope != EHScopeStack::stable_end() && ParentScope) { | 
 |     ParentScope->Labels.append(Labels.begin(), Labels.end()); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { | 
 |   EmitLabel(S.getDecl()); | 
 |   EmitStmt(S.getSubStmt()); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { | 
 |   EmitStmt(S.getSubStmt(), S.getAttrs()); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { | 
 |   // If this code is reachable then emit a stop point (if generating | 
 |   // debug info). We have to do this ourselves because we are on the | 
 |   // "simple" statement path. | 
 |   if (HaveInsertPoint()) | 
 |     EmitStopPoint(&S); | 
 |  | 
 |   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); | 
 | } | 
 |  | 
 |  | 
 | void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { | 
 |   if (const LabelDecl *Target = S.getConstantTarget()) { | 
 |     EmitBranchThroughCleanup(getJumpDestForLabel(Target)); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Ensure that we have an i8* for our PHI node. | 
 |   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), | 
 |                                          Int8PtrTy, "addr"); | 
 |   llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); | 
 |  | 
 |   // Get the basic block for the indirect goto. | 
 |   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); | 
 |  | 
 |   // The first instruction in the block has to be the PHI for the switch dest, | 
 |   // add an entry for this branch. | 
 |   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); | 
 |  | 
 |   EmitBranch(IndGotoBB); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitIfStmt(const IfStmt &S) { | 
 |   // C99 6.8.4.1: The first substatement is executed if the expression compares | 
 |   // unequal to 0.  The condition must be a scalar type. | 
 |   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); | 
 |  | 
 |   if (S.getInit()) | 
 |     EmitStmt(S.getInit()); | 
 |  | 
 |   if (S.getConditionVariable()) | 
 |     EmitDecl(*S.getConditionVariable()); | 
 |  | 
 |   // If the condition constant folds and can be elided, try to avoid emitting | 
 |   // the condition and the dead arm of the if/else. | 
 |   bool CondConstant; | 
 |   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, | 
 |                                    S.isConstexpr())) { | 
 |     // Figure out which block (then or else) is executed. | 
 |     const Stmt *Executed = S.getThen(); | 
 |     const Stmt *Skipped  = S.getElse(); | 
 |     if (!CondConstant)  // Condition false? | 
 |       std::swap(Executed, Skipped); | 
 |  | 
 |     // If the skipped block has no labels in it, just emit the executed block. | 
 |     // This avoids emitting dead code and simplifies the CFG substantially. | 
 |     if (S.isConstexpr() || !ContainsLabel(Skipped)) { | 
 |       if (CondConstant) | 
 |         incrementProfileCounter(&S); | 
 |       if (Executed) { | 
 |         RunCleanupsScope ExecutedScope(*this); | 
 |         EmitStmt(Executed); | 
 |       } | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit | 
 |   // the conditional branch. | 
 |   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); | 
 |   llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); | 
 |   llvm::BasicBlock *ElseBlock = ContBlock; | 
 |   if (S.getElse()) | 
 |     ElseBlock = createBasicBlock("if.else"); | 
 |  | 
 |   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, | 
 |                        getProfileCount(S.getThen())); | 
 |  | 
 |   // Emit the 'then' code. | 
 |   EmitBlock(ThenBlock); | 
 |   incrementProfileCounter(&S); | 
 |   { | 
 |     RunCleanupsScope ThenScope(*this); | 
 |     EmitStmt(S.getThen()); | 
 |   } | 
 |   EmitBranch(ContBlock); | 
 |  | 
 |   // Emit the 'else' code if present. | 
 |   if (const Stmt *Else = S.getElse()) { | 
 |     { | 
 |       // There is no need to emit line number for an unconditional branch. | 
 |       auto NL = ApplyDebugLocation::CreateEmpty(*this); | 
 |       EmitBlock(ElseBlock); | 
 |     } | 
 |     { | 
 |       RunCleanupsScope ElseScope(*this); | 
 |       EmitStmt(Else); | 
 |     } | 
 |     { | 
 |       // There is no need to emit line number for an unconditional branch. | 
 |       auto NL = ApplyDebugLocation::CreateEmpty(*this); | 
 |       EmitBranch(ContBlock); | 
 |     } | 
 |   } | 
 |  | 
 |   // Emit the continuation block for code after the if. | 
 |   EmitBlock(ContBlock, true); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, | 
 |                                     ArrayRef<const Attr *> WhileAttrs) { | 
 |   // Emit the header for the loop, which will also become | 
 |   // the continue target. | 
 |   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); | 
 |   EmitBlock(LoopHeader.getBlock()); | 
 |  | 
 |   const SourceRange &R = S.getSourceRange(); | 
 |   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs, | 
 |                  SourceLocToDebugLoc(R.getBegin()), | 
 |                  SourceLocToDebugLoc(R.getEnd())); | 
 |  | 
 |   // Create an exit block for when the condition fails, which will | 
 |   // also become the break target. | 
 |   JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); | 
 |  | 
 |   // Store the blocks to use for break and continue. | 
 |   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); | 
 |  | 
 |   // C++ [stmt.while]p2: | 
 |   //   When the condition of a while statement is a declaration, the | 
 |   //   scope of the variable that is declared extends from its point | 
 |   //   of declaration (3.3.2) to the end of the while statement. | 
 |   //   [...] | 
 |   //   The object created in a condition is destroyed and created | 
 |   //   with each iteration of the loop. | 
 |   RunCleanupsScope ConditionScope(*this); | 
 |  | 
 |   if (S.getConditionVariable()) | 
 |     EmitDecl(*S.getConditionVariable()); | 
 |  | 
 |   // Evaluate the conditional in the while header.  C99 6.8.5.1: The | 
 |   // evaluation of the controlling expression takes place before each | 
 |   // execution of the loop body. | 
 |   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); | 
 |  | 
 |   // while(1) is common, avoid extra exit blocks.  Be sure | 
 |   // to correctly handle break/continue though. | 
 |   bool EmitBoolCondBranch = true; | 
 |   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) | 
 |     if (C->isOne()) | 
 |       EmitBoolCondBranch = false; | 
 |  | 
 |   // As long as the condition is true, go to the loop body. | 
 |   llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); | 
 |   if (EmitBoolCondBranch) { | 
 |     llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); | 
 |     if (ConditionScope.requiresCleanups()) | 
 |       ExitBlock = createBasicBlock("while.exit"); | 
 |     Builder.CreateCondBr( | 
 |         BoolCondVal, LoopBody, ExitBlock, | 
 |         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); | 
 |  | 
 |     if (ExitBlock != LoopExit.getBlock()) { | 
 |       EmitBlock(ExitBlock); | 
 |       EmitBranchThroughCleanup(LoopExit); | 
 |     } | 
 |   } | 
 |  | 
 |   // Emit the loop body.  We have to emit this in a cleanup scope | 
 |   // because it might be a singleton DeclStmt. | 
 |   { | 
 |     RunCleanupsScope BodyScope(*this); | 
 |     EmitBlock(LoopBody); | 
 |     incrementProfileCounter(&S); | 
 |     EmitStmt(S.getBody()); | 
 |   } | 
 |  | 
 |   BreakContinueStack.pop_back(); | 
 |  | 
 |   // Immediately force cleanup. | 
 |   ConditionScope.ForceCleanup(); | 
 |  | 
 |   EmitStopPoint(&S); | 
 |   // Branch to the loop header again. | 
 |   EmitBranch(LoopHeader.getBlock()); | 
 |  | 
 |   LoopStack.pop(); | 
 |  | 
 |   // Emit the exit block. | 
 |   EmitBlock(LoopExit.getBlock(), true); | 
 |  | 
 |   // The LoopHeader typically is just a branch if we skipped emitting | 
 |   // a branch, try to erase it. | 
 |   if (!EmitBoolCondBranch) | 
 |     SimplifyForwardingBlocks(LoopHeader.getBlock()); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitDoStmt(const DoStmt &S, | 
 |                                  ArrayRef<const Attr *> DoAttrs) { | 
 |   JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); | 
 |   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); | 
 |  | 
 |   uint64_t ParentCount = getCurrentProfileCount(); | 
 |  | 
 |   // Store the blocks to use for break and continue. | 
 |   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); | 
 |  | 
 |   // Emit the body of the loop. | 
 |   llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); | 
 |  | 
 |   EmitBlockWithFallThrough(LoopBody, &S); | 
 |   { | 
 |     RunCleanupsScope BodyScope(*this); | 
 |     EmitStmt(S.getBody()); | 
 |   } | 
 |  | 
 |   EmitBlock(LoopCond.getBlock()); | 
 |  | 
 |   const SourceRange &R = S.getSourceRange(); | 
 |   LoopStack.push(LoopBody, CGM.getContext(), DoAttrs, | 
 |                  SourceLocToDebugLoc(R.getBegin()), | 
 |                  SourceLocToDebugLoc(R.getEnd())); | 
 |  | 
 |   // C99 6.8.5.2: "The evaluation of the controlling expression takes place | 
 |   // after each execution of the loop body." | 
 |  | 
 |   // Evaluate the conditional in the while header. | 
 |   // C99 6.8.5p2/p4: The first substatement is executed if the expression | 
 |   // compares unequal to 0.  The condition must be a scalar type. | 
 |   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); | 
 |  | 
 |   BreakContinueStack.pop_back(); | 
 |  | 
 |   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure | 
 |   // to correctly handle break/continue though. | 
 |   bool EmitBoolCondBranch = true; | 
 |   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) | 
 |     if (C->isZero()) | 
 |       EmitBoolCondBranch = false; | 
 |  | 
 |   // As long as the condition is true, iterate the loop. | 
 |   if (EmitBoolCondBranch) { | 
 |     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; | 
 |     Builder.CreateCondBr( | 
 |         BoolCondVal, LoopBody, LoopExit.getBlock(), | 
 |         createProfileWeightsForLoop(S.getCond(), BackedgeCount)); | 
 |   } | 
 |  | 
 |   LoopStack.pop(); | 
 |  | 
 |   // Emit the exit block. | 
 |   EmitBlock(LoopExit.getBlock()); | 
 |  | 
 |   // The DoCond block typically is just a branch if we skipped | 
 |   // emitting a branch, try to erase it. | 
 |   if (!EmitBoolCondBranch) | 
 |     SimplifyForwardingBlocks(LoopCond.getBlock()); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitForStmt(const ForStmt &S, | 
 |                                   ArrayRef<const Attr *> ForAttrs) { | 
 |   JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); | 
 |  | 
 |   LexicalScope ForScope(*this, S.getSourceRange()); | 
 |  | 
 |   // Evaluate the first part before the loop. | 
 |   if (S.getInit()) | 
 |     EmitStmt(S.getInit()); | 
 |  | 
 |   // Start the loop with a block that tests the condition. | 
 |   // If there's an increment, the continue scope will be overwritten | 
 |   // later. | 
 |   JumpDest Continue = getJumpDestInCurrentScope("for.cond"); | 
 |   llvm::BasicBlock *CondBlock = Continue.getBlock(); | 
 |   EmitBlock(CondBlock); | 
 |  | 
 |   const SourceRange &R = S.getSourceRange(); | 
 |   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, | 
 |                  SourceLocToDebugLoc(R.getBegin()), | 
 |                  SourceLocToDebugLoc(R.getEnd())); | 
 |  | 
 |   // If the for loop doesn't have an increment we can just use the | 
 |   // condition as the continue block.  Otherwise we'll need to create | 
 |   // a block for it (in the current scope, i.e. in the scope of the | 
 |   // condition), and that we will become our continue block. | 
 |   if (S.getInc()) | 
 |     Continue = getJumpDestInCurrentScope("for.inc"); | 
 |  | 
 |   // Store the blocks to use for break and continue. | 
 |   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); | 
 |  | 
 |   // Create a cleanup scope for the condition variable cleanups. | 
 |   LexicalScope ConditionScope(*this, S.getSourceRange()); | 
 |  | 
 |   if (S.getCond()) { | 
 |     // If the for statement has a condition scope, emit the local variable | 
 |     // declaration. | 
 |     if (S.getConditionVariable()) { | 
 |       EmitDecl(*S.getConditionVariable()); | 
 |     } | 
 |  | 
 |     llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); | 
 |     // If there are any cleanups between here and the loop-exit scope, | 
 |     // create a block to stage a loop exit along. | 
 |     if (ForScope.requiresCleanups()) | 
 |       ExitBlock = createBasicBlock("for.cond.cleanup"); | 
 |  | 
 |     // As long as the condition is true, iterate the loop. | 
 |     llvm::BasicBlock *ForBody = createBasicBlock("for.body"); | 
 |  | 
 |     // C99 6.8.5p2/p4: The first substatement is executed if the expression | 
 |     // compares unequal to 0.  The condition must be a scalar type. | 
 |     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); | 
 |     Builder.CreateCondBr( | 
 |         BoolCondVal, ForBody, ExitBlock, | 
 |         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); | 
 |  | 
 |     if (ExitBlock != LoopExit.getBlock()) { | 
 |       EmitBlock(ExitBlock); | 
 |       EmitBranchThroughCleanup(LoopExit); | 
 |     } | 
 |  | 
 |     EmitBlock(ForBody); | 
 |   } else { | 
 |     // Treat it as a non-zero constant.  Don't even create a new block for the | 
 |     // body, just fall into it. | 
 |   } | 
 |   incrementProfileCounter(&S); | 
 |  | 
 |   { | 
 |     // Create a separate cleanup scope for the body, in case it is not | 
 |     // a compound statement. | 
 |     RunCleanupsScope BodyScope(*this); | 
 |     EmitStmt(S.getBody()); | 
 |   } | 
 |  | 
 |   // If there is an increment, emit it next. | 
 |   if (S.getInc()) { | 
 |     EmitBlock(Continue.getBlock()); | 
 |     EmitStmt(S.getInc()); | 
 |   } | 
 |  | 
 |   BreakContinueStack.pop_back(); | 
 |  | 
 |   ConditionScope.ForceCleanup(); | 
 |  | 
 |   EmitStopPoint(&S); | 
 |   EmitBranch(CondBlock); | 
 |  | 
 |   ForScope.ForceCleanup(); | 
 |  | 
 |   LoopStack.pop(); | 
 |  | 
 |   // Emit the fall-through block. | 
 |   EmitBlock(LoopExit.getBlock(), true); | 
 | } | 
 |  | 
 | void | 
 | CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, | 
 |                                      ArrayRef<const Attr *> ForAttrs) { | 
 |   JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); | 
 |  | 
 |   LexicalScope ForScope(*this, S.getSourceRange()); | 
 |  | 
 |   // Evaluate the first pieces before the loop. | 
 |   EmitStmt(S.getRangeStmt()); | 
 |   EmitStmt(S.getBeginStmt()); | 
 |   EmitStmt(S.getEndStmt()); | 
 |  | 
 |   // Start the loop with a block that tests the condition. | 
 |   // If there's an increment, the continue scope will be overwritten | 
 |   // later. | 
 |   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); | 
 |   EmitBlock(CondBlock); | 
 |  | 
 |   const SourceRange &R = S.getSourceRange(); | 
 |   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, | 
 |                  SourceLocToDebugLoc(R.getBegin()), | 
 |                  SourceLocToDebugLoc(R.getEnd())); | 
 |  | 
 |   // If there are any cleanups between here and the loop-exit scope, | 
 |   // create a block to stage a loop exit along. | 
 |   llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); | 
 |   if (ForScope.requiresCleanups()) | 
 |     ExitBlock = createBasicBlock("for.cond.cleanup"); | 
 |  | 
 |   // The loop body, consisting of the specified body and the loop variable. | 
 |   llvm::BasicBlock *ForBody = createBasicBlock("for.body"); | 
 |  | 
 |   // The body is executed if the expression, contextually converted | 
 |   // to bool, is true. | 
 |   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); | 
 |   Builder.CreateCondBr( | 
 |       BoolCondVal, ForBody, ExitBlock, | 
 |       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); | 
 |  | 
 |   if (ExitBlock != LoopExit.getBlock()) { | 
 |     EmitBlock(ExitBlock); | 
 |     EmitBranchThroughCleanup(LoopExit); | 
 |   } | 
 |  | 
 |   EmitBlock(ForBody); | 
 |   incrementProfileCounter(&S); | 
 |  | 
 |   // Create a block for the increment. In case of a 'continue', we jump there. | 
 |   JumpDest Continue = getJumpDestInCurrentScope("for.inc"); | 
 |  | 
 |   // Store the blocks to use for break and continue. | 
 |   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); | 
 |  | 
 |   { | 
 |     // Create a separate cleanup scope for the loop variable and body. | 
 |     LexicalScope BodyScope(*this, S.getSourceRange()); | 
 |     EmitStmt(S.getLoopVarStmt()); | 
 |     EmitStmt(S.getBody()); | 
 |   } | 
 |  | 
 |   EmitStopPoint(&S); | 
 |   // If there is an increment, emit it next. | 
 |   EmitBlock(Continue.getBlock()); | 
 |   EmitStmt(S.getInc()); | 
 |  | 
 |   BreakContinueStack.pop_back(); | 
 |  | 
 |   EmitBranch(CondBlock); | 
 |  | 
 |   ForScope.ForceCleanup(); | 
 |  | 
 |   LoopStack.pop(); | 
 |  | 
 |   // Emit the fall-through block. | 
 |   EmitBlock(LoopExit.getBlock(), true); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { | 
 |   if (RV.isScalar()) { | 
 |     Builder.CreateStore(RV.getScalarVal(), ReturnValue); | 
 |   } else if (RV.isAggregate()) { | 
 |     LValue Dest = MakeAddrLValue(ReturnValue, Ty); | 
 |     LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty); | 
 |     EmitAggregateCopy(Dest, Src, Ty, overlapForReturnValue()); | 
 |   } else { | 
 |     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), | 
 |                        /*init*/ true); | 
 |   } | 
 |   EmitBranchThroughCleanup(ReturnBlock); | 
 | } | 
 |  | 
 | /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand | 
 | /// if the function returns void, or may be missing one if the function returns | 
 | /// non-void.  Fun stuff :). | 
 | void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { | 
 |   if (requiresReturnValueCheck()) { | 
 |     llvm::Constant *SLoc = EmitCheckSourceLocation(S.getLocStart()); | 
 |     auto *SLocPtr = | 
 |         new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, | 
 |                                  llvm::GlobalVariable::PrivateLinkage, SLoc); | 
 |     SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); | 
 |     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); | 
 |     assert(ReturnLocation.isValid() && "No valid return location"); | 
 |     Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), | 
 |                         ReturnLocation); | 
 |   } | 
 |  | 
 |   // Returning from an outlined SEH helper is UB, and we already warn on it. | 
 |   if (IsOutlinedSEHHelper) { | 
 |     Builder.CreateUnreachable(); | 
 |     Builder.ClearInsertionPoint(); | 
 |   } | 
 |  | 
 |   // Emit the result value, even if unused, to evaluate the side effects. | 
 |   const Expr *RV = S.getRetValue(); | 
 |  | 
 |   // Treat block literals in a return expression as if they appeared | 
 |   // in their own scope.  This permits a small, easily-implemented | 
 |   // exception to our over-conservative rules about not jumping to | 
 |   // statements following block literals with non-trivial cleanups. | 
 |   RunCleanupsScope cleanupScope(*this); | 
 |   if (const ExprWithCleanups *cleanups = | 
 |         dyn_cast_or_null<ExprWithCleanups>(RV)) { | 
 |     enterFullExpression(cleanups); | 
 |     RV = cleanups->getSubExpr(); | 
 |   } | 
 |  | 
 |   // FIXME: Clean this up by using an LValue for ReturnTemp, | 
 |   // EmitStoreThroughLValue, and EmitAnyExpr. | 
 |   if (getLangOpts().ElideConstructors && | 
 |       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { | 
 |     // Apply the named return value optimization for this return statement, | 
 |     // which means doing nothing: the appropriate result has already been | 
 |     // constructed into the NRVO variable. | 
 |  | 
 |     // If there is an NRVO flag for this variable, set it to 1 into indicate | 
 |     // that the cleanup code should not destroy the variable. | 
 |     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) | 
 |       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); | 
 |   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { | 
 |     // Make sure not to return anything, but evaluate the expression | 
 |     // for side effects. | 
 |     if (RV) | 
 |       EmitAnyExpr(RV); | 
 |   } else if (!RV) { | 
 |     // Do nothing (return value is left uninitialized) | 
 |   } else if (FnRetTy->isReferenceType()) { | 
 |     // If this function returns a reference, take the address of the expression | 
 |     // rather than the value. | 
 |     RValue Result = EmitReferenceBindingToExpr(RV); | 
 |     Builder.CreateStore(Result.getScalarVal(), ReturnValue); | 
 |   } else { | 
 |     switch (getEvaluationKind(RV->getType())) { | 
 |     case TEK_Scalar: | 
 |       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); | 
 |       break; | 
 |     case TEK_Complex: | 
 |       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), | 
 |                                 /*isInit*/ true); | 
 |       break; | 
 |     case TEK_Aggregate: | 
 |       EmitAggExpr(RV, AggValueSlot::forAddr( | 
 |                           ReturnValue, Qualifiers(), | 
 |                           AggValueSlot::IsDestructed, | 
 |                           AggValueSlot::DoesNotNeedGCBarriers, | 
 |                           AggValueSlot::IsNotAliased, | 
 |                           overlapForReturnValue())); | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   ++NumReturnExprs; | 
 |   if (!RV || RV->isEvaluatable(getContext())) | 
 |     ++NumSimpleReturnExprs; | 
 |  | 
 |   cleanupScope.ForceCleanup(); | 
 |   EmitBranchThroughCleanup(ReturnBlock); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { | 
 |   // As long as debug info is modeled with instructions, we have to ensure we | 
 |   // have a place to insert here and write the stop point here. | 
 |   if (HaveInsertPoint()) | 
 |     EmitStopPoint(&S); | 
 |  | 
 |   for (const auto *I : S.decls()) | 
 |     EmitDecl(*I); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { | 
 |   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); | 
 |  | 
 |   // If this code is reachable then emit a stop point (if generating | 
 |   // debug info). We have to do this ourselves because we are on the | 
 |   // "simple" statement path. | 
 |   if (HaveInsertPoint()) | 
 |     EmitStopPoint(&S); | 
 |  | 
 |   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { | 
 |   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); | 
 |  | 
 |   // If this code is reachable then emit a stop point (if generating | 
 |   // debug info). We have to do this ourselves because we are on the | 
 |   // "simple" statement path. | 
 |   if (HaveInsertPoint()) | 
 |     EmitStopPoint(&S); | 
 |  | 
 |   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); | 
 | } | 
 |  | 
 | /// EmitCaseStmtRange - If case statement range is not too big then | 
 | /// add multiple cases to switch instruction, one for each value within | 
 | /// the range. If range is too big then emit "if" condition check. | 
 | void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { | 
 |   assert(S.getRHS() && "Expected RHS value in CaseStmt"); | 
 |  | 
 |   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); | 
 |   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); | 
 |  | 
 |   // Emit the code for this case. We do this first to make sure it is | 
 |   // properly chained from our predecessor before generating the | 
 |   // switch machinery to enter this block. | 
 |   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); | 
 |   EmitBlockWithFallThrough(CaseDest, &S); | 
 |   EmitStmt(S.getSubStmt()); | 
 |  | 
 |   // If range is empty, do nothing. | 
 |   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) | 
 |     return; | 
 |  | 
 |   llvm::APInt Range = RHS - LHS; | 
 |   // FIXME: parameters such as this should not be hardcoded. | 
 |   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { | 
 |     // Range is small enough to add multiple switch instruction cases. | 
 |     uint64_t Total = getProfileCount(&S); | 
 |     unsigned NCases = Range.getZExtValue() + 1; | 
 |     // We only have one region counter for the entire set of cases here, so we | 
 |     // need to divide the weights evenly between the generated cases, ensuring | 
 |     // that the total weight is preserved. E.g., a weight of 5 over three cases | 
 |     // will be distributed as weights of 2, 2, and 1. | 
 |     uint64_t Weight = Total / NCases, Rem = Total % NCases; | 
 |     for (unsigned I = 0; I != NCases; ++I) { | 
 |       if (SwitchWeights) | 
 |         SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); | 
 |       if (Rem) | 
 |         Rem--; | 
 |       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); | 
 |       ++LHS; | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   // The range is too big. Emit "if" condition into a new block, | 
 |   // making sure to save and restore the current insertion point. | 
 |   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); | 
 |  | 
 |   // Push this test onto the chain of range checks (which terminates | 
 |   // in the default basic block). The switch's default will be changed | 
 |   // to the top of this chain after switch emission is complete. | 
 |   llvm::BasicBlock *FalseDest = CaseRangeBlock; | 
 |   CaseRangeBlock = createBasicBlock("sw.caserange"); | 
 |  | 
 |   CurFn->getBasicBlockList().push_back(CaseRangeBlock); | 
 |   Builder.SetInsertPoint(CaseRangeBlock); | 
 |  | 
 |   // Emit range check. | 
 |   llvm::Value *Diff = | 
 |     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); | 
 |   llvm::Value *Cond = | 
 |     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); | 
 |  | 
 |   llvm::MDNode *Weights = nullptr; | 
 |   if (SwitchWeights) { | 
 |     uint64_t ThisCount = getProfileCount(&S); | 
 |     uint64_t DefaultCount = (*SwitchWeights)[0]; | 
 |     Weights = createProfileWeights(ThisCount, DefaultCount); | 
 |  | 
 |     // Since we're chaining the switch default through each large case range, we | 
 |     // need to update the weight for the default, ie, the first case, to include | 
 |     // this case. | 
 |     (*SwitchWeights)[0] += ThisCount; | 
 |   } | 
 |   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); | 
 |  | 
 |   // Restore the appropriate insertion point. | 
 |   if (RestoreBB) | 
 |     Builder.SetInsertPoint(RestoreBB); | 
 |   else | 
 |     Builder.ClearInsertionPoint(); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { | 
 |   // If there is no enclosing switch instance that we're aware of, then this | 
 |   // case statement and its block can be elided.  This situation only happens | 
 |   // when we've constant-folded the switch, are emitting the constant case, | 
 |   // and part of the constant case includes another case statement.  For | 
 |   // instance: switch (4) { case 4: do { case 5: } while (1); } | 
 |   if (!SwitchInsn) { | 
 |     EmitStmt(S.getSubStmt()); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Handle case ranges. | 
 |   if (S.getRHS()) { | 
 |     EmitCaseStmtRange(S); | 
 |     return; | 
 |   } | 
 |  | 
 |   llvm::ConstantInt *CaseVal = | 
 |     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); | 
 |  | 
 |   // If the body of the case is just a 'break', try to not emit an empty block. | 
 |   // If we're profiling or we're not optimizing, leave the block in for better | 
 |   // debug and coverage analysis. | 
 |   if (!CGM.getCodeGenOpts().hasProfileClangInstr() && | 
 |       CGM.getCodeGenOpts().OptimizationLevel > 0 && | 
 |       isa<BreakStmt>(S.getSubStmt())) { | 
 |     JumpDest Block = BreakContinueStack.back().BreakBlock; | 
 |  | 
 |     // Only do this optimization if there are no cleanups that need emitting. | 
 |     if (isObviouslyBranchWithoutCleanups(Block)) { | 
 |       if (SwitchWeights) | 
 |         SwitchWeights->push_back(getProfileCount(&S)); | 
 |       SwitchInsn->addCase(CaseVal, Block.getBlock()); | 
 |  | 
 |       // If there was a fallthrough into this case, make sure to redirect it to | 
 |       // the end of the switch as well. | 
 |       if (Builder.GetInsertBlock()) { | 
 |         Builder.CreateBr(Block.getBlock()); | 
 |         Builder.ClearInsertionPoint(); | 
 |       } | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); | 
 |   EmitBlockWithFallThrough(CaseDest, &S); | 
 |   if (SwitchWeights) | 
 |     SwitchWeights->push_back(getProfileCount(&S)); | 
 |   SwitchInsn->addCase(CaseVal, CaseDest); | 
 |  | 
 |   // Recursively emitting the statement is acceptable, but is not wonderful for | 
 |   // code where we have many case statements nested together, i.e.: | 
 |   //  case 1: | 
 |   //    case 2: | 
 |   //      case 3: etc. | 
 |   // Handling this recursively will create a new block for each case statement | 
 |   // that falls through to the next case which is IR intensive.  It also causes | 
 |   // deep recursion which can run into stack depth limitations.  Handle | 
 |   // sequential non-range case statements specially. | 
 |   const CaseStmt *CurCase = &S; | 
 |   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); | 
 |  | 
 |   // Otherwise, iteratively add consecutive cases to this switch stmt. | 
 |   while (NextCase && NextCase->getRHS() == nullptr) { | 
 |     CurCase = NextCase; | 
 |     llvm::ConstantInt *CaseVal = | 
 |       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); | 
 |  | 
 |     if (SwitchWeights) | 
 |       SwitchWeights->push_back(getProfileCount(NextCase)); | 
 |     if (CGM.getCodeGenOpts().hasProfileClangInstr()) { | 
 |       CaseDest = createBasicBlock("sw.bb"); | 
 |       EmitBlockWithFallThrough(CaseDest, &S); | 
 |     } | 
 |  | 
 |     SwitchInsn->addCase(CaseVal, CaseDest); | 
 |     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); | 
 |   } | 
 |  | 
 |   // Normal default recursion for non-cases. | 
 |   EmitStmt(CurCase->getSubStmt()); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { | 
 |   // If there is no enclosing switch instance that we're aware of, then this | 
 |   // default statement can be elided. This situation only happens when we've | 
 |   // constant-folded the switch. | 
 |   if (!SwitchInsn) { | 
 |     EmitStmt(S.getSubStmt()); | 
 |     return; | 
 |   } | 
 |  | 
 |   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); | 
 |   assert(DefaultBlock->empty() && | 
 |          "EmitDefaultStmt: Default block already defined?"); | 
 |  | 
 |   EmitBlockWithFallThrough(DefaultBlock, &S); | 
 |  | 
 |   EmitStmt(S.getSubStmt()); | 
 | } | 
 |  | 
 | /// CollectStatementsForCase - Given the body of a 'switch' statement and a | 
 | /// constant value that is being switched on, see if we can dead code eliminate | 
 | /// the body of the switch to a simple series of statements to emit.  Basically, | 
 | /// on a switch (5) we want to find these statements: | 
 | ///    case 5: | 
 | ///      printf(...);    <-- | 
 | ///      ++i;            <-- | 
 | ///      break; | 
 | /// | 
 | /// and add them to the ResultStmts vector.  If it is unsafe to do this | 
 | /// transformation (for example, one of the elided statements contains a label | 
 | /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S' | 
 | /// should include statements after it (e.g. the printf() line is a substmt of | 
 | /// the case) then return CSFC_FallThrough.  If we handled it and found a break | 
 | /// statement, then return CSFC_Success. | 
 | /// | 
 | /// If Case is non-null, then we are looking for the specified case, checking | 
 | /// that nothing we jump over contains labels.  If Case is null, then we found | 
 | /// the case and are looking for the break. | 
 | /// | 
 | /// If the recursive walk actually finds our Case, then we set FoundCase to | 
 | /// true. | 
 | /// | 
 | enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; | 
 | static CSFC_Result CollectStatementsForCase(const Stmt *S, | 
 |                                             const SwitchCase *Case, | 
 |                                             bool &FoundCase, | 
 |                               SmallVectorImpl<const Stmt*> &ResultStmts) { | 
 |   // If this is a null statement, just succeed. | 
 |   if (!S) | 
 |     return Case ? CSFC_Success : CSFC_FallThrough; | 
 |  | 
 |   // If this is the switchcase (case 4: or default) that we're looking for, then | 
 |   // we're in business.  Just add the substatement. | 
 |   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { | 
 |     if (S == Case) { | 
 |       FoundCase = true; | 
 |       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, | 
 |                                       ResultStmts); | 
 |     } | 
 |  | 
 |     // Otherwise, this is some other case or default statement, just ignore it. | 
 |     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, | 
 |                                     ResultStmts); | 
 |   } | 
 |  | 
 |   // If we are in the live part of the code and we found our break statement, | 
 |   // return a success! | 
 |   if (!Case && isa<BreakStmt>(S)) | 
 |     return CSFC_Success; | 
 |  | 
 |   // If this is a switch statement, then it might contain the SwitchCase, the | 
 |   // break, or neither. | 
 |   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { | 
 |     // Handle this as two cases: we might be looking for the SwitchCase (if so | 
 |     // the skipped statements must be skippable) or we might already have it. | 
 |     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); | 
 |     bool StartedInLiveCode = FoundCase; | 
 |     unsigned StartSize = ResultStmts.size(); | 
 |  | 
 |     // If we've not found the case yet, scan through looking for it. | 
 |     if (Case) { | 
 |       // Keep track of whether we see a skipped declaration.  The code could be | 
 |       // using the declaration even if it is skipped, so we can't optimize out | 
 |       // the decl if the kept statements might refer to it. | 
 |       bool HadSkippedDecl = false; | 
 |  | 
 |       // If we're looking for the case, just see if we can skip each of the | 
 |       // substatements. | 
 |       for (; Case && I != E; ++I) { | 
 |         HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); | 
 |  | 
 |         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { | 
 |         case CSFC_Failure: return CSFC_Failure; | 
 |         case CSFC_Success: | 
 |           // A successful result means that either 1) that the statement doesn't | 
 |           // have the case and is skippable, or 2) does contain the case value | 
 |           // and also contains the break to exit the switch.  In the later case, | 
 |           // we just verify the rest of the statements are elidable. | 
 |           if (FoundCase) { | 
 |             // If we found the case and skipped declarations, we can't do the | 
 |             // optimization. | 
 |             if (HadSkippedDecl) | 
 |               return CSFC_Failure; | 
 |  | 
 |             for (++I; I != E; ++I) | 
 |               if (CodeGenFunction::ContainsLabel(*I, true)) | 
 |                 return CSFC_Failure; | 
 |             return CSFC_Success; | 
 |           } | 
 |           break; | 
 |         case CSFC_FallThrough: | 
 |           // If we have a fallthrough condition, then we must have found the | 
 |           // case started to include statements.  Consider the rest of the | 
 |           // statements in the compound statement as candidates for inclusion. | 
 |           assert(FoundCase && "Didn't find case but returned fallthrough?"); | 
 |           // We recursively found Case, so we're not looking for it anymore. | 
 |           Case = nullptr; | 
 |  | 
 |           // If we found the case and skipped declarations, we can't do the | 
 |           // optimization. | 
 |           if (HadSkippedDecl) | 
 |             return CSFC_Failure; | 
 |           break; | 
 |         } | 
 |       } | 
 |  | 
 |       if (!FoundCase) | 
 |         return CSFC_Success; | 
 |  | 
 |       assert(!HadSkippedDecl && "fallthrough after skipping decl"); | 
 |     } | 
 |  | 
 |     // If we have statements in our range, then we know that the statements are | 
 |     // live and need to be added to the set of statements we're tracking. | 
 |     bool AnyDecls = false; | 
 |     for (; I != E; ++I) { | 
 |       AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); | 
 |  | 
 |       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { | 
 |       case CSFC_Failure: return CSFC_Failure; | 
 |       case CSFC_FallThrough: | 
 |         // A fallthrough result means that the statement was simple and just | 
 |         // included in ResultStmt, keep adding them afterwards. | 
 |         break; | 
 |       case CSFC_Success: | 
 |         // A successful result means that we found the break statement and | 
 |         // stopped statement inclusion.  We just ensure that any leftover stmts | 
 |         // are skippable and return success ourselves. | 
 |         for (++I; I != E; ++I) | 
 |           if (CodeGenFunction::ContainsLabel(*I, true)) | 
 |             return CSFC_Failure; | 
 |         return CSFC_Success; | 
 |       } | 
 |     } | 
 |  | 
 |     // If we're about to fall out of a scope without hitting a 'break;', we | 
 |     // can't perform the optimization if there were any decls in that scope | 
 |     // (we'd lose their end-of-lifetime). | 
 |     if (AnyDecls) { | 
 |       // If the entire compound statement was live, there's one more thing we | 
 |       // can try before giving up: emit the whole thing as a single statement. | 
 |       // We can do that unless the statement contains a 'break;'. | 
 |       // FIXME: Such a break must be at the end of a construct within this one. | 
 |       // We could emit this by just ignoring the BreakStmts entirely. | 
 |       if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { | 
 |         ResultStmts.resize(StartSize); | 
 |         ResultStmts.push_back(S); | 
 |       } else { | 
 |         return CSFC_Failure; | 
 |       } | 
 |     } | 
 |  | 
 |     return CSFC_FallThrough; | 
 |   } | 
 |  | 
 |   // Okay, this is some other statement that we don't handle explicitly, like a | 
 |   // for statement or increment etc.  If we are skipping over this statement, | 
 |   // just verify it doesn't have labels, which would make it invalid to elide. | 
 |   if (Case) { | 
 |     if (CodeGenFunction::ContainsLabel(S, true)) | 
 |       return CSFC_Failure; | 
 |     return CSFC_Success; | 
 |   } | 
 |  | 
 |   // Otherwise, we want to include this statement.  Everything is cool with that | 
 |   // so long as it doesn't contain a break out of the switch we're in. | 
 |   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; | 
 |  | 
 |   // Otherwise, everything is great.  Include the statement and tell the caller | 
 |   // that we fall through and include the next statement as well. | 
 |   ResultStmts.push_back(S); | 
 |   return CSFC_FallThrough; | 
 | } | 
 |  | 
 | /// FindCaseStatementsForValue - Find the case statement being jumped to and | 
 | /// then invoke CollectStatementsForCase to find the list of statements to emit | 
 | /// for a switch on constant.  See the comment above CollectStatementsForCase | 
 | /// for more details. | 
 | static bool FindCaseStatementsForValue(const SwitchStmt &S, | 
 |                                        const llvm::APSInt &ConstantCondValue, | 
 |                                 SmallVectorImpl<const Stmt*> &ResultStmts, | 
 |                                        ASTContext &C, | 
 |                                        const SwitchCase *&ResultCase) { | 
 |   // First step, find the switch case that is being branched to.  We can do this | 
 |   // efficiently by scanning the SwitchCase list. | 
 |   const SwitchCase *Case = S.getSwitchCaseList(); | 
 |   const DefaultStmt *DefaultCase = nullptr; | 
 |  | 
 |   for (; Case; Case = Case->getNextSwitchCase()) { | 
 |     // It's either a default or case.  Just remember the default statement in | 
 |     // case we're not jumping to any numbered cases. | 
 |     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { | 
 |       DefaultCase = DS; | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Check to see if this case is the one we're looking for. | 
 |     const CaseStmt *CS = cast<CaseStmt>(Case); | 
 |     // Don't handle case ranges yet. | 
 |     if (CS->getRHS()) return false; | 
 |  | 
 |     // If we found our case, remember it as 'case'. | 
 |     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) | 
 |       break; | 
 |   } | 
 |  | 
 |   // If we didn't find a matching case, we use a default if it exists, or we | 
 |   // elide the whole switch body! | 
 |   if (!Case) { | 
 |     // It is safe to elide the body of the switch if it doesn't contain labels | 
 |     // etc.  If it is safe, return successfully with an empty ResultStmts list. | 
 |     if (!DefaultCase) | 
 |       return !CodeGenFunction::ContainsLabel(&S); | 
 |     Case = DefaultCase; | 
 |   } | 
 |  | 
 |   // Ok, we know which case is being jumped to, try to collect all the | 
 |   // statements that follow it.  This can fail for a variety of reasons.  Also, | 
 |   // check to see that the recursive walk actually found our case statement. | 
 |   // Insane cases like this can fail to find it in the recursive walk since we | 
 |   // don't handle every stmt kind: | 
 |   // switch (4) { | 
 |   //   while (1) { | 
 |   //     case 4: ... | 
 |   bool FoundCase = false; | 
 |   ResultCase = Case; | 
 |   return CollectStatementsForCase(S.getBody(), Case, FoundCase, | 
 |                                   ResultStmts) != CSFC_Failure && | 
 |          FoundCase; | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { | 
 |   // Handle nested switch statements. | 
 |   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; | 
 |   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; | 
 |   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; | 
 |  | 
 |   // See if we can constant fold the condition of the switch and therefore only | 
 |   // emit the live case statement (if any) of the switch. | 
 |   llvm::APSInt ConstantCondValue; | 
 |   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { | 
 |     SmallVector<const Stmt*, 4> CaseStmts; | 
 |     const SwitchCase *Case = nullptr; | 
 |     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, | 
 |                                    getContext(), Case)) { | 
 |       if (Case) | 
 |         incrementProfileCounter(Case); | 
 |       RunCleanupsScope ExecutedScope(*this); | 
 |  | 
 |       if (S.getInit()) | 
 |         EmitStmt(S.getInit()); | 
 |  | 
 |       // Emit the condition variable if needed inside the entire cleanup scope | 
 |       // used by this special case for constant folded switches. | 
 |       if (S.getConditionVariable()) | 
 |         EmitDecl(*S.getConditionVariable()); | 
 |  | 
 |       // At this point, we are no longer "within" a switch instance, so | 
 |       // we can temporarily enforce this to ensure that any embedded case | 
 |       // statements are not emitted. | 
 |       SwitchInsn = nullptr; | 
 |  | 
 |       // Okay, we can dead code eliminate everything except this case.  Emit the | 
 |       // specified series of statements and we're good. | 
 |       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) | 
 |         EmitStmt(CaseStmts[i]); | 
 |       incrementProfileCounter(&S); | 
 |  | 
 |       // Now we want to restore the saved switch instance so that nested | 
 |       // switches continue to function properly | 
 |       SwitchInsn = SavedSwitchInsn; | 
 |  | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); | 
 |  | 
 |   RunCleanupsScope ConditionScope(*this); | 
 |  | 
 |   if (S.getInit()) | 
 |     EmitStmt(S.getInit()); | 
 |  | 
 |   if (S.getConditionVariable()) | 
 |     EmitDecl(*S.getConditionVariable()); | 
 |   llvm::Value *CondV = EmitScalarExpr(S.getCond()); | 
 |  | 
 |   // Create basic block to hold stuff that comes after switch | 
 |   // statement. We also need to create a default block now so that | 
 |   // explicit case ranges tests can have a place to jump to on | 
 |   // failure. | 
 |   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); | 
 |   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); | 
 |   if (PGO.haveRegionCounts()) { | 
 |     // Walk the SwitchCase list to find how many there are. | 
 |     uint64_t DefaultCount = 0; | 
 |     unsigned NumCases = 0; | 
 |     for (const SwitchCase *Case = S.getSwitchCaseList(); | 
 |          Case; | 
 |          Case = Case->getNextSwitchCase()) { | 
 |       if (isa<DefaultStmt>(Case)) | 
 |         DefaultCount = getProfileCount(Case); | 
 |       NumCases += 1; | 
 |     } | 
 |     SwitchWeights = new SmallVector<uint64_t, 16>(); | 
 |     SwitchWeights->reserve(NumCases); | 
 |     // The default needs to be first. We store the edge count, so we already | 
 |     // know the right weight. | 
 |     SwitchWeights->push_back(DefaultCount); | 
 |   } | 
 |   CaseRangeBlock = DefaultBlock; | 
 |  | 
 |   // Clear the insertion point to indicate we are in unreachable code. | 
 |   Builder.ClearInsertionPoint(); | 
 |  | 
 |   // All break statements jump to NextBlock. If BreakContinueStack is non-empty | 
 |   // then reuse last ContinueBlock. | 
 |   JumpDest OuterContinue; | 
 |   if (!BreakContinueStack.empty()) | 
 |     OuterContinue = BreakContinueStack.back().ContinueBlock; | 
 |  | 
 |   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); | 
 |  | 
 |   // Emit switch body. | 
 |   EmitStmt(S.getBody()); | 
 |  | 
 |   BreakContinueStack.pop_back(); | 
 |  | 
 |   // Update the default block in case explicit case range tests have | 
 |   // been chained on top. | 
 |   SwitchInsn->setDefaultDest(CaseRangeBlock); | 
 |  | 
 |   // If a default was never emitted: | 
 |   if (!DefaultBlock->getParent()) { | 
 |     // If we have cleanups, emit the default block so that there's a | 
 |     // place to jump through the cleanups from. | 
 |     if (ConditionScope.requiresCleanups()) { | 
 |       EmitBlock(DefaultBlock); | 
 |  | 
 |     // Otherwise, just forward the default block to the switch end. | 
 |     } else { | 
 |       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); | 
 |       delete DefaultBlock; | 
 |     } | 
 |   } | 
 |  | 
 |   ConditionScope.ForceCleanup(); | 
 |  | 
 |   // Emit continuation. | 
 |   EmitBlock(SwitchExit.getBlock(), true); | 
 |   incrementProfileCounter(&S); | 
 |  | 
 |   // If the switch has a condition wrapped by __builtin_unpredictable, | 
 |   // create metadata that specifies that the switch is unpredictable. | 
 |   // Don't bother if not optimizing because that metadata would not be used. | 
 |   auto *Call = dyn_cast<CallExpr>(S.getCond()); | 
 |   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { | 
 |     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); | 
 |     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { | 
 |       llvm::MDBuilder MDHelper(getLLVMContext()); | 
 |       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, | 
 |                               MDHelper.createUnpredictable()); | 
 |     } | 
 |   } | 
 |  | 
 |   if (SwitchWeights) { | 
 |     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && | 
 |            "switch weights do not match switch cases"); | 
 |     // If there's only one jump destination there's no sense weighting it. | 
 |     if (SwitchWeights->size() > 1) | 
 |       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, | 
 |                               createProfileWeights(*SwitchWeights)); | 
 |     delete SwitchWeights; | 
 |   } | 
 |   SwitchInsn = SavedSwitchInsn; | 
 |   SwitchWeights = SavedSwitchWeights; | 
 |   CaseRangeBlock = SavedCRBlock; | 
 | } | 
 |  | 
 | static std::string | 
 | SimplifyConstraint(const char *Constraint, const TargetInfo &Target, | 
 |                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { | 
 |   std::string Result; | 
 |  | 
 |   while (*Constraint) { | 
 |     switch (*Constraint) { | 
 |     default: | 
 |       Result += Target.convertConstraint(Constraint); | 
 |       break; | 
 |     // Ignore these | 
 |     case '*': | 
 |     case '?': | 
 |     case '!': | 
 |     case '=': // Will see this and the following in mult-alt constraints. | 
 |     case '+': | 
 |       break; | 
 |     case '#': // Ignore the rest of the constraint alternative. | 
 |       while (Constraint[1] && Constraint[1] != ',') | 
 |         Constraint++; | 
 |       break; | 
 |     case '&': | 
 |     case '%': | 
 |       Result += *Constraint; | 
 |       while (Constraint[1] && Constraint[1] == *Constraint) | 
 |         Constraint++; | 
 |       break; | 
 |     case ',': | 
 |       Result += "|"; | 
 |       break; | 
 |     case 'g': | 
 |       Result += "imr"; | 
 |       break; | 
 |     case '[': { | 
 |       assert(OutCons && | 
 |              "Must pass output names to constraints with a symbolic name"); | 
 |       unsigned Index; | 
 |       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); | 
 |       assert(result && "Could not resolve symbolic name"); (void)result; | 
 |       Result += llvm::utostr(Index); | 
 |       break; | 
 |     } | 
 |     } | 
 |  | 
 |     Constraint++; | 
 |   } | 
 |  | 
 |   return Result; | 
 | } | 
 |  | 
 | /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared | 
 | /// as using a particular register add that as a constraint that will be used | 
 | /// in this asm stmt. | 
 | static std::string | 
 | AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, | 
 |                        const TargetInfo &Target, CodeGenModule &CGM, | 
 |                        const AsmStmt &Stmt, const bool EarlyClobber) { | 
 |   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); | 
 |   if (!AsmDeclRef) | 
 |     return Constraint; | 
 |   const ValueDecl &Value = *AsmDeclRef->getDecl(); | 
 |   const VarDecl *Variable = dyn_cast<VarDecl>(&Value); | 
 |   if (!Variable) | 
 |     return Constraint; | 
 |   if (Variable->getStorageClass() != SC_Register) | 
 |     return Constraint; | 
 |   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); | 
 |   if (!Attr) | 
 |     return Constraint; | 
 |   StringRef Register = Attr->getLabel(); | 
 |   assert(Target.isValidGCCRegisterName(Register)); | 
 |   // We're using validateOutputConstraint here because we only care if | 
 |   // this is a register constraint. | 
 |   TargetInfo::ConstraintInfo Info(Constraint, ""); | 
 |   if (Target.validateOutputConstraint(Info) && | 
 |       !Info.allowsRegister()) { | 
 |     CGM.ErrorUnsupported(&Stmt, "__asm__"); | 
 |     return Constraint; | 
 |   } | 
 |   // Canonicalize the register here before returning it. | 
 |   Register = Target.getNormalizedGCCRegisterName(Register); | 
 |   return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; | 
 | } | 
 |  | 
 | llvm::Value* | 
 | CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, | 
 |                                     LValue InputValue, QualType InputType, | 
 |                                     std::string &ConstraintStr, | 
 |                                     SourceLocation Loc) { | 
 |   llvm::Value *Arg; | 
 |   if (Info.allowsRegister() || !Info.allowsMemory()) { | 
 |     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { | 
 |       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); | 
 |     } else { | 
 |       llvm::Type *Ty = ConvertType(InputType); | 
 |       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); | 
 |       if (Size <= 64 && llvm::isPowerOf2_64(Size)) { | 
 |         Ty = llvm::IntegerType::get(getLLVMContext(), Size); | 
 |         Ty = llvm::PointerType::getUnqual(Ty); | 
 |  | 
 |         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), | 
 |                                                        Ty)); | 
 |       } else { | 
 |         Arg = InputValue.getPointer(); | 
 |         ConstraintStr += '*'; | 
 |       } | 
 |     } | 
 |   } else { | 
 |     Arg = InputValue.getPointer(); | 
 |     ConstraintStr += '*'; | 
 |   } | 
 |  | 
 |   return Arg; | 
 | } | 
 |  | 
 | llvm::Value* CodeGenFunction::EmitAsmInput( | 
 |                                          const TargetInfo::ConstraintInfo &Info, | 
 |                                            const Expr *InputExpr, | 
 |                                            std::string &ConstraintStr) { | 
 |   // If this can't be a register or memory, i.e., has to be a constant | 
 |   // (immediate or symbolic), try to emit it as such. | 
 |   if (!Info.allowsRegister() && !Info.allowsMemory()) { | 
 |     llvm::APSInt Result; | 
 |     if (InputExpr->EvaluateAsInt(Result, getContext())) | 
 |       return llvm::ConstantInt::get(getLLVMContext(), Result); | 
 |     assert(!Info.requiresImmediateConstant() && | 
 |            "Required-immediate inlineasm arg isn't constant?"); | 
 |   } | 
 |  | 
 |   if (Info.allowsRegister() || !Info.allowsMemory()) | 
 |     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) | 
 |       return EmitScalarExpr(InputExpr); | 
 |   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) | 
 |     return EmitScalarExpr(InputExpr); | 
 |   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); | 
 |   LValue Dest = EmitLValue(InputExpr); | 
 |   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, | 
 |                             InputExpr->getExprLoc()); | 
 | } | 
 |  | 
 | /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline | 
 | /// asm call instruction.  The !srcloc MDNode contains a list of constant | 
 | /// integers which are the source locations of the start of each line in the | 
 | /// asm. | 
 | static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, | 
 |                                       CodeGenFunction &CGF) { | 
 |   SmallVector<llvm::Metadata *, 8> Locs; | 
 |   // Add the location of the first line to the MDNode. | 
 |   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( | 
 |       CGF.Int32Ty, Str->getLocStart().getRawEncoding()))); | 
 |   StringRef StrVal = Str->getString(); | 
 |   if (!StrVal.empty()) { | 
 |     const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); | 
 |     const LangOptions &LangOpts = CGF.CGM.getLangOpts(); | 
 |     unsigned StartToken = 0; | 
 |     unsigned ByteOffset = 0; | 
 |  | 
 |     // Add the location of the start of each subsequent line of the asm to the | 
 |     // MDNode. | 
 |     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { | 
 |       if (StrVal[i] != '\n') continue; | 
 |       SourceLocation LineLoc = Str->getLocationOfByte( | 
 |           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); | 
 |       Locs.push_back(llvm::ConstantAsMetadata::get( | 
 |           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); | 
 |     } | 
 |   } | 
 |  | 
 |   return llvm::MDNode::get(CGF.getLLVMContext(), Locs); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { | 
 |   // Assemble the final asm string. | 
 |   std::string AsmString = S.generateAsmString(getContext()); | 
 |  | 
 |   // Get all the output and input constraints together. | 
 |   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; | 
 |   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; | 
 |  | 
 |   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { | 
 |     StringRef Name; | 
 |     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) | 
 |       Name = GAS->getOutputName(i); | 
 |     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); | 
 |     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; | 
 |     assert(IsValid && "Failed to parse output constraint"); | 
 |     OutputConstraintInfos.push_back(Info); | 
 |   } | 
 |  | 
 |   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { | 
 |     StringRef Name; | 
 |     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) | 
 |       Name = GAS->getInputName(i); | 
 |     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); | 
 |     bool IsValid = | 
 |       getTarget().validateInputConstraint(OutputConstraintInfos, Info); | 
 |     assert(IsValid && "Failed to parse input constraint"); (void)IsValid; | 
 |     InputConstraintInfos.push_back(Info); | 
 |   } | 
 |  | 
 |   std::string Constraints; | 
 |  | 
 |   std::vector<LValue> ResultRegDests; | 
 |   std::vector<QualType> ResultRegQualTys; | 
 |   std::vector<llvm::Type *> ResultRegTypes; | 
 |   std::vector<llvm::Type *> ResultTruncRegTypes; | 
 |   std::vector<llvm::Type *> ArgTypes; | 
 |   std::vector<llvm::Value*> Args; | 
 |  | 
 |   // Keep track of inout constraints. | 
 |   std::string InOutConstraints; | 
 |   std::vector<llvm::Value*> InOutArgs; | 
 |   std::vector<llvm::Type*> InOutArgTypes; | 
 |  | 
 |   // An inline asm can be marked readonly if it meets the following conditions: | 
 |   //  - it doesn't have any sideeffects | 
 |   //  - it doesn't clobber memory | 
 |   //  - it doesn't return a value by-reference | 
 |   // It can be marked readnone if it doesn't have any input memory constraints | 
 |   // in addition to meeting the conditions listed above. | 
 |   bool ReadOnly = true, ReadNone = true; | 
 |  | 
 |   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { | 
 |     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; | 
 |  | 
 |     // Simplify the output constraint. | 
 |     std::string OutputConstraint(S.getOutputConstraint(i)); | 
 |     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, | 
 |                                           getTarget(), &OutputConstraintInfos); | 
 |  | 
 |     const Expr *OutExpr = S.getOutputExpr(i); | 
 |     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); | 
 |  | 
 |     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, | 
 |                                               getTarget(), CGM, S, | 
 |                                               Info.earlyClobber()); | 
 |  | 
 |     LValue Dest = EmitLValue(OutExpr); | 
 |     if (!Constraints.empty()) | 
 |       Constraints += ','; | 
 |  | 
 |     // If this is a register output, then make the inline asm return it | 
 |     // by-value.  If this is a memory result, return the value by-reference. | 
 |     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { | 
 |       Constraints += "=" + OutputConstraint; | 
 |       ResultRegQualTys.push_back(OutExpr->getType()); | 
 |       ResultRegDests.push_back(Dest); | 
 |       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); | 
 |       ResultTruncRegTypes.push_back(ResultRegTypes.back()); | 
 |  | 
 |       // If this output is tied to an input, and if the input is larger, then | 
 |       // we need to set the actual result type of the inline asm node to be the | 
 |       // same as the input type. | 
 |       if (Info.hasMatchingInput()) { | 
 |         unsigned InputNo; | 
 |         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { | 
 |           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; | 
 |           if (Input.hasTiedOperand() && Input.getTiedOperand() == i) | 
 |             break; | 
 |         } | 
 |         assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); | 
 |  | 
 |         QualType InputTy = S.getInputExpr(InputNo)->getType(); | 
 |         QualType OutputType = OutExpr->getType(); | 
 |  | 
 |         uint64_t InputSize = getContext().getTypeSize(InputTy); | 
 |         if (getContext().getTypeSize(OutputType) < InputSize) { | 
 |           // Form the asm to return the value as a larger integer or fp type. | 
 |           ResultRegTypes.back() = ConvertType(InputTy); | 
 |         } | 
 |       } | 
 |       if (llvm::Type* AdjTy = | 
 |             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, | 
 |                                                  ResultRegTypes.back())) | 
 |         ResultRegTypes.back() = AdjTy; | 
 |       else { | 
 |         CGM.getDiags().Report(S.getAsmLoc(), | 
 |                               diag::err_asm_invalid_type_in_input) | 
 |             << OutExpr->getType() << OutputConstraint; | 
 |       } | 
 |     } else { | 
 |       ArgTypes.push_back(Dest.getAddress().getType()); | 
 |       Args.push_back(Dest.getPointer()); | 
 |       Constraints += "=*"; | 
 |       Constraints += OutputConstraint; | 
 |       ReadOnly = ReadNone = false; | 
 |     } | 
 |  | 
 |     if (Info.isReadWrite()) { | 
 |       InOutConstraints += ','; | 
 |  | 
 |       const Expr *InputExpr = S.getOutputExpr(i); | 
 |       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), | 
 |                                             InOutConstraints, | 
 |                                             InputExpr->getExprLoc()); | 
 |  | 
 |       if (llvm::Type* AdjTy = | 
 |           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, | 
 |                                                Arg->getType())) | 
 |         Arg = Builder.CreateBitCast(Arg, AdjTy); | 
 |  | 
 |       if (Info.allowsRegister()) | 
 |         InOutConstraints += llvm::utostr(i); | 
 |       else | 
 |         InOutConstraints += OutputConstraint; | 
 |  | 
 |       InOutArgTypes.push_back(Arg->getType()); | 
 |       InOutArgs.push_back(Arg); | 
 |     } | 
 |   } | 
 |  | 
 |   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) | 
 |   // to the return value slot. Only do this when returning in registers. | 
 |   if (isa<MSAsmStmt>(&S)) { | 
 |     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); | 
 |     if (RetAI.isDirect() || RetAI.isExtend()) { | 
 |       // Make a fake lvalue for the return value slot. | 
 |       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); | 
 |       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( | 
 |           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, | 
 |           ResultRegDests, AsmString, S.getNumOutputs()); | 
 |       SawAsmBlock = true; | 
 |     } | 
 |   } | 
 |  | 
 |   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { | 
 |     const Expr *InputExpr = S.getInputExpr(i); | 
 |  | 
 |     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; | 
 |  | 
 |     if (Info.allowsMemory()) | 
 |       ReadNone = false; | 
 |  | 
 |     if (!Constraints.empty()) | 
 |       Constraints += ','; | 
 |  | 
 |     // Simplify the input constraint. | 
 |     std::string InputConstraint(S.getInputConstraint(i)); | 
 |     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), | 
 |                                          &OutputConstraintInfos); | 
 |  | 
 |     InputConstraint = AddVariableConstraints( | 
 |         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), | 
 |         getTarget(), CGM, S, false /* No EarlyClobber */); | 
 |  | 
 |     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); | 
 |  | 
 |     // If this input argument is tied to a larger output result, extend the | 
 |     // input to be the same size as the output.  The LLVM backend wants to see | 
 |     // the input and output of a matching constraint be the same size.  Note | 
 |     // that GCC does not define what the top bits are here.  We use zext because | 
 |     // that is usually cheaper, but LLVM IR should really get an anyext someday. | 
 |     if (Info.hasTiedOperand()) { | 
 |       unsigned Output = Info.getTiedOperand(); | 
 |       QualType OutputType = S.getOutputExpr(Output)->getType(); | 
 |       QualType InputTy = InputExpr->getType(); | 
 |  | 
 |       if (getContext().getTypeSize(OutputType) > | 
 |           getContext().getTypeSize(InputTy)) { | 
 |         // Use ptrtoint as appropriate so that we can do our extension. | 
 |         if (isa<llvm::PointerType>(Arg->getType())) | 
 |           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); | 
 |         llvm::Type *OutputTy = ConvertType(OutputType); | 
 |         if (isa<llvm::IntegerType>(OutputTy)) | 
 |           Arg = Builder.CreateZExt(Arg, OutputTy); | 
 |         else if (isa<llvm::PointerType>(OutputTy)) | 
 |           Arg = Builder.CreateZExt(Arg, IntPtrTy); | 
 |         else { | 
 |           assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); | 
 |           Arg = Builder.CreateFPExt(Arg, OutputTy); | 
 |         } | 
 |       } | 
 |     } | 
 |     if (llvm::Type* AdjTy = | 
 |               getTargetHooks().adjustInlineAsmType(*this, InputConstraint, | 
 |                                                    Arg->getType())) | 
 |       Arg = Builder.CreateBitCast(Arg, AdjTy); | 
 |     else | 
 |       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) | 
 |           << InputExpr->getType() << InputConstraint; | 
 |  | 
 |     ArgTypes.push_back(Arg->getType()); | 
 |     Args.push_back(Arg); | 
 |     Constraints += InputConstraint; | 
 |   } | 
 |  | 
 |   // Append the "input" part of inout constraints last. | 
 |   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { | 
 |     ArgTypes.push_back(InOutArgTypes[i]); | 
 |     Args.push_back(InOutArgs[i]); | 
 |   } | 
 |   Constraints += InOutConstraints; | 
 |  | 
 |   // Clobbers | 
 |   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { | 
 |     StringRef Clobber = S.getClobber(i); | 
 |  | 
 |     if (Clobber == "memory") | 
 |       ReadOnly = ReadNone = false; | 
 |     else if (Clobber != "cc") | 
 |       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); | 
 |  | 
 |     if (!Constraints.empty()) | 
 |       Constraints += ','; | 
 |  | 
 |     Constraints += "~{"; | 
 |     Constraints += Clobber; | 
 |     Constraints += '}'; | 
 |   } | 
 |  | 
 |   // Add machine specific clobbers | 
 |   std::string MachineClobbers = getTarget().getClobbers(); | 
 |   if (!MachineClobbers.empty()) { | 
 |     if (!Constraints.empty()) | 
 |       Constraints += ','; | 
 |     Constraints += MachineClobbers; | 
 |   } | 
 |  | 
 |   llvm::Type *ResultType; | 
 |   if (ResultRegTypes.empty()) | 
 |     ResultType = VoidTy; | 
 |   else if (ResultRegTypes.size() == 1) | 
 |     ResultType = ResultRegTypes[0]; | 
 |   else | 
 |     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); | 
 |  | 
 |   llvm::FunctionType *FTy = | 
 |     llvm::FunctionType::get(ResultType, ArgTypes, false); | 
 |  | 
 |   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; | 
 |   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? | 
 |     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; | 
 |   llvm::InlineAsm *IA = | 
 |     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, | 
 |                          /* IsAlignStack */ false, AsmDialect); | 
 |   llvm::CallInst *Result = | 
 |       Builder.CreateCall(IA, Args, getBundlesForFunclet(IA)); | 
 |   Result->addAttribute(llvm::AttributeList::FunctionIndex, | 
 |                        llvm::Attribute::NoUnwind); | 
 |  | 
 |   // Attach readnone and readonly attributes. | 
 |   if (!HasSideEffect) { | 
 |     if (ReadNone) | 
 |       Result->addAttribute(llvm::AttributeList::FunctionIndex, | 
 |                            llvm::Attribute::ReadNone); | 
 |     else if (ReadOnly) | 
 |       Result->addAttribute(llvm::AttributeList::FunctionIndex, | 
 |                            llvm::Attribute::ReadOnly); | 
 |   } | 
 |  | 
 |   // Slap the source location of the inline asm into a !srcloc metadata on the | 
 |   // call. | 
 |   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) { | 
 |     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), | 
 |                                                    *this)); | 
 |   } else { | 
 |     // At least put the line number on MS inline asm blobs. | 
 |     auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding()); | 
 |     Result->setMetadata("srcloc", | 
 |                         llvm::MDNode::get(getLLVMContext(), | 
 |                                           llvm::ConstantAsMetadata::get(Loc))); | 
 |   } | 
 |  | 
 |   if (getLangOpts().assumeFunctionsAreConvergent()) { | 
 |     // Conservatively, mark all inline asm blocks in CUDA or OpenCL as | 
 |     // convergent (meaning, they may call an intrinsically convergent op, such | 
 |     // as bar.sync, and so can't have certain optimizations applied around | 
 |     // them). | 
 |     Result->addAttribute(llvm::AttributeList::FunctionIndex, | 
 |                          llvm::Attribute::Convergent); | 
 |   } | 
 |  | 
 |   // Extract all of the register value results from the asm. | 
 |   std::vector<llvm::Value*> RegResults; | 
 |   if (ResultRegTypes.size() == 1) { | 
 |     RegResults.push_back(Result); | 
 |   } else { | 
 |     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { | 
 |       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); | 
 |       RegResults.push_back(Tmp); | 
 |     } | 
 |   } | 
 |  | 
 |   assert(RegResults.size() == ResultRegTypes.size()); | 
 |   assert(RegResults.size() == ResultTruncRegTypes.size()); | 
 |   assert(RegResults.size() == ResultRegDests.size()); | 
 |   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { | 
 |     llvm::Value *Tmp = RegResults[i]; | 
 |  | 
 |     // If the result type of the LLVM IR asm doesn't match the result type of | 
 |     // the expression, do the conversion. | 
 |     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { | 
 |       llvm::Type *TruncTy = ResultTruncRegTypes[i]; | 
 |  | 
 |       // Truncate the integer result to the right size, note that TruncTy can be | 
 |       // a pointer. | 
 |       if (TruncTy->isFloatingPointTy()) | 
 |         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); | 
 |       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { | 
 |         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); | 
 |         Tmp = Builder.CreateTrunc(Tmp, | 
 |                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); | 
 |         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); | 
 |       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { | 
 |         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); | 
 |         Tmp = Builder.CreatePtrToInt(Tmp, | 
 |                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); | 
 |         Tmp = Builder.CreateTrunc(Tmp, TruncTy); | 
 |       } else if (TruncTy->isIntegerTy()) { | 
 |         Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); | 
 |       } else if (TruncTy->isVectorTy()) { | 
 |         Tmp = Builder.CreateBitCast(Tmp, TruncTy); | 
 |       } | 
 |     } | 
 |  | 
 |     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); | 
 |   } | 
 | } | 
 |  | 
 | LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { | 
 |   const RecordDecl *RD = S.getCapturedRecordDecl(); | 
 |   QualType RecordTy = getContext().getRecordType(RD); | 
 |  | 
 |   // Initialize the captured struct. | 
 |   LValue SlotLV = | 
 |     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); | 
 |  | 
 |   RecordDecl::field_iterator CurField = RD->field_begin(); | 
 |   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), | 
 |                                                  E = S.capture_init_end(); | 
 |        I != E; ++I, ++CurField) { | 
 |     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); | 
 |     if (CurField->hasCapturedVLAType()) { | 
 |       auto VAT = CurField->getCapturedVLAType(); | 
 |       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); | 
 |     } else { | 
 |       EmitInitializerForField(*CurField, LV, *I); | 
 |     } | 
 |   } | 
 |  | 
 |   return SlotLV; | 
 | } | 
 |  | 
 | /// Generate an outlined function for the body of a CapturedStmt, store any | 
 | /// captured variables into the captured struct, and call the outlined function. | 
 | llvm::Function * | 
 | CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { | 
 |   LValue CapStruct = InitCapturedStruct(S); | 
 |  | 
 |   // Emit the CapturedDecl | 
 |   CodeGenFunction CGF(CGM, true); | 
 |   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); | 
 |   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); | 
 |   delete CGF.CapturedStmtInfo; | 
 |  | 
 |   // Emit call to the helper function. | 
 |   EmitCallOrInvoke(F, CapStruct.getPointer()); | 
 |  | 
 |   return F; | 
 | } | 
 |  | 
 | Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { | 
 |   LValue CapStruct = InitCapturedStruct(S); | 
 |   return CapStruct.getAddress(); | 
 | } | 
 |  | 
 | /// Creates the outlined function for a CapturedStmt. | 
 | llvm::Function * | 
 | CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { | 
 |   assert(CapturedStmtInfo && | 
 |     "CapturedStmtInfo should be set when generating the captured function"); | 
 |   const CapturedDecl *CD = S.getCapturedDecl(); | 
 |   const RecordDecl *RD = S.getCapturedRecordDecl(); | 
 |   SourceLocation Loc = S.getLocStart(); | 
 |   assert(CD->hasBody() && "missing CapturedDecl body"); | 
 |  | 
 |   // Build the argument list. | 
 |   ASTContext &Ctx = CGM.getContext(); | 
 |   FunctionArgList Args; | 
 |   Args.append(CD->param_begin(), CD->param_end()); | 
 |  | 
 |   // Create the function declaration. | 
 |   const CGFunctionInfo &FuncInfo = | 
 |     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); | 
 |   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); | 
 |  | 
 |   llvm::Function *F = | 
 |     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, | 
 |                            CapturedStmtInfo->getHelperName(), &CGM.getModule()); | 
 |   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); | 
 |   if (CD->isNothrow()) | 
 |     F->addFnAttr(llvm::Attribute::NoUnwind); | 
 |  | 
 |   // Generate the function. | 
 |   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, | 
 |                 CD->getLocation(), | 
 |                 CD->getBody()->getLocStart()); | 
 |   // Set the context parameter in CapturedStmtInfo. | 
 |   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); | 
 |   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); | 
 |  | 
 |   // Initialize variable-length arrays. | 
 |   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), | 
 |                                            Ctx.getTagDeclType(RD)); | 
 |   for (auto *FD : RD->fields()) { | 
 |     if (FD->hasCapturedVLAType()) { | 
 |       auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD), | 
 |                                        S.getLocStart()).getScalarVal(); | 
 |       auto VAT = FD->getCapturedVLAType(); | 
 |       VLASizeMap[VAT->getSizeExpr()] = ExprArg; | 
 |     } | 
 |   } | 
 |  | 
 |   // If 'this' is captured, load it into CXXThisValue. | 
 |   if (CapturedStmtInfo->isCXXThisExprCaptured()) { | 
 |     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); | 
 |     LValue ThisLValue = EmitLValueForField(Base, FD); | 
 |     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); | 
 |   } | 
 |  | 
 |   PGO.assignRegionCounters(GlobalDecl(CD), F); | 
 |   CapturedStmtInfo->EmitBody(*this, CD->getBody()); | 
 |   FinishFunction(CD->getBodyRBrace()); | 
 |  | 
 |   return F; | 
 | } |