|  | //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements semantic analysis for C++ templates. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "TreeTransform.h" | 
|  | #include "clang/AST/ASTConsumer.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/DeclFriend.h" | 
|  | #include "clang/AST/DeclTemplate.h" | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/RecursiveASTVisitor.h" | 
|  | #include "clang/AST/TypeVisitor.h" | 
|  | #include "clang/Basic/Builtins.h" | 
|  | #include "clang/Basic/LangOptions.h" | 
|  | #include "clang/Basic/PartialDiagnostic.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/Sema/DeclSpec.h" | 
|  | #include "clang/Sema/Lookup.h" | 
|  | #include "clang/Sema/ParsedTemplate.h" | 
|  | #include "clang/Sema/Scope.h" | 
|  | #include "clang/Sema/SemaInternal.h" | 
|  | #include "clang/Sema/Template.h" | 
|  | #include "clang/Sema/TemplateDeduction.h" | 
|  | #include "llvm/ADT/SmallBitVector.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  |  | 
|  | #include <iterator> | 
|  | using namespace clang; | 
|  | using namespace sema; | 
|  |  | 
|  | // Exported for use by Parser. | 
|  | SourceRange | 
|  | clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, | 
|  | unsigned N) { | 
|  | if (!N) return SourceRange(); | 
|  | return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); | 
|  | } | 
|  |  | 
|  | namespace clang { | 
|  | /// [temp.constr.decl]p2: A template's associated constraints are | 
|  | /// defined as a single constraint-expression derived from the introduced | 
|  | /// constraint-expressions [ ... ]. | 
|  | /// | 
|  | /// \param Params The template parameter list and optional requires-clause. | 
|  | /// | 
|  | /// \param FD The underlying templated function declaration for a function | 
|  | /// template. | 
|  | static Expr *formAssociatedConstraints(TemplateParameterList *Params, | 
|  | FunctionDecl *FD); | 
|  | } | 
|  |  | 
|  | static Expr *clang::formAssociatedConstraints(TemplateParameterList *Params, | 
|  | FunctionDecl *FD) { | 
|  | // FIXME: Concepts: collect additional introduced constraint-expressions | 
|  | assert(!FD && "Cannot collect constraints from function declaration yet."); | 
|  | return Params->getRequiresClause(); | 
|  | } | 
|  |  | 
|  | /// Determine whether the declaration found is acceptable as the name | 
|  | /// of a template and, if so, return that template declaration. Otherwise, | 
|  | /// returns NULL. | 
|  | static NamedDecl *isAcceptableTemplateName(ASTContext &Context, | 
|  | NamedDecl *Orig, | 
|  | bool AllowFunctionTemplates) { | 
|  | NamedDecl *D = Orig->getUnderlyingDecl(); | 
|  |  | 
|  | if (isa<TemplateDecl>(D)) { | 
|  | if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) | 
|  | return nullptr; | 
|  |  | 
|  | return Orig; | 
|  | } | 
|  |  | 
|  | if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { | 
|  | // C++ [temp.local]p1: | 
|  | //   Like normal (non-template) classes, class templates have an | 
|  | //   injected-class-name (Clause 9). The injected-class-name | 
|  | //   can be used with or without a template-argument-list. When | 
|  | //   it is used without a template-argument-list, it is | 
|  | //   equivalent to the injected-class-name followed by the | 
|  | //   template-parameters of the class template enclosed in | 
|  | //   <>. When it is used with a template-argument-list, it | 
|  | //   refers to the specified class template specialization, | 
|  | //   which could be the current specialization or another | 
|  | //   specialization. | 
|  | if (Record->isInjectedClassName()) { | 
|  | Record = cast<CXXRecordDecl>(Record->getDeclContext()); | 
|  | if (Record->getDescribedClassTemplate()) | 
|  | return Record->getDescribedClassTemplate(); | 
|  |  | 
|  | if (ClassTemplateSpecializationDecl *Spec | 
|  | = dyn_cast<ClassTemplateSpecializationDecl>(Record)) | 
|  | return Spec->getSpecializedTemplate(); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // 'using Dependent::foo;' can resolve to a template name. | 
|  | // 'using typename Dependent::foo;' cannot (not even if 'foo' is an | 
|  | // injected-class-name). | 
|  | if (isa<UnresolvedUsingValueDecl>(D)) | 
|  | return D; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void Sema::FilterAcceptableTemplateNames(LookupResult &R, | 
|  | bool AllowFunctionTemplates) { | 
|  | // The set of class templates we've already seen. | 
|  | llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; | 
|  | LookupResult::Filter filter = R.makeFilter(); | 
|  | while (filter.hasNext()) { | 
|  | NamedDecl *Orig = filter.next(); | 
|  | NamedDecl *Repl = isAcceptableTemplateName(Context, Orig, | 
|  | AllowFunctionTemplates); | 
|  | if (!Repl) | 
|  | filter.erase(); | 
|  | else if (Repl != Orig) { | 
|  |  | 
|  | // C++ [temp.local]p3: | 
|  | //   A lookup that finds an injected-class-name (10.2) can result in an | 
|  | //   ambiguity in certain cases (for example, if it is found in more than | 
|  | //   one base class). If all of the injected-class-names that are found | 
|  | //   refer to specializations of the same class template, and if the name | 
|  | //   is used as a template-name, the reference refers to the class | 
|  | //   template itself and not a specialization thereof, and is not | 
|  | //   ambiguous. | 
|  | if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) | 
|  | if (!ClassTemplates.insert(ClassTmpl).second) { | 
|  | filter.erase(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // FIXME: we promote access to public here as a workaround to | 
|  | // the fact that LookupResult doesn't let us remember that we | 
|  | // found this template through a particular injected class name, | 
|  | // which means we end up doing nasty things to the invariants. | 
|  | // Pretending that access is public is *much* safer. | 
|  | filter.replace(Repl, AS_public); | 
|  | } | 
|  | } | 
|  | filter.done(); | 
|  | } | 
|  |  | 
|  | bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, | 
|  | bool AllowFunctionTemplates) { | 
|  | for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) | 
|  | if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | TemplateNameKind Sema::isTemplateName(Scope *S, | 
|  | CXXScopeSpec &SS, | 
|  | bool hasTemplateKeyword, | 
|  | const UnqualifiedId &Name, | 
|  | ParsedType ObjectTypePtr, | 
|  | bool EnteringContext, | 
|  | TemplateTy &TemplateResult, | 
|  | bool &MemberOfUnknownSpecialization) { | 
|  | assert(getLangOpts().CPlusPlus && "No template names in C!"); | 
|  |  | 
|  | DeclarationName TName; | 
|  | MemberOfUnknownSpecialization = false; | 
|  |  | 
|  | switch (Name.getKind()) { | 
|  | case UnqualifiedIdKind::IK_Identifier: | 
|  | TName = DeclarationName(Name.Identifier); | 
|  | break; | 
|  |  | 
|  | case UnqualifiedIdKind::IK_OperatorFunctionId: | 
|  | TName = Context.DeclarationNames.getCXXOperatorName( | 
|  | Name.OperatorFunctionId.Operator); | 
|  | break; | 
|  |  | 
|  | case UnqualifiedIdKind::IK_LiteralOperatorId: | 
|  | TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return TNK_Non_template; | 
|  | } | 
|  |  | 
|  | QualType ObjectType = ObjectTypePtr.get(); | 
|  |  | 
|  | LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName); | 
|  | if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext, | 
|  | MemberOfUnknownSpecialization)) | 
|  | return TNK_Non_template; | 
|  | if (R.empty()) return TNK_Non_template; | 
|  | if (R.isAmbiguous()) { | 
|  | // Suppress diagnostics;  we'll redo this lookup later. | 
|  | R.suppressDiagnostics(); | 
|  |  | 
|  | // FIXME: we might have ambiguous templates, in which case we | 
|  | // should at least parse them properly! | 
|  | return TNK_Non_template; | 
|  | } | 
|  |  | 
|  | TemplateName Template; | 
|  | TemplateNameKind TemplateKind; | 
|  |  | 
|  | unsigned ResultCount = R.end() - R.begin(); | 
|  | if (ResultCount > 1) { | 
|  | // We assume that we'll preserve the qualifier from a function | 
|  | // template name in other ways. | 
|  | Template = Context.getOverloadedTemplateName(R.begin(), R.end()); | 
|  | TemplateKind = TNK_Function_template; | 
|  |  | 
|  | // We'll do this lookup again later. | 
|  | R.suppressDiagnostics(); | 
|  | } else if (isa<UnresolvedUsingValueDecl>((*R.begin())->getUnderlyingDecl())) { | 
|  | // We don't yet know whether this is a template-name or not. | 
|  | MemberOfUnknownSpecialization = true; | 
|  | return TNK_Non_template; | 
|  | } else { | 
|  | TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); | 
|  |  | 
|  | if (SS.isSet() && !SS.isInvalid()) { | 
|  | NestedNameSpecifier *Qualifier = SS.getScopeRep(); | 
|  | Template = Context.getQualifiedTemplateName(Qualifier, | 
|  | hasTemplateKeyword, TD); | 
|  | } else { | 
|  | Template = TemplateName(TD); | 
|  | } | 
|  |  | 
|  | if (isa<FunctionTemplateDecl>(TD)) { | 
|  | TemplateKind = TNK_Function_template; | 
|  |  | 
|  | // We'll do this lookup again later. | 
|  | R.suppressDiagnostics(); | 
|  | } else { | 
|  | assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || | 
|  | isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || | 
|  | isa<BuiltinTemplateDecl>(TD)); | 
|  | TemplateKind = | 
|  | isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template; | 
|  | } | 
|  | } | 
|  |  | 
|  | TemplateResult = TemplateTy::make(Template); | 
|  | return TemplateKind; | 
|  | } | 
|  |  | 
|  | bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name, | 
|  | SourceLocation NameLoc, | 
|  | ParsedTemplateTy *Template) { | 
|  | CXXScopeSpec SS; | 
|  | bool MemberOfUnknownSpecialization = false; | 
|  |  | 
|  | // We could use redeclaration lookup here, but we don't need to: the | 
|  | // syntactic form of a deduction guide is enough to identify it even | 
|  | // if we can't look up the template name at all. | 
|  | LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName); | 
|  | if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(), | 
|  | /*EnteringContext*/ false, | 
|  | MemberOfUnknownSpecialization)) | 
|  | return false; | 
|  |  | 
|  | if (R.empty()) return false; | 
|  | if (R.isAmbiguous()) { | 
|  | // FIXME: Diagnose an ambiguity if we find at least one template. | 
|  | R.suppressDiagnostics(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We only treat template-names that name type templates as valid deduction | 
|  | // guide names. | 
|  | TemplateDecl *TD = R.getAsSingle<TemplateDecl>(); | 
|  | if (!TD || !getAsTypeTemplateDecl(TD)) | 
|  | return false; | 
|  |  | 
|  | if (Template) | 
|  | *Template = TemplateTy::make(TemplateName(TD)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, | 
|  | SourceLocation IILoc, | 
|  | Scope *S, | 
|  | const CXXScopeSpec *SS, | 
|  | TemplateTy &SuggestedTemplate, | 
|  | TemplateNameKind &SuggestedKind) { | 
|  | // We can't recover unless there's a dependent scope specifier preceding the | 
|  | // template name. | 
|  | // FIXME: Typo correction? | 
|  | if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || | 
|  | computeDeclContext(*SS)) | 
|  | return false; | 
|  |  | 
|  | // The code is missing a 'template' keyword prior to the dependent template | 
|  | // name. | 
|  | NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); | 
|  | Diag(IILoc, diag::err_template_kw_missing) | 
|  | << Qualifier << II.getName() | 
|  | << FixItHint::CreateInsertion(IILoc, "template "); | 
|  | SuggestedTemplate | 
|  | = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); | 
|  | SuggestedKind = TNK_Dependent_template_name; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Sema::LookupTemplateName(LookupResult &Found, | 
|  | Scope *S, CXXScopeSpec &SS, | 
|  | QualType ObjectType, | 
|  | bool EnteringContext, | 
|  | bool &MemberOfUnknownSpecialization, | 
|  | SourceLocation TemplateKWLoc) { | 
|  | // Determine where to perform name lookup | 
|  | MemberOfUnknownSpecialization = false; | 
|  | DeclContext *LookupCtx = nullptr; | 
|  | bool IsDependent = false; | 
|  | if (!ObjectType.isNull()) { | 
|  | // This nested-name-specifier occurs in a member access expression, e.g., | 
|  | // x->B::f, and we are looking into the type of the object. | 
|  | assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); | 
|  | LookupCtx = computeDeclContext(ObjectType); | 
|  | IsDependent = !LookupCtx; | 
|  | assert((IsDependent || !ObjectType->isIncompleteType() || | 
|  | ObjectType->castAs<TagType>()->isBeingDefined()) && | 
|  | "Caller should have completed object type"); | 
|  |  | 
|  | // Template names cannot appear inside an Objective-C class or object type. | 
|  | if (ObjectType->isObjCObjectOrInterfaceType()) { | 
|  | Found.clear(); | 
|  | return false; | 
|  | } | 
|  | } else if (SS.isSet()) { | 
|  | // This nested-name-specifier occurs after another nested-name-specifier, | 
|  | // so long into the context associated with the prior nested-name-specifier. | 
|  | LookupCtx = computeDeclContext(SS, EnteringContext); | 
|  | IsDependent = !LookupCtx; | 
|  |  | 
|  | // The declaration context must be complete. | 
|  | if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ObjectTypeSearchedInScope = false; | 
|  | bool AllowFunctionTemplatesInLookup = true; | 
|  | if (LookupCtx) { | 
|  | // Perform "qualified" name lookup into the declaration context we | 
|  | // computed, which is either the type of the base of a member access | 
|  | // expression or the declaration context associated with a prior | 
|  | // nested-name-specifier. | 
|  | LookupQualifiedName(Found, LookupCtx); | 
|  |  | 
|  | // FIXME: The C++ standard does not clearly specify what happens in the | 
|  | // case where the object type is dependent, and implementations vary. In | 
|  | // Clang, we treat a name after a . or -> as a template-name if lookup | 
|  | // finds a non-dependent member or member of the current instantiation that | 
|  | // is a type template, or finds no such members and lookup in the context | 
|  | // of the postfix-expression finds a type template. In the latter case, the | 
|  | // name is nonetheless dependent, and we may resolve it to a member of an | 
|  | // unknown specialization when we come to instantiate the template. | 
|  | IsDependent |= Found.wasNotFoundInCurrentInstantiation(); | 
|  | } | 
|  |  | 
|  | if (!SS.isSet() && (ObjectType.isNull() || Found.empty())) { | 
|  | // C++ [basic.lookup.classref]p1: | 
|  | //   In a class member access expression (5.2.5), if the . or -> token is | 
|  | //   immediately followed by an identifier followed by a <, the | 
|  | //   identifier must be looked up to determine whether the < is the | 
|  | //   beginning of a template argument list (14.2) or a less-than operator. | 
|  | //   The identifier is first looked up in the class of the object | 
|  | //   expression. If the identifier is not found, it is then looked up in | 
|  | //   the context of the entire postfix-expression and shall name a class | 
|  | //   template. | 
|  | if (S) | 
|  | LookupName(Found, S); | 
|  |  | 
|  | if (!ObjectType.isNull()) { | 
|  | //  FIXME: We should filter out all non-type templates here, particularly | 
|  | //  variable templates and concepts. But the exclusion of alias templates | 
|  | //  and template template parameters is a wording defect. | 
|  | AllowFunctionTemplatesInLookup = false; | 
|  | ObjectTypeSearchedInScope = true; | 
|  | } | 
|  |  | 
|  | IsDependent |= Found.wasNotFoundInCurrentInstantiation(); | 
|  | } | 
|  |  | 
|  | if (Found.empty() && !IsDependent) { | 
|  | // If we did not find any names, attempt to correct any typos. | 
|  | DeclarationName Name = Found.getLookupName(); | 
|  | Found.clear(); | 
|  | // Simple filter callback that, for keywords, only accepts the C++ *_cast | 
|  | auto FilterCCC = llvm::make_unique<CorrectionCandidateCallback>(); | 
|  | FilterCCC->WantTypeSpecifiers = false; | 
|  | FilterCCC->WantExpressionKeywords = false; | 
|  | FilterCCC->WantRemainingKeywords = false; | 
|  | FilterCCC->WantCXXNamedCasts = true; | 
|  | if (TypoCorrection Corrected = CorrectTypo( | 
|  | Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS, | 
|  | std::move(FilterCCC), CTK_ErrorRecovery, LookupCtx)) { | 
|  | Found.setLookupName(Corrected.getCorrection()); | 
|  | if (auto *ND = Corrected.getFoundDecl()) | 
|  | Found.addDecl(ND); | 
|  | FilterAcceptableTemplateNames(Found); | 
|  | if (!Found.empty()) { | 
|  | if (LookupCtx) { | 
|  | std::string CorrectedStr(Corrected.getAsString(getLangOpts())); | 
|  | bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && | 
|  | Name.getAsString() == CorrectedStr; | 
|  | diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest) | 
|  | << Name << LookupCtx << DroppedSpecifier | 
|  | << SS.getRange()); | 
|  | } else { | 
|  | diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | Found.setLookupName(Name); | 
|  | } | 
|  | } | 
|  |  | 
|  | NamedDecl *ExampleLookupResult = | 
|  | Found.empty() ? nullptr : Found.getRepresentativeDecl(); | 
|  | FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); | 
|  | if (Found.empty()) { | 
|  | if (IsDependent) { | 
|  | MemberOfUnknownSpecialization = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If a 'template' keyword was used, a lookup that finds only non-template | 
|  | // names is an error. | 
|  | if (ExampleLookupResult && TemplateKWLoc.isValid()) { | 
|  | Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template) | 
|  | << Found.getLookupName() << SS.getRange(); | 
|  | Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(), | 
|  | diag::note_template_kw_refers_to_non_template) | 
|  | << Found.getLookupName(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && | 
|  | !getLangOpts().CPlusPlus11) { | 
|  | // C++03 [basic.lookup.classref]p1: | 
|  | //   [...] If the lookup in the class of the object expression finds a | 
|  | //   template, the name is also looked up in the context of the entire | 
|  | //   postfix-expression and [...] | 
|  | // | 
|  | // Note: C++11 does not perform this second lookup. | 
|  | LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), | 
|  | LookupOrdinaryName); | 
|  | LookupName(FoundOuter, S); | 
|  | FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); | 
|  |  | 
|  | if (FoundOuter.empty()) { | 
|  | //   - if the name is not found, the name found in the class of the | 
|  | //     object expression is used, otherwise | 
|  | } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() || | 
|  | FoundOuter.isAmbiguous()) { | 
|  | //   - if the name is found in the context of the entire | 
|  | //     postfix-expression and does not name a class template, the name | 
|  | //     found in the class of the object expression is used, otherwise | 
|  | FoundOuter.clear(); | 
|  | } else if (!Found.isSuppressingDiagnostics()) { | 
|  | //   - if the name found is a class template, it must refer to the same | 
|  | //     entity as the one found in the class of the object expression, | 
|  | //     otherwise the program is ill-formed. | 
|  | if (!Found.isSingleResult() || | 
|  | Found.getFoundDecl()->getCanonicalDecl() | 
|  | != FoundOuter.getFoundDecl()->getCanonicalDecl()) { | 
|  | Diag(Found.getNameLoc(), | 
|  | diag::ext_nested_name_member_ref_lookup_ambiguous) | 
|  | << Found.getLookupName() | 
|  | << ObjectType; | 
|  | Diag(Found.getRepresentativeDecl()->getLocation(), | 
|  | diag::note_ambig_member_ref_object_type) | 
|  | << ObjectType; | 
|  | Diag(FoundOuter.getFoundDecl()->getLocation(), | 
|  | diag::note_ambig_member_ref_scope); | 
|  |  | 
|  | // Recover by taking the template that we found in the object | 
|  | // expression's type. | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName, | 
|  | SourceLocation Less, | 
|  | SourceLocation Greater) { | 
|  | if (TemplateName.isInvalid()) | 
|  | return; | 
|  |  | 
|  | DeclarationNameInfo NameInfo; | 
|  | CXXScopeSpec SS; | 
|  | LookupNameKind LookupKind; | 
|  |  | 
|  | DeclContext *LookupCtx = nullptr; | 
|  | NamedDecl *Found = nullptr; | 
|  | bool MissingTemplateKeyword = false; | 
|  |  | 
|  | // Figure out what name we looked up. | 
|  | if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) { | 
|  | NameInfo = DRE->getNameInfo(); | 
|  | SS.Adopt(DRE->getQualifierLoc()); | 
|  | LookupKind = LookupOrdinaryName; | 
|  | Found = DRE->getFoundDecl(); | 
|  | } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) { | 
|  | NameInfo = ME->getMemberNameInfo(); | 
|  | SS.Adopt(ME->getQualifierLoc()); | 
|  | LookupKind = LookupMemberName; | 
|  | LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl(); | 
|  | Found = ME->getMemberDecl(); | 
|  | } else if (auto *DSDRE = | 
|  | dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) { | 
|  | NameInfo = DSDRE->getNameInfo(); | 
|  | SS.Adopt(DSDRE->getQualifierLoc()); | 
|  | MissingTemplateKeyword = true; | 
|  | } else if (auto *DSME = | 
|  | dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) { | 
|  | NameInfo = DSME->getMemberNameInfo(); | 
|  | SS.Adopt(DSME->getQualifierLoc()); | 
|  | MissingTemplateKeyword = true; | 
|  | } else { | 
|  | llvm_unreachable("unexpected kind of potential template name"); | 
|  | } | 
|  |  | 
|  | // If this is a dependent-scope lookup, diagnose that the 'template' keyword | 
|  | // was missing. | 
|  | if (MissingTemplateKeyword) { | 
|  | Diag(NameInfo.getLocStart(), diag::err_template_kw_missing) | 
|  | << "" << NameInfo.getName().getAsString() | 
|  | << SourceRange(Less, Greater); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Try to correct the name by looking for templates and C++ named casts. | 
|  | struct TemplateCandidateFilter : CorrectionCandidateCallback { | 
|  | TemplateCandidateFilter() { | 
|  | WantTypeSpecifiers = false; | 
|  | WantExpressionKeywords = false; | 
|  | WantRemainingKeywords = false; | 
|  | WantCXXNamedCasts = true; | 
|  | }; | 
|  | bool ValidateCandidate(const TypoCorrection &Candidate) override { | 
|  | if (auto *ND = Candidate.getCorrectionDecl()) | 
|  | return isAcceptableTemplateName(ND->getASTContext(), ND, true); | 
|  | return Candidate.isKeyword(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | DeclarationName Name = NameInfo.getName(); | 
|  | if (TypoCorrection Corrected = | 
|  | CorrectTypo(NameInfo, LookupKind, S, &SS, | 
|  | llvm::make_unique<TemplateCandidateFilter>(), | 
|  | CTK_ErrorRecovery, LookupCtx)) { | 
|  | auto *ND = Corrected.getFoundDecl(); | 
|  | if (ND) | 
|  | ND = isAcceptableTemplateName(Context, ND, | 
|  | /*AllowFunctionTemplates*/ true); | 
|  | if (ND || Corrected.isKeyword()) { | 
|  | if (LookupCtx) { | 
|  | std::string CorrectedStr(Corrected.getAsString(getLangOpts())); | 
|  | bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && | 
|  | Name.getAsString() == CorrectedStr; | 
|  | diagnoseTypo(Corrected, | 
|  | PDiag(diag::err_non_template_in_member_template_id_suggest) | 
|  | << Name << LookupCtx << DroppedSpecifier | 
|  | << SS.getRange(), false); | 
|  | } else { | 
|  | diagnoseTypo(Corrected, | 
|  | PDiag(diag::err_non_template_in_template_id_suggest) | 
|  | << Name, false); | 
|  | } | 
|  | if (Found) | 
|  | Diag(Found->getLocation(), | 
|  | diag::note_non_template_in_template_id_found); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id) | 
|  | << Name << SourceRange(Less, Greater); | 
|  | if (Found) | 
|  | Diag(Found->getLocation(), diag::note_non_template_in_template_id_found); | 
|  | } | 
|  |  | 
|  | /// ActOnDependentIdExpression - Handle a dependent id-expression that | 
|  | /// was just parsed.  This is only possible with an explicit scope | 
|  | /// specifier naming a dependent type. | 
|  | ExprResult | 
|  | Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, | 
|  | SourceLocation TemplateKWLoc, | 
|  | const DeclarationNameInfo &NameInfo, | 
|  | bool isAddressOfOperand, | 
|  | const TemplateArgumentListInfo *TemplateArgs) { | 
|  | DeclContext *DC = getFunctionLevelDeclContext(); | 
|  |  | 
|  | // C++11 [expr.prim.general]p12: | 
|  | //   An id-expression that denotes a non-static data member or non-static | 
|  | //   member function of a class can only be used: | 
|  | //   (...) | 
|  | //   - if that id-expression denotes a non-static data member and it | 
|  | //     appears in an unevaluated operand. | 
|  | // | 
|  | // If this might be the case, form a DependentScopeDeclRefExpr instead of a | 
|  | // CXXDependentScopeMemberExpr. The former can instantiate to either | 
|  | // DeclRefExpr or MemberExpr depending on lookup results, while the latter is | 
|  | // always a MemberExpr. | 
|  | bool MightBeCxx11UnevalField = | 
|  | getLangOpts().CPlusPlus11 && isUnevaluatedContext(); | 
|  |  | 
|  | // Check if the nested name specifier is an enum type. | 
|  | bool IsEnum = false; | 
|  | if (NestedNameSpecifier *NNS = SS.getScopeRep()) | 
|  | IsEnum = dyn_cast_or_null<EnumType>(NNS->getAsType()); | 
|  |  | 
|  | if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum && | 
|  | isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) { | 
|  | QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); | 
|  |  | 
|  | // Since the 'this' expression is synthesized, we don't need to | 
|  | // perform the double-lookup check. | 
|  | NamedDecl *FirstQualifierInScope = nullptr; | 
|  |  | 
|  | return CXXDependentScopeMemberExpr::Create( | 
|  | Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true, | 
|  | /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc, | 
|  | FirstQualifierInScope, NameInfo, TemplateArgs); | 
|  | } | 
|  |  | 
|  | return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); | 
|  | } | 
|  |  | 
|  | ExprResult | 
|  | Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, | 
|  | SourceLocation TemplateKWLoc, | 
|  | const DeclarationNameInfo &NameInfo, | 
|  | const TemplateArgumentListInfo *TemplateArgs) { | 
|  | return DependentScopeDeclRefExpr::Create( | 
|  | Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, | 
|  | TemplateArgs); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Determine whether we would be unable to instantiate this template (because | 
|  | /// it either has no definition, or is in the process of being instantiated). | 
|  | bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation, | 
|  | NamedDecl *Instantiation, | 
|  | bool InstantiatedFromMember, | 
|  | const NamedDecl *Pattern, | 
|  | const NamedDecl *PatternDef, | 
|  | TemplateSpecializationKind TSK, | 
|  | bool Complain /*= true*/) { | 
|  | assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || | 
|  | isa<VarDecl>(Instantiation)); | 
|  |  | 
|  | bool IsEntityBeingDefined = false; | 
|  | if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef)) | 
|  | IsEntityBeingDefined = TD->isBeingDefined(); | 
|  |  | 
|  | if (PatternDef && !IsEntityBeingDefined) { | 
|  | NamedDecl *SuggestedDef = nullptr; | 
|  | if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef, | 
|  | /*OnlyNeedComplete*/false)) { | 
|  | // If we're allowed to diagnose this and recover, do so. | 
|  | bool Recover = Complain && !isSFINAEContext(); | 
|  | if (Complain) | 
|  | diagnoseMissingImport(PointOfInstantiation, SuggestedDef, | 
|  | Sema::MissingImportKind::Definition, Recover); | 
|  | return !Recover; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!Complain || (PatternDef && PatternDef->isInvalidDecl())) | 
|  | return true; | 
|  |  | 
|  | llvm::Optional<unsigned> Note; | 
|  | QualType InstantiationTy; | 
|  | if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation)) | 
|  | InstantiationTy = Context.getTypeDeclType(TD); | 
|  | if (PatternDef) { | 
|  | Diag(PointOfInstantiation, | 
|  | diag::err_template_instantiate_within_definition) | 
|  | << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation) | 
|  | << InstantiationTy; | 
|  | // Not much point in noting the template declaration here, since | 
|  | // we're lexically inside it. | 
|  | Instantiation->setInvalidDecl(); | 
|  | } else if (InstantiatedFromMember) { | 
|  | if (isa<FunctionDecl>(Instantiation)) { | 
|  | Diag(PointOfInstantiation, | 
|  | diag::err_explicit_instantiation_undefined_member) | 
|  | << /*member function*/ 1 << Instantiation->getDeclName() | 
|  | << Instantiation->getDeclContext(); | 
|  | Note = diag::note_explicit_instantiation_here; | 
|  | } else { | 
|  | assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!"); | 
|  | Diag(PointOfInstantiation, | 
|  | diag::err_implicit_instantiate_member_undefined) | 
|  | << InstantiationTy; | 
|  | Note = diag::note_member_declared_at; | 
|  | } | 
|  | } else { | 
|  | if (isa<FunctionDecl>(Instantiation)) { | 
|  | Diag(PointOfInstantiation, | 
|  | diag::err_explicit_instantiation_undefined_func_template) | 
|  | << Pattern; | 
|  | Note = diag::note_explicit_instantiation_here; | 
|  | } else if (isa<TagDecl>(Instantiation)) { | 
|  | Diag(PointOfInstantiation, diag::err_template_instantiate_undefined) | 
|  | << (TSK != TSK_ImplicitInstantiation) | 
|  | << InstantiationTy; | 
|  | Note = diag::note_template_decl_here; | 
|  | } else { | 
|  | assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!"); | 
|  | if (isa<VarTemplateSpecializationDecl>(Instantiation)) { | 
|  | Diag(PointOfInstantiation, | 
|  | diag::err_explicit_instantiation_undefined_var_template) | 
|  | << Instantiation; | 
|  | Instantiation->setInvalidDecl(); | 
|  | } else | 
|  | Diag(PointOfInstantiation, | 
|  | diag::err_explicit_instantiation_undefined_member) | 
|  | << /*static data member*/ 2 << Instantiation->getDeclName() | 
|  | << Instantiation->getDeclContext(); | 
|  | Note = diag::note_explicit_instantiation_here; | 
|  | } | 
|  | } | 
|  | if (Note) // Diagnostics were emitted. | 
|  | Diag(Pattern->getLocation(), Note.getValue()); | 
|  |  | 
|  | // In general, Instantiation isn't marked invalid to get more than one | 
|  | // error for multiple undefined instantiations. But the code that does | 
|  | // explicit declaration -> explicit definition conversion can't handle | 
|  | // invalid declarations, so mark as invalid in that case. | 
|  | if (TSK == TSK_ExplicitInstantiationDeclaration) | 
|  | Instantiation->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining | 
|  | /// that the template parameter 'PrevDecl' is being shadowed by a new | 
|  | /// declaration at location Loc. Returns true to indicate that this is | 
|  | /// an error, and false otherwise. | 
|  | void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { | 
|  | assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); | 
|  |  | 
|  | // Microsoft Visual C++ permits template parameters to be shadowed. | 
|  | if (getLangOpts().MicrosoftExt) | 
|  | return; | 
|  |  | 
|  | // C++ [temp.local]p4: | 
|  | //   A template-parameter shall not be redeclared within its | 
|  | //   scope (including nested scopes). | 
|  | Diag(Loc, diag::err_template_param_shadow) | 
|  | << cast<NamedDecl>(PrevDecl)->getDeclName(); | 
|  | Diag(PrevDecl->getLocation(), diag::note_template_param_here); | 
|  | } | 
|  |  | 
|  | /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset | 
|  | /// the parameter D to reference the templated declaration and return a pointer | 
|  | /// to the template declaration. Otherwise, do nothing to D and return null. | 
|  | TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { | 
|  | if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { | 
|  | D = Temp->getTemplatedDecl(); | 
|  | return Temp; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( | 
|  | SourceLocation EllipsisLoc) const { | 
|  | assert(Kind == Template && | 
|  | "Only template template arguments can be pack expansions here"); | 
|  | assert(getAsTemplate().get().containsUnexpandedParameterPack() && | 
|  | "Template template argument pack expansion without packs"); | 
|  | ParsedTemplateArgument Result(*this); | 
|  | Result.EllipsisLoc = EllipsisLoc; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, | 
|  | const ParsedTemplateArgument &Arg) { | 
|  |  | 
|  | switch (Arg.getKind()) { | 
|  | case ParsedTemplateArgument::Type: { | 
|  | TypeSourceInfo *DI; | 
|  | QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); | 
|  | if (!DI) | 
|  | DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); | 
|  | return TemplateArgumentLoc(TemplateArgument(T), DI); | 
|  | } | 
|  |  | 
|  | case ParsedTemplateArgument::NonType: { | 
|  | Expr *E = static_cast<Expr *>(Arg.getAsExpr()); | 
|  | return TemplateArgumentLoc(TemplateArgument(E), E); | 
|  | } | 
|  |  | 
|  | case ParsedTemplateArgument::Template: { | 
|  | TemplateName Template = Arg.getAsTemplate().get(); | 
|  | TemplateArgument TArg; | 
|  | if (Arg.getEllipsisLoc().isValid()) | 
|  | TArg = TemplateArgument(Template, Optional<unsigned int>()); | 
|  | else | 
|  | TArg = Template; | 
|  | return TemplateArgumentLoc(TArg, | 
|  | Arg.getScopeSpec().getWithLocInContext( | 
|  | SemaRef.Context), | 
|  | Arg.getLocation(), | 
|  | Arg.getEllipsisLoc()); | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unhandled parsed template argument"); | 
|  | } | 
|  |  | 
|  | /// Translates template arguments as provided by the parser | 
|  | /// into template arguments used by semantic analysis. | 
|  | void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, | 
|  | TemplateArgumentListInfo &TemplateArgs) { | 
|  | for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) | 
|  | TemplateArgs.addArgument(translateTemplateArgument(*this, | 
|  | TemplateArgsIn[I])); | 
|  | } | 
|  |  | 
|  | static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S, | 
|  | SourceLocation Loc, | 
|  | IdentifierInfo *Name) { | 
|  | NamedDecl *PrevDecl = SemaRef.LookupSingleName( | 
|  | S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); | 
|  | if (PrevDecl && PrevDecl->isTemplateParameter()) | 
|  | SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl); | 
|  | } | 
|  |  | 
|  | /// Convert a parsed type into a parsed template argument. This is mostly | 
|  | /// trivial, except that we may have parsed a C++17 deduced class template | 
|  | /// specialization type, in which case we should form a template template | 
|  | /// argument instead of a type template argument. | 
|  | ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) { | 
|  | TypeSourceInfo *TInfo; | 
|  | QualType T = GetTypeFromParser(ParsedType.get(), &TInfo); | 
|  | if (T.isNull()) | 
|  | return ParsedTemplateArgument(); | 
|  | assert(TInfo && "template argument with no location"); | 
|  |  | 
|  | // If we might have formed a deduced template specialization type, convert | 
|  | // it to a template template argument. | 
|  | if (getLangOpts().CPlusPlus17) { | 
|  | TypeLoc TL = TInfo->getTypeLoc(); | 
|  | SourceLocation EllipsisLoc; | 
|  | if (auto PET = TL.getAs<PackExpansionTypeLoc>()) { | 
|  | EllipsisLoc = PET.getEllipsisLoc(); | 
|  | TL = PET.getPatternLoc(); | 
|  | } | 
|  |  | 
|  | CXXScopeSpec SS; | 
|  | if (auto ET = TL.getAs<ElaboratedTypeLoc>()) { | 
|  | SS.Adopt(ET.getQualifierLoc()); | 
|  | TL = ET.getNamedTypeLoc(); | 
|  | } | 
|  |  | 
|  | if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) { | 
|  | TemplateName Name = DTST.getTypePtr()->getTemplateName(); | 
|  | if (SS.isSet()) | 
|  | Name = Context.getQualifiedTemplateName(SS.getScopeRep(), | 
|  | /*HasTemplateKeyword*/ false, | 
|  | Name.getAsTemplateDecl()); | 
|  | ParsedTemplateArgument Result(SS, TemplateTy::make(Name), | 
|  | DTST.getTemplateNameLoc()); | 
|  | if (EllipsisLoc.isValid()) | 
|  | Result = Result.getTemplatePackExpansion(EllipsisLoc); | 
|  | return Result; | 
|  | } | 
|  | } | 
|  |  | 
|  | // This is a normal type template argument. Note, if the type template | 
|  | // argument is an injected-class-name for a template, it has a dual nature | 
|  | // and can be used as either a type or a template. We handle that in | 
|  | // convertTypeTemplateArgumentToTemplate. | 
|  | return ParsedTemplateArgument(ParsedTemplateArgument::Type, | 
|  | ParsedType.get().getAsOpaquePtr(), | 
|  | TInfo->getTypeLoc().getLocStart()); | 
|  | } | 
|  |  | 
|  | /// ActOnTypeParameter - Called when a C++ template type parameter | 
|  | /// (e.g., "typename T") has been parsed. Typename specifies whether | 
|  | /// the keyword "typename" was used to declare the type parameter | 
|  | /// (otherwise, "class" was used), and KeyLoc is the location of the | 
|  | /// "class" or "typename" keyword. ParamName is the name of the | 
|  | /// parameter (NULL indicates an unnamed template parameter) and | 
|  | /// ParamNameLoc is the location of the parameter name (if any). | 
|  | /// If the type parameter has a default argument, it will be added | 
|  | /// later via ActOnTypeParameterDefault. | 
|  | NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename, | 
|  | SourceLocation EllipsisLoc, | 
|  | SourceLocation KeyLoc, | 
|  | IdentifierInfo *ParamName, | 
|  | SourceLocation ParamNameLoc, | 
|  | unsigned Depth, unsigned Position, | 
|  | SourceLocation EqualLoc, | 
|  | ParsedType DefaultArg) { | 
|  | assert(S->isTemplateParamScope() && | 
|  | "Template type parameter not in template parameter scope!"); | 
|  |  | 
|  | SourceLocation Loc = ParamNameLoc; | 
|  | if (!ParamName) | 
|  | Loc = KeyLoc; | 
|  |  | 
|  | bool IsParameterPack = EllipsisLoc.isValid(); | 
|  | TemplateTypeParmDecl *Param | 
|  | = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), | 
|  | KeyLoc, Loc, Depth, Position, ParamName, | 
|  | Typename, IsParameterPack); | 
|  | Param->setAccess(AS_public); | 
|  |  | 
|  | if (ParamName) { | 
|  | maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName); | 
|  |  | 
|  | // Add the template parameter into the current scope. | 
|  | S->AddDecl(Param); | 
|  | IdResolver.AddDecl(Param); | 
|  | } | 
|  |  | 
|  | // C++0x [temp.param]p9: | 
|  | //   A default template-argument may be specified for any kind of | 
|  | //   template-parameter that is not a template parameter pack. | 
|  | if (DefaultArg && IsParameterPack) { | 
|  | Diag(EqualLoc, diag::err_template_param_pack_default_arg); | 
|  | DefaultArg = nullptr; | 
|  | } | 
|  |  | 
|  | // Handle the default argument, if provided. | 
|  | if (DefaultArg) { | 
|  | TypeSourceInfo *DefaultTInfo; | 
|  | GetTypeFromParser(DefaultArg, &DefaultTInfo); | 
|  |  | 
|  | assert(DefaultTInfo && "expected source information for type"); | 
|  |  | 
|  | // Check for unexpanded parameter packs. | 
|  | if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, | 
|  | UPPC_DefaultArgument)) | 
|  | return Param; | 
|  |  | 
|  | // Check the template argument itself. | 
|  | if (CheckTemplateArgument(Param, DefaultTInfo)) { | 
|  | Param->setInvalidDecl(); | 
|  | return Param; | 
|  | } | 
|  |  | 
|  | Param->setDefaultArgument(DefaultTInfo); | 
|  | } | 
|  |  | 
|  | return Param; | 
|  | } | 
|  |  | 
|  | /// Check that the type of a non-type template parameter is | 
|  | /// well-formed. | 
|  | /// | 
|  | /// \returns the (possibly-promoted) parameter type if valid; | 
|  | /// otherwise, produces a diagnostic and returns a NULL type. | 
|  | QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI, | 
|  | SourceLocation Loc) { | 
|  | if (TSI->getType()->isUndeducedType()) { | 
|  | // C++1z [temp.dep.expr]p3: | 
|  | //   An id-expression is type-dependent if it contains | 
|  | //    - an identifier associated by name lookup with a non-type | 
|  | //      template-parameter declared with a type that contains a | 
|  | //      placeholder type (7.1.7.4), | 
|  | TSI = SubstAutoTypeSourceInfo(TSI, Context.DependentTy); | 
|  | } | 
|  |  | 
|  | return CheckNonTypeTemplateParameterType(TSI->getType(), Loc); | 
|  | } | 
|  |  | 
|  | QualType Sema::CheckNonTypeTemplateParameterType(QualType T, | 
|  | SourceLocation Loc) { | 
|  | // We don't allow variably-modified types as the type of non-type template | 
|  | // parameters. | 
|  | if (T->isVariablyModifiedType()) { | 
|  | Diag(Loc, diag::err_variably_modified_nontype_template_param) | 
|  | << T; | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // C++ [temp.param]p4: | 
|  | // | 
|  | // A non-type template-parameter shall have one of the following | 
|  | // (optionally cv-qualified) types: | 
|  | // | 
|  | //       -- integral or enumeration type, | 
|  | if (T->isIntegralOrEnumerationType() || | 
|  | //   -- pointer to object or pointer to function, | 
|  | T->isPointerType() || | 
|  | //   -- reference to object or reference to function, | 
|  | T->isReferenceType() || | 
|  | //   -- pointer to member, | 
|  | T->isMemberPointerType() || | 
|  | //   -- std::nullptr_t. | 
|  | T->isNullPtrType() || | 
|  | // If T is a dependent type, we can't do the check now, so we | 
|  | // assume that it is well-formed. | 
|  | T->isDependentType() || | 
|  | // Allow use of auto in template parameter declarations. | 
|  | T->isUndeducedType()) { | 
|  | // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter | 
|  | // are ignored when determining its type. | 
|  | return T.getUnqualifiedType(); | 
|  | } | 
|  |  | 
|  | // C++ [temp.param]p8: | 
|  | // | 
|  | //   A non-type template-parameter of type "array of T" or | 
|  | //   "function returning T" is adjusted to be of type "pointer to | 
|  | //   T" or "pointer to function returning T", respectively. | 
|  | else if (T->isArrayType() || T->isFunctionType()) | 
|  | return Context.getDecayedType(T); | 
|  |  | 
|  | Diag(Loc, diag::err_template_nontype_parm_bad_type) | 
|  | << T; | 
|  |  | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, | 
|  | unsigned Depth, | 
|  | unsigned Position, | 
|  | SourceLocation EqualLoc, | 
|  | Expr *Default) { | 
|  | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | 
|  |  | 
|  | // Check that we have valid decl-specifiers specified. | 
|  | auto CheckValidDeclSpecifiers = [this, &D] { | 
|  | // C++ [temp.param] | 
|  | // p1 | 
|  | //   template-parameter: | 
|  | //     ... | 
|  | //     parameter-declaration | 
|  | // p2 | 
|  | //   ... A storage class shall not be specified in a template-parameter | 
|  | //   declaration. | 
|  | // [dcl.typedef]p1: | 
|  | //   The typedef specifier [...] shall not be used in the decl-specifier-seq | 
|  | //   of a parameter-declaration | 
|  | const DeclSpec &DS = D.getDeclSpec(); | 
|  | auto EmitDiag = [this](SourceLocation Loc) { | 
|  | Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm) | 
|  | << FixItHint::CreateRemoval(Loc); | 
|  | }; | 
|  | if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) | 
|  | EmitDiag(DS.getStorageClassSpecLoc()); | 
|  |  | 
|  | if (DS.getThreadStorageClassSpec() != TSCS_unspecified) | 
|  | EmitDiag(DS.getThreadStorageClassSpecLoc()); | 
|  |  | 
|  | // [dcl.inline]p1: | 
|  | //   The inline specifier can be applied only to the declaration or | 
|  | //   definition of a variable or function. | 
|  |  | 
|  | if (DS.isInlineSpecified()) | 
|  | EmitDiag(DS.getInlineSpecLoc()); | 
|  |  | 
|  | // [dcl.constexpr]p1: | 
|  | //   The constexpr specifier shall be applied only to the definition of a | 
|  | //   variable or variable template or the declaration of a function or | 
|  | //   function template. | 
|  |  | 
|  | if (DS.isConstexprSpecified()) | 
|  | EmitDiag(DS.getConstexprSpecLoc()); | 
|  |  | 
|  | // [dcl.fct.spec]p1: | 
|  | //   Function-specifiers can be used only in function declarations. | 
|  |  | 
|  | if (DS.isVirtualSpecified()) | 
|  | EmitDiag(DS.getVirtualSpecLoc()); | 
|  |  | 
|  | if (DS.isExplicitSpecified()) | 
|  | EmitDiag(DS.getExplicitSpecLoc()); | 
|  |  | 
|  | if (DS.isNoreturnSpecified()) | 
|  | EmitDiag(DS.getNoreturnSpecLoc()); | 
|  | }; | 
|  |  | 
|  | CheckValidDeclSpecifiers(); | 
|  |  | 
|  | if (TInfo->getType()->isUndeducedType()) { | 
|  | Diag(D.getIdentifierLoc(), | 
|  | diag::warn_cxx14_compat_template_nontype_parm_auto_type) | 
|  | << QualType(TInfo->getType()->getContainedAutoType(), 0); | 
|  | } | 
|  |  | 
|  | assert(S->isTemplateParamScope() && | 
|  | "Non-type template parameter not in template parameter scope!"); | 
|  | bool Invalid = false; | 
|  |  | 
|  | QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc()); | 
|  | if (T.isNull()) { | 
|  | T = Context.IntTy; // Recover with an 'int' type. | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | IdentifierInfo *ParamName = D.getIdentifier(); | 
|  | bool IsParameterPack = D.hasEllipsis(); | 
|  | NonTypeTemplateParmDecl *Param | 
|  | = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), | 
|  | D.getLocStart(), | 
|  | D.getIdentifierLoc(), | 
|  | Depth, Position, ParamName, T, | 
|  | IsParameterPack, TInfo); | 
|  | Param->setAccess(AS_public); | 
|  |  | 
|  | if (Invalid) | 
|  | Param->setInvalidDecl(); | 
|  |  | 
|  | if (ParamName) { | 
|  | maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(), | 
|  | ParamName); | 
|  |  | 
|  | // Add the template parameter into the current scope. | 
|  | S->AddDecl(Param); | 
|  | IdResolver.AddDecl(Param); | 
|  | } | 
|  |  | 
|  | // C++0x [temp.param]p9: | 
|  | //   A default template-argument may be specified for any kind of | 
|  | //   template-parameter that is not a template parameter pack. | 
|  | if (Default && IsParameterPack) { | 
|  | Diag(EqualLoc, diag::err_template_param_pack_default_arg); | 
|  | Default = nullptr; | 
|  | } | 
|  |  | 
|  | // Check the well-formedness of the default template argument, if provided. | 
|  | if (Default) { | 
|  | // Check for unexpanded parameter packs. | 
|  | if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) | 
|  | return Param; | 
|  |  | 
|  | TemplateArgument Converted; | 
|  | ExprResult DefaultRes = | 
|  | CheckTemplateArgument(Param, Param->getType(), Default, Converted); | 
|  | if (DefaultRes.isInvalid()) { | 
|  | Param->setInvalidDecl(); | 
|  | return Param; | 
|  | } | 
|  | Default = DefaultRes.get(); | 
|  |  | 
|  | Param->setDefaultArgument(Default); | 
|  | } | 
|  |  | 
|  | return Param; | 
|  | } | 
|  |  | 
|  | /// ActOnTemplateTemplateParameter - Called when a C++ template template | 
|  | /// parameter (e.g. T in template <template \<typename> class T> class array) | 
|  | /// has been parsed. S is the current scope. | 
|  | NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S, | 
|  | SourceLocation TmpLoc, | 
|  | TemplateParameterList *Params, | 
|  | SourceLocation EllipsisLoc, | 
|  | IdentifierInfo *Name, | 
|  | SourceLocation NameLoc, | 
|  | unsigned Depth, | 
|  | unsigned Position, | 
|  | SourceLocation EqualLoc, | 
|  | ParsedTemplateArgument Default) { | 
|  | assert(S->isTemplateParamScope() && | 
|  | "Template template parameter not in template parameter scope!"); | 
|  |  | 
|  | // Construct the parameter object. | 
|  | bool IsParameterPack = EllipsisLoc.isValid(); | 
|  | TemplateTemplateParmDecl *Param = | 
|  | TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), | 
|  | NameLoc.isInvalid()? TmpLoc : NameLoc, | 
|  | Depth, Position, IsParameterPack, | 
|  | Name, Params); | 
|  | Param->setAccess(AS_public); | 
|  |  | 
|  | // If the template template parameter has a name, then link the identifier | 
|  | // into the scope and lookup mechanisms. | 
|  | if (Name) { | 
|  | maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name); | 
|  |  | 
|  | S->AddDecl(Param); | 
|  | IdResolver.AddDecl(Param); | 
|  | } | 
|  |  | 
|  | if (Params->size() == 0) { | 
|  | Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) | 
|  | << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); | 
|  | Param->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | // C++0x [temp.param]p9: | 
|  | //   A default template-argument may be specified for any kind of | 
|  | //   template-parameter that is not a template parameter pack. | 
|  | if (IsParameterPack && !Default.isInvalid()) { | 
|  | Diag(EqualLoc, diag::err_template_param_pack_default_arg); | 
|  | Default = ParsedTemplateArgument(); | 
|  | } | 
|  |  | 
|  | if (!Default.isInvalid()) { | 
|  | // Check only that we have a template template argument. We don't want to | 
|  | // try to check well-formedness now, because our template template parameter | 
|  | // might have dependent types in its template parameters, which we wouldn't | 
|  | // be able to match now. | 
|  | // | 
|  | // If none of the template template parameter's template arguments mention | 
|  | // other template parameters, we could actually perform more checking here. | 
|  | // However, it isn't worth doing. | 
|  | TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); | 
|  | if (DefaultArg.getArgument().getAsTemplate().isNull()) { | 
|  | Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template) | 
|  | << DefaultArg.getSourceRange(); | 
|  | return Param; | 
|  | } | 
|  |  | 
|  | // Check for unexpanded parameter packs. | 
|  | if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), | 
|  | DefaultArg.getArgument().getAsTemplate(), | 
|  | UPPC_DefaultArgument)) | 
|  | return Param; | 
|  |  | 
|  | Param->setDefaultArgument(Context, DefaultArg); | 
|  | } | 
|  |  | 
|  | return Param; | 
|  | } | 
|  |  | 
|  | /// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally | 
|  | /// constrained by RequiresClause, that contains the template parameters in | 
|  | /// Params. | 
|  | TemplateParameterList * | 
|  | Sema::ActOnTemplateParameterList(unsigned Depth, | 
|  | SourceLocation ExportLoc, | 
|  | SourceLocation TemplateLoc, | 
|  | SourceLocation LAngleLoc, | 
|  | ArrayRef<NamedDecl *> Params, | 
|  | SourceLocation RAngleLoc, | 
|  | Expr *RequiresClause) { | 
|  | if (ExportLoc.isValid()) | 
|  | Diag(ExportLoc, diag::warn_template_export_unsupported); | 
|  |  | 
|  | return TemplateParameterList::Create( | 
|  | Context, TemplateLoc, LAngleLoc, | 
|  | llvm::makeArrayRef(Params.data(), Params.size()), | 
|  | RAngleLoc, RequiresClause); | 
|  | } | 
|  |  | 
|  | static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { | 
|  | if (SS.isSet()) | 
|  | T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext())); | 
|  | } | 
|  |  | 
|  | DeclResult Sema::CheckClassTemplate( | 
|  | Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, | 
|  | CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, | 
|  | const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams, | 
|  | AccessSpecifier AS, SourceLocation ModulePrivateLoc, | 
|  | SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists, | 
|  | TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) { | 
|  | assert(TemplateParams && TemplateParams->size() > 0 && | 
|  | "No template parameters"); | 
|  | assert(TUK != TUK_Reference && "Can only declare or define class templates"); | 
|  | bool Invalid = false; | 
|  |  | 
|  | // Check that we can declare a template here. | 
|  | if (CheckTemplateDeclScope(S, TemplateParams)) | 
|  | return true; | 
|  |  | 
|  | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); | 
|  | assert(Kind != TTK_Enum && "can't build template of enumerated type"); | 
|  |  | 
|  | // There is no such thing as an unnamed class template. | 
|  | if (!Name) { | 
|  | Diag(KWLoc, diag::err_template_unnamed_class); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Find any previous declaration with this name. For a friend with no | 
|  | // scope explicitly specified, we only look for tag declarations (per | 
|  | // C++11 [basic.lookup.elab]p2). | 
|  | DeclContext *SemanticContext; | 
|  | LookupResult Previous(*this, Name, NameLoc, | 
|  | (SS.isEmpty() && TUK == TUK_Friend) | 
|  | ? LookupTagName : LookupOrdinaryName, | 
|  | forRedeclarationInCurContext()); | 
|  | if (SS.isNotEmpty() && !SS.isInvalid()) { | 
|  | SemanticContext = computeDeclContext(SS, true); | 
|  | if (!SemanticContext) { | 
|  | // FIXME: Horrible, horrible hack! We can't currently represent this | 
|  | // in the AST, and historically we have just ignored such friend | 
|  | // class templates, so don't complain here. | 
|  | Diag(NameLoc, TUK == TUK_Friend | 
|  | ? diag::warn_template_qualified_friend_ignored | 
|  | : diag::err_template_qualified_declarator_no_match) | 
|  | << SS.getScopeRep() << SS.getRange(); | 
|  | return TUK != TUK_Friend; | 
|  | } | 
|  |  | 
|  | if (RequireCompleteDeclContext(SS, SemanticContext)) | 
|  | return true; | 
|  |  | 
|  | // If we're adding a template to a dependent context, we may need to | 
|  | // rebuilding some of the types used within the template parameter list, | 
|  | // now that we know what the current instantiation is. | 
|  | if (SemanticContext->isDependentContext()) { | 
|  | ContextRAII SavedContext(*this, SemanticContext); | 
|  | if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) | 
|  | Invalid = true; | 
|  | } else if (TUK != TUK_Friend && TUK != TUK_Reference) | 
|  | diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false); | 
|  |  | 
|  | LookupQualifiedName(Previous, SemanticContext); | 
|  | } else { | 
|  | SemanticContext = CurContext; | 
|  |  | 
|  | // C++14 [class.mem]p14: | 
|  | //   If T is the name of a class, then each of the following shall have a | 
|  | //   name different from T: | 
|  | //    -- every member template of class T | 
|  | if (TUK != TUK_Friend && | 
|  | DiagnoseClassNameShadow(SemanticContext, | 
|  | DeclarationNameInfo(Name, NameLoc))) | 
|  | return true; | 
|  |  | 
|  | LookupName(Previous, S); | 
|  | } | 
|  |  | 
|  | if (Previous.isAmbiguous()) | 
|  | return true; | 
|  |  | 
|  | NamedDecl *PrevDecl = nullptr; | 
|  | if (Previous.begin() != Previous.end()) | 
|  | PrevDecl = (*Previous.begin())->getUnderlyingDecl(); | 
|  |  | 
|  | if (PrevDecl && PrevDecl->isTemplateParameter()) { | 
|  | // Maybe we will complain about the shadowed template parameter. | 
|  | DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); | 
|  | // Just pretend that we didn't see the previous declaration. | 
|  | PrevDecl = nullptr; | 
|  | } | 
|  |  | 
|  | // If there is a previous declaration with the same name, check | 
|  | // whether this is a valid redeclaration. | 
|  | ClassTemplateDecl *PrevClassTemplate = | 
|  | dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); | 
|  |  | 
|  | // We may have found the injected-class-name of a class template, | 
|  | // class template partial specialization, or class template specialization. | 
|  | // In these cases, grab the template that is being defined or specialized. | 
|  | if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && | 
|  | cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { | 
|  | PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); | 
|  | PrevClassTemplate | 
|  | = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); | 
|  | if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { | 
|  | PrevClassTemplate | 
|  | = cast<ClassTemplateSpecializationDecl>(PrevDecl) | 
|  | ->getSpecializedTemplate(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TUK == TUK_Friend) { | 
|  | // C++ [namespace.memdef]p3: | 
|  | //   [...] When looking for a prior declaration of a class or a function | 
|  | //   declared as a friend, and when the name of the friend class or | 
|  | //   function is neither a qualified name nor a template-id, scopes outside | 
|  | //   the innermost enclosing namespace scope are not considered. | 
|  | if (!SS.isSet()) { | 
|  | DeclContext *OutermostContext = CurContext; | 
|  | while (!OutermostContext->isFileContext()) | 
|  | OutermostContext = OutermostContext->getLookupParent(); | 
|  |  | 
|  | if (PrevDecl && | 
|  | (OutermostContext->Equals(PrevDecl->getDeclContext()) || | 
|  | OutermostContext->Encloses(PrevDecl->getDeclContext()))) { | 
|  | SemanticContext = PrevDecl->getDeclContext(); | 
|  | } else { | 
|  | // Declarations in outer scopes don't matter. However, the outermost | 
|  | // context we computed is the semantic context for our new | 
|  | // declaration. | 
|  | PrevDecl = PrevClassTemplate = nullptr; | 
|  | SemanticContext = OutermostContext; | 
|  |  | 
|  | // Check that the chosen semantic context doesn't already contain a | 
|  | // declaration of this name as a non-tag type. | 
|  | Previous.clear(LookupOrdinaryName); | 
|  | DeclContext *LookupContext = SemanticContext; | 
|  | while (LookupContext->isTransparentContext()) | 
|  | LookupContext = LookupContext->getLookupParent(); | 
|  | LookupQualifiedName(Previous, LookupContext); | 
|  |  | 
|  | if (Previous.isAmbiguous()) | 
|  | return true; | 
|  |  | 
|  | if (Previous.begin() != Previous.end()) | 
|  | PrevDecl = (*Previous.begin())->getUnderlyingDecl(); | 
|  | } | 
|  | } | 
|  | } else if (PrevDecl && | 
|  | !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext, | 
|  | S, SS.isValid())) | 
|  | PrevDecl = PrevClassTemplate = nullptr; | 
|  |  | 
|  | if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>( | 
|  | PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) { | 
|  | if (SS.isEmpty() && | 
|  | !(PrevClassTemplate && | 
|  | PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals( | 
|  | SemanticContext->getRedeclContext()))) { | 
|  | Diag(KWLoc, diag::err_using_decl_conflict_reverse); | 
|  | Diag(Shadow->getTargetDecl()->getLocation(), | 
|  | diag::note_using_decl_target); | 
|  | Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0; | 
|  | // Recover by ignoring the old declaration. | 
|  | PrevDecl = PrevClassTemplate = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO Memory management; associated constraints are not always stored. | 
|  | Expr *const CurAC = formAssociatedConstraints(TemplateParams, nullptr); | 
|  |  | 
|  | if (PrevClassTemplate) { | 
|  | // Ensure that the template parameter lists are compatible. Skip this check | 
|  | // for a friend in a dependent context: the template parameter list itself | 
|  | // could be dependent. | 
|  | if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && | 
|  | !TemplateParameterListsAreEqual(TemplateParams, | 
|  | PrevClassTemplate->getTemplateParameters(), | 
|  | /*Complain=*/true, | 
|  | TPL_TemplateMatch)) | 
|  | return true; | 
|  |  | 
|  | // Check for matching associated constraints on redeclarations. | 
|  | const Expr *const PrevAC = PrevClassTemplate->getAssociatedConstraints(); | 
|  | const bool RedeclACMismatch = [&] { | 
|  | if (!(CurAC || PrevAC)) | 
|  | return false; // Nothing to check; no mismatch. | 
|  | if (CurAC && PrevAC) { | 
|  | llvm::FoldingSetNodeID CurACInfo, PrevACInfo; | 
|  | CurAC->Profile(CurACInfo, Context, /*Canonical=*/true); | 
|  | PrevAC->Profile(PrevACInfo, Context, /*Canonical=*/true); | 
|  | if (CurACInfo == PrevACInfo) | 
|  | return false; // All good; no mismatch. | 
|  | } | 
|  | return true; | 
|  | }(); | 
|  |  | 
|  | if (RedeclACMismatch) { | 
|  | Diag(CurAC ? CurAC->getLocStart() : NameLoc, | 
|  | diag::err_template_different_associated_constraints); | 
|  | Diag(PrevAC ? PrevAC->getLocStart() : PrevClassTemplate->getLocation(), | 
|  | diag::note_template_prev_declaration) << /*declaration*/0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // C++ [temp.class]p4: | 
|  | //   In a redeclaration, partial specialization, explicit | 
|  | //   specialization or explicit instantiation of a class template, | 
|  | //   the class-key shall agree in kind with the original class | 
|  | //   template declaration (7.1.5.3). | 
|  | RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); | 
|  | if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, | 
|  | TUK == TUK_Definition,  KWLoc, Name)) { | 
|  | Diag(KWLoc, diag::err_use_with_wrong_tag) | 
|  | << Name | 
|  | << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); | 
|  | Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); | 
|  | Kind = PrevRecordDecl->getTagKind(); | 
|  | } | 
|  |  | 
|  | // Check for redefinition of this class template. | 
|  | if (TUK == TUK_Definition) { | 
|  | if (TagDecl *Def = PrevRecordDecl->getDefinition()) { | 
|  | // If we have a prior definition that is not visible, treat this as | 
|  | // simply making that previous definition visible. | 
|  | NamedDecl *Hidden = nullptr; | 
|  | if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { | 
|  | SkipBody->ShouldSkip = true; | 
|  | auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate(); | 
|  | assert(Tmpl && "original definition of a class template is not a " | 
|  | "class template?"); | 
|  | makeMergedDefinitionVisible(Hidden); | 
|  | makeMergedDefinitionVisible(Tmpl); | 
|  | return Def; | 
|  | } | 
|  |  | 
|  | Diag(NameLoc, diag::err_redefinition) << Name; | 
|  | Diag(Def->getLocation(), diag::note_previous_definition); | 
|  | // FIXME: Would it make sense to try to "forget" the previous | 
|  | // definition, as part of error recovery? | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } else if (PrevDecl) { | 
|  | // C++ [temp]p5: | 
|  | //   A class template shall not have the same name as any other | 
|  | //   template, class, function, object, enumeration, enumerator, | 
|  | //   namespace, or type in the same scope (3.3), except as specified | 
|  | //   in (14.5.4). | 
|  | Diag(NameLoc, diag::err_redefinition_different_kind) << Name; | 
|  | Diag(PrevDecl->getLocation(), diag::note_previous_definition); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check the template parameter list of this declaration, possibly | 
|  | // merging in the template parameter list from the previous class | 
|  | // template declaration. Skip this check for a friend in a dependent | 
|  | // context, because the template parameter list might be dependent. | 
|  | if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && | 
|  | CheckTemplateParameterList( | 
|  | TemplateParams, | 
|  | PrevClassTemplate ? PrevClassTemplate->getTemplateParameters() | 
|  | : nullptr, | 
|  | (SS.isSet() && SemanticContext && SemanticContext->isRecord() && | 
|  | SemanticContext->isDependentContext()) | 
|  | ? TPC_ClassTemplateMember | 
|  | : TUK == TUK_Friend ? TPC_FriendClassTemplate | 
|  | : TPC_ClassTemplate)) | 
|  | Invalid = true; | 
|  |  | 
|  | if (SS.isSet()) { | 
|  | // If the name of the template was qualified, we must be defining the | 
|  | // template out-of-line. | 
|  | if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { | 
|  | Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match | 
|  | : diag::err_member_decl_does_not_match) | 
|  | << Name << SemanticContext << /*IsDefinition*/true << SS.getRange(); | 
|  | Invalid = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is a templated friend in a dependent context we should not put it | 
|  | // on the redecl chain. In some cases, the templated friend can be the most | 
|  | // recent declaration tricking the template instantiator to make substitutions | 
|  | // there. | 
|  | // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious | 
|  | bool ShouldAddRedecl | 
|  | = !(TUK == TUK_Friend && CurContext->isDependentContext()); | 
|  |  | 
|  | CXXRecordDecl *NewClass = | 
|  | CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, | 
|  | PrevClassTemplate && ShouldAddRedecl ? | 
|  | PrevClassTemplate->getTemplatedDecl() : nullptr, | 
|  | /*DelayTypeCreation=*/true); | 
|  | SetNestedNameSpecifier(NewClass, SS); | 
|  | if (NumOuterTemplateParamLists > 0) | 
|  | NewClass->setTemplateParameterListsInfo( | 
|  | Context, llvm::makeArrayRef(OuterTemplateParamLists, | 
|  | NumOuterTemplateParamLists)); | 
|  |  | 
|  | // Add alignment attributes if necessary; these attributes are checked when | 
|  | // the ASTContext lays out the structure. | 
|  | if (TUK == TUK_Definition) { | 
|  | AddAlignmentAttributesForRecord(NewClass); | 
|  | AddMsStructLayoutForRecord(NewClass); | 
|  | } | 
|  |  | 
|  | // Attach the associated constraints when the declaration will not be part of | 
|  | // a decl chain. | 
|  | Expr *const ACtoAttach = | 
|  | PrevClassTemplate && ShouldAddRedecl ? nullptr : CurAC; | 
|  |  | 
|  | ClassTemplateDecl *NewTemplate | 
|  | = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, | 
|  | DeclarationName(Name), TemplateParams, | 
|  | NewClass, ACtoAttach); | 
|  |  | 
|  | if (ShouldAddRedecl) | 
|  | NewTemplate->setPreviousDecl(PrevClassTemplate); | 
|  |  | 
|  | NewClass->setDescribedClassTemplate(NewTemplate); | 
|  |  | 
|  | if (ModulePrivateLoc.isValid()) | 
|  | NewTemplate->setModulePrivate(); | 
|  |  | 
|  | // Build the type for the class template declaration now. | 
|  | QualType T = NewTemplate->getInjectedClassNameSpecialization(); | 
|  | T = Context.getInjectedClassNameType(NewClass, T); | 
|  | assert(T->isDependentType() && "Class template type is not dependent?"); | 
|  | (void)T; | 
|  |  | 
|  | // If we are providing an explicit specialization of a member that is a | 
|  | // class template, make a note of that. | 
|  | if (PrevClassTemplate && | 
|  | PrevClassTemplate->getInstantiatedFromMemberTemplate()) | 
|  | PrevClassTemplate->setMemberSpecialization(); | 
|  |  | 
|  | // Set the access specifier. | 
|  | if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord()) | 
|  | SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); | 
|  |  | 
|  | // Set the lexical context of these templates | 
|  | NewClass->setLexicalDeclContext(CurContext); | 
|  | NewTemplate->setLexicalDeclContext(CurContext); | 
|  |  | 
|  | if (TUK == TUK_Definition) | 
|  | NewClass->startDefinition(); | 
|  |  | 
|  | ProcessDeclAttributeList(S, NewClass, Attr); | 
|  |  | 
|  | if (PrevClassTemplate) | 
|  | mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); | 
|  |  | 
|  | AddPushedVisibilityAttribute(NewClass); | 
|  |  | 
|  | if (TUK != TUK_Friend) { | 
|  | // Per C++ [basic.scope.temp]p2, skip the template parameter scopes. | 
|  | Scope *Outer = S; | 
|  | while ((Outer->getFlags() & Scope::TemplateParamScope) != 0) | 
|  | Outer = Outer->getParent(); | 
|  | PushOnScopeChains(NewTemplate, Outer); | 
|  | } else { | 
|  | if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { | 
|  | NewTemplate->setAccess(PrevClassTemplate->getAccess()); | 
|  | NewClass->setAccess(PrevClassTemplate->getAccess()); | 
|  | } | 
|  |  | 
|  | NewTemplate->setObjectOfFriendDecl(); | 
|  |  | 
|  | // Friend templates are visible in fairly strange ways. | 
|  | if (!CurContext->isDependentContext()) { | 
|  | DeclContext *DC = SemanticContext->getRedeclContext(); | 
|  | DC->makeDeclVisibleInContext(NewTemplate); | 
|  | if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) | 
|  | PushOnScopeChains(NewTemplate, EnclosingScope, | 
|  | /* AddToContext = */ false); | 
|  | } | 
|  |  | 
|  | FriendDecl *Friend = FriendDecl::Create( | 
|  | Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc); | 
|  | Friend->setAccess(AS_public); | 
|  | CurContext->addDecl(Friend); | 
|  | } | 
|  |  | 
|  | if (PrevClassTemplate) | 
|  | CheckRedeclarationModuleOwnership(NewTemplate, PrevClassTemplate); | 
|  |  | 
|  | if (Invalid) { | 
|  | NewTemplate->setInvalidDecl(); | 
|  | NewClass->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | ActOnDocumentableDecl(NewTemplate); | 
|  |  | 
|  | return NewTemplate; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// Tree transform to "extract" a transformed type from a class template's | 
|  | /// constructor to a deduction guide. | 
|  | class ExtractTypeForDeductionGuide | 
|  | : public TreeTransform<ExtractTypeForDeductionGuide> { | 
|  | public: | 
|  | typedef TreeTransform<ExtractTypeForDeductionGuide> Base; | 
|  | ExtractTypeForDeductionGuide(Sema &SemaRef) : Base(SemaRef) {} | 
|  |  | 
|  | TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); } | 
|  |  | 
|  | QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) { | 
|  | return TransformType( | 
|  | TLB, | 
|  | TL.getTypedefNameDecl()->getTypeSourceInfo()->getTypeLoc()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Transform to convert portions of a constructor declaration into the | 
|  | /// corresponding deduction guide, per C++1z [over.match.class.deduct]p1. | 
|  | struct ConvertConstructorToDeductionGuideTransform { | 
|  | ConvertConstructorToDeductionGuideTransform(Sema &S, | 
|  | ClassTemplateDecl *Template) | 
|  | : SemaRef(S), Template(Template) {} | 
|  |  | 
|  | Sema &SemaRef; | 
|  | ClassTemplateDecl *Template; | 
|  |  | 
|  | DeclContext *DC = Template->getDeclContext(); | 
|  | CXXRecordDecl *Primary = Template->getTemplatedDecl(); | 
|  | DeclarationName DeductionGuideName = | 
|  | SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template); | 
|  |  | 
|  | QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary); | 
|  |  | 
|  | // Index adjustment to apply to convert depth-1 template parameters into | 
|  | // depth-0 template parameters. | 
|  | unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size(); | 
|  |  | 
|  | /// Transform a constructor declaration into a deduction guide. | 
|  | NamedDecl *transformConstructor(FunctionTemplateDecl *FTD, | 
|  | CXXConstructorDecl *CD) { | 
|  | SmallVector<TemplateArgument, 16> SubstArgs; | 
|  |  | 
|  | LocalInstantiationScope Scope(SemaRef); | 
|  |  | 
|  | // C++ [over.match.class.deduct]p1: | 
|  | // -- For each constructor of the class template designated by the | 
|  | //    template-name, a function template with the following properties: | 
|  |  | 
|  | //    -- The template parameters are the template parameters of the class | 
|  | //       template followed by the template parameters (including default | 
|  | //       template arguments) of the constructor, if any. | 
|  | TemplateParameterList *TemplateParams = Template->getTemplateParameters(); | 
|  | if (FTD) { | 
|  | TemplateParameterList *InnerParams = FTD->getTemplateParameters(); | 
|  | SmallVector<NamedDecl *, 16> AllParams; | 
|  | AllParams.reserve(TemplateParams->size() + InnerParams->size()); | 
|  | AllParams.insert(AllParams.begin(), | 
|  | TemplateParams->begin(), TemplateParams->end()); | 
|  | SubstArgs.reserve(InnerParams->size()); | 
|  |  | 
|  | // Later template parameters could refer to earlier ones, so build up | 
|  | // a list of substituted template arguments as we go. | 
|  | for (NamedDecl *Param : *InnerParams) { | 
|  | MultiLevelTemplateArgumentList Args; | 
|  | Args.addOuterTemplateArguments(SubstArgs); | 
|  | Args.addOuterRetainedLevel(); | 
|  | NamedDecl *NewParam = transformTemplateParameter(Param, Args); | 
|  | if (!NewParam) | 
|  | return nullptr; | 
|  | AllParams.push_back(NewParam); | 
|  | SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument( | 
|  | SemaRef.Context.getInjectedTemplateArg(NewParam))); | 
|  | } | 
|  | TemplateParams = TemplateParameterList::Create( | 
|  | SemaRef.Context, InnerParams->getTemplateLoc(), | 
|  | InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(), | 
|  | /*FIXME: RequiresClause*/ nullptr); | 
|  | } | 
|  |  | 
|  | // If we built a new template-parameter-list, track that we need to | 
|  | // substitute references to the old parameters into references to the | 
|  | // new ones. | 
|  | MultiLevelTemplateArgumentList Args; | 
|  | if (FTD) { | 
|  | Args.addOuterTemplateArguments(SubstArgs); | 
|  | Args.addOuterRetainedLevel(); | 
|  | } | 
|  |  | 
|  | FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc() | 
|  | .getAsAdjusted<FunctionProtoTypeLoc>(); | 
|  | assert(FPTL && "no prototype for constructor declaration"); | 
|  |  | 
|  | // Transform the type of the function, adjusting the return type and | 
|  | // replacing references to the old parameters with references to the | 
|  | // new ones. | 
|  | TypeLocBuilder TLB; | 
|  | SmallVector<ParmVarDecl*, 8> Params; | 
|  | QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args); | 
|  | if (NewType.isNull()) | 
|  | return nullptr; | 
|  | TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType); | 
|  |  | 
|  | return buildDeductionGuide(TemplateParams, CD->isExplicit(), NewTInfo, | 
|  | CD->getLocStart(), CD->getLocation(), | 
|  | CD->getLocEnd()); | 
|  | } | 
|  |  | 
|  | /// Build a deduction guide with the specified parameter types. | 
|  | NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) { | 
|  | SourceLocation Loc = Template->getLocation(); | 
|  |  | 
|  | // Build the requested type. | 
|  | FunctionProtoType::ExtProtoInfo EPI; | 
|  | EPI.HasTrailingReturn = true; | 
|  | QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc, | 
|  | DeductionGuideName, EPI); | 
|  | TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc); | 
|  |  | 
|  | FunctionProtoTypeLoc FPTL = | 
|  | TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>(); | 
|  |  | 
|  | // Build the parameters, needed during deduction / substitution. | 
|  | SmallVector<ParmVarDecl*, 4> Params; | 
|  | for (auto T : ParamTypes) { | 
|  | ParmVarDecl *NewParam = ParmVarDecl::Create( | 
|  | SemaRef.Context, DC, Loc, Loc, nullptr, T, | 
|  | SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr); | 
|  | NewParam->setScopeInfo(0, Params.size()); | 
|  | FPTL.setParam(Params.size(), NewParam); | 
|  | Params.push_back(NewParam); | 
|  | } | 
|  |  | 
|  | return buildDeductionGuide(Template->getTemplateParameters(), false, TSI, | 
|  | Loc, Loc, Loc); | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// Transform a constructor template parameter into a deduction guide template | 
|  | /// parameter, rebuilding any internal references to earlier parameters and | 
|  | /// renumbering as we go. | 
|  | NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam, | 
|  | MultiLevelTemplateArgumentList &Args) { | 
|  | if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) { | 
|  | // TemplateTypeParmDecl's index cannot be changed after creation, so | 
|  | // substitute it directly. | 
|  | auto *NewTTP = TemplateTypeParmDecl::Create( | 
|  | SemaRef.Context, DC, TTP->getLocStart(), TTP->getLocation(), | 
|  | /*Depth*/0, Depth1IndexAdjustment + TTP->getIndex(), | 
|  | TTP->getIdentifier(), TTP->wasDeclaredWithTypename(), | 
|  | TTP->isParameterPack()); | 
|  | if (TTP->hasDefaultArgument()) { | 
|  | TypeSourceInfo *InstantiatedDefaultArg = | 
|  | SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args, | 
|  | TTP->getDefaultArgumentLoc(), TTP->getDeclName()); | 
|  | if (InstantiatedDefaultArg) | 
|  | NewTTP->setDefaultArgument(InstantiatedDefaultArg); | 
|  | } | 
|  | SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam, | 
|  | NewTTP); | 
|  | return NewTTP; | 
|  | } | 
|  |  | 
|  | if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam)) | 
|  | return transformTemplateParameterImpl(TTP, Args); | 
|  |  | 
|  | return transformTemplateParameterImpl( | 
|  | cast<NonTypeTemplateParmDecl>(TemplateParam), Args); | 
|  | } | 
|  | template<typename TemplateParmDecl> | 
|  | TemplateParmDecl * | 
|  | transformTemplateParameterImpl(TemplateParmDecl *OldParam, | 
|  | MultiLevelTemplateArgumentList &Args) { | 
|  | // Ask the template instantiator to do the heavy lifting for us, then adjust | 
|  | // the index of the parameter once it's done. | 
|  | auto *NewParam = | 
|  | cast_or_null<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args)); | 
|  | assert(NewParam->getDepth() == 0 && "unexpected template param depth"); | 
|  | NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment); | 
|  | return NewParam; | 
|  | } | 
|  |  | 
|  | QualType transformFunctionProtoType(TypeLocBuilder &TLB, | 
|  | FunctionProtoTypeLoc TL, | 
|  | SmallVectorImpl<ParmVarDecl*> &Params, | 
|  | MultiLevelTemplateArgumentList &Args) { | 
|  | SmallVector<QualType, 4> ParamTypes; | 
|  | const FunctionProtoType *T = TL.getTypePtr(); | 
|  |  | 
|  | //    -- The types of the function parameters are those of the constructor. | 
|  | for (auto *OldParam : TL.getParams()) { | 
|  | ParmVarDecl *NewParam = transformFunctionTypeParam(OldParam, Args); | 
|  | if (!NewParam) | 
|  | return QualType(); | 
|  | ParamTypes.push_back(NewParam->getType()); | 
|  | Params.push_back(NewParam); | 
|  | } | 
|  |  | 
|  | //    -- The return type is the class template specialization designated by | 
|  | //       the template-name and template arguments corresponding to the | 
|  | //       template parameters obtained from the class template. | 
|  | // | 
|  | // We use the injected-class-name type of the primary template instead. | 
|  | // This has the convenient property that it is different from any type that | 
|  | // the user can write in a deduction-guide (because they cannot enter the | 
|  | // context of the template), so implicit deduction guides can never collide | 
|  | // with explicit ones. | 
|  | QualType ReturnType = DeducedType; | 
|  | TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation()); | 
|  |  | 
|  | // Resolving a wording defect, we also inherit the variadicness of the | 
|  | // constructor. | 
|  | FunctionProtoType::ExtProtoInfo EPI; | 
|  | EPI.Variadic = T->isVariadic(); | 
|  | EPI.HasTrailingReturn = true; | 
|  |  | 
|  | QualType Result = SemaRef.BuildFunctionType( | 
|  | ReturnType, ParamTypes, TL.getLocStart(), DeductionGuideName, EPI); | 
|  | if (Result.isNull()) | 
|  | return QualType(); | 
|  |  | 
|  | FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result); | 
|  | NewTL.setLocalRangeBegin(TL.getLocalRangeBegin()); | 
|  | NewTL.setLParenLoc(TL.getLParenLoc()); | 
|  | NewTL.setRParenLoc(TL.getRParenLoc()); | 
|  | NewTL.setExceptionSpecRange(SourceRange()); | 
|  | NewTL.setLocalRangeEnd(TL.getLocalRangeEnd()); | 
|  | for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I) | 
|  | NewTL.setParam(I, Params[I]); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | ParmVarDecl * | 
|  | transformFunctionTypeParam(ParmVarDecl *OldParam, | 
|  | MultiLevelTemplateArgumentList &Args) { | 
|  | TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo(); | 
|  | TypeSourceInfo *NewDI; | 
|  | if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) { | 
|  | // Expand out the one and only element in each inner pack. | 
|  | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0); | 
|  | NewDI = | 
|  | SemaRef.SubstType(PackTL.getPatternLoc(), Args, | 
|  | OldParam->getLocation(), OldParam->getDeclName()); | 
|  | if (!NewDI) return nullptr; | 
|  | NewDI = | 
|  | SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(), | 
|  | PackTL.getTypePtr()->getNumExpansions()); | 
|  | } else | 
|  | NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(), | 
|  | OldParam->getDeclName()); | 
|  | if (!NewDI) | 
|  | return nullptr; | 
|  |  | 
|  | // Extract the type. This (for instance) replaces references to typedef | 
|  | // members of the current instantiations with the definitions of those | 
|  | // typedefs, avoiding triggering instantiation of the deduced type during | 
|  | // deduction. | 
|  | NewDI = ExtractTypeForDeductionGuide(SemaRef).transform(NewDI); | 
|  |  | 
|  | // Resolving a wording defect, we also inherit default arguments from the | 
|  | // constructor. | 
|  | ExprResult NewDefArg; | 
|  | if (OldParam->hasDefaultArg()) { | 
|  | NewDefArg = SemaRef.SubstExpr(OldParam->getDefaultArg(), Args); | 
|  | if (NewDefArg.isInvalid()) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC, | 
|  | OldParam->getInnerLocStart(), | 
|  | OldParam->getLocation(), | 
|  | OldParam->getIdentifier(), | 
|  | NewDI->getType(), | 
|  | NewDI, | 
|  | OldParam->getStorageClass(), | 
|  | NewDefArg.get()); | 
|  | NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(), | 
|  | OldParam->getFunctionScopeIndex()); | 
|  | SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam); | 
|  | return NewParam; | 
|  | } | 
|  |  | 
|  | NamedDecl *buildDeductionGuide(TemplateParameterList *TemplateParams, | 
|  | bool Explicit, TypeSourceInfo *TInfo, | 
|  | SourceLocation LocStart, SourceLocation Loc, | 
|  | SourceLocation LocEnd) { | 
|  | DeclarationNameInfo Name(DeductionGuideName, Loc); | 
|  | ArrayRef<ParmVarDecl *> Params = | 
|  | TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams(); | 
|  |  | 
|  | // Build the implicit deduction guide template. | 
|  | auto *Guide = | 
|  | CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, Explicit, | 
|  | Name, TInfo->getType(), TInfo, LocEnd); | 
|  | Guide->setImplicit(); | 
|  | Guide->setParams(Params); | 
|  |  | 
|  | for (auto *Param : Params) | 
|  | Param->setDeclContext(Guide); | 
|  |  | 
|  | auto *GuideTemplate = FunctionTemplateDecl::Create( | 
|  | SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide); | 
|  | GuideTemplate->setImplicit(); | 
|  | Guide->setDescribedFunctionTemplate(GuideTemplate); | 
|  |  | 
|  | if (isa<CXXRecordDecl>(DC)) { | 
|  | Guide->setAccess(AS_public); | 
|  | GuideTemplate->setAccess(AS_public); | 
|  | } | 
|  |  | 
|  | DC->addDecl(GuideTemplate); | 
|  | return GuideTemplate; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template, | 
|  | SourceLocation Loc) { | 
|  | DeclContext *DC = Template->getDeclContext(); | 
|  | if (DC->isDependentContext()) | 
|  | return; | 
|  |  | 
|  | ConvertConstructorToDeductionGuideTransform Transform( | 
|  | *this, cast<ClassTemplateDecl>(Template)); | 
|  | if (!isCompleteType(Loc, Transform.DeducedType)) | 
|  | return; | 
|  |  | 
|  | // Check whether we've already declared deduction guides for this template. | 
|  | // FIXME: Consider storing a flag on the template to indicate this. | 
|  | auto Existing = DC->lookup(Transform.DeductionGuideName); | 
|  | for (auto *D : Existing) | 
|  | if (D->isImplicit()) | 
|  | return; | 
|  |  | 
|  | // In case we were expanding a pack when we attempted to declare deduction | 
|  | // guides, turn off pack expansion for everything we're about to do. | 
|  | ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1); | 
|  | // Create a template instantiation record to track the "instantiation" of | 
|  | // constructors into deduction guides. | 
|  | // FIXME: Add a kind for this to give more meaningful diagnostics. But can | 
|  | // this substitution process actually fail? | 
|  | InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template); | 
|  | if (BuildingDeductionGuides.isInvalid()) | 
|  | return; | 
|  |  | 
|  | // Convert declared constructors into deduction guide templates. | 
|  | // FIXME: Skip constructors for which deduction must necessarily fail (those | 
|  | // for which some class template parameter without a default argument never | 
|  | // appears in a deduced context). | 
|  | bool AddedAny = false; | 
|  | for (NamedDecl *D : LookupConstructors(Transform.Primary)) { | 
|  | D = D->getUnderlyingDecl(); | 
|  | if (D->isInvalidDecl() || D->isImplicit()) | 
|  | continue; | 
|  | D = cast<NamedDecl>(D->getCanonicalDecl()); | 
|  |  | 
|  | auto *FTD = dyn_cast<FunctionTemplateDecl>(D); | 
|  | auto *CD = | 
|  | dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D); | 
|  | // Class-scope explicit specializations (MS extension) do not result in | 
|  | // deduction guides. | 
|  | if (!CD || (!FTD && CD->isFunctionTemplateSpecialization())) | 
|  | continue; | 
|  |  | 
|  | Transform.transformConstructor(FTD, CD); | 
|  | AddedAny = true; | 
|  | } | 
|  |  | 
|  | // C++17 [over.match.class.deduct] | 
|  | //    --  If C is not defined or does not declare any constructors, an | 
|  | //    additional function template derived as above from a hypothetical | 
|  | //    constructor C(). | 
|  | if (!AddedAny) | 
|  | Transform.buildSimpleDeductionGuide(None); | 
|  |  | 
|  | //    -- An additional function template derived as above from a hypothetical | 
|  | //    constructor C(C), called the copy deduction candidate. | 
|  | cast<CXXDeductionGuideDecl>( | 
|  | cast<FunctionTemplateDecl>( | 
|  | Transform.buildSimpleDeductionGuide(Transform.DeducedType)) | 
|  | ->getTemplatedDecl()) | 
|  | ->setIsCopyDeductionCandidate(); | 
|  | } | 
|  |  | 
|  | /// Diagnose the presence of a default template argument on a | 
|  | /// template parameter, which is ill-formed in certain contexts. | 
|  | /// | 
|  | /// \returns true if the default template argument should be dropped. | 
|  | static bool DiagnoseDefaultTemplateArgument(Sema &S, | 
|  | Sema::TemplateParamListContext TPC, | 
|  | SourceLocation ParamLoc, | 
|  | SourceRange DefArgRange) { | 
|  | switch (TPC) { | 
|  | case Sema::TPC_ClassTemplate: | 
|  | case Sema::TPC_VarTemplate: | 
|  | case Sema::TPC_TypeAliasTemplate: | 
|  | return false; | 
|  |  | 
|  | case Sema::TPC_FunctionTemplate: | 
|  | case Sema::TPC_FriendFunctionTemplateDefinition: | 
|  | // C++ [temp.param]p9: | 
|  | //   A default template-argument shall not be specified in a | 
|  | //   function template declaration or a function template | 
|  | //   definition [...] | 
|  | //   If a friend function template declaration specifies a default | 
|  | //   template-argument, that declaration shall be a definition and shall be | 
|  | //   the only declaration of the function template in the translation unit. | 
|  | // (C++98/03 doesn't have this wording; see DR226). | 
|  | S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ? | 
|  | diag::warn_cxx98_compat_template_parameter_default_in_function_template | 
|  | : diag::ext_template_parameter_default_in_function_template) | 
|  | << DefArgRange; | 
|  | return false; | 
|  |  | 
|  | case Sema::TPC_ClassTemplateMember: | 
|  | // C++0x [temp.param]p9: | 
|  | //   A default template-argument shall not be specified in the | 
|  | //   template-parameter-lists of the definition of a member of a | 
|  | //   class template that appears outside of the member's class. | 
|  | S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) | 
|  | << DefArgRange; | 
|  | return true; | 
|  |  | 
|  | case Sema::TPC_FriendClassTemplate: | 
|  | case Sema::TPC_FriendFunctionTemplate: | 
|  | // C++ [temp.param]p9: | 
|  | //   A default template-argument shall not be specified in a | 
|  | //   friend template declaration. | 
|  | S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) | 
|  | << DefArgRange; | 
|  | return true; | 
|  |  | 
|  | // FIXME: C++0x [temp.param]p9 allows default template-arguments | 
|  | // for friend function templates if there is only a single | 
|  | // declaration (and it is a definition). Strange! | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid TemplateParamListContext!"); | 
|  | } | 
|  |  | 
|  | /// Check for unexpanded parameter packs within the template parameters | 
|  | /// of a template template parameter, recursively. | 
|  | static bool DiagnoseUnexpandedParameterPacks(Sema &S, | 
|  | TemplateTemplateParmDecl *TTP) { | 
|  | // A template template parameter which is a parameter pack is also a pack | 
|  | // expansion. | 
|  | if (TTP->isParameterPack()) | 
|  | return false; | 
|  |  | 
|  | TemplateParameterList *Params = TTP->getTemplateParameters(); | 
|  | for (unsigned I = 0, N = Params->size(); I != N; ++I) { | 
|  | NamedDecl *P = Params->getParam(I); | 
|  | if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { | 
|  | if (!NTTP->isParameterPack() && | 
|  | S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), | 
|  | NTTP->getTypeSourceInfo(), | 
|  | Sema::UPPC_NonTypeTemplateParameterType)) | 
|  | return true; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (TemplateTemplateParmDecl *InnerTTP | 
|  | = dyn_cast<TemplateTemplateParmDecl>(P)) | 
|  | if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Checks the validity of a template parameter list, possibly | 
|  | /// considering the template parameter list from a previous | 
|  | /// declaration. | 
|  | /// | 
|  | /// If an "old" template parameter list is provided, it must be | 
|  | /// equivalent (per TemplateParameterListsAreEqual) to the "new" | 
|  | /// template parameter list. | 
|  | /// | 
|  | /// \param NewParams Template parameter list for a new template | 
|  | /// declaration. This template parameter list will be updated with any | 
|  | /// default arguments that are carried through from the previous | 
|  | /// template parameter list. | 
|  | /// | 
|  | /// \param OldParams If provided, template parameter list from a | 
|  | /// previous declaration of the same template. Default template | 
|  | /// arguments will be merged from the old template parameter list to | 
|  | /// the new template parameter list. | 
|  | /// | 
|  | /// \param TPC Describes the context in which we are checking the given | 
|  | /// template parameter list. | 
|  | /// | 
|  | /// \returns true if an error occurred, false otherwise. | 
|  | bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, | 
|  | TemplateParameterList *OldParams, | 
|  | TemplateParamListContext TPC) { | 
|  | bool Invalid = false; | 
|  |  | 
|  | // C++ [temp.param]p10: | 
|  | //   The set of default template-arguments available for use with a | 
|  | //   template declaration or definition is obtained by merging the | 
|  | //   default arguments from the definition (if in scope) and all | 
|  | //   declarations in scope in the same way default function | 
|  | //   arguments are (8.3.6). | 
|  | bool SawDefaultArgument = false; | 
|  | SourceLocation PreviousDefaultArgLoc; | 
|  |  | 
|  | // Dummy initialization to avoid warnings. | 
|  | TemplateParameterList::iterator OldParam = NewParams->end(); | 
|  | if (OldParams) | 
|  | OldParam = OldParams->begin(); | 
|  |  | 
|  | bool RemoveDefaultArguments = false; | 
|  | for (TemplateParameterList::iterator NewParam = NewParams->begin(), | 
|  | NewParamEnd = NewParams->end(); | 
|  | NewParam != NewParamEnd; ++NewParam) { | 
|  | // Variables used to diagnose redundant default arguments | 
|  | bool RedundantDefaultArg = false; | 
|  | SourceLocation OldDefaultLoc; | 
|  | SourceLocation NewDefaultLoc; | 
|  |  | 
|  | // Variable used to diagnose missing default arguments | 
|  | bool MissingDefaultArg = false; | 
|  |  | 
|  | // Variable used to diagnose non-final parameter packs | 
|  | bool SawParameterPack = false; | 
|  |  | 
|  | if (TemplateTypeParmDecl *NewTypeParm | 
|  | = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { | 
|  | // Check the presence of a default argument here. | 
|  | if (NewTypeParm->hasDefaultArgument() && | 
|  | DiagnoseDefaultTemplateArgument(*this, TPC, | 
|  | NewTypeParm->getLocation(), | 
|  | NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() | 
|  | .getSourceRange())) | 
|  | NewTypeParm->removeDefaultArgument(); | 
|  |  | 
|  | // Merge default arguments for template type parameters. | 
|  | TemplateTypeParmDecl *OldTypeParm | 
|  | = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr; | 
|  | if (NewTypeParm->isParameterPack()) { | 
|  | assert(!NewTypeParm->hasDefaultArgument() && | 
|  | "Parameter packs can't have a default argument!"); | 
|  | SawParameterPack = true; | 
|  | } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) && | 
|  | NewTypeParm->hasDefaultArgument()) { | 
|  | OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); | 
|  | NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); | 
|  | SawDefaultArgument = true; | 
|  | RedundantDefaultArg = true; | 
|  | PreviousDefaultArgLoc = NewDefaultLoc; | 
|  | } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { | 
|  | // Merge the default argument from the old declaration to the | 
|  | // new declaration. | 
|  | NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm); | 
|  | PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); | 
|  | } else if (NewTypeParm->hasDefaultArgument()) { | 
|  | SawDefaultArgument = true; | 
|  | PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); | 
|  | } else if (SawDefaultArgument) | 
|  | MissingDefaultArg = true; | 
|  | } else if (NonTypeTemplateParmDecl *NewNonTypeParm | 
|  | = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { | 
|  | // Check for unexpanded parameter packs. | 
|  | if (!NewNonTypeParm->isParameterPack() && | 
|  | DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), | 
|  | NewNonTypeParm->getTypeSourceInfo(), | 
|  | UPPC_NonTypeTemplateParameterType)) { | 
|  | Invalid = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check the presence of a default argument here. | 
|  | if (NewNonTypeParm->hasDefaultArgument() && | 
|  | DiagnoseDefaultTemplateArgument(*this, TPC, | 
|  | NewNonTypeParm->getLocation(), | 
|  | NewNonTypeParm->getDefaultArgument()->getSourceRange())) { | 
|  | NewNonTypeParm->removeDefaultArgument(); | 
|  | } | 
|  |  | 
|  | // Merge default arguments for non-type template parameters | 
|  | NonTypeTemplateParmDecl *OldNonTypeParm | 
|  | = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr; | 
|  | if (NewNonTypeParm->isParameterPack()) { | 
|  | assert(!NewNonTypeParm->hasDefaultArgument() && | 
|  | "Parameter packs can't have a default argument!"); | 
|  | if (!NewNonTypeParm->isPackExpansion()) | 
|  | SawParameterPack = true; | 
|  | } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) && | 
|  | NewNonTypeParm->hasDefaultArgument()) { | 
|  | OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); | 
|  | NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); | 
|  | SawDefaultArgument = true; | 
|  | RedundantDefaultArg = true; | 
|  | PreviousDefaultArgLoc = NewDefaultLoc; | 
|  | } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { | 
|  | // Merge the default argument from the old declaration to the | 
|  | // new declaration. | 
|  | NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm); | 
|  | PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); | 
|  | } else if (NewNonTypeParm->hasDefaultArgument()) { | 
|  | SawDefaultArgument = true; | 
|  | PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); | 
|  | } else if (SawDefaultArgument) | 
|  | MissingDefaultArg = true; | 
|  | } else { | 
|  | TemplateTemplateParmDecl *NewTemplateParm | 
|  | = cast<TemplateTemplateParmDecl>(*NewParam); | 
|  |  | 
|  | // Check for unexpanded parameter packs, recursively. | 
|  | if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { | 
|  | Invalid = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check the presence of a default argument here. | 
|  | if (NewTemplateParm->hasDefaultArgument() && | 
|  | DiagnoseDefaultTemplateArgument(*this, TPC, | 
|  | NewTemplateParm->getLocation(), | 
|  | NewTemplateParm->getDefaultArgument().getSourceRange())) | 
|  | NewTemplateParm->removeDefaultArgument(); | 
|  |  | 
|  | // Merge default arguments for template template parameters | 
|  | TemplateTemplateParmDecl *OldTemplateParm | 
|  | = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr; | 
|  | if (NewTemplateParm->isParameterPack()) { | 
|  | assert(!NewTemplateParm->hasDefaultArgument() && | 
|  | "Parameter packs can't have a default argument!"); | 
|  | if (!NewTemplateParm->isPackExpansion()) | 
|  | SawParameterPack = true; | 
|  | } else if (OldTemplateParm && | 
|  | hasVisibleDefaultArgument(OldTemplateParm) && | 
|  | NewTemplateParm->hasDefaultArgument()) { | 
|  | OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); | 
|  | NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); | 
|  | SawDefaultArgument = true; | 
|  | RedundantDefaultArg = true; | 
|  | PreviousDefaultArgLoc = NewDefaultLoc; | 
|  | } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { | 
|  | // Merge the default argument from the old declaration to the | 
|  | // new declaration. | 
|  | NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm); | 
|  | PreviousDefaultArgLoc | 
|  | = OldTemplateParm->getDefaultArgument().getLocation(); | 
|  | } else if (NewTemplateParm->hasDefaultArgument()) { | 
|  | SawDefaultArgument = true; | 
|  | PreviousDefaultArgLoc | 
|  | = NewTemplateParm->getDefaultArgument().getLocation(); | 
|  | } else if (SawDefaultArgument) | 
|  | MissingDefaultArg = true; | 
|  | } | 
|  |  | 
|  | // C++11 [temp.param]p11: | 
|  | //   If a template parameter of a primary class template or alias template | 
|  | //   is a template parameter pack, it shall be the last template parameter. | 
|  | if (SawParameterPack && (NewParam + 1) != NewParamEnd && | 
|  | (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate || | 
|  | TPC == TPC_TypeAliasTemplate)) { | 
|  | Diag((*NewParam)->getLocation(), | 
|  | diag::err_template_param_pack_must_be_last_template_parameter); | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | if (RedundantDefaultArg) { | 
|  | // C++ [temp.param]p12: | 
|  | //   A template-parameter shall not be given default arguments | 
|  | //   by two different declarations in the same scope. | 
|  | Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); | 
|  | Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); | 
|  | Invalid = true; | 
|  | } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { | 
|  | // C++ [temp.param]p11: | 
|  | //   If a template-parameter of a class template has a default | 
|  | //   template-argument, each subsequent template-parameter shall either | 
|  | //   have a default template-argument supplied or be a template parameter | 
|  | //   pack. | 
|  | Diag((*NewParam)->getLocation(), | 
|  | diag::err_template_param_default_arg_missing); | 
|  | Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); | 
|  | Invalid = true; | 
|  | RemoveDefaultArguments = true; | 
|  | } | 
|  |  | 
|  | // If we have an old template parameter list that we're merging | 
|  | // in, move on to the next parameter. | 
|  | if (OldParams) | 
|  | ++OldParam; | 
|  | } | 
|  |  | 
|  | // We were missing some default arguments at the end of the list, so remove | 
|  | // all of the default arguments. | 
|  | if (RemoveDefaultArguments) { | 
|  | for (TemplateParameterList::iterator NewParam = NewParams->begin(), | 
|  | NewParamEnd = NewParams->end(); | 
|  | NewParam != NewParamEnd; ++NewParam) { | 
|  | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) | 
|  | TTP->removeDefaultArgument(); | 
|  | else if (NonTypeTemplateParmDecl *NTTP | 
|  | = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) | 
|  | NTTP->removeDefaultArgument(); | 
|  | else | 
|  | cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Invalid; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// A class which looks for a use of a certain level of template | 
|  | /// parameter. | 
|  | struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { | 
|  | typedef RecursiveASTVisitor<DependencyChecker> super; | 
|  |  | 
|  | unsigned Depth; | 
|  |  | 
|  | // Whether we're looking for a use of a template parameter that makes the | 
|  | // overall construct type-dependent / a dependent type. This is strictly | 
|  | // best-effort for now; we may fail to match at all for a dependent type | 
|  | // in some cases if this is set. | 
|  | bool IgnoreNonTypeDependent; | 
|  |  | 
|  | bool Match; | 
|  | SourceLocation MatchLoc; | 
|  |  | 
|  | DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent) | 
|  | : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent), | 
|  | Match(false) {} | 
|  |  | 
|  | DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent) | 
|  | : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) { | 
|  | NamedDecl *ND = Params->getParam(0); | 
|  | if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { | 
|  | Depth = PD->getDepth(); | 
|  | } else if (NonTypeTemplateParmDecl *PD = | 
|  | dyn_cast<NonTypeTemplateParmDecl>(ND)) { | 
|  | Depth = PD->getDepth(); | 
|  | } else { | 
|  | Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) { | 
|  | if (ParmDepth >= Depth) { | 
|  | Match = true; | 
|  | MatchLoc = Loc; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) { | 
|  | // Prune out non-type-dependent expressions if requested. This can | 
|  | // sometimes result in us failing to find a template parameter reference | 
|  | // (if a value-dependent expression creates a dependent type), but this | 
|  | // mode is best-effort only. | 
|  | if (auto *E = dyn_cast_or_null<Expr>(S)) | 
|  | if (IgnoreNonTypeDependent && !E->isTypeDependent()) | 
|  | return true; | 
|  | return super::TraverseStmt(S, Q); | 
|  | } | 
|  |  | 
|  | bool TraverseTypeLoc(TypeLoc TL) { | 
|  | if (IgnoreNonTypeDependent && !TL.isNull() && | 
|  | !TL.getType()->isDependentType()) | 
|  | return true; | 
|  | return super::TraverseTypeLoc(TL); | 
|  | } | 
|  |  | 
|  | bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { | 
|  | return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc()); | 
|  | } | 
|  |  | 
|  | bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { | 
|  | // For a best-effort search, keep looking until we find a location. | 
|  | return IgnoreNonTypeDependent || !Matches(T->getDepth()); | 
|  | } | 
|  |  | 
|  | bool TraverseTemplateName(TemplateName N) { | 
|  | if (TemplateTemplateParmDecl *PD = | 
|  | dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) | 
|  | if (Matches(PD->getDepth())) | 
|  | return false; | 
|  | return super::TraverseTemplateName(N); | 
|  | } | 
|  |  | 
|  | bool VisitDeclRefExpr(DeclRefExpr *E) { | 
|  | if (NonTypeTemplateParmDecl *PD = | 
|  | dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) | 
|  | if (Matches(PD->getDepth(), E->getExprLoc())) | 
|  | return false; | 
|  | return super::VisitDeclRefExpr(E); | 
|  | } | 
|  |  | 
|  | bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) { | 
|  | return TraverseType(T->getReplacementType()); | 
|  | } | 
|  |  | 
|  | bool | 
|  | VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) { | 
|  | return TraverseTemplateArgument(T->getArgumentPack()); | 
|  | } | 
|  |  | 
|  | bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { | 
|  | return TraverseType(T->getInjectedSpecializationType()); | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Determines whether a given type depends on the given parameter | 
|  | /// list. | 
|  | static bool | 
|  | DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { | 
|  | DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false); | 
|  | Checker.TraverseType(T); | 
|  | return Checker.Match; | 
|  | } | 
|  |  | 
|  | // Find the source range corresponding to the named type in the given | 
|  | // nested-name-specifier, if any. | 
|  | static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, | 
|  | QualType T, | 
|  | const CXXScopeSpec &SS) { | 
|  | NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); | 
|  | while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { | 
|  | if (const Type *CurType = NNS->getAsType()) { | 
|  | if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) | 
|  | return NNSLoc.getTypeLoc().getSourceRange(); | 
|  | } else | 
|  | break; | 
|  |  | 
|  | NNSLoc = NNSLoc.getPrefix(); | 
|  | } | 
|  |  | 
|  | return SourceRange(); | 
|  | } | 
|  |  | 
|  | /// Match the given template parameter lists to the given scope | 
|  | /// specifier, returning the template parameter list that applies to the | 
|  | /// name. | 
|  | /// | 
|  | /// \param DeclStartLoc the start of the declaration that has a scope | 
|  | /// specifier or a template parameter list. | 
|  | /// | 
|  | /// \param DeclLoc The location of the declaration itself. | 
|  | /// | 
|  | /// \param SS the scope specifier that will be matched to the given template | 
|  | /// parameter lists. This scope specifier precedes a qualified name that is | 
|  | /// being declared. | 
|  | /// | 
|  | /// \param TemplateId The template-id following the scope specifier, if there | 
|  | /// is one. Used to check for a missing 'template<>'. | 
|  | /// | 
|  | /// \param ParamLists the template parameter lists, from the outermost to the | 
|  | /// innermost template parameter lists. | 
|  | /// | 
|  | /// \param IsFriend Whether to apply the slightly different rules for | 
|  | /// matching template parameters to scope specifiers in friend | 
|  | /// declarations. | 
|  | /// | 
|  | /// \param IsMemberSpecialization will be set true if the scope specifier | 
|  | /// denotes a fully-specialized type, and therefore this is a declaration of | 
|  | /// a member specialization. | 
|  | /// | 
|  | /// \returns the template parameter list, if any, that corresponds to the | 
|  | /// name that is preceded by the scope specifier @p SS. This template | 
|  | /// parameter list may have template parameters (if we're declaring a | 
|  | /// template) or may have no template parameters (if we're declaring a | 
|  | /// template specialization), or may be NULL (if what we're declaring isn't | 
|  | /// itself a template). | 
|  | TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier( | 
|  | SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS, | 
|  | TemplateIdAnnotation *TemplateId, | 
|  | ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend, | 
|  | bool &IsMemberSpecialization, bool &Invalid) { | 
|  | IsMemberSpecialization = false; | 
|  | Invalid = false; | 
|  |  | 
|  | // The sequence of nested types to which we will match up the template | 
|  | // parameter lists. We first build this list by starting with the type named | 
|  | // by the nested-name-specifier and walking out until we run out of types. | 
|  | SmallVector<QualType, 4> NestedTypes; | 
|  | QualType T; | 
|  | if (SS.getScopeRep()) { | 
|  | if (CXXRecordDecl *Record | 
|  | = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) | 
|  | T = Context.getTypeDeclType(Record); | 
|  | else | 
|  | T = QualType(SS.getScopeRep()->getAsType(), 0); | 
|  | } | 
|  |  | 
|  | // If we found an explicit specialization that prevents us from needing | 
|  | // 'template<>' headers, this will be set to the location of that | 
|  | // explicit specialization. | 
|  | SourceLocation ExplicitSpecLoc; | 
|  |  | 
|  | while (!T.isNull()) { | 
|  | NestedTypes.push_back(T); | 
|  |  | 
|  | // Retrieve the parent of a record type. | 
|  | if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { | 
|  | // If this type is an explicit specialization, we're done. | 
|  | if (ClassTemplateSpecializationDecl *Spec | 
|  | = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { | 
|  | if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && | 
|  | Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { | 
|  | ExplicitSpecLoc = Spec->getLocation(); | 
|  | break; | 
|  | } | 
|  | } else if (Record->getTemplateSpecializationKind() | 
|  | == TSK_ExplicitSpecialization) { | 
|  | ExplicitSpecLoc = Record->getLocation(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) | 
|  | T = Context.getTypeDeclType(Parent); | 
|  | else | 
|  | T = QualType(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (const TemplateSpecializationType *TST | 
|  | = T->getAs<TemplateSpecializationType>()) { | 
|  | if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { | 
|  | if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) | 
|  | T = Context.getTypeDeclType(Parent); | 
|  | else | 
|  | T = QualType(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Look one step prior in a dependent template specialization type. | 
|  | if (const DependentTemplateSpecializationType *DependentTST | 
|  | = T->getAs<DependentTemplateSpecializationType>()) { | 
|  | if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) | 
|  | T = QualType(NNS->getAsType(), 0); | 
|  | else | 
|  | T = QualType(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Look one step prior in a dependent name type. | 
|  | if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ | 
|  | if (NestedNameSpecifier *NNS = DependentName->getQualifier()) | 
|  | T = QualType(NNS->getAsType(), 0); | 
|  | else | 
|  | T = QualType(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Retrieve the parent of an enumeration type. | 
|  | if (const EnumType *EnumT = T->getAs<EnumType>()) { | 
|  | // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization | 
|  | // check here. | 
|  | EnumDecl *Enum = EnumT->getDecl(); | 
|  |  | 
|  | // Get to the parent type. | 
|  | if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) | 
|  | T = Context.getTypeDeclType(Parent); | 
|  | else | 
|  | T = QualType(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | T = QualType(); | 
|  | } | 
|  | // Reverse the nested types list, since we want to traverse from the outermost | 
|  | // to the innermost while checking template-parameter-lists. | 
|  | std::reverse(NestedTypes.begin(), NestedTypes.end()); | 
|  |  | 
|  | // C++0x [temp.expl.spec]p17: | 
|  | //   A member or a member template may be nested within many | 
|  | //   enclosing class templates. In an explicit specialization for | 
|  | //   such a member, the member declaration shall be preceded by a | 
|  | //   template<> for each enclosing class template that is | 
|  | //   explicitly specialized. | 
|  | bool SawNonEmptyTemplateParameterList = false; | 
|  |  | 
|  | auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) { | 
|  | if (SawNonEmptyTemplateParameterList) { | 
|  | Diag(DeclLoc, diag::err_specialize_member_of_template) | 
|  | << !Recovery << Range; | 
|  | Invalid = true; | 
|  | IsMemberSpecialization = false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) { | 
|  | // Check that we can have an explicit specialization here. | 
|  | if (CheckExplicitSpecialization(Range, true)) | 
|  | return true; | 
|  |  | 
|  | // We don't have a template header, but we should. | 
|  | SourceLocation ExpectedTemplateLoc; | 
|  | if (!ParamLists.empty()) | 
|  | ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); | 
|  | else | 
|  | ExpectedTemplateLoc = DeclStartLoc; | 
|  |  | 
|  | Diag(DeclLoc, diag::err_template_spec_needs_header) | 
|  | << Range | 
|  | << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | unsigned ParamIdx = 0; | 
|  | for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; | 
|  | ++TypeIdx) { | 
|  | T = NestedTypes[TypeIdx]; | 
|  |  | 
|  | // Whether we expect a 'template<>' header. | 
|  | bool NeedEmptyTemplateHeader = false; | 
|  |  | 
|  | // Whether we expect a template header with parameters. | 
|  | bool NeedNonemptyTemplateHeader = false; | 
|  |  | 
|  | // For a dependent type, the set of template parameters that we | 
|  | // expect to see. | 
|  | TemplateParameterList *ExpectedTemplateParams = nullptr; | 
|  |  | 
|  | // C++0x [temp.expl.spec]p15: | 
|  | //   A member or a member template may be nested within many enclosing | 
|  | //   class templates. In an explicit specialization for such a member, the | 
|  | //   member declaration shall be preceded by a template<> for each | 
|  | //   enclosing class template that is explicitly specialized. | 
|  | if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { | 
|  | if (ClassTemplatePartialSpecializationDecl *Partial | 
|  | = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { | 
|  | ExpectedTemplateParams = Partial->getTemplateParameters(); | 
|  | NeedNonemptyTemplateHeader = true; | 
|  | } else if (Record->isDependentType()) { | 
|  | if (Record->getDescribedClassTemplate()) { | 
|  | ExpectedTemplateParams = Record->getDescribedClassTemplate() | 
|  | ->getTemplateParameters(); | 
|  | NeedNonemptyTemplateHeader = true; | 
|  | } | 
|  | } else if (ClassTemplateSpecializationDecl *Spec | 
|  | = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { | 
|  | // C++0x [temp.expl.spec]p4: | 
|  | //   Members of an explicitly specialized class template are defined | 
|  | //   in the same manner as members of normal classes, and not using | 
|  | //   the template<> syntax. | 
|  | if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) | 
|  | NeedEmptyTemplateHeader = true; | 
|  | else | 
|  | continue; | 
|  | } else if (Record->getTemplateSpecializationKind()) { | 
|  | if (Record->getTemplateSpecializationKind() | 
|  | != TSK_ExplicitSpecialization && | 
|  | TypeIdx == NumTypes - 1) | 
|  | IsMemberSpecialization = true; | 
|  |  | 
|  | continue; | 
|  | } | 
|  | } else if (const TemplateSpecializationType *TST | 
|  | = T->getAs<TemplateSpecializationType>()) { | 
|  | if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { | 
|  | ExpectedTemplateParams = Template->getTemplateParameters(); | 
|  | NeedNonemptyTemplateHeader = true; | 
|  | } | 
|  | } else if (T->getAs<DependentTemplateSpecializationType>()) { | 
|  | // FIXME:  We actually could/should check the template arguments here | 
|  | // against the corresponding template parameter list. | 
|  | NeedNonemptyTemplateHeader = false; | 
|  | } | 
|  |  | 
|  | // C++ [temp.expl.spec]p16: | 
|  | //   In an explicit specialization declaration for a member of a class | 
|  | //   template or a member template that ap- pears in namespace scope, the | 
|  | //   member template and some of its enclosing class templates may remain | 
|  | //   unspecialized, except that the declaration shall not explicitly | 
|  | //   specialize a class member template if its en- closing class templates | 
|  | //   are not explicitly specialized as well. | 
|  | if (ParamIdx < ParamLists.size()) { | 
|  | if (ParamLists[ParamIdx]->size() == 0) { | 
|  | if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), | 
|  | false)) | 
|  | return nullptr; | 
|  | } else | 
|  | SawNonEmptyTemplateParameterList = true; | 
|  | } | 
|  |  | 
|  | if (NeedEmptyTemplateHeader) { | 
|  | // If we're on the last of the types, and we need a 'template<>' header | 
|  | // here, then it's a member specialization. | 
|  | if (TypeIdx == NumTypes - 1) | 
|  | IsMemberSpecialization = true; | 
|  |  | 
|  | if (ParamIdx < ParamLists.size()) { | 
|  | if (ParamLists[ParamIdx]->size() > 0) { | 
|  | // The header has template parameters when it shouldn't. Complain. | 
|  | Diag(ParamLists[ParamIdx]->getTemplateLoc(), | 
|  | diag::err_template_param_list_matches_nontemplate) | 
|  | << T | 
|  | << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), | 
|  | ParamLists[ParamIdx]->getRAngleLoc()) | 
|  | << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); | 
|  | Invalid = true; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Consume this template header. | 
|  | ++ParamIdx; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!IsFriend) | 
|  | if (DiagnoseMissingExplicitSpecialization( | 
|  | getRangeOfTypeInNestedNameSpecifier(Context, T, SS))) | 
|  | return nullptr; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (NeedNonemptyTemplateHeader) { | 
|  | // In friend declarations we can have template-ids which don't | 
|  | // depend on the corresponding template parameter lists.  But | 
|  | // assume that empty parameter lists are supposed to match this | 
|  | // template-id. | 
|  | if (IsFriend && T->isDependentType()) { | 
|  | if (ParamIdx < ParamLists.size() && | 
|  | DependsOnTemplateParameters(T, ParamLists[ParamIdx])) | 
|  | ExpectedTemplateParams = nullptr; | 
|  | else | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (ParamIdx < ParamLists.size()) { | 
|  | // Check the template parameter list, if we can. | 
|  | if (ExpectedTemplateParams && | 
|  | !TemplateParameterListsAreEqual(ParamLists[ParamIdx], | 
|  | ExpectedTemplateParams, | 
|  | true, TPL_TemplateMatch)) | 
|  | Invalid = true; | 
|  |  | 
|  | if (!Invalid && | 
|  | CheckTemplateParameterList(ParamLists[ParamIdx], nullptr, | 
|  | TPC_ClassTemplateMember)) | 
|  | Invalid = true; | 
|  |  | 
|  | ++ParamIdx; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) | 
|  | << T | 
|  | << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); | 
|  | Invalid = true; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there were at least as many template-ids as there were template | 
|  | // parameter lists, then there are no template parameter lists remaining for | 
|  | // the declaration itself. | 
|  | if (ParamIdx >= ParamLists.size()) { | 
|  | if (TemplateId && !IsFriend) { | 
|  | // We don't have a template header for the declaration itself, but we | 
|  | // should. | 
|  | DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc, | 
|  | TemplateId->RAngleLoc)); | 
|  |  | 
|  | // Fabricate an empty template parameter list for the invented header. | 
|  | return TemplateParameterList::Create(Context, SourceLocation(), | 
|  | SourceLocation(), None, | 
|  | SourceLocation(), nullptr); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // If there were too many template parameter lists, complain about that now. | 
|  | if (ParamIdx < ParamLists.size() - 1) { | 
|  | bool HasAnyExplicitSpecHeader = false; | 
|  | bool AllExplicitSpecHeaders = true; | 
|  | for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) { | 
|  | if (ParamLists[I]->size() == 0) | 
|  | HasAnyExplicitSpecHeader = true; | 
|  | else | 
|  | AllExplicitSpecHeaders = false; | 
|  | } | 
|  |  | 
|  | Diag(ParamLists[ParamIdx]->getTemplateLoc(), | 
|  | AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers | 
|  | : diag::err_template_spec_extra_headers) | 
|  | << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), | 
|  | ParamLists[ParamLists.size() - 2]->getRAngleLoc()); | 
|  |  | 
|  | // If there was a specialization somewhere, such that 'template<>' is | 
|  | // not required, and there were any 'template<>' headers, note where the | 
|  | // specialization occurred. | 
|  | if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader) | 
|  | Diag(ExplicitSpecLoc, | 
|  | diag::note_explicit_template_spec_does_not_need_header) | 
|  | << NestedTypes.back(); | 
|  |  | 
|  | // We have a template parameter list with no corresponding scope, which | 
|  | // means that the resulting template declaration can't be instantiated | 
|  | // properly (we'll end up with dependent nodes when we shouldn't). | 
|  | if (!AllExplicitSpecHeaders) | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | // C++ [temp.expl.spec]p16: | 
|  | //   In an explicit specialization declaration for a member of a class | 
|  | //   template or a member template that ap- pears in namespace scope, the | 
|  | //   member template and some of its enclosing class templates may remain | 
|  | //   unspecialized, except that the declaration shall not explicitly | 
|  | //   specialize a class member template if its en- closing class templates | 
|  | //   are not explicitly specialized as well. | 
|  | if (ParamLists.back()->size() == 0 && | 
|  | CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), | 
|  | false)) | 
|  | return nullptr; | 
|  |  | 
|  | // Return the last template parameter list, which corresponds to the | 
|  | // entity being declared. | 
|  | return ParamLists.back(); | 
|  | } | 
|  |  | 
|  | void Sema::NoteAllFoundTemplates(TemplateName Name) { | 
|  | if (TemplateDecl *Template = Name.getAsTemplateDecl()) { | 
|  | Diag(Template->getLocation(), diag::note_template_declared_here) | 
|  | << (isa<FunctionTemplateDecl>(Template) | 
|  | ? 0 | 
|  | : isa<ClassTemplateDecl>(Template) | 
|  | ? 1 | 
|  | : isa<VarTemplateDecl>(Template) | 
|  | ? 2 | 
|  | : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4) | 
|  | << Template->getDeclName(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { | 
|  | for (OverloadedTemplateStorage::iterator I = OST->begin(), | 
|  | IEnd = OST->end(); | 
|  | I != IEnd; ++I) | 
|  | Diag((*I)->getLocation(), diag::note_template_declared_here) | 
|  | << 0 << (*I)->getDeclName(); | 
|  |  | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static QualType | 
|  | checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD, | 
|  | const SmallVectorImpl<TemplateArgument> &Converted, | 
|  | SourceLocation TemplateLoc, | 
|  | TemplateArgumentListInfo &TemplateArgs) { | 
|  | ASTContext &Context = SemaRef.getASTContext(); | 
|  | switch (BTD->getBuiltinTemplateKind()) { | 
|  | case BTK__make_integer_seq: { | 
|  | // Specializations of __make_integer_seq<S, T, N> are treated like | 
|  | // S<T, 0, ..., N-1>. | 
|  |  | 
|  | // C++14 [inteseq.intseq]p1: | 
|  | //   T shall be an integer type. | 
|  | if (!Converted[1].getAsType()->isIntegralType(Context)) { | 
|  | SemaRef.Diag(TemplateArgs[1].getLocation(), | 
|  | diag::err_integer_sequence_integral_element_type); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // C++14 [inteseq.make]p1: | 
|  | //   If N is negative the program is ill-formed. | 
|  | TemplateArgument NumArgsArg = Converted[2]; | 
|  | llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); | 
|  | if (NumArgs < 0) { | 
|  | SemaRef.Diag(TemplateArgs[2].getLocation(), | 
|  | diag::err_integer_sequence_negative_length); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | QualType ArgTy = NumArgsArg.getIntegralType(); | 
|  | TemplateArgumentListInfo SyntheticTemplateArgs; | 
|  | // The type argument gets reused as the first template argument in the | 
|  | // synthetic template argument list. | 
|  | SyntheticTemplateArgs.addArgument(TemplateArgs[1]); | 
|  | // Expand N into 0 ... N-1. | 
|  | for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned()); | 
|  | I < NumArgs; ++I) { | 
|  | TemplateArgument TA(Context, I, ArgTy); | 
|  | SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc( | 
|  | TA, ArgTy, TemplateArgs[2].getLocation())); | 
|  | } | 
|  | // The first template argument will be reused as the template decl that | 
|  | // our synthetic template arguments will be applied to. | 
|  | return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(), | 
|  | TemplateLoc, SyntheticTemplateArgs); | 
|  | } | 
|  |  | 
|  | case BTK__type_pack_element: | 
|  | // Specializations of | 
|  | //    __type_pack_element<Index, T_1, ..., T_N> | 
|  | // are treated like T_Index. | 
|  | assert(Converted.size() == 2 && | 
|  | "__type_pack_element should be given an index and a parameter pack"); | 
|  |  | 
|  | // If the Index is out of bounds, the program is ill-formed. | 
|  | TemplateArgument IndexArg = Converted[0], Ts = Converted[1]; | 
|  | llvm::APSInt Index = IndexArg.getAsIntegral(); | 
|  | assert(Index >= 0 && "the index used with __type_pack_element should be of " | 
|  | "type std::size_t, and hence be non-negative"); | 
|  | if (Index >= Ts.pack_size()) { | 
|  | SemaRef.Diag(TemplateArgs[0].getLocation(), | 
|  | diag::err_type_pack_element_out_of_bounds); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // We simply return the type at index `Index`. | 
|  | auto Nth = std::next(Ts.pack_begin(), Index.getExtValue()); | 
|  | return Nth->getAsType(); | 
|  | } | 
|  | llvm_unreachable("unexpected BuiltinTemplateDecl!"); | 
|  | } | 
|  |  | 
|  | /// Determine whether this alias template is "enable_if_t". | 
|  | static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) { | 
|  | return AliasTemplate->getName().equals("enable_if_t"); | 
|  | } | 
|  |  | 
|  | /// Collect all of the separable terms in the given condition, which | 
|  | /// might be a conjunction. | 
|  | /// | 
|  | /// FIXME: The right answer is to convert the logical expression into | 
|  | /// disjunctive normal form, so we can find the first failed term | 
|  | /// within each possible clause. | 
|  | static void collectConjunctionTerms(Expr *Clause, | 
|  | SmallVectorImpl<Expr *> &Terms) { | 
|  | if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) { | 
|  | if (BinOp->getOpcode() == BO_LAnd) { | 
|  | collectConjunctionTerms(BinOp->getLHS(), Terms); | 
|  | collectConjunctionTerms(BinOp->getRHS(), Terms); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | Terms.push_back(Clause); | 
|  | } | 
|  |  | 
|  | // The ranges-v3 library uses an odd pattern of a top-level "||" with | 
|  | // a left-hand side that is value-dependent but never true. Identify | 
|  | // the idiom and ignore that term. | 
|  | static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) { | 
|  | // Top-level '||'. | 
|  | auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts()); | 
|  | if (!BinOp) return Cond; | 
|  |  | 
|  | if (BinOp->getOpcode() != BO_LOr) return Cond; | 
|  |  | 
|  | // With an inner '==' that has a literal on the right-hand side. | 
|  | Expr *LHS = BinOp->getLHS(); | 
|  | auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts()); | 
|  | if (!InnerBinOp) return Cond; | 
|  |  | 
|  | if (InnerBinOp->getOpcode() != BO_EQ || | 
|  | !isa<IntegerLiteral>(InnerBinOp->getRHS())) | 
|  | return Cond; | 
|  |  | 
|  | // If the inner binary operation came from a macro expansion named | 
|  | // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side | 
|  | // of the '||', which is the real, user-provided condition. | 
|  | SourceLocation Loc = InnerBinOp->getExprLoc(); | 
|  | if (!Loc.isMacroID()) return Cond; | 
|  |  | 
|  | StringRef MacroName = PP.getImmediateMacroName(Loc); | 
|  | if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_") | 
|  | return BinOp->getRHS(); | 
|  |  | 
|  | return Cond; | 
|  | } | 
|  |  | 
|  | std::pair<Expr *, std::string> | 
|  | Sema::findFailedBooleanCondition(Expr *Cond, bool AllowTopLevelCond) { | 
|  | Cond = lookThroughRangesV3Condition(PP, Cond); | 
|  |  | 
|  | // Separate out all of the terms in a conjunction. | 
|  | SmallVector<Expr *, 4> Terms; | 
|  | collectConjunctionTerms(Cond, Terms); | 
|  |  | 
|  | // Determine which term failed. | 
|  | Expr *FailedCond = nullptr; | 
|  | for (Expr *Term : Terms) { | 
|  | Expr *TermAsWritten = Term->IgnoreParenImpCasts(); | 
|  |  | 
|  | // Literals are uninteresting. | 
|  | if (isa<CXXBoolLiteralExpr>(TermAsWritten) || | 
|  | isa<IntegerLiteral>(TermAsWritten)) | 
|  | continue; | 
|  |  | 
|  | // The initialization of the parameter from the argument is | 
|  | // a constant-evaluated context. | 
|  | EnterExpressionEvaluationContext ConstantEvaluated( | 
|  | *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); | 
|  |  | 
|  | bool Succeeded; | 
|  | if (Term->EvaluateAsBooleanCondition(Succeeded, Context) && | 
|  | !Succeeded) { | 
|  | FailedCond = TermAsWritten; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!FailedCond) { | 
|  | if (!AllowTopLevelCond) | 
|  | return { nullptr, "" }; | 
|  |  | 
|  | FailedCond = Cond->IgnoreParenImpCasts(); | 
|  | } | 
|  |  | 
|  | std::string Description; | 
|  | { | 
|  | llvm::raw_string_ostream Out(Description); | 
|  | FailedCond->printPretty(Out, nullptr, getPrintingPolicy()); | 
|  | } | 
|  | return { FailedCond, Description }; | 
|  | } | 
|  |  | 
|  | QualType Sema::CheckTemplateIdType(TemplateName Name, | 
|  | SourceLocation TemplateLoc, | 
|  | TemplateArgumentListInfo &TemplateArgs) { | 
|  | DependentTemplateName *DTN | 
|  | = Name.getUnderlying().getAsDependentTemplateName(); | 
|  | if (DTN && DTN->isIdentifier()) | 
|  | // When building a template-id where the template-name is dependent, | 
|  | // assume the template is a type template. Either our assumption is | 
|  | // correct, or the code is ill-formed and will be diagnosed when the | 
|  | // dependent name is substituted. | 
|  | return Context.getDependentTemplateSpecializationType(ETK_None, | 
|  | DTN->getQualifier(), | 
|  | DTN->getIdentifier(), | 
|  | TemplateArgs); | 
|  |  | 
|  | TemplateDecl *Template = Name.getAsTemplateDecl(); | 
|  | if (!Template || isa<FunctionTemplateDecl>(Template) || | 
|  | isa<VarTemplateDecl>(Template)) { | 
|  | // We might have a substituted template template parameter pack. If so, | 
|  | // build a template specialization type for it. | 
|  | if (Name.getAsSubstTemplateTemplateParmPack()) | 
|  | return Context.getTemplateSpecializationType(Name, TemplateArgs); | 
|  |  | 
|  | Diag(TemplateLoc, diag::err_template_id_not_a_type) | 
|  | << Name; | 
|  | NoteAllFoundTemplates(Name); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // Check that the template argument list is well-formed for this | 
|  | // template. | 
|  | SmallVector<TemplateArgument, 4> Converted; | 
|  | if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, | 
|  | false, Converted)) | 
|  | return QualType(); | 
|  |  | 
|  | QualType CanonType; | 
|  |  | 
|  | bool InstantiationDependent = false; | 
|  | if (TypeAliasTemplateDecl *AliasTemplate = | 
|  | dyn_cast<TypeAliasTemplateDecl>(Template)) { | 
|  | // Find the canonical type for this type alias template specialization. | 
|  | TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); | 
|  | if (Pattern->isInvalidDecl()) | 
|  | return QualType(); | 
|  |  | 
|  | TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack, | 
|  | Converted); | 
|  |  | 
|  | // Only substitute for the innermost template argument list. | 
|  | MultiLevelTemplateArgumentList TemplateArgLists; | 
|  | TemplateArgLists.addOuterTemplateArguments(&StackTemplateArgs); | 
|  | unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); | 
|  | for (unsigned I = 0; I < Depth; ++I) | 
|  | TemplateArgLists.addOuterTemplateArguments(None); | 
|  |  | 
|  | LocalInstantiationScope Scope(*this); | 
|  | InstantiatingTemplate Inst(*this, TemplateLoc, Template); | 
|  | if (Inst.isInvalid()) | 
|  | return QualType(); | 
|  |  | 
|  | CanonType = SubstType(Pattern->getUnderlyingType(), | 
|  | TemplateArgLists, AliasTemplate->getLocation(), | 
|  | AliasTemplate->getDeclName()); | 
|  | if (CanonType.isNull()) { | 
|  | // If this was enable_if and we failed to find the nested type | 
|  | // within enable_if in a SFINAE context, dig out the specific | 
|  | // enable_if condition that failed and present that instead. | 
|  | if (isEnableIfAliasTemplate(AliasTemplate)) { | 
|  | if (auto DeductionInfo = isSFINAEContext()) { | 
|  | if (*DeductionInfo && | 
|  | (*DeductionInfo)->hasSFINAEDiagnostic() && | 
|  | (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() == | 
|  | diag::err_typename_nested_not_found_enable_if && | 
|  | TemplateArgs[0].getArgument().getKind() | 
|  | == TemplateArgument::Expression) { | 
|  | Expr *FailedCond; | 
|  | std::string FailedDescription; | 
|  | std::tie(FailedCond, FailedDescription) = | 
|  | findFailedBooleanCondition( | 
|  | TemplateArgs[0].getSourceExpression(), | 
|  | /*AllowTopLevelCond=*/true); | 
|  |  | 
|  | // Remove the old SFINAE diagnostic. | 
|  | PartialDiagnosticAt OldDiag = | 
|  | {SourceLocation(), PartialDiagnostic::NullDiagnostic()}; | 
|  | (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag); | 
|  |  | 
|  | // Add a new SFINAE diagnostic specifying which condition | 
|  | // failed. | 
|  | (*DeductionInfo)->addSFINAEDiagnostic( | 
|  | OldDiag.first, | 
|  | PDiag(diag::err_typename_nested_not_found_requirement) | 
|  | << FailedDescription | 
|  | << FailedCond->getSourceRange()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return QualType(); | 
|  | } | 
|  | } else if (Name.isDependent() || | 
|  | TemplateSpecializationType::anyDependentTemplateArguments( | 
|  | TemplateArgs, InstantiationDependent)) { | 
|  | // This class template specialization is a dependent | 
|  | // type. Therefore, its canonical type is another class template | 
|  | // specialization type that contains all of the converted | 
|  | // arguments in canonical form. This ensures that, e.g., A<T> and | 
|  | // A<T, T> have identical types when A is declared as: | 
|  | // | 
|  | //   template<typename T, typename U = T> struct A; | 
|  | CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted); | 
|  |  | 
|  | // This might work out to be a current instantiation, in which | 
|  | // case the canonical type needs to be the InjectedClassNameType. | 
|  | // | 
|  | // TODO: in theory this could be a simple hashtable lookup; most | 
|  | // changes to CurContext don't change the set of current | 
|  | // instantiations. | 
|  | if (isa<ClassTemplateDecl>(Template)) { | 
|  | for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { | 
|  | // If we get out to a namespace, we're done. | 
|  | if (Ctx->isFileContext()) break; | 
|  |  | 
|  | // If this isn't a record, keep looking. | 
|  | CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); | 
|  | if (!Record) continue; | 
|  |  | 
|  | // Look for one of the two cases with InjectedClassNameTypes | 
|  | // and check whether it's the same template. | 
|  | if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && | 
|  | !Record->getDescribedClassTemplate()) | 
|  | continue; | 
|  |  | 
|  | // Fetch the injected class name type and check whether its | 
|  | // injected type is equal to the type we just built. | 
|  | QualType ICNT = Context.getTypeDeclType(Record); | 
|  | QualType Injected = cast<InjectedClassNameType>(ICNT) | 
|  | ->getInjectedSpecializationType(); | 
|  |  | 
|  | if (CanonType != Injected->getCanonicalTypeInternal()) | 
|  | continue; | 
|  |  | 
|  | // If so, the canonical type of this TST is the injected | 
|  | // class name type of the record we just found. | 
|  | assert(ICNT.isCanonical()); | 
|  | CanonType = ICNT; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else if (ClassTemplateDecl *ClassTemplate | 
|  | = dyn_cast<ClassTemplateDecl>(Template)) { | 
|  | // Find the class template specialization declaration that | 
|  | // corresponds to these arguments. | 
|  | void *InsertPos = nullptr; | 
|  | ClassTemplateSpecializationDecl *Decl | 
|  | = ClassTemplate->findSpecialization(Converted, InsertPos); | 
|  | if (!Decl) { | 
|  | // This is the first time we have referenced this class template | 
|  | // specialization. Create the canonical declaration and add it to | 
|  | // the set of specializations. | 
|  | Decl = ClassTemplateSpecializationDecl::Create(Context, | 
|  | ClassTemplate->getTemplatedDecl()->getTagKind(), | 
|  | ClassTemplate->getDeclContext(), | 
|  | ClassTemplate->getTemplatedDecl()->getLocStart(), | 
|  | ClassTemplate->getLocation(), | 
|  | ClassTemplate, | 
|  | Converted, nullptr); | 
|  | ClassTemplate->AddSpecialization(Decl, InsertPos); | 
|  | if (ClassTemplate->isOutOfLine()) | 
|  | Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext()); | 
|  | } | 
|  |  | 
|  | if (Decl->getSpecializationKind() == TSK_Undeclared) { | 
|  | MultiLevelTemplateArgumentList TemplateArgLists; | 
|  | TemplateArgLists.addOuterTemplateArguments(Converted); | 
|  | InstantiateAttrsForDecl(TemplateArgLists, ClassTemplate->getTemplatedDecl(), | 
|  | Decl); | 
|  | } | 
|  |  | 
|  | // Diagnose uses of this specialization. | 
|  | (void)DiagnoseUseOfDecl(Decl, TemplateLoc); | 
|  |  | 
|  | CanonType = Context.getTypeDeclType(Decl); | 
|  | assert(isa<RecordType>(CanonType) && | 
|  | "type of non-dependent specialization is not a RecordType"); | 
|  | } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) { | 
|  | CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc, | 
|  | TemplateArgs); | 
|  | } | 
|  |  | 
|  | // Build the fully-sugared type for this class template | 
|  | // specialization, which refers back to the class template | 
|  | // specialization we created or found. | 
|  | return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); | 
|  | } | 
|  |  | 
|  | TypeResult | 
|  | Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, | 
|  | TemplateTy TemplateD, IdentifierInfo *TemplateII, | 
|  | SourceLocation TemplateIILoc, | 
|  | SourceLocation LAngleLoc, | 
|  | ASTTemplateArgsPtr TemplateArgsIn, | 
|  | SourceLocation RAngleLoc, | 
|  | bool IsCtorOrDtorName, bool IsClassName) { | 
|  | if (SS.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) { | 
|  | DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false); | 
|  |  | 
|  | // C++ [temp.res]p3: | 
|  | //   A qualified-id that refers to a type and in which the | 
|  | //   nested-name-specifier depends on a template-parameter (14.6.2) | 
|  | //   shall be prefixed by the keyword typename to indicate that the | 
|  | //   qualified-id denotes a type, forming an | 
|  | //   elaborated-type-specifier (7.1.5.3). | 
|  | if (!LookupCtx && isDependentScopeSpecifier(SS)) { | 
|  | Diag(SS.getBeginLoc(), diag::err_typename_missing_template) | 
|  | << SS.getScopeRep() << TemplateII->getName(); | 
|  | // Recover as if 'typename' were specified. | 
|  | // FIXME: This is not quite correct recovery as we don't transform SS | 
|  | // into the corresponding dependent form (and we don't diagnose missing | 
|  | // 'template' keywords within SS as a result). | 
|  | return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc, | 
|  | TemplateD, TemplateII, TemplateIILoc, LAngleLoc, | 
|  | TemplateArgsIn, RAngleLoc); | 
|  | } | 
|  |  | 
|  | // Per C++ [class.qual]p2, if the template-id was an injected-class-name, | 
|  | // it's not actually allowed to be used as a type in most cases. Because | 
|  | // we annotate it before we know whether it's valid, we have to check for | 
|  | // this case here. | 
|  | auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); | 
|  | if (LookupRD && LookupRD->getIdentifier() == TemplateII) { | 
|  | Diag(TemplateIILoc, | 
|  | TemplateKWLoc.isInvalid() | 
|  | ? diag::err_out_of_line_qualified_id_type_names_constructor | 
|  | : diag::ext_out_of_line_qualified_id_type_names_constructor) | 
|  | << TemplateII << 0 /*injected-class-name used as template name*/ | 
|  | << 1 /*if any keyword was present, it was 'template'*/; | 
|  | } | 
|  | } | 
|  |  | 
|  | TemplateName Template = TemplateD.get(); | 
|  |  | 
|  | // Translate the parser's template argument list in our AST format. | 
|  | TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); | 
|  | translateTemplateArguments(TemplateArgsIn, TemplateArgs); | 
|  |  | 
|  | if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { | 
|  | QualType T | 
|  | = Context.getDependentTemplateSpecializationType(ETK_None, | 
|  | DTN->getQualifier(), | 
|  | DTN->getIdentifier(), | 
|  | TemplateArgs); | 
|  | // Build type-source information. | 
|  | TypeLocBuilder TLB; | 
|  | DependentTemplateSpecializationTypeLoc SpecTL | 
|  | = TLB.push<DependentTemplateSpecializationTypeLoc>(T); | 
|  | SpecTL.setElaboratedKeywordLoc(SourceLocation()); | 
|  | SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); | 
|  | SpecTL.setTemplateKeywordLoc(TemplateKWLoc); | 
|  | SpecTL.setTemplateNameLoc(TemplateIILoc); | 
|  | SpecTL.setLAngleLoc(LAngleLoc); | 
|  | SpecTL.setRAngleLoc(RAngleLoc); | 
|  | for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) | 
|  | SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); | 
|  | return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); | 
|  | } | 
|  |  | 
|  | QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); | 
|  | if (Result.isNull()) | 
|  | return true; | 
|  |  | 
|  | // Build type-source information. | 
|  | TypeLocBuilder TLB; | 
|  | TemplateSpecializationTypeLoc SpecTL | 
|  | = TLB.push<TemplateSpecializationTypeLoc>(Result); | 
|  | SpecTL.setTemplateKeywordLoc(TemplateKWLoc); | 
|  | SpecTL.setTemplateNameLoc(TemplateIILoc); | 
|  | SpecTL.setLAngleLoc(LAngleLoc); | 
|  | SpecTL.setRAngleLoc(RAngleLoc); | 
|  | for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) | 
|  | SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); | 
|  |  | 
|  | // NOTE: avoid constructing an ElaboratedTypeLoc if this is a | 
|  | // constructor or destructor name (in such a case, the scope specifier | 
|  | // will be attached to the enclosing Decl or Expr node). | 
|  | if (SS.isNotEmpty() && !IsCtorOrDtorName) { | 
|  | // Create an elaborated-type-specifier containing the nested-name-specifier. | 
|  | Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); | 
|  | ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); | 
|  | ElabTL.setElaboratedKeywordLoc(SourceLocation()); | 
|  | ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); | 
|  | } | 
|  |  | 
|  | return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); | 
|  | } | 
|  |  | 
|  | TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, | 
|  | TypeSpecifierType TagSpec, | 
|  | SourceLocation TagLoc, | 
|  | CXXScopeSpec &SS, | 
|  | SourceLocation TemplateKWLoc, | 
|  | TemplateTy TemplateD, | 
|  | SourceLocation TemplateLoc, | 
|  | SourceLocation LAngleLoc, | 
|  | ASTTemplateArgsPtr TemplateArgsIn, | 
|  | SourceLocation RAngleLoc) { | 
|  | TemplateName Template = TemplateD.get(); | 
|  |  | 
|  | // Translate the parser's template argument list in our AST format. | 
|  | TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); | 
|  | translateTemplateArguments(TemplateArgsIn, TemplateArgs); | 
|  |  | 
|  | // Determine the tag kind | 
|  | TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); | 
|  | ElaboratedTypeKeyword Keyword | 
|  | = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); | 
|  |  | 
|  | if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { | 
|  | QualType T = Context.getDependentTemplateSpecializationType(Keyword, | 
|  | DTN->getQualifier(), | 
|  | DTN->getIdentifier(), | 
|  | TemplateArgs); | 
|  |  | 
|  | // Build type-source information. | 
|  | TypeLocBuilder TLB; | 
|  | DependentTemplateSpecializationTypeLoc SpecTL | 
|  | = TLB.push<DependentTemplateSpecializationTypeLoc>(T); | 
|  | SpecTL.setElaboratedKeywordLoc(TagLoc); | 
|  | SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); | 
|  | SpecTL.setTemplateKeywordLoc(TemplateKWLoc); | 
|  | SpecTL.setTemplateNameLoc(TemplateLoc); | 
|  | SpecTL.setLAngleLoc(LAngleLoc); | 
|  | SpecTL.setRAngleLoc(RAngleLoc); | 
|  | for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) | 
|  | SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); | 
|  | return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); | 
|  | } | 
|  |  | 
|  | if (TypeAliasTemplateDecl *TAT = | 
|  | dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { | 
|  | // C++0x [dcl.type.elab]p2: | 
|  | //   If the identifier resolves to a typedef-name or the simple-template-id | 
|  | //   resolves to an alias template specialization, the | 
|  | //   elaborated-type-specifier is ill-formed. | 
|  | Diag(TemplateLoc, diag::err_tag_reference_non_tag) | 
|  | << TAT << NTK_TypeAliasTemplate << TagKind; | 
|  | Diag(TAT->getLocation(), diag::note_declared_at); | 
|  | } | 
|  |  | 
|  | QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); | 
|  | if (Result.isNull()) | 
|  | return TypeResult(true); | 
|  |  | 
|  | // Check the tag kind | 
|  | if (const RecordType *RT = Result->getAs<RecordType>()) { | 
|  | RecordDecl *D = RT->getDecl(); | 
|  |  | 
|  | IdentifierInfo *Id = D->getIdentifier(); | 
|  | assert(Id && "templated class must have an identifier"); | 
|  |  | 
|  | if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, | 
|  | TagLoc, Id)) { | 
|  | Diag(TagLoc, diag::err_use_with_wrong_tag) | 
|  | << Result | 
|  | << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); | 
|  | Diag(D->getLocation(), diag::note_previous_use); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Provide source-location information for the template specialization. | 
|  | TypeLocBuilder TLB; | 
|  | TemplateSpecializationTypeLoc SpecTL | 
|  | = TLB.push<TemplateSpecializationTypeLoc>(Result); | 
|  | SpecTL.setTemplateKeywordLoc(TemplateKWLoc); | 
|  | SpecTL.setTemplateNameLoc(TemplateLoc); | 
|  | SpecTL.setLAngleLoc(LAngleLoc); | 
|  | SpecTL.setRAngleLoc(RAngleLoc); | 
|  | for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) | 
|  | SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); | 
|  |  | 
|  | // Construct an elaborated type containing the nested-name-specifier (if any) | 
|  | // and tag keyword. | 
|  | Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); | 
|  | ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); | 
|  | ElabTL.setElaboratedKeywordLoc(TagLoc); | 
|  | ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); | 
|  | return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); | 
|  | } | 
|  |  | 
|  | static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized, | 
|  | NamedDecl *PrevDecl, | 
|  | SourceLocation Loc, | 
|  | bool IsPartialSpecialization); | 
|  |  | 
|  | static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D); | 
|  |  | 
|  | static bool isTemplateArgumentTemplateParameter( | 
|  | const TemplateArgument &Arg, unsigned Depth, unsigned Index) { | 
|  | switch (Arg.getKind()) { | 
|  | case TemplateArgument::Null: | 
|  | case TemplateArgument::NullPtr: | 
|  | case TemplateArgument::Integral: | 
|  | case TemplateArgument::Declaration: | 
|  | case TemplateArgument::Pack: | 
|  | case TemplateArgument::TemplateExpansion: | 
|  | return false; | 
|  |  | 
|  | case TemplateArgument::Type: { | 
|  | QualType Type = Arg.getAsType(); | 
|  | const TemplateTypeParmType *TPT = | 
|  | Arg.getAsType()->getAs<TemplateTypeParmType>(); | 
|  | return TPT && !Type.hasQualifiers() && | 
|  | TPT->getDepth() == Depth && TPT->getIndex() == Index; | 
|  | } | 
|  |  | 
|  | case TemplateArgument::Expression: { | 
|  | DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr()); | 
|  | if (!DRE || !DRE->getDecl()) | 
|  | return false; | 
|  | const NonTypeTemplateParmDecl *NTTP = | 
|  | dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); | 
|  | return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index; | 
|  | } | 
|  |  | 
|  | case TemplateArgument::Template: | 
|  | const TemplateTemplateParmDecl *TTP = | 
|  | dyn_cast_or_null<TemplateTemplateParmDecl>( | 
|  | Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()); | 
|  | return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index; | 
|  | } | 
|  | llvm_unreachable("unexpected kind of template argument"); | 
|  | } | 
|  |  | 
|  | static bool isSameAsPrimaryTemplate(TemplateParameterList *Params, | 
|  | ArrayRef<TemplateArgument> Args) { | 
|  | if (Params->size() != Args.size()) | 
|  | return false; | 
|  |  | 
|  | unsigned Depth = Params->getDepth(); | 
|  |  | 
|  | for (unsigned I = 0, N = Args.size(); I != N; ++I) { | 
|  | TemplateArgument Arg = Args[I]; | 
|  |  | 
|  | // If the parameter is a pack expansion, the argument must be a pack | 
|  | // whose only element is a pack expansion. | 
|  | if (Params->getParam(I)->isParameterPack()) { | 
|  | if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 || | 
|  | !Arg.pack_begin()->isPackExpansion()) | 
|  | return false; | 
|  | Arg = Arg.pack_begin()->getPackExpansionPattern(); | 
|  | } | 
|  |  | 
|  | if (!isTemplateArgumentTemplateParameter(Arg, Depth, I)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Convert the parser's template argument list representation into our form. | 
|  | static TemplateArgumentListInfo | 
|  | makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) { | 
|  | TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc, | 
|  | TemplateId.RAngleLoc); | 
|  | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(), | 
|  | TemplateId.NumArgs); | 
|  | S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs); | 
|  | return TemplateArgs; | 
|  | } | 
|  |  | 
|  | template<typename PartialSpecDecl> | 
|  | static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) { | 
|  | if (Partial->getDeclContext()->isDependentContext()) | 
|  | return; | 
|  |  | 
|  | // FIXME: Get the TDK from deduction in order to provide better diagnostics | 
|  | // for non-substitution-failure issues? | 
|  | TemplateDeductionInfo Info(Partial->getLocation()); | 
|  | if (S.isMoreSpecializedThanPrimary(Partial, Info)) | 
|  | return; | 
|  |  | 
|  | auto *Template = Partial->getSpecializedTemplate(); | 
|  | S.Diag(Partial->getLocation(), | 
|  | diag::ext_partial_spec_not_more_specialized_than_primary) | 
|  | << isa<VarTemplateDecl>(Template); | 
|  |  | 
|  | if (Info.hasSFINAEDiagnostic()) { | 
|  | PartialDiagnosticAt Diag = {SourceLocation(), | 
|  | PartialDiagnostic::NullDiagnostic()}; | 
|  | Info.takeSFINAEDiagnostic(Diag); | 
|  | SmallString<128> SFINAEArgString; | 
|  | Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString); | 
|  | S.Diag(Diag.first, | 
|  | diag::note_partial_spec_not_more_specialized_than_primary) | 
|  | << SFINAEArgString; | 
|  | } | 
|  |  | 
|  | S.Diag(Template->getLocation(), diag::note_template_decl_here); | 
|  | } | 
|  |  | 
|  | static void | 
|  | noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams, | 
|  | const llvm::SmallBitVector &DeducibleParams) { | 
|  | for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { | 
|  | if (!DeducibleParams[I]) { | 
|  | NamedDecl *Param = TemplateParams->getParam(I); | 
|  | if (Param->getDeclName()) | 
|  | S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) | 
|  | << Param->getDeclName(); | 
|  | else | 
|  | S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) | 
|  | << "(anonymous)"; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename PartialSpecDecl> | 
|  | static void checkTemplatePartialSpecialization(Sema &S, | 
|  | PartialSpecDecl *Partial) { | 
|  | // C++1z [temp.class.spec]p8: (DR1495) | 
|  | //   - The specialization shall be more specialized than the primary | 
|  | //     template (14.5.5.2). | 
|  | checkMoreSpecializedThanPrimary(S, Partial); | 
|  |  | 
|  | // C++ [temp.class.spec]p8: (DR1315) | 
|  | //   - Each template-parameter shall appear at least once in the | 
|  | //     template-id outside a non-deduced context. | 
|  | // C++1z [temp.class.spec.match]p3 (P0127R2) | 
|  | //   If the template arguments of a partial specialization cannot be | 
|  | //   deduced because of the structure of its template-parameter-list | 
|  | //   and the template-id, the program is ill-formed. | 
|  | auto *TemplateParams = Partial->getTemplateParameters(); | 
|  | llvm::SmallBitVector DeducibleParams(TemplateParams->size()); | 
|  | S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, | 
|  | TemplateParams->getDepth(), DeducibleParams); | 
|  |  | 
|  | if (!DeducibleParams.all()) { | 
|  | unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); | 
|  | S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible) | 
|  | << isa<VarTemplatePartialSpecializationDecl>(Partial) | 
|  | << (NumNonDeducible > 1) | 
|  | << SourceRange(Partial->getLocation(), | 
|  | Partial->getTemplateArgsAsWritten()->RAngleLoc); | 
|  | noteNonDeducibleParameters(S, TemplateParams, DeducibleParams); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::CheckTemplatePartialSpecialization( | 
|  | ClassTemplatePartialSpecializationDecl *Partial) { | 
|  | checkTemplatePartialSpecialization(*this, Partial); | 
|  | } | 
|  |  | 
|  | void Sema::CheckTemplatePartialSpecialization( | 
|  | VarTemplatePartialSpecializationDecl *Partial) { | 
|  | checkTemplatePartialSpecialization(*this, Partial); | 
|  | } | 
|  |  | 
|  | void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) { | 
|  | // C++1z [temp.param]p11: | 
|  | //   A template parameter of a deduction guide template that does not have a | 
|  | //   default-argument shall be deducible from the parameter-type-list of the | 
|  | //   deduction guide template. | 
|  | auto *TemplateParams = TD->getTemplateParameters(); | 
|  | llvm::SmallBitVector DeducibleParams(TemplateParams->size()); | 
|  | MarkDeducedTemplateParameters(TD, DeducibleParams); | 
|  | for (unsigned I = 0; I != TemplateParams->size(); ++I) { | 
|  | // A parameter pack is deducible (to an empty pack). | 
|  | auto *Param = TemplateParams->getParam(I); | 
|  | if (Param->isParameterPack() || hasVisibleDefaultArgument(Param)) | 
|  | DeducibleParams[I] = true; | 
|  | } | 
|  |  | 
|  | if (!DeducibleParams.all()) { | 
|  | unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); | 
|  | Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible) | 
|  | << (NumNonDeducible > 1); | 
|  | noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams); | 
|  | } | 
|  | } | 
|  |  | 
|  | DeclResult Sema::ActOnVarTemplateSpecialization( | 
|  | Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc, | 
|  | TemplateParameterList *TemplateParams, StorageClass SC, | 
|  | bool IsPartialSpecialization) { | 
|  | // D must be variable template id. | 
|  | assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId && | 
|  | "Variable template specialization is declared with a template it."); | 
|  |  | 
|  | TemplateIdAnnotation *TemplateId = D.getName().TemplateId; | 
|  | TemplateArgumentListInfo TemplateArgs = | 
|  | makeTemplateArgumentListInfo(*this, *TemplateId); | 
|  | SourceLocation TemplateNameLoc = D.getIdentifierLoc(); | 
|  | SourceLocation LAngleLoc = TemplateId->LAngleLoc; | 
|  | SourceLocation RAngleLoc = TemplateId->RAngleLoc; | 
|  |  | 
|  | TemplateName Name = TemplateId->Template.get(); | 
|  |  | 
|  | // The template-id must name a variable template. | 
|  | VarTemplateDecl *VarTemplate = | 
|  | dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl()); | 
|  | if (!VarTemplate) { | 
|  | NamedDecl *FnTemplate; | 
|  | if (auto *OTS = Name.getAsOverloadedTemplate()) | 
|  | FnTemplate = *OTS->begin(); | 
|  | else | 
|  | FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl()); | 
|  | if (FnTemplate) | 
|  | return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method) | 
|  | << FnTemplate->getDeclName(); | 
|  | return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template) | 
|  | << IsPartialSpecialization; | 
|  | } | 
|  |  | 
|  | // Check for unexpanded parameter packs in any of the template arguments. | 
|  | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) | 
|  | if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], | 
|  | UPPC_PartialSpecialization)) | 
|  | return true; | 
|  |  | 
|  | // Check that the template argument list is well-formed for this | 
|  | // template. | 
|  | SmallVector<TemplateArgument, 4> Converted; | 
|  | if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs, | 
|  | false, Converted)) | 
|  | return true; | 
|  |  | 
|  | // Find the variable template (partial) specialization declaration that | 
|  | // corresponds to these arguments. | 
|  | if (IsPartialSpecialization) { | 
|  | if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate, | 
|  | TemplateArgs.size(), Converted)) | 
|  | return true; | 
|  |  | 
|  | // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we | 
|  | // also do them during instantiation. | 
|  | bool InstantiationDependent; | 
|  | if (!Name.isDependent() && | 
|  | !TemplateSpecializationType::anyDependentTemplateArguments( | 
|  | TemplateArgs.arguments(), | 
|  | InstantiationDependent)) { | 
|  | Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) | 
|  | << VarTemplate->getDeclName(); | 
|  | IsPartialSpecialization = false; | 
|  | } | 
|  |  | 
|  | if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(), | 
|  | Converted)) { | 
|  | // C++ [temp.class.spec]p9b3: | 
|  | // | 
|  | //   -- The argument list of the specialization shall not be identical | 
|  | //      to the implicit argument list of the primary template. | 
|  | Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) | 
|  | << /*variable template*/ 1 | 
|  | << /*is definition*/(SC != SC_Extern && !CurContext->isRecord()) | 
|  | << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); | 
|  | // FIXME: Recover from this by treating the declaration as a redeclaration | 
|  | // of the primary template. | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | VarTemplateSpecializationDecl *PrevDecl = nullptr; | 
|  |  | 
|  | if (IsPartialSpecialization) | 
|  | // FIXME: Template parameter list matters too | 
|  | PrevDecl = VarTemplate->findPartialSpecialization(Converted, InsertPos); | 
|  | else | 
|  | PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos); | 
|  |  | 
|  | VarTemplateSpecializationDecl *Specialization = nullptr; | 
|  |  | 
|  | // Check whether we can declare a variable template specialization in | 
|  | // the current scope. | 
|  | if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl, | 
|  | TemplateNameLoc, | 
|  | IsPartialSpecialization)) | 
|  | return true; | 
|  |  | 
|  | if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) { | 
|  | // Since the only prior variable template specialization with these | 
|  | // arguments was referenced but not declared,  reuse that | 
|  | // declaration node as our own, updating its source location and | 
|  | // the list of outer template parameters to reflect our new declaration. | 
|  | Specialization = PrevDecl; | 
|  | Specialization->setLocation(TemplateNameLoc); | 
|  | PrevDecl = nullptr; | 
|  | } else if (IsPartialSpecialization) { | 
|  | // Create a new class template partial specialization declaration node. | 
|  | VarTemplatePartialSpecializationDecl *PrevPartial = | 
|  | cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl); | 
|  | VarTemplatePartialSpecializationDecl *Partial = | 
|  | VarTemplatePartialSpecializationDecl::Create( | 
|  | Context, VarTemplate->getDeclContext(), TemplateKWLoc, | 
|  | TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC, | 
|  | Converted, TemplateArgs); | 
|  |  | 
|  | if (!PrevPartial) | 
|  | VarTemplate->AddPartialSpecialization(Partial, InsertPos); | 
|  | Specialization = Partial; | 
|  |  | 
|  | // If we are providing an explicit specialization of a member variable | 
|  | // template specialization, make a note of that. | 
|  | if (PrevPartial && PrevPartial->getInstantiatedFromMember()) | 
|  | PrevPartial->setMemberSpecialization(); | 
|  |  | 
|  | CheckTemplatePartialSpecialization(Partial); | 
|  | } else { | 
|  | // Create a new class template specialization declaration node for | 
|  | // this explicit specialization or friend declaration. | 
|  | Specialization = VarTemplateSpecializationDecl::Create( | 
|  | Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc, | 
|  | VarTemplate, DI->getType(), DI, SC, Converted); | 
|  | Specialization->setTemplateArgsInfo(TemplateArgs); | 
|  |  | 
|  | if (!PrevDecl) | 
|  | VarTemplate->AddSpecialization(Specialization, InsertPos); | 
|  | } | 
|  |  | 
|  | // C++ [temp.expl.spec]p6: | 
|  | //   If a template, a member template or the member of a class template is | 
|  | //   explicitly specialized then that specialization shall be declared | 
|  | //   before the first use of that specialization that would cause an implicit | 
|  | //   instantiation to take place, in every translation unit in which such a | 
|  | //   use occurs; no diagnostic is required. | 
|  | if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { | 
|  | bool Okay = false; | 
|  | for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { | 
|  | // Is there any previous explicit specialization declaration? | 
|  | if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { | 
|  | Okay = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Okay) { | 
|  | SourceRange Range(TemplateNameLoc, RAngleLoc); | 
|  | Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) | 
|  | << Name << Range; | 
|  |  | 
|  | Diag(PrevDecl->getPointOfInstantiation(), | 
|  | diag::note_instantiation_required_here) | 
|  | << (PrevDecl->getTemplateSpecializationKind() != | 
|  | TSK_ImplicitInstantiation); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | Specialization->setTemplateKeywordLoc(TemplateKWLoc); | 
|  | Specialization->setLexicalDeclContext(CurContext); | 
|  |  | 
|  | // Add the specialization into its lexical context, so that it can | 
|  | // be seen when iterating through the list of declarations in that | 
|  | // context. However, specializations are not found by name lookup. | 
|  | CurContext->addDecl(Specialization); | 
|  |  | 
|  | // Note that this is an explicit specialization. | 
|  | Specialization->setSpecializationKind(TSK_ExplicitSpecialization); | 
|  |  | 
|  | if (PrevDecl) { | 
|  | // Check that this isn't a redefinition of this specialization, | 
|  | // merging with previous declarations. | 
|  | LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName, | 
|  | forRedeclarationInCurContext()); | 
|  | PrevSpec.addDecl(PrevDecl); | 
|  | D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec)); | 
|  | } else if (Specialization->isStaticDataMember() && | 
|  | Specialization->isOutOfLine()) { | 
|  | Specialization->setAccess(VarTemplate->getAccess()); | 
|  | } | 
|  |  | 
|  | // Link instantiations of static data members back to the template from | 
|  | // which they were instantiated. | 
|  | if (Specialization->isStaticDataMember()) | 
|  | Specialization->setInstantiationOfStaticDataMember( | 
|  | VarTemplate->getTemplatedDecl(), | 
|  | Specialization->getSpecializationKind()); | 
|  |  | 
|  | return Specialization; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// A partial specialization whose template arguments have matched | 
|  | /// a given template-id. | 
|  | struct PartialSpecMatchResult { | 
|  | VarTemplatePartialSpecializationDecl *Partial; | 
|  | TemplateArgumentList *Args; | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | DeclResult | 
|  | Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc, | 
|  | SourceLocation TemplateNameLoc, | 
|  | const TemplateArgumentListInfo &TemplateArgs) { | 
|  | assert(Template && "A variable template id without template?"); | 
|  |  | 
|  | // Check that the template argument list is well-formed for this template. | 
|  | SmallVector<TemplateArgument, 4> Converted; | 
|  | if (CheckTemplateArgumentList( | 
|  | Template, TemplateNameLoc, | 
|  | const_cast<TemplateArgumentListInfo &>(TemplateArgs), false, | 
|  | Converted)) | 
|  | return true; | 
|  |  | 
|  | // Find the variable template specialization declaration that | 
|  | // corresponds to these arguments. | 
|  | void *InsertPos = nullptr; | 
|  | if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization( | 
|  | Converted, InsertPos)) { | 
|  | checkSpecializationVisibility(TemplateNameLoc, Spec); | 
|  | // If we already have a variable template specialization, return it. | 
|  | return Spec; | 
|  | } | 
|  |  | 
|  | // This is the first time we have referenced this variable template | 
|  | // specialization. Create the canonical declaration and add it to | 
|  | // the set of specializations, based on the closest partial specialization | 
|  | // that it represents. That is, | 
|  | VarDecl *InstantiationPattern = Template->getTemplatedDecl(); | 
|  | TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack, | 
|  | Converted); | 
|  | TemplateArgumentList *InstantiationArgs = &TemplateArgList; | 
|  | bool AmbiguousPartialSpec = false; | 
|  | typedef PartialSpecMatchResult MatchResult; | 
|  | SmallVector<MatchResult, 4> Matched; | 
|  | SourceLocation PointOfInstantiation = TemplateNameLoc; | 
|  | TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation, | 
|  | /*ForTakingAddress=*/false); | 
|  |  | 
|  | // 1. Attempt to find the closest partial specialization that this | 
|  | // specializes, if any. | 
|  | // If any of the template arguments is dependent, then this is probably | 
|  | // a placeholder for an incomplete declarative context; which must be | 
|  | // complete by instantiation time. Thus, do not search through the partial | 
|  | // specializations yet. | 
|  | // TODO: Unify with InstantiateClassTemplateSpecialization()? | 
|  | //       Perhaps better after unification of DeduceTemplateArguments() and | 
|  | //       getMoreSpecializedPartialSpecialization(). | 
|  | bool InstantiationDependent = false; | 
|  | if (!TemplateSpecializationType::anyDependentTemplateArguments( | 
|  | TemplateArgs, InstantiationDependent)) { | 
|  |  | 
|  | SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; | 
|  | Template->getPartialSpecializations(PartialSpecs); | 
|  |  | 
|  | for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) { | 
|  | VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I]; | 
|  | TemplateDeductionInfo Info(FailedCandidates.getLocation()); | 
|  |  | 
|  | if (TemplateDeductionResult Result = | 
|  | DeduceTemplateArguments(Partial, TemplateArgList, Info)) { | 
|  | // Store the failed-deduction information for use in diagnostics, later. | 
|  | // TODO: Actually use the failed-deduction info? | 
|  | FailedCandidates.addCandidate().set( | 
|  | DeclAccessPair::make(Template, AS_public), Partial, | 
|  | MakeDeductionFailureInfo(Context, Result, Info)); | 
|  | (void)Result; | 
|  | } else { | 
|  | Matched.push_back(PartialSpecMatchResult()); | 
|  | Matched.back().Partial = Partial; | 
|  | Matched.back().Args = Info.take(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Matched.size() >= 1) { | 
|  | SmallVector<MatchResult, 4>::iterator Best = Matched.begin(); | 
|  | if (Matched.size() == 1) { | 
|  | //   -- If exactly one matching specialization is found, the | 
|  | //      instantiation is generated from that specialization. | 
|  | // We don't need to do anything for this. | 
|  | } else { | 
|  | //   -- If more than one matching specialization is found, the | 
|  | //      partial order rules (14.5.4.2) are used to determine | 
|  | //      whether one of the specializations is more specialized | 
|  | //      than the others. If none of the specializations is more | 
|  | //      specialized than all of the other matching | 
|  | //      specializations, then the use of the variable template is | 
|  | //      ambiguous and the program is ill-formed. | 
|  | for (SmallVector<MatchResult, 4>::iterator P = Best + 1, | 
|  | PEnd = Matched.end(); | 
|  | P != PEnd; ++P) { | 
|  | if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial, | 
|  | PointOfInstantiation) == | 
|  | P->Partial) | 
|  | Best = P; | 
|  | } | 
|  |  | 
|  | // Determine if the best partial specialization is more specialized than | 
|  | // the others. | 
|  | for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(), | 
|  | PEnd = Matched.end(); | 
|  | P != PEnd; ++P) { | 
|  | if (P != Best && getMoreSpecializedPartialSpecialization( | 
|  | P->Partial, Best->Partial, | 
|  | PointOfInstantiation) != Best->Partial) { | 
|  | AmbiguousPartialSpec = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Instantiate using the best variable template partial specialization. | 
|  | InstantiationPattern = Best->Partial; | 
|  | InstantiationArgs = Best->Args; | 
|  | } else { | 
|  | //   -- If no match is found, the instantiation is generated | 
|  | //      from the primary template. | 
|  | // InstantiationPattern = Template->getTemplatedDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // 2. Create the canonical declaration. | 
|  | // Note that we do not instantiate a definition until we see an odr-use | 
|  | // in DoMarkVarDeclReferenced(). | 
|  | // FIXME: LateAttrs et al.? | 
|  | VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation( | 
|  | Template, InstantiationPattern, *InstantiationArgs, TemplateArgs, | 
|  | Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/); | 
|  | if (!Decl) | 
|  | return true; | 
|  |  | 
|  | if (AmbiguousPartialSpec) { | 
|  | // Partial ordering did not produce a clear winner. Complain. | 
|  | Decl->setInvalidDecl(); | 
|  | Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous) | 
|  | << Decl; | 
|  |  | 
|  | // Print the matching partial specializations. | 
|  | for (MatchResult P : Matched) | 
|  | Diag(P.Partial->getLocation(), diag::note_partial_spec_match) | 
|  | << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(), | 
|  | *P.Args); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (VarTemplatePartialSpecializationDecl *D = | 
|  | dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern)) | 
|  | Decl->setInstantiationOf(D, InstantiationArgs); | 
|  |  | 
|  | checkSpecializationVisibility(TemplateNameLoc, Decl); | 
|  |  | 
|  | assert(Decl && "No variable template specialization?"); | 
|  | return Decl; | 
|  | } | 
|  |  | 
|  | ExprResult | 
|  | Sema::CheckVarTemplateId(const CXXScopeSpec &SS, | 
|  | const DeclarationNameInfo &NameInfo, | 
|  | VarTemplateDecl *Template, SourceLocation TemplateLoc, | 
|  | const TemplateArgumentListInfo *TemplateArgs) { | 
|  |  | 
|  | DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(), | 
|  | *TemplateArgs); | 
|  | if (Decl.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | VarDecl *Var = cast<VarDecl>(Decl.get()); | 
|  | if (!Var->getTemplateSpecializationKind()) | 
|  | Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, | 
|  | NameInfo.getLoc()); | 
|  |  | 
|  | // Build an ordinary singleton decl ref. | 
|  | return BuildDeclarationNameExpr(SS, NameInfo, Var, | 
|  | /*FoundD=*/nullptr, TemplateArgs); | 
|  | } | 
|  |  | 
|  | void Sema::diagnoseMissingTemplateArguments(TemplateName Name, | 
|  | SourceLocation Loc) { | 
|  | Diag(Loc, diag::err_template_missing_args) | 
|  | << (int)getTemplateNameKindForDiagnostics(Name) << Name; | 
|  | if (TemplateDecl *TD = Name.getAsTemplateDecl()) { | 
|  | Diag(TD->getLocation(), diag::note_template_decl_here) | 
|  | << TD->getTemplateParameters()->getSourceRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  | ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, | 
|  | SourceLocation TemplateKWLoc, | 
|  | LookupResult &R, | 
|  | bool RequiresADL, | 
|  | const TemplateArgumentListInfo *TemplateArgs) { | 
|  | // FIXME: Can we do any checking at this point? I guess we could check the | 
|  | // template arguments that we have against the template name, if the template | 
|  | // name refers to a single template. That's not a terribly common case, | 
|  | // though. | 
|  | // foo<int> could identify a single function unambiguously | 
|  | // This approach does NOT work, since f<int>(1); | 
|  | // gets resolved prior to resorting to overload resolution | 
|  | // i.e., template<class T> void f(double); | 
|  | //       vs template<class T, class U> void f(U); | 
|  |  | 
|  | // These should be filtered out by our callers. | 
|  | assert(!R.empty() && "empty lookup results when building templateid"); | 
|  | assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); | 
|  |  | 
|  | // Non-function templates require a template argument list. | 
|  | if (auto *TD = R.getAsSingle<TemplateDecl>()) { | 
|  | if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) { | 
|  | diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc()); | 
|  | return ExprError(); | 
|  | } | 
|  | } | 
|  |  | 
|  | auto AnyDependentArguments = [&]() -> bool { | 
|  | bool InstantiationDependent; | 
|  | return TemplateArgs && | 
|  | TemplateSpecializationType::anyDependentTemplateArguments( | 
|  | *TemplateArgs, InstantiationDependent); | 
|  | }; | 
|  |  | 
|  | // In C++1y, check variable template ids. | 
|  | if (R.getAsSingle<VarTemplateDecl>() && !AnyDependentArguments()) { | 
|  | return CheckVarTemplateId(SS, R.getLookupNameInfo(), | 
|  | R.getAsSingle<VarTemplateDecl>(), | 
|  | TemplateKWLoc, TemplateArgs); | 
|  | } | 
|  |  | 
|  | // We don't want lookup warnings at this point. | 
|  | R.suppressDiagnostics(); | 
|  |  | 
|  | UnresolvedLookupExpr *ULE | 
|  | = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), | 
|  | SS.getWithLocInContext(Context), | 
|  | TemplateKWLoc, | 
|  | R.getLookupNameInfo(), | 
|  | RequiresADL, TemplateArgs, | 
|  | R.begin(), R.end()); | 
|  |  | 
|  | return ULE; | 
|  | } | 
|  |  | 
|  | // We actually only call this from template instantiation. | 
|  | ExprResult | 
|  | Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, | 
|  | SourceLocation TemplateKWLoc, | 
|  | const DeclarationNameInfo &NameInfo, | 
|  | const TemplateArgumentListInfo *TemplateArgs) { | 
|  |  | 
|  | assert(TemplateArgs || TemplateKWLoc.isValid()); | 
|  | DeclContext *DC; | 
|  | if (!(DC = computeDeclContext(SS, false)) || | 
|  | DC->isDependentContext() || | 
|  | RequireCompleteDeclContext(SS, DC)) | 
|  | return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); | 
|  |  | 
|  | bool MemberOfUnknownSpecialization; | 
|  | LookupResult R(*this, NameInfo, LookupOrdinaryName); | 
|  | if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(), | 
|  | /*Entering*/false, MemberOfUnknownSpecialization, | 
|  | TemplateKWLoc)) | 
|  | return ExprError(); | 
|  |  | 
|  | if (R.isAmbiguous()) | 
|  | return ExprError(); | 
|  |  | 
|  | if (R.empty()) { | 
|  | Diag(NameInfo.getLoc(), diag::err_no_member) | 
|  | << NameInfo.getName() << DC << SS.getRange(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { | 
|  | Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) | 
|  | << SS.getScopeRep() | 
|  | << NameInfo.getName().getAsString() << SS.getRange(); | 
|  | Diag(Temp->getLocation(), diag::note_referenced_class_template); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs); | 
|  | } | 
|  |  | 
|  | /// Form a dependent template name. | 
|  | /// | 
|  | /// This action forms a dependent template name given the template | 
|  | /// name and its (presumably dependent) scope specifier. For | 
|  | /// example, given "MetaFun::template apply", the scope specifier \p | 
|  | /// SS will be "MetaFun::", \p TemplateKWLoc contains the location | 
|  | /// of the "template" keyword, and "apply" is the \p Name. | 
|  | TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, | 
|  | CXXScopeSpec &SS, | 
|  | SourceLocation TemplateKWLoc, | 
|  | const UnqualifiedId &Name, | 
|  | ParsedType ObjectType, | 
|  | bool EnteringContext, | 
|  | TemplateTy &Result, | 
|  | bool AllowInjectedClassName) { | 
|  | if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) | 
|  | Diag(TemplateKWLoc, | 
|  | getLangOpts().CPlusPlus11 ? | 
|  | diag::warn_cxx98_compat_template_outside_of_template : | 
|  | diag::ext_template_outside_of_template) | 
|  | << FixItHint::CreateRemoval(TemplateKWLoc); | 
|  |  | 
|  | DeclContext *LookupCtx = nullptr; | 
|  | if (SS.isSet()) | 
|  | LookupCtx = computeDeclContext(SS, EnteringContext); | 
|  | if (!LookupCtx && ObjectType) | 
|  | LookupCtx = computeDeclContext(ObjectType.get()); | 
|  | if (LookupCtx) { | 
|  | // C++0x [temp.names]p5: | 
|  | //   If a name prefixed by the keyword template is not the name of | 
|  | //   a template, the program is ill-formed. [Note: the keyword | 
|  | //   template may not be applied to non-template members of class | 
|  | //   templates. -end note ] [ Note: as is the case with the | 
|  | //   typename prefix, the template prefix is allowed in cases | 
|  | //   where it is not strictly necessary; i.e., when the | 
|  | //   nested-name-specifier or the expression on the left of the -> | 
|  | //   or . is not dependent on a template-parameter, or the use | 
|  | //   does not appear in the scope of a template. -end note] | 
|  | // | 
|  | // Note: C++03 was more strict here, because it banned the use of | 
|  | // the "template" keyword prior to a template-name that was not a | 
|  | // dependent name. C++ DR468 relaxed this requirement (the | 
|  | // "template" keyword is now permitted). We follow the C++0x | 
|  | // rules, even in C++03 mode with a warning, retroactively applying the DR. | 
|  | bool MemberOfUnknownSpecialization; | 
|  | TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name, | 
|  | ObjectType, EnteringContext, Result, | 
|  | MemberOfUnknownSpecialization); | 
|  | if (TNK == TNK_Non_template && MemberOfUnknownSpecialization) { | 
|  | // This is a dependent template. Handle it below. | 
|  | } else if (TNK == TNK_Non_template) { | 
|  | // Do the lookup again to determine if this is a "nothing found" case or | 
|  | // a "not a template" case. FIXME: Refactor isTemplateName so we don't | 
|  | // need to do this. | 
|  | DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name); | 
|  | LookupResult R(*this, DNI.getName(), Name.getLocStart(), | 
|  | LookupOrdinaryName); | 
|  | bool MOUS; | 
|  | if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, | 
|  | MOUS, TemplateKWLoc)) | 
|  | Diag(Name.getLocStart(), diag::err_no_member) | 
|  | << DNI.getName() << LookupCtx << SS.getRange(); | 
|  | return TNK_Non_template; | 
|  | } else { | 
|  | // We found something; return it. | 
|  | auto *LookupRD = dyn_cast<CXXRecordDecl>(LookupCtx); | 
|  | if (!AllowInjectedClassName && SS.isSet() && LookupRD && | 
|  | Name.getKind() == UnqualifiedIdKind::IK_Identifier && | 
|  | Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) { | 
|  | // C++14 [class.qual]p2: | 
|  | //   In a lookup in which function names are not ignored and the | 
|  | //   nested-name-specifier nominates a class C, if the name specified | 
|  | //   [...] is the injected-class-name of C, [...] the name is instead | 
|  | //   considered to name the constructor | 
|  | // | 
|  | // We don't get here if naming the constructor would be valid, so we | 
|  | // just reject immediately and recover by treating the | 
|  | // injected-class-name as naming the template. | 
|  | Diag(Name.getLocStart(), | 
|  | diag::ext_out_of_line_qualified_id_type_names_constructor) | 
|  | << Name.Identifier << 0 /*injected-class-name used as template name*/ | 
|  | << 1 /*'template' keyword was used*/; | 
|  | } | 
|  | return TNK; | 
|  | } | 
|  | } | 
|  |  | 
|  | NestedNameSpecifier *Qualifier = SS.getScopeRep(); | 
|  |  | 
|  | switch (Name.getKind()) { | 
|  | case UnqualifiedIdKind::IK_Identifier: | 
|  | Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, | 
|  | Name.Identifier)); | 
|  | return TNK_Dependent_template_name; | 
|  |  | 
|  | case UnqualifiedIdKind::IK_OperatorFunctionId: | 
|  | Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, | 
|  | Name.OperatorFunctionId.Operator)); | 
|  | return TNK_Function_template; | 
|  |  | 
|  | case UnqualifiedIdKind::IK_LiteralOperatorId: | 
|  | llvm_unreachable("literal operator id cannot have a dependent scope"); | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | Diag(Name.getLocStart(), | 
|  | diag::err_template_kw_refers_to_non_template) | 
|  | << GetNameFromUnqualifiedId(Name).getName() | 
|  | << Name.getSourceRange() | 
|  | << TemplateKWLoc; | 
|  | return TNK_Non_template; | 
|  | } | 
|  |  | 
|  | bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, | 
|  | TemplateArgumentLoc &AL, | 
|  | SmallVectorImpl<TemplateArgument> &Converted) { | 
|  | const TemplateArgument &Arg = AL.getArgument(); | 
|  | QualType ArgType; | 
|  | TypeSourceInfo *TSI = nullptr; | 
|  |  | 
|  | // Check template type parameter. | 
|  | switch(Arg.getKind()) { | 
|  | case TemplateArgument::Type: | 
|  | // C++ [temp.arg.type]p1: | 
|  | //   A template-argument for a template-parameter which is a | 
|  | //   type shall be a type-id. | 
|  | ArgType = Arg.getAsType(); | 
|  | TSI = AL.getTypeSourceInfo(); | 
|  | break; | 
|  | case TemplateArgument::Template: | 
|  | case TemplateArgument::TemplateExpansion: { | 
|  | // We have a template type parameter but the template argument | 
|  | // is a template without any arguments. | 
|  | SourceRange SR = AL.getSourceRange(); | 
|  | TemplateName Name = Arg.getAsTemplateOrTemplatePattern(); | 
|  | diagnoseMissingTemplateArguments(Name, SR.getEnd()); | 
|  | return true; | 
|  | } | 
|  | case TemplateArgument::Expression: { | 
|  | // We have a template type parameter but the template argument is an | 
|  | // expression; see if maybe it is missing the "typename" keyword. | 
|  | CXXScopeSpec SS; | 
|  | DeclarationNameInfo NameInfo; | 
|  |  | 
|  | if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) { | 
|  | SS.Adopt(ArgExpr->getQualifierLoc()); | 
|  | NameInfo = ArgExpr->getNameInfo(); | 
|  | } else if (DependentScopeDeclRefExpr *ArgExpr = | 
|  | dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) { | 
|  | SS.Adopt(ArgExpr->getQualifierLoc()); | 
|  | NameInfo = ArgExpr->getNameInfo(); | 
|  | } else if (CXXDependentScopeMemberExpr *ArgExpr = | 
|  | dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) { | 
|  | if (ArgExpr->isImplicitAccess()) { | 
|  | SS.Adopt(ArgExpr->getQualifierLoc()); | 
|  | NameInfo = ArgExpr->getMemberNameInfo(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (auto *II = NameInfo.getName().getAsIdentifierInfo()) { | 
|  | LookupResult Result(*this, NameInfo, LookupOrdinaryName); | 
|  | LookupParsedName(Result, CurScope, &SS); | 
|  |  | 
|  | if (Result.getAsSingle<TypeDecl>() || | 
|  | Result.getResultKind() == | 
|  | LookupResult::NotFoundInCurrentInstantiation) { | 
|  | // Suggest that the user add 'typename' before the NNS. | 
|  | SourceLocation Loc = AL.getSourceRange().getBegin(); | 
|  | Diag(Loc, getLangOpts().MSVCCompat | 
|  | ? diag::ext_ms_template_type_arg_missing_typename | 
|  | : diag::err_template_arg_must_be_type_suggest) | 
|  | << FixItHint::CreateInsertion(Loc, "typename "); | 
|  | Diag(Param->getLocation(), diag::note_template_param_here); | 
|  |  | 
|  | // Recover by synthesizing a type using the location information that we | 
|  | // already have. | 
|  | ArgType = | 
|  | Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II); | 
|  | TypeLocBuilder TLB; | 
|  | DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType); | 
|  | TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/)); | 
|  | TL.setQualifierLoc(SS.getWithLocInContext(Context)); | 
|  | TL.setNameLoc(NameInfo.getLoc()); | 
|  | TSI = TLB.getTypeSourceInfo(Context, ArgType); | 
|  |  | 
|  | // Overwrite our input TemplateArgumentLoc so that we can recover | 
|  | // properly. | 
|  | AL = TemplateArgumentLoc(TemplateArgument(ArgType), | 
|  | TemplateArgumentLocInfo(TSI)); | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  | // fallthrough | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | default: { | 
|  | // We have a template type parameter but the template argument | 
|  | // is not a type. | 
|  | SourceRange SR = AL.getSourceRange(); | 
|  | Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; | 
|  | Diag(Param->getLocation(), diag::note_template_param_here); | 
|  |  | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CheckTemplateArgument(Param, TSI)) | 
|  | return true; | 
|  |  | 
|  | // Add the converted template type argument. | 
|  | ArgType = Context.getCanonicalType(ArgType); | 
|  |  | 
|  | // Objective-C ARC: | 
|  | //   If an explicitly-specified template argument type is a lifetime type | 
|  | //   with no lifetime qualifier, the __strong lifetime qualifier is inferred. | 
|  | if (getLangOpts().ObjCAutoRefCount && | 
|  | ArgType->isObjCLifetimeType() && | 
|  | !ArgType.getObjCLifetime()) { | 
|  | Qualifiers Qs; | 
|  | Qs.setObjCLifetime(Qualifiers::OCL_Strong); | 
|  | ArgType = Context.getQualifiedType(ArgType, Qs); | 
|  | } | 
|  |  | 
|  | Converted.push_back(TemplateArgument(ArgType)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Substitute template arguments into the default template argument for | 
|  | /// the given template type parameter. | 
|  | /// | 
|  | /// \param SemaRef the semantic analysis object for which we are performing | 
|  | /// the substitution. | 
|  | /// | 
|  | /// \param Template the template that we are synthesizing template arguments | 
|  | /// for. | 
|  | /// | 
|  | /// \param TemplateLoc the location of the template name that started the | 
|  | /// template-id we are checking. | 
|  | /// | 
|  | /// \param RAngleLoc the location of the right angle bracket ('>') that | 
|  | /// terminates the template-id. | 
|  | /// | 
|  | /// \param Param the template template parameter whose default we are | 
|  | /// substituting into. | 
|  | /// | 
|  | /// \param Converted the list of template arguments provided for template | 
|  | /// parameters that precede \p Param in the template parameter list. | 
|  | /// \returns the substituted template argument, or NULL if an error occurred. | 
|  | static TypeSourceInfo * | 
|  | SubstDefaultTemplateArgument(Sema &SemaRef, | 
|  | TemplateDecl *Template, | 
|  | SourceLocation TemplateLoc, | 
|  | SourceLocation RAngleLoc, | 
|  | TemplateTypeParmDecl *Param, | 
|  | SmallVectorImpl<TemplateArgument> &Converted) { | 
|  | TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); | 
|  |  | 
|  | // If the argument type is dependent, instantiate it now based | 
|  | // on the previously-computed template arguments. | 
|  | if (ArgType->getType()->isDependentType()) { | 
|  | Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, | 
|  | Param, Template, Converted, | 
|  | SourceRange(TemplateLoc, RAngleLoc)); | 
|  | if (Inst.isInvalid()) | 
|  | return nullptr; | 
|  |  | 
|  | TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); | 
|  |  | 
|  | // Only substitute for the innermost template argument list. | 
|  | MultiLevelTemplateArgumentList TemplateArgLists; | 
|  | TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); | 
|  | for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) | 
|  | TemplateArgLists.addOuterTemplateArguments(None); | 
|  |  | 
|  | Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); | 
|  | ArgType = | 
|  | SemaRef.SubstType(ArgType, TemplateArgLists, | 
|  | Param->getDefaultArgumentLoc(), Param->getDeclName()); | 
|  | } | 
|  |  | 
|  | return ArgType; | 
|  | } | 
|  |  | 
|  | /// Substitute template arguments into the default template argument for | 
|  | /// the given non-type template parameter. | 
|  | /// | 
|  | /// \param SemaRef the semantic analysis object for which we are performing | 
|  | /// the substitution. | 
|  | /// | 
|  | /// \param Template the template that we are synthesizing template arguments | 
|  | /// for. | 
|  | /// | 
|  | /// \param TemplateLoc the location of the template name that started the | 
|  | /// template-id we are checking. | 
|  | /// | 
|  | /// \param RAngleLoc the location of the right angle bracket ('>') that | 
|  | /// terminates the template-id. | 
|  | /// | 
|  | /// \param Param the non-type template parameter whose default we are | 
|  | /// substituting into. | 
|  | /// | 
|  | /// \param Converted the list of template arguments provided for template | 
|  | /// parameters that precede \p Param in the template parameter list. | 
|  | /// | 
|  | /// \returns the substituted template argument, or NULL if an error occurred. | 
|  | static ExprResult | 
|  | SubstDefaultTemplateArgument(Sema &SemaRef, | 
|  | TemplateDecl *Template, | 
|  | SourceLocation TemplateLoc, | 
|  | SourceLocation RAngleLoc, | 
|  | NonTypeTemplateParmDecl *Param, | 
|  | SmallVectorImpl<TemplateArgument> &Converted) { | 
|  | Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, | 
|  | Param, Template, Converted, | 
|  | SourceRange(TemplateLoc, RAngleLoc)); | 
|  | if (Inst.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); | 
|  |  | 
|  | // Only substitute for the innermost template argument list. | 
|  | MultiLevelTemplateArgumentList TemplateArgLists; | 
|  | TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); | 
|  | for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) | 
|  | TemplateArgLists.addOuterTemplateArguments(None); | 
|  |  | 
|  | EnterExpressionEvaluationContext ConstantEvaluated( | 
|  | SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); | 
|  | return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists); | 
|  | } | 
|  |  | 
|  | /// Substitute template arguments into the default template argument for | 
|  | /// the given template template parameter. | 
|  | /// | 
|  | /// \param SemaRef the semantic analysis object for which we are performing | 
|  | /// the substitution. | 
|  | /// | 
|  | /// \param Template the template that we are synthesizing template arguments | 
|  | /// for. | 
|  | /// | 
|  | /// \param TemplateLoc the location of the template name that started the | 
|  | /// template-id we are checking. | 
|  | /// | 
|  | /// \param RAngleLoc the location of the right angle bracket ('>') that | 
|  | /// terminates the template-id. | 
|  | /// | 
|  | /// \param Param the template template parameter whose default we are | 
|  | /// substituting into. | 
|  | /// | 
|  | /// \param Converted the list of template arguments provided for template | 
|  | /// parameters that precede \p Param in the template parameter list. | 
|  | /// | 
|  | /// \param QualifierLoc Will be set to the nested-name-specifier (with | 
|  | /// source-location information) that precedes the template name. | 
|  | /// | 
|  | /// \returns the substituted template argument, or NULL if an error occurred. | 
|  | static TemplateName | 
|  | SubstDefaultTemplateArgument(Sema &SemaRef, | 
|  | TemplateDecl *Template, | 
|  | SourceLocation TemplateLoc, | 
|  | SourceLocation RAngleLoc, | 
|  | TemplateTemplateParmDecl *Param, | 
|  | SmallVectorImpl<TemplateArgument> &Converted, | 
|  | NestedNameSpecifierLoc &QualifierLoc) { | 
|  | Sema::InstantiatingTemplate Inst( | 
|  | SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted, | 
|  | SourceRange(TemplateLoc, RAngleLoc)); | 
|  | if (Inst.isInvalid()) | 
|  | return TemplateName(); | 
|  |  | 
|  | TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); | 
|  |  | 
|  | // Only substitute for the innermost template argument list. | 
|  | MultiLevelTemplateArgumentList TemplateArgLists; | 
|  | TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); | 
|  | for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) | 
|  | TemplateArgLists.addOuterTemplateArguments(None); | 
|  |  | 
|  | Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); | 
|  | // Substitute into the nested-name-specifier first, | 
|  | QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); | 
|  | if (QualifierLoc) { | 
|  | QualifierLoc = | 
|  | SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists); | 
|  | if (!QualifierLoc) | 
|  | return TemplateName(); | 
|  | } | 
|  |  | 
|  | return SemaRef.SubstTemplateName( | 
|  | QualifierLoc, | 
|  | Param->getDefaultArgument().getArgument().getAsTemplate(), | 
|  | Param->getDefaultArgument().getTemplateNameLoc(), | 
|  | TemplateArgLists); | 
|  | } | 
|  |  | 
|  | /// If the given template parameter has a default template | 
|  | /// argument, substitute into that default template argument and | 
|  | /// return the corresponding template argument. | 
|  | TemplateArgumentLoc | 
|  | Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, | 
|  | SourceLocation TemplateLoc, | 
|  | SourceLocation RAngleLoc, | 
|  | Decl *Param, | 
|  | SmallVectorImpl<TemplateArgument> | 
|  | &Converted, | 
|  | bool &HasDefaultArg) { | 
|  | HasDefaultArg = false; | 
|  |  | 
|  | if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { | 
|  | if (!hasVisibleDefaultArgument(TypeParm)) | 
|  | return TemplateArgumentLoc(); | 
|  |  | 
|  | HasDefaultArg = true; | 
|  | TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, | 
|  | TemplateLoc, | 
|  | RAngleLoc, | 
|  | TypeParm, | 
|  | Converted); | 
|  | if (DI) | 
|  | return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); | 
|  |  | 
|  | return TemplateArgumentLoc(); | 
|  | } | 
|  |  | 
|  | if (NonTypeTemplateParmDecl *NonTypeParm | 
|  | = dyn_cast<NonTypeTemplateParmDecl>(Param)) { | 
|  | if (!hasVisibleDefaultArgument(NonTypeParm)) | 
|  | return TemplateArgumentLoc(); | 
|  |  | 
|  | HasDefaultArg = true; | 
|  | ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, | 
|  | TemplateLoc, | 
|  | RAngleLoc, | 
|  | NonTypeParm, | 
|  | Converted); | 
|  | if (Arg.isInvalid()) | 
|  | return TemplateArgumentLoc(); | 
|  |  | 
|  | Expr *ArgE = Arg.getAs<Expr>(); | 
|  | return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); | 
|  | } | 
|  |  | 
|  | TemplateTemplateParmDecl *TempTempParm | 
|  | = cast<TemplateTemplateParmDecl>(Param); | 
|  | if (!hasVisibleDefaultArgument(TempTempParm)) | 
|  | return TemplateArgumentLoc(); | 
|  |  | 
|  | HasDefaultArg = true; | 
|  | NestedNameSpecifierLoc QualifierLoc; | 
|  | TemplateName TName = SubstDefaultTemplateArgument(*this, Template, | 
|  | TemplateLoc, | 
|  | RAngleLoc, | 
|  | TempTempParm, | 
|  | Converted, | 
|  | QualifierLoc); | 
|  | if (TName.isNull()) | 
|  | return TemplateArgumentLoc(); | 
|  |  | 
|  | return TemplateArgumentLoc(TemplateArgument(TName), | 
|  | TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), | 
|  | TempTempParm->getDefaultArgument().getTemplateNameLoc()); | 
|  | } | 
|  |  | 
|  | /// Convert a template-argument that we parsed as a type into a template, if | 
|  | /// possible. C++ permits injected-class-names to perform dual service as | 
|  | /// template template arguments and as template type arguments. | 
|  | static TemplateArgumentLoc convertTypeTemplateArgumentToTemplate(TypeLoc TLoc) { | 
|  | // Extract and step over any surrounding nested-name-specifier. | 
|  | NestedNameSpecifierLoc QualLoc; | 
|  | if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) { | 
|  | if (ETLoc.getTypePtr()->getKeyword() != ETK_None) | 
|  | return TemplateArgumentLoc(); | 
|  |  | 
|  | QualLoc = ETLoc.getQualifierLoc(); | 
|  | TLoc = ETLoc.getNamedTypeLoc(); | 
|  | } | 
|  |  | 
|  | // If this type was written as an injected-class-name, it can be used as a | 
|  | // template template argument. | 
|  | if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>()) | 
|  | return TemplateArgumentLoc(InjLoc.getTypePtr()->getTemplateName(), | 
|  | QualLoc, InjLoc.getNameLoc()); | 
|  |  | 
|  | // If this type was written as an injected-class-name, it may have been | 
|  | // converted to a RecordType during instantiation. If the RecordType is | 
|  | // *not* wrapped in a TemplateSpecializationType and denotes a class | 
|  | // template specialization, it must have come from an injected-class-name. | 
|  | if (auto RecLoc = TLoc.getAs<RecordTypeLoc>()) | 
|  | if (auto *CTSD = | 
|  | dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl())) | 
|  | return TemplateArgumentLoc(TemplateName(CTSD->getSpecializedTemplate()), | 
|  | QualLoc, RecLoc.getNameLoc()); | 
|  |  | 
|  | return TemplateArgumentLoc(); | 
|  | } | 
|  |  | 
|  | /// Check that the given template argument corresponds to the given | 
|  | /// template parameter. | 
|  | /// | 
|  | /// \param Param The template parameter against which the argument will be | 
|  | /// checked. | 
|  | /// | 
|  | /// \param Arg The template argument, which may be updated due to conversions. | 
|  | /// | 
|  | /// \param Template The template in which the template argument resides. | 
|  | /// | 
|  | /// \param TemplateLoc The location of the template name for the template | 
|  | /// whose argument list we're matching. | 
|  | /// | 
|  | /// \param RAngleLoc The location of the right angle bracket ('>') that closes | 
|  | /// the template argument list. | 
|  | /// | 
|  | /// \param ArgumentPackIndex The index into the argument pack where this | 
|  | /// argument will be placed. Only valid if the parameter is a parameter pack. | 
|  | /// | 
|  | /// \param Converted The checked, converted argument will be added to the | 
|  | /// end of this small vector. | 
|  | /// | 
|  | /// \param CTAK Describes how we arrived at this particular template argument: | 
|  | /// explicitly written, deduced, etc. | 
|  | /// | 
|  | /// \returns true on error, false otherwise. | 
|  | bool Sema::CheckTemplateArgument(NamedDecl *Param, | 
|  | TemplateArgumentLoc &Arg, | 
|  | NamedDecl *Template, | 
|  | SourceLocation TemplateLoc, | 
|  | SourceLocation RAngleLoc, | 
|  | unsigned ArgumentPackIndex, | 
|  | SmallVectorImpl<TemplateArgument> &Converted, | 
|  | CheckTemplateArgumentKind CTAK) { | 
|  | // Check template type parameters. | 
|  | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) | 
|  | return CheckTemplateTypeArgument(TTP, Arg, Converted); | 
|  |  | 
|  | // Check non-type template parameters. | 
|  | if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { | 
|  | // Do substitution on the type of the non-type template parameter | 
|  | // with the template arguments we've seen thus far.  But if the | 
|  | // template has a dependent context then we cannot substitute yet. | 
|  | QualType NTTPType = NTTP->getType(); | 
|  | if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) | 
|  | NTTPType = NTTP->getExpansionType(ArgumentPackIndex); | 
|  |  | 
|  | // FIXME: Do we need to substitute into parameters here if they're | 
|  | // instantiation-dependent but not dependent? | 
|  | if (NTTPType->isDependentType() && | 
|  | !isa<TemplateTemplateParmDecl>(Template) && | 
|  | !Template->getDeclContext()->isDependentContext()) { | 
|  | // Do substitution on the type of the non-type template parameter. | 
|  | InstantiatingTemplate Inst(*this, TemplateLoc, Template, | 
|  | NTTP, Converted, | 
|  | SourceRange(TemplateLoc, RAngleLoc)); | 
|  | if (Inst.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, | 
|  | Converted); | 
|  | NTTPType = SubstType(NTTPType, | 
|  | MultiLevelTemplateArgumentList(TemplateArgs), | 
|  | NTTP->getLocation(), | 
|  | NTTP->getDeclName()); | 
|  | // If that worked, check the non-type template parameter type | 
|  | // for validity. | 
|  | if (!NTTPType.isNull()) | 
|  | NTTPType = CheckNonTypeTemplateParameterType(NTTPType, | 
|  | NTTP->getLocation()); | 
|  | if (NTTPType.isNull()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | switch (Arg.getArgument().getKind()) { | 
|  | case TemplateArgument::Null: | 
|  | llvm_unreachable("Should never see a NULL template argument here"); | 
|  |  | 
|  | case TemplateArgument::Expression: { | 
|  | TemplateArgument Result; | 
|  | unsigned CurSFINAEErrors = NumSFINAEErrors; | 
|  | ExprResult Res = | 
|  | CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), | 
|  | Result, CTAK); | 
|  | if (Res.isInvalid()) | 
|  | return true; | 
|  | // If the current template argument causes an error, give up now. | 
|  | if (CurSFINAEErrors < NumSFINAEErrors) | 
|  | return true; | 
|  |  | 
|  | // If the resulting expression is new, then use it in place of the | 
|  | // old expression in the template argument. | 
|  | if (Res.get() != Arg.getArgument().getAsExpr()) { | 
|  | TemplateArgument TA(Res.get()); | 
|  | Arg = TemplateArgumentLoc(TA, Res.get()); | 
|  | } | 
|  |  | 
|  | Converted.push_back(Result); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TemplateArgument::Declaration: | 
|  | case TemplateArgument::Integral: | 
|  | case TemplateArgument::NullPtr: | 
|  | // We've already checked this template argument, so just copy | 
|  | // it to the list of converted arguments. | 
|  | Converted.push_back(Arg.getArgument()); | 
|  | break; | 
|  |  | 
|  | case TemplateArgument::Template: | 
|  | case TemplateArgument::TemplateExpansion: | 
|  | // We were given a template template argument. It may not be ill-formed; | 
|  | // see below. | 
|  | if (DependentTemplateName *DTN | 
|  | = Arg.getArgument().getAsTemplateOrTemplatePattern() | 
|  | .getAsDependentTemplateName()) { | 
|  | // We have a template argument such as \c T::template X, which we | 
|  | // parsed as a template template argument. However, since we now | 
|  | // know that we need a non-type template argument, convert this | 
|  | // template name into an expression. | 
|  |  | 
|  | DeclarationNameInfo NameInfo(DTN->getIdentifier(), | 
|  | Arg.getTemplateNameLoc()); | 
|  |  | 
|  | CXXScopeSpec SS; | 
|  | SS.Adopt(Arg.getTemplateQualifierLoc()); | 
|  | // FIXME: the template-template arg was a DependentTemplateName, | 
|  | // so it was provided with a template keyword. However, its source | 
|  | // location is not stored in the template argument structure. | 
|  | SourceLocation TemplateKWLoc; | 
|  | ExprResult E = DependentScopeDeclRefExpr::Create( | 
|  | Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, | 
|  | nullptr); | 
|  |  | 
|  | // If we parsed the template argument as a pack expansion, create a | 
|  | // pack expansion expression. | 
|  | if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ | 
|  | E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc()); | 
|  | if (E.isInvalid()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | TemplateArgument Result; | 
|  | E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result); | 
|  | if (E.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | Converted.push_back(Result); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // We have a template argument that actually does refer to a class | 
|  | // template, alias template, or template template parameter, and | 
|  | // therefore cannot be a non-type template argument. | 
|  | Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) | 
|  | << Arg.getSourceRange(); | 
|  |  | 
|  | Diag(Param->getLocation(), diag::note_template_param_here); | 
|  | return true; | 
|  |  | 
|  | case TemplateArgument::Type: { | 
|  | // We have a non-type template parameter but the template | 
|  | // argument is a type. | 
|  |  | 
|  | // C++ [temp.arg]p2: | 
|  | //   In a template-argument, an ambiguity between a type-id and | 
|  | //   an expression is resolved to a type-id, regardless of the | 
|  | //   form of the corresponding template-parameter. | 
|  | // | 
|  | // We warn specifically about this case, since it can be rather | 
|  | // confusing for users. | 
|  | QualType T = Arg.getArgument().getAsType(); | 
|  | SourceRange SR = Arg.getSourceRange(); | 
|  | if (T->isFunctionType()) | 
|  | Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; | 
|  | else | 
|  | Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; | 
|  | Diag(Param->getLocation(), diag::note_template_param_here); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case TemplateArgument::Pack: | 
|  | llvm_unreachable("Caller must expand template argument packs"); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Check template template parameters. | 
|  | TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); | 
|  |  | 
|  | TemplateParameterList *Params = TempParm->getTemplateParameters(); | 
|  | if (TempParm->isExpandedParameterPack()) | 
|  | Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex); | 
|  |  | 
|  | // Substitute into the template parameter list of the template | 
|  | // template parameter, since previously-supplied template arguments | 
|  | // may appear within the template template parameter. | 
|  | // | 
|  | // FIXME: Skip this if the parameters aren't instantiation-dependent. | 
|  | { | 
|  | // Set up a template instantiation context. | 
|  | LocalInstantiationScope Scope(*this); | 
|  | InstantiatingTemplate Inst(*this, TemplateLoc, Template, | 
|  | TempParm, Converted, | 
|  | SourceRange(TemplateLoc, RAngleLoc)); | 
|  | if (Inst.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); | 
|  | Params = SubstTemplateParams(Params, CurContext, | 
|  | MultiLevelTemplateArgumentList(TemplateArgs)); | 
|  | if (!Params) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // C++1z [temp.local]p1: (DR1004) | 
|  | //   When [the injected-class-name] is used [...] as a template-argument for | 
|  | //   a template template-parameter [...] it refers to the class template | 
|  | //   itself. | 
|  | if (Arg.getArgument().getKind() == TemplateArgument::Type) { | 
|  | TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate( | 
|  | Arg.getTypeSourceInfo()->getTypeLoc()); | 
|  | if (!ConvertedArg.getArgument().isNull()) | 
|  | Arg = ConvertedArg; | 
|  | } | 
|  |  | 
|  | switch (Arg.getArgument().getKind()) { | 
|  | case TemplateArgument::Null: | 
|  | llvm_unreachable("Should never see a NULL template argument here"); | 
|  |  | 
|  | case TemplateArgument::Template: | 
|  | case TemplateArgument::TemplateExpansion: | 
|  | if (CheckTemplateTemplateArgument(Params, Arg)) | 
|  | return true; | 
|  |  | 
|  | Converted.push_back(Arg.getArgument()); | 
|  | break; | 
|  |  | 
|  | case TemplateArgument::Expression: | 
|  | case TemplateArgument::Type: | 
|  | // We have a template template parameter but the template | 
|  | // argument does not refer to a template. | 
|  | Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) | 
|  | << getLangOpts().CPlusPlus11; | 
|  | return true; | 
|  |  | 
|  | case TemplateArgument::Declaration: | 
|  | llvm_unreachable("Declaration argument with template template parameter"); | 
|  | case TemplateArgument::Integral: | 
|  | llvm_unreachable("Integral argument with template template parameter"); | 
|  | case TemplateArgument::NullPtr: | 
|  | llvm_unreachable("Null pointer argument with template template parameter"); | 
|  |  | 
|  | case TemplateArgument::Pack: | 
|  | llvm_unreachable("Caller must expand template argument packs"); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check whether the template parameter is a pack expansion, and if so, | 
|  | /// determine the number of parameters produced by that expansion. For instance: | 
|  | /// | 
|  | /// \code | 
|  | /// template<typename ...Ts> struct A { | 
|  | ///   template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B; | 
|  | /// }; | 
|  | /// \endcode | 
|  | /// | 
|  | /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us | 
|  | /// is not a pack expansion, so returns an empty Optional. | 
|  | static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) { | 
|  | if (NonTypeTemplateParmDecl *NTTP | 
|  | = dyn_cast<NonTypeTemplateParmDecl>(Param)) { | 
|  | if (NTTP->isExpandedParameterPack()) | 
|  | return NTTP->getNumExpansionTypes(); | 
|  | } | 
|  |  | 
|  | if (TemplateTemplateParmDecl *TTP | 
|  | = dyn_cast<TemplateTemplateParmDecl>(Param)) { | 
|  | if (TTP->isExpandedParameterPack()) | 
|  | return TTP->getNumExpansionTemplateParameters(); | 
|  | } | 
|  |  | 
|  | return None; | 
|  | } | 
|  |  | 
|  | /// Diagnose a missing template argument. | 
|  | template<typename TemplateParmDecl> | 
|  | static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc, | 
|  | TemplateDecl *TD, | 
|  | const TemplateParmDecl *D, | 
|  | TemplateArgumentListInfo &Args) { | 
|  | // Dig out the most recent declaration of the template parameter; there may be | 
|  | // declarations of the template that are more recent than TD. | 
|  | D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl()) | 
|  | ->getTemplateParameters() | 
|  | ->getParam(D->getIndex())); | 
|  |  | 
|  | // If there's a default argument that's not visible, diagnose that we're | 
|  | // missing a module import. | 
|  | llvm::SmallVector<Module*, 8> Modules; | 
|  | if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) { | 
|  | S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD), | 
|  | D->getDefaultArgumentLoc(), Modules, | 
|  | Sema::MissingImportKind::DefaultArgument, | 
|  | /*Recover*/true); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // FIXME: If there's a more recent default argument that *is* visible, | 
|  | // diagnose that it was declared too late. | 
|  |  | 
|  | TemplateParameterList *Params = TD->getTemplateParameters(); | 
|  |  | 
|  | S.Diag(Loc, diag::err_template_arg_list_different_arity) | 
|  | << /*not enough args*/0 | 
|  | << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD)) | 
|  | << TD; | 
|  | S.Diag(TD->getLocation(), diag::note_template_decl_here) | 
|  | << Params->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check that the given template argument list is well-formed | 
|  | /// for specializing the given template. | 
|  | bool Sema::CheckTemplateArgumentList( | 
|  | TemplateDecl *Template, SourceLocation TemplateLoc, | 
|  | TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs, | 
|  | SmallVectorImpl<TemplateArgument> &Converted, | 
|  | bool UpdateArgsWithConversions) { | 
|  | // Make a copy of the template arguments for processing.  Only make the | 
|  | // changes at the end when successful in matching the arguments to the | 
|  | // template. | 
|  | TemplateArgumentListInfo NewArgs = TemplateArgs; | 
|  |  | 
|  | // Make sure we get the template parameter list from the most | 
|  | // recentdeclaration, since that is the only one that has is guaranteed to | 
|  | // have all the default template argument information. | 
|  | TemplateParameterList *Params = | 
|  | cast<TemplateDecl>(Template->getMostRecentDecl()) | 
|  | ->getTemplateParameters(); | 
|  |  | 
|  | SourceLocation RAngleLoc = NewArgs.getRAngleLoc(); | 
|  |  | 
|  | // C++ [temp.arg]p1: | 
|  | //   [...] The type and form of each template-argument specified in | 
|  | //   a template-id shall match the type and form specified for the | 
|  | //   corresponding parameter declared by the template in its | 
|  | //   template-parameter-list. | 
|  | bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); | 
|  | SmallVector<TemplateArgument, 2> ArgumentPack; | 
|  | unsigned ArgIdx = 0, NumArgs = NewArgs.size(); | 
|  | LocalInstantiationScope InstScope(*this, true); | 
|  | for (TemplateParameterList::iterator Param = Params->begin(), | 
|  | ParamEnd = Params->end(); | 
|  | Param != ParamEnd; /* increment in loop */) { | 
|  | // If we have an expanded parameter pack, make sure we don't have too | 
|  | // many arguments. | 
|  | if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) { | 
|  | if (*Expansions == ArgumentPack.size()) { | 
|  | // We're done with this parameter pack. Pack up its arguments and add | 
|  | // them to the list. | 
|  | Converted.push_back( | 
|  | TemplateArgument::CreatePackCopy(Context, ArgumentPack)); | 
|  | ArgumentPack.clear(); | 
|  |  | 
|  | // This argument is assigned to the next parameter. | 
|  | ++Param; | 
|  | continue; | 
|  | } else if (ArgIdx == NumArgs && !PartialTemplateArgs) { | 
|  | // Not enough arguments for this parameter pack. | 
|  | Diag(TemplateLoc, diag::err_template_arg_list_different_arity) | 
|  | << /*not enough args*/0 | 
|  | << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) | 
|  | << Template; | 
|  | Diag(Template->getLocation(), diag::note_template_decl_here) | 
|  | << Params->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ArgIdx < NumArgs) { | 
|  | // Check the template argument we were given. | 
|  | if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template, | 
|  | TemplateLoc, RAngleLoc, | 
|  | ArgumentPack.size(), Converted)) | 
|  | return true; | 
|  |  | 
|  | bool PackExpansionIntoNonPack = | 
|  | NewArgs[ArgIdx].getArgument().isPackExpansion() && | 
|  | (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param)); | 
|  | if (PackExpansionIntoNonPack && isa<TypeAliasTemplateDecl>(Template)) { | 
|  | // Core issue 1430: we have a pack expansion as an argument to an | 
|  | // alias template, and it's not part of a parameter pack. This | 
|  | // can't be canonicalized, so reject it now. | 
|  | Diag(NewArgs[ArgIdx].getLocation(), | 
|  | diag::err_alias_template_expansion_into_fixed_list) | 
|  | << NewArgs[ArgIdx].getSourceRange(); | 
|  | Diag((*Param)->getLocation(), diag::note_template_param_here); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // We're now done with this argument. | 
|  | ++ArgIdx; | 
|  |  | 
|  | if ((*Param)->isTemplateParameterPack()) { | 
|  | // The template parameter was a template parameter pack, so take the | 
|  | // deduced argument and place it on the argument pack. Note that we | 
|  | // stay on the same template parameter so that we can deduce more | 
|  | // arguments. | 
|  | ArgumentPack.push_back(Converted.pop_back_val()); | 
|  | } else { | 
|  | // Move to the next template parameter. | 
|  | ++Param; | 
|  | } | 
|  |  | 
|  | // If we just saw a pack expansion into a non-pack, then directly convert | 
|  | // the remaining arguments, because we don't know what parameters they'll | 
|  | // match up with. | 
|  | if (PackExpansionIntoNonPack) { | 
|  | if (!ArgumentPack.empty()) { | 
|  | // If we were part way through filling in an expanded parameter pack, | 
|  | // fall back to just producing individual arguments. | 
|  | Converted.insert(Converted.end(), | 
|  | ArgumentPack.begin(), ArgumentPack.end()); | 
|  | ArgumentPack.clear(); | 
|  | } | 
|  |  | 
|  | while (ArgIdx < NumArgs) { | 
|  | Converted.push_back(NewArgs[ArgIdx].getArgument()); | 
|  | ++ArgIdx; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we're checking a partial template argument list, we're done. | 
|  | if (PartialTemplateArgs) { | 
|  | if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) | 
|  | Converted.push_back( | 
|  | TemplateArgument::CreatePackCopy(Context, ArgumentPack)); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we have a template parameter pack with no more corresponding | 
|  | // arguments, just break out now and we'll fill in the argument pack below. | 
|  | if ((*Param)->isTemplateParameterPack()) { | 
|  | assert(!getExpandedPackSize(*Param) && | 
|  | "Should have dealt with this already"); | 
|  |  | 
|  | // A non-expanded parameter pack before the end of the parameter list | 
|  | // only occurs for an ill-formed template parameter list, unless we've | 
|  | // got a partial argument list for a function template, so just bail out. | 
|  | if (Param + 1 != ParamEnd) | 
|  | return true; | 
|  |  | 
|  | Converted.push_back( | 
|  | TemplateArgument::CreatePackCopy(Context, ArgumentPack)); | 
|  | ArgumentPack.clear(); | 
|  |  | 
|  | ++Param; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check whether we have a default argument. | 
|  | TemplateArgumentLoc Arg; | 
|  |  | 
|  | // Retrieve the default template argument from the template | 
|  | // parameter. For each kind of template parameter, we substitute the | 
|  | // template arguments provided thus far and any "outer" template arguments | 
|  | // (when the template parameter was part of a nested template) into | 
|  | // the default argument. | 
|  | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { | 
|  | if (!hasVisibleDefaultArgument(TTP)) | 
|  | return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP, | 
|  | NewArgs); | 
|  |  | 
|  | TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, | 
|  | Template, | 
|  | TemplateLoc, | 
|  | RAngleLoc, | 
|  | TTP, | 
|  | Converted); | 
|  | if (!ArgType) | 
|  | return true; | 
|  |  | 
|  | Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), | 
|  | ArgType); | 
|  | } else if (NonTypeTemplateParmDecl *NTTP | 
|  | = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { | 
|  | if (!hasVisibleDefaultArgument(NTTP)) | 
|  | return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP, | 
|  | NewArgs); | 
|  |  | 
|  | ExprResult E = SubstDefaultTemplateArgument(*this, Template, | 
|  | TemplateLoc, | 
|  | RAngleLoc, | 
|  | NTTP, | 
|  | Converted); | 
|  | if (E.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | Expr *Ex = E.getAs<Expr>(); | 
|  | Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); | 
|  | } else { | 
|  | TemplateTemplateParmDecl *TempParm | 
|  | = cast<TemplateTemplateParmDecl>(*Param); | 
|  |  | 
|  | if (!hasVisibleDefaultArgument(TempParm)) | 
|  | return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm, | 
|  | NewArgs); | 
|  |  | 
|  | NestedNameSpecifierLoc QualifierLoc; | 
|  | TemplateName Name = SubstDefaultTemplateArgument(*this, Template, | 
|  | TemplateLoc, | 
|  | RAngleLoc, | 
|  | TempParm, | 
|  | Converted, | 
|  | QualifierLoc); | 
|  | if (Name.isNull()) | 
|  | return true; | 
|  |  | 
|  | Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, | 
|  | TempParm->getDefaultArgument().getTemplateNameLoc()); | 
|  | } | 
|  |  | 
|  | // Introduce an instantiation record that describes where we are using | 
|  | // the default template argument. We're not actually instantiating a | 
|  | // template here, we just create this object to put a note into the | 
|  | // context stack. | 
|  | InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted, | 
|  | SourceRange(TemplateLoc, RAngleLoc)); | 
|  | if (Inst.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | // Check the default template argument. | 
|  | if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, | 
|  | RAngleLoc, 0, Converted)) | 
|  | return true; | 
|  |  | 
|  | // Core issue 150 (assumed resolution): if this is a template template | 
|  | // parameter, keep track of the default template arguments from the | 
|  | // template definition. | 
|  | if (isTemplateTemplateParameter) | 
|  | NewArgs.addArgument(Arg); | 
|  |  | 
|  | // Move to the next template parameter and argument. | 
|  | ++Param; | 
|  | ++ArgIdx; | 
|  | } | 
|  |  | 
|  | // If we're performing a partial argument substitution, allow any trailing | 
|  | // pack expansions; they might be empty. This can happen even if | 
|  | // PartialTemplateArgs is false (the list of arguments is complete but | 
|  | // still dependent). | 
|  | if (ArgIdx < NumArgs && CurrentInstantiationScope && | 
|  | CurrentInstantiationScope->getPartiallySubstitutedPack()) { | 
|  | while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion()) | 
|  | Converted.push_back(NewArgs[ArgIdx++].getArgument()); | 
|  | } | 
|  |  | 
|  | // If we have any leftover arguments, then there were too many arguments. | 
|  | // Complain and fail. | 
|  | if (ArgIdx < NumArgs) { | 
|  | Diag(TemplateLoc, diag::err_template_arg_list_different_arity) | 
|  | << /*too many args*/1 | 
|  | << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) | 
|  | << Template | 
|  | << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc()); | 
|  | Diag(Template->getLocation(), diag::note_template_decl_here) | 
|  | << Params->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // No problems found with the new argument list, propagate changes back | 
|  | // to caller. | 
|  | if (UpdateArgsWithConversions) | 
|  | TemplateArgs = std::move(NewArgs); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class UnnamedLocalNoLinkageFinder | 
|  | : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> | 
|  | { | 
|  | Sema &S; | 
|  | SourceRange SR; | 
|  |  | 
|  | typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; | 
|  |  | 
|  | public: | 
|  | UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } | 
|  |  | 
|  | bool Visit(QualType T) { | 
|  | return T.isNull() ? false : inherited::Visit(T.getTypePtr()); | 
|  | } | 
|  |  | 
|  | #define TYPE(Class, Parent) \ | 
|  | bool Visit##Class##Type(const Class##Type *); | 
|  | #define ABSTRACT_TYPE(Class, Parent) \ | 
|  | bool Visit##Class##Type(const Class##Type *) { return false; } | 
|  | #define NON_CANONICAL_TYPE(Class, Parent) \ | 
|  | bool Visit##Class##Type(const Class##Type *) { return false; } | 
|  | #include "clang/AST/TypeNodes.def" | 
|  |  | 
|  | bool VisitTagDecl(const TagDecl *Tag); | 
|  | bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { | 
|  | return Visit(T->getElementType()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { | 
|  | return Visit(T->getPointeeType()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( | 
|  | const BlockPointerType* T) { | 
|  | return Visit(T->getPointeeType()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( | 
|  | const LValueReferenceType* T) { | 
|  | return Visit(T->getPointeeType()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( | 
|  | const RValueReferenceType* T) { | 
|  | return Visit(T->getPointeeType()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( | 
|  | const MemberPointerType* T) { | 
|  | return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( | 
|  | const ConstantArrayType* T) { | 
|  | return Visit(T->getElementType()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( | 
|  | const IncompleteArrayType* T) { | 
|  | return Visit(T->getElementType()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( | 
|  | const VariableArrayType* T) { | 
|  | return Visit(T->getElementType()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( | 
|  | const DependentSizedArrayType* T) { | 
|  | return Visit(T->getElementType()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( | 
|  | const DependentSizedExtVectorType* T) { | 
|  | return Visit(T->getElementType()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType( | 
|  | const DependentAddressSpaceType *T) { | 
|  | return Visit(T->getPointeeType()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { | 
|  | return Visit(T->getElementType()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType( | 
|  | const DependentVectorType *T) { | 
|  | return Visit(T->getElementType()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { | 
|  | return Visit(T->getElementType()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( | 
|  | const FunctionProtoType* T) { | 
|  | for (const auto &A : T->param_types()) { | 
|  | if (Visit(A)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return Visit(T->getReturnType()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( | 
|  | const FunctionNoProtoType* T) { | 
|  | return Visit(T->getReturnType()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( | 
|  | const UnresolvedUsingType*) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { | 
|  | return Visit(T->getUnderlyingType()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( | 
|  | const UnaryTransformType*) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { | 
|  | return Visit(T->getDeducedType()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType( | 
|  | const DeducedTemplateSpecializationType *T) { | 
|  | return Visit(T->getDeducedType()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { | 
|  | return VisitTagDecl(T->getDecl()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { | 
|  | return VisitTagDecl(T->getDecl()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( | 
|  | const TemplateTypeParmType*) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( | 
|  | const SubstTemplateTypeParmPackType *) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( | 
|  | const TemplateSpecializationType*) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( | 
|  | const InjectedClassNameType* T) { | 
|  | return VisitTagDecl(T->getDecl()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( | 
|  | const DependentNameType* T) { | 
|  | return VisitNestedNameSpecifier(T->getQualifier()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( | 
|  | const DependentTemplateSpecializationType* T) { | 
|  | return VisitNestedNameSpecifier(T->getQualifier()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( | 
|  | const PackExpansionType* T) { | 
|  | return Visit(T->getPattern()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( | 
|  | const ObjCInterfaceType *) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( | 
|  | const ObjCObjectPointerType *) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { | 
|  | return Visit(T->getValueType()); | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { | 
|  | if (Tag->getDeclContext()->isFunctionOrMethod()) { | 
|  | S.Diag(SR.getBegin(), | 
|  | S.getLangOpts().CPlusPlus11 ? | 
|  | diag::warn_cxx98_compat_template_arg_local_type : | 
|  | diag::ext_template_arg_local_type) | 
|  | << S.Context.getTypeDeclType(Tag) << SR; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!Tag->hasNameForLinkage()) { | 
|  | S.Diag(SR.getBegin(), | 
|  | S.getLangOpts().CPlusPlus11 ? | 
|  | diag::warn_cxx98_compat_template_arg_unnamed_type : | 
|  | diag::ext_template_arg_unnamed_type) << SR; | 
|  | S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( | 
|  | NestedNameSpecifier *NNS) { | 
|  | if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) | 
|  | return true; | 
|  |  | 
|  | switch (NNS->getKind()) { | 
|  | case NestedNameSpecifier::Identifier: | 
|  | case NestedNameSpecifier::Namespace: | 
|  | case NestedNameSpecifier::NamespaceAlias: | 
|  | case NestedNameSpecifier::Global: | 
|  | case NestedNameSpecifier::Super: | 
|  | return false; | 
|  |  | 
|  | case NestedNameSpecifier::TypeSpec: | 
|  | case NestedNameSpecifier::TypeSpecWithTemplate: | 
|  | return Visit(QualType(NNS->getAsType(), 0)); | 
|  | } | 
|  | llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); | 
|  | } | 
|  |  | 
|  | /// Check a template argument against its corresponding | 
|  | /// template type parameter. | 
|  | /// | 
|  | /// This routine implements the semantics of C++ [temp.arg.type]. It | 
|  | /// returns true if an error occurred, and false otherwise. | 
|  | bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, | 
|  | TypeSourceInfo *ArgInfo) { | 
|  | assert(ArgInfo && "invalid TypeSourceInfo"); | 
|  | QualType Arg = ArgInfo->getType(); | 
|  | SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); | 
|  |  | 
|  | if (Arg->isVariablyModifiedType()) { | 
|  | return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; | 
|  | } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { | 
|  | return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; | 
|  | } | 
|  |  | 
|  | // C++03 [temp.arg.type]p2: | 
|  | //   A local type, a type with no linkage, an unnamed type or a type | 
|  | //   compounded from any of these types shall not be used as a | 
|  | //   template-argument for a template type-parameter. | 
|  | // | 
|  | // C++11 allows these, and even in C++03 we allow them as an extension with | 
|  | // a warning. | 
|  | if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) { | 
|  | UnnamedLocalNoLinkageFinder Finder(*this, SR); | 
|  | (void)Finder.Visit(Context.getCanonicalType(Arg)); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | enum NullPointerValueKind { | 
|  | NPV_NotNullPointer, | 
|  | NPV_NullPointer, | 
|  | NPV_Error | 
|  | }; | 
|  |  | 
|  | /// Determine whether the given template argument is a null pointer | 
|  | /// value of the appropriate type. | 
|  | static NullPointerValueKind | 
|  | isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, | 
|  | QualType ParamType, Expr *Arg, | 
|  | Decl *Entity = nullptr) { | 
|  | if (Arg->isValueDependent() || Arg->isTypeDependent()) | 
|  | return NPV_NotNullPointer; | 
|  |  | 
|  | // dllimport'd entities aren't constant but are available inside of template | 
|  | // arguments. | 
|  | if (Entity && Entity->hasAttr<DLLImportAttr>()) | 
|  | return NPV_NotNullPointer; | 
|  |  | 
|  | if (!S.isCompleteType(Arg->getExprLoc(), ParamType)) | 
|  | llvm_unreachable( | 
|  | "Incomplete parameter type in isNullPointerValueTemplateArgument!"); | 
|  |  | 
|  | if (!S.getLangOpts().CPlusPlus11) | 
|  | return NPV_NotNullPointer; | 
|  |  | 
|  | // Determine whether we have a constant expression. | 
|  | ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg); | 
|  | if (ArgRV.isInvalid()) | 
|  | return NPV_Error; | 
|  | Arg = ArgRV.get(); | 
|  |  | 
|  | Expr::EvalResult EvalResult; | 
|  | SmallVector<PartialDiagnosticAt, 8> Notes; | 
|  | EvalResult.Diag = &Notes; | 
|  | if (!Arg->EvaluateAsRValue(EvalResult, S.Context) || | 
|  | EvalResult.HasSideEffects) { | 
|  | SourceLocation DiagLoc = Arg->getExprLoc(); | 
|  |  | 
|  | // If our only note is the usual "invalid subexpression" note, just point | 
|  | // the caret at its location rather than producing an essentially | 
|  | // redundant note. | 
|  | if (Notes.size() == 1 && Notes[0].second.getDiagID() == | 
|  | diag::note_invalid_subexpr_in_const_expr) { | 
|  | DiagLoc = Notes[0].first; | 
|  | Notes.clear(); | 
|  | } | 
|  |  | 
|  | S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) | 
|  | << Arg->getType() << Arg->getSourceRange(); | 
|  | for (unsigned I = 0, N = Notes.size(); I != N; ++I) | 
|  | S.Diag(Notes[I].first, Notes[I].second); | 
|  |  | 
|  | S.Diag(Param->getLocation(), diag::note_template_param_here); | 
|  | return NPV_Error; | 
|  | } | 
|  |  | 
|  | // C++11 [temp.arg.nontype]p1: | 
|  | //   - an address constant expression of type std::nullptr_t | 
|  | if (Arg->getType()->isNullPtrType()) | 
|  | return NPV_NullPointer; | 
|  |  | 
|  | //   - a constant expression that evaluates to a null pointer value (4.10); or | 
|  | //   - a constant expression that evaluates to a null member pointer value | 
|  | //     (4.11); or | 
|  | if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) || | 
|  | (EvalResult.Val.isMemberPointer() && | 
|  | !EvalResult.Val.getMemberPointerDecl())) { | 
|  | // If our expression has an appropriate type, we've succeeded. | 
|  | bool ObjCLifetimeConversion; | 
|  | if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) || | 
|  | S.IsQualificationConversion(Arg->getType(), ParamType, false, | 
|  | ObjCLifetimeConversion)) | 
|  | return NPV_NullPointer; | 
|  |  | 
|  | // The types didn't match, but we know we got a null pointer; complain, | 
|  | // then recover as if the types were correct. | 
|  | S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) | 
|  | << Arg->getType() << ParamType << Arg->getSourceRange(); | 
|  | S.Diag(Param->getLocation(), diag::note_template_param_here); | 
|  | return NPV_NullPointer; | 
|  | } | 
|  |  | 
|  | // If we don't have a null pointer value, but we do have a NULL pointer | 
|  | // constant, suggest a cast to the appropriate type. | 
|  | if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) { | 
|  | std::string Code = "static_cast<" + ParamType.getAsString() + ">("; | 
|  | S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) | 
|  | << ParamType << FixItHint::CreateInsertion(Arg->getLocStart(), Code) | 
|  | << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getLocEnd()), | 
|  | ")"); | 
|  | S.Diag(Param->getLocation(), diag::note_template_param_here); | 
|  | return NPV_NullPointer; | 
|  | } | 
|  |  | 
|  | // FIXME: If we ever want to support general, address-constant expressions | 
|  | // as non-type template arguments, we should return the ExprResult here to | 
|  | // be interpreted by the caller. | 
|  | return NPV_NotNullPointer; | 
|  | } | 
|  |  | 
|  | /// Checks whether the given template argument is compatible with its | 
|  | /// template parameter. | 
|  | static bool CheckTemplateArgumentIsCompatibleWithParameter( | 
|  | Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, | 
|  | Expr *Arg, QualType ArgType) { | 
|  | bool ObjCLifetimeConversion; | 
|  | if (ParamType->isPointerType() && | 
|  | !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && | 
|  | S.IsQualificationConversion(ArgType, ParamType, false, | 
|  | ObjCLifetimeConversion)) { | 
|  | // For pointer-to-object types, qualification conversions are | 
|  | // permitted. | 
|  | } else { | 
|  | if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { | 
|  | if (!ParamRef->getPointeeType()->isFunctionType()) { | 
|  | // C++ [temp.arg.nontype]p5b3: | 
|  | //   For a non-type template-parameter of type reference to | 
|  | //   object, no conversions apply. The type referred to by the | 
|  | //   reference may be more cv-qualified than the (otherwise | 
|  | //   identical) type of the template- argument. The | 
|  | //   template-parameter is bound directly to the | 
|  | //   template-argument, which shall be an lvalue. | 
|  |  | 
|  | // FIXME: Other qualifiers? | 
|  | unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); | 
|  | unsigned ArgQuals = ArgType.getCVRQualifiers(); | 
|  |  | 
|  | if ((ParamQuals | ArgQuals) != ParamQuals) { | 
|  | S.Diag(Arg->getLocStart(), | 
|  | diag::err_template_arg_ref_bind_ignores_quals) | 
|  | << ParamType << Arg->getType() << Arg->getSourceRange(); | 
|  | S.Diag(Param->getLocation(), diag::note_template_param_here); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // At this point, the template argument refers to an object or | 
|  | // function with external linkage. We now need to check whether the | 
|  | // argument and parameter types are compatible. | 
|  | if (!S.Context.hasSameUnqualifiedType(ArgType, | 
|  | ParamType.getNonReferenceType())) { | 
|  | // We can't perform this conversion or binding. | 
|  | if (ParamType->isReferenceType()) | 
|  | S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) | 
|  | << ParamType << ArgIn->getType() << Arg->getSourceRange(); | 
|  | else | 
|  | S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible) | 
|  | << ArgIn->getType() << ParamType << Arg->getSourceRange(); | 
|  | S.Diag(Param->getLocation(), diag::note_template_param_here); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Checks whether the given template argument is the address | 
|  | /// of an object or function according to C++ [temp.arg.nontype]p1. | 
|  | static bool | 
|  | CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, | 
|  | NonTypeTemplateParmDecl *Param, | 
|  | QualType ParamType, | 
|  | Expr *ArgIn, | 
|  | TemplateArgument &Converted) { | 
|  | bool Invalid = false; | 
|  | Expr *Arg = ArgIn; | 
|  | QualType ArgType = Arg->getType(); | 
|  |  | 
|  | bool AddressTaken = false; | 
|  | SourceLocation AddrOpLoc; | 
|  | if (S.getLangOpts().MicrosoftExt) { | 
|  | // Microsoft Visual C++ strips all casts, allows an arbitrary number of | 
|  | // dereference and address-of operators. | 
|  | Arg = Arg->IgnoreParenCasts(); | 
|  |  | 
|  | bool ExtWarnMSTemplateArg = false; | 
|  | UnaryOperatorKind FirstOpKind; | 
|  | SourceLocation FirstOpLoc; | 
|  | while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { | 
|  | UnaryOperatorKind UnOpKind = UnOp->getOpcode(); | 
|  | if (UnOpKind == UO_Deref) | 
|  | ExtWarnMSTemplateArg = true; | 
|  | if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) { | 
|  | Arg = UnOp->getSubExpr()->IgnoreParenCasts(); | 
|  | if (!AddrOpLoc.isValid()) { | 
|  | FirstOpKind = UnOpKind; | 
|  | FirstOpLoc = UnOp->getOperatorLoc(); | 
|  | } | 
|  | } else | 
|  | break; | 
|  | } | 
|  | if (FirstOpLoc.isValid()) { | 
|  | if (ExtWarnMSTemplateArg) | 
|  | S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument) | 
|  | << ArgIn->getSourceRange(); | 
|  |  | 
|  | if (FirstOpKind == UO_AddrOf) | 
|  | AddressTaken = true; | 
|  | else if (Arg->getType()->isPointerType()) { | 
|  | // We cannot let pointers get dereferenced here, that is obviously not a | 
|  | // constant expression. | 
|  | assert(FirstOpKind == UO_Deref); | 
|  | S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) | 
|  | << Arg->getSourceRange(); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // See through any implicit casts we added to fix the type. | 
|  | Arg = Arg->IgnoreImpCasts(); | 
|  |  | 
|  | // C++ [temp.arg.nontype]p1: | 
|  | // | 
|  | //   A template-argument for a non-type, non-template | 
|  | //   template-parameter shall be one of: [...] | 
|  | // | 
|  | //     -- the address of an object or function with external | 
|  | //        linkage, including function templates and function | 
|  | //        template-ids but excluding non-static class members, | 
|  | //        expressed as & id-expression where the & is optional if | 
|  | //        the name refers to a function or array, or if the | 
|  | //        corresponding template-parameter is a reference; or | 
|  |  | 
|  | // In C++98/03 mode, give an extension warning on any extra parentheses. | 
|  | // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 | 
|  | bool ExtraParens = false; | 
|  | while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { | 
|  | if (!Invalid && !ExtraParens) { | 
|  | S.Diag(Arg->getLocStart(), | 
|  | S.getLangOpts().CPlusPlus11 | 
|  | ? diag::warn_cxx98_compat_template_arg_extra_parens | 
|  | : diag::ext_template_arg_extra_parens) | 
|  | << Arg->getSourceRange(); | 
|  | ExtraParens = true; | 
|  | } | 
|  |  | 
|  | Arg = Parens->getSubExpr(); | 
|  | } | 
|  |  | 
|  | while (SubstNonTypeTemplateParmExpr *subst = | 
|  | dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) | 
|  | Arg = subst->getReplacement()->IgnoreImpCasts(); | 
|  |  | 
|  | if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { | 
|  | if (UnOp->getOpcode() == UO_AddrOf) { | 
|  | Arg = UnOp->getSubExpr(); | 
|  | AddressTaken = true; | 
|  | AddrOpLoc = UnOp->getOperatorLoc(); | 
|  | } | 
|  | } | 
|  |  | 
|  | while (SubstNonTypeTemplateParmExpr *subst = | 
|  | dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) | 
|  | Arg = subst->getReplacement()->IgnoreImpCasts(); | 
|  | } | 
|  |  | 
|  | DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg); | 
|  | ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr; | 
|  |  | 
|  | // If our parameter has pointer type, check for a null template value. | 
|  | if (ParamType->isPointerType() || ParamType->isNullPtrType()) { | 
|  | switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn, | 
|  | Entity)) { | 
|  | case NPV_NullPointer: | 
|  | S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); | 
|  | Converted = TemplateArgument(S.Context.getCanonicalType(ParamType), | 
|  | /*isNullPtr=*/true); | 
|  | return false; | 
|  |  | 
|  | case NPV_Error: | 
|  | return true; | 
|  |  | 
|  | case NPV_NotNullPointer: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Stop checking the precise nature of the argument if it is value dependent, | 
|  | // it should be checked when instantiated. | 
|  | if (Arg->isValueDependent()) { | 
|  | Converted = TemplateArgument(ArgIn); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (isa<CXXUuidofExpr>(Arg)) { | 
|  | if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, | 
|  | ArgIn, Arg, ArgType)) | 
|  | return true; | 
|  |  | 
|  | Converted = TemplateArgument(ArgIn); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!DRE) { | 
|  | S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) | 
|  | << Arg->getSourceRange(); | 
|  | S.Diag(Param->getLocation(), diag::note_template_param_here); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Cannot refer to non-static data members | 
|  | if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) { | 
|  | S.Diag(Arg->getLocStart(), diag::err_template_arg_field) | 
|  | << Entity << Arg->getSourceRange(); | 
|  | S.Diag(Param->getLocation(), diag::note_template_param_here); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Cannot refer to non-static member functions | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) { | 
|  | if (!Method->isStatic()) { | 
|  | S.Diag(Arg->getLocStart(), diag::err_template_arg_method) | 
|  | << Method << Arg->getSourceRange(); | 
|  | S.Diag(Param->getLocation(), diag::note_template_param_here); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity); | 
|  | VarDecl *Var = dyn_cast<VarDecl>(Entity); | 
|  |  | 
|  | // A non-type template argument must refer to an object or function. | 
|  | if (!Func && !Var) { | 
|  | // We found something, but we don't know specifically what it is. | 
|  | S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func) | 
|  | << Arg->getSourceRange(); | 
|  | S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Address / reference template args must have external linkage in C++98. | 
|  | if (Entity->getFormalLinkage() == InternalLinkage) { | 
|  | S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ? | 
|  | diag::warn_cxx98_compat_template_arg_object_internal : | 
|  | diag::ext_template_arg_object_internal) | 
|  | << !Func << Entity << Arg->getSourceRange(); | 
|  | S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) | 
|  | << !Func; | 
|  | } else if (!Entity->hasLinkage()) { | 
|  | S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage) | 
|  | << !Func << Entity << Arg->getSourceRange(); | 
|  | S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) | 
|  | << !Func; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Func) { | 
|  | // If the template parameter has pointer type, the function decays. | 
|  | if (ParamType->isPointerType() && !AddressTaken) | 
|  | ArgType = S.Context.getPointerType(Func->getType()); | 
|  | else if (AddressTaken && ParamType->isReferenceType()) { | 
|  | // If we originally had an address-of operator, but the | 
|  | // parameter has reference type, complain and (if things look | 
|  | // like they will work) drop the address-of operator. | 
|  | if (!S.Context.hasSameUnqualifiedType(Func->getType(), | 
|  | ParamType.getNonReferenceType())) { | 
|  | S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) | 
|  | << ParamType; | 
|  | S.Diag(Param->getLocation(), diag::note_template_param_here); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) | 
|  | << ParamType | 
|  | << FixItHint::CreateRemoval(AddrOpLoc); | 
|  | S.Diag(Param->getLocation(), diag::note_template_param_here); | 
|  |  | 
|  | ArgType = Func->getType(); | 
|  | } | 
|  | } else { | 
|  | // A value of reference type is not an object. | 
|  | if (Var->getType()->isReferenceType()) { | 
|  | S.Diag(Arg->getLocStart(), | 
|  | diag::err_template_arg_reference_var) | 
|  | << Var->getType() << Arg->getSourceRange(); | 
|  | S.Diag(Param->getLocation(), diag::note_template_param_here); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // A template argument must have static storage duration. | 
|  | if (Var->getTLSKind()) { | 
|  | S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local) | 
|  | << Arg->getSourceRange(); | 
|  | S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If the template parameter has pointer type, we must have taken | 
|  | // the address of this object. | 
|  | if (ParamType->isReferenceType()) { | 
|  | if (AddressTaken) { | 
|  | // If we originally had an address-of operator, but the | 
|  | // parameter has reference type, complain and (if things look | 
|  | // like they will work) drop the address-of operator. | 
|  | if (!S.Context.hasSameUnqualifiedType(Var->getType(), | 
|  | ParamType.getNonReferenceType())) { | 
|  | S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) | 
|  | << ParamType; | 
|  | S.Diag(Param->getLocation(), diag::note_template_param_here); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) | 
|  | << ParamType | 
|  | << FixItHint::CreateRemoval(AddrOpLoc); | 
|  | S.Diag(Param->getLocation(), diag::note_template_param_here); | 
|  |  | 
|  | ArgType = Var->getType(); | 
|  | } | 
|  | } else if (!AddressTaken && ParamType->isPointerType()) { | 
|  | if (Var->getType()->isArrayType()) { | 
|  | // Array-to-pointer decay. | 
|  | ArgType = S.Context.getArrayDecayedType(Var->getType()); | 
|  | } else { | 
|  | // If the template parameter has pointer type but the address of | 
|  | // this object was not taken, complain and (possibly) recover by | 
|  | // taking the address of the entity. | 
|  | ArgType = S.Context.getPointerType(Var->getType()); | 
|  | if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { | 
|  | S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) | 
|  | << ParamType; | 
|  | S.Diag(Param->getLocation(), diag::note_template_param_here); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) | 
|  | << ParamType | 
|  | << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); | 
|  |  | 
|  | S.Diag(Param->getLocation(), diag::note_template_param_here); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn, | 
|  | Arg, ArgType)) | 
|  | return true; | 
|  |  | 
|  | // Create the template argument. | 
|  | Converted = | 
|  | TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType); | 
|  | S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Checks whether the given template argument is a pointer to | 
|  | /// member constant according to C++ [temp.arg.nontype]p1. | 
|  | static bool CheckTemplateArgumentPointerToMember(Sema &S, | 
|  | NonTypeTemplateParmDecl *Param, | 
|  | QualType ParamType, | 
|  | Expr *&ResultArg, | 
|  | TemplateArgument &Converted) { | 
|  | bool Invalid = false; | 
|  |  | 
|  | Expr *Arg = ResultArg; | 
|  | bool ObjCLifetimeConversion; | 
|  |  | 
|  | // C++ [temp.arg.nontype]p1: | 
|  | // | 
|  | //   A template-argument for a non-type, non-template | 
|  | //   template-parameter shall be one of: [...] | 
|  | // | 
|  | //     -- a pointer to member expressed as described in 5.3.1. | 
|  | DeclRefExpr *DRE = nullptr; | 
|  |  | 
|  | // In C++98/03 mode, give an extension warning on any extra parentheses. | 
|  | // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 | 
|  | bool ExtraParens = false; | 
|  | while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { | 
|  | if (!Invalid && !ExtraParens) { | 
|  | S.Diag(Arg->getLocStart(), | 
|  | S.getLangOpts().CPlusPlus11 ? | 
|  | diag::warn_cxx98_compat_template_arg_extra_parens : | 
|  | diag::ext_template_arg_extra_parens) | 
|  | << Arg->getSourceRange(); | 
|  | ExtraParens = true; | 
|  | } | 
|  |  | 
|  | Arg = Parens->getSubExpr(); | 
|  | } | 
|  |  | 
|  | while (SubstNonTypeTemplateParmExpr *subst = | 
|  | dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) | 
|  | Arg = subst->getReplacement()->IgnoreImpCasts(); | 
|  |  | 
|  | // A pointer-to-member constant written &Class::member. | 
|  | if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { | 
|  | if (UnOp->getOpcode() == UO_AddrOf) { | 
|  | DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); | 
|  | if (DRE && !DRE->getQualifier()) | 
|  | DRE = nullptr; | 
|  | } | 
|  | } | 
|  | // A constant of pointer-to-member type. | 
|  | else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { | 
|  | ValueDecl *VD = DRE->getDecl(); | 
|  | if (VD->getType()->isMemberPointerType()) { | 
|  | if (isa<NonTypeTemplateParmDecl>(VD)) { | 
|  | if (Arg->isTypeDependent() || Arg->isValueDependent()) { | 
|  | Converted = TemplateArgument(Arg); | 
|  | } else { | 
|  | VD = cast<ValueDecl>(VD->getCanonicalDecl()); | 
|  | Converted = TemplateArgument(VD, ParamType); | 
|  | } | 
|  | return Invalid; | 
|  | } | 
|  | } | 
|  |  | 
|  | DRE = nullptr; | 
|  | } | 
|  |  | 
|  | ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr; | 
|  |  | 
|  | // Check for a null pointer value. | 
|  | switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg, | 
|  | Entity)) { | 
|  | case NPV_Error: | 
|  | return true; | 
|  | case NPV_NullPointer: | 
|  | S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); | 
|  | Converted = TemplateArgument(S.Context.getCanonicalType(ParamType), | 
|  | /*isNullPtr*/true); | 
|  | return false; | 
|  | case NPV_NotNullPointer: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (S.IsQualificationConversion(ResultArg->getType(), | 
|  | ParamType.getNonReferenceType(), false, | 
|  | ObjCLifetimeConversion)) { | 
|  | ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp, | 
|  | ResultArg->getValueKind()) | 
|  | .get(); | 
|  | } else if (!S.Context.hasSameUnqualifiedType( | 
|  | ResultArg->getType(), ParamType.getNonReferenceType())) { | 
|  | // We can't perform this conversion. | 
|  | S.Diag(ResultArg->getLocStart(), diag::err_template_arg_not_convertible) | 
|  | << ResultArg->getType() << ParamType << ResultArg->getSourceRange(); | 
|  | S.Diag(Param->getLocation(), diag::note_template_param_here); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!DRE) | 
|  | return S.Diag(Arg->getLocStart(), | 
|  | diag::err_template_arg_not_pointer_to_member_form) | 
|  | << Arg->getSourceRange(); | 
|  |  | 
|  | if (isa<FieldDecl>(DRE->getDecl()) || | 
|  | isa<IndirectFieldDecl>(DRE->getDecl()) || | 
|  | isa<CXXMethodDecl>(DRE->getDecl())) { | 
|  | assert((isa<FieldDecl>(DRE->getDecl()) || | 
|  | isa<IndirectFieldDecl>(DRE->getDecl()) || | 
|  | !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && | 
|  | "Only non-static member pointers can make it here"); | 
|  |  | 
|  | // Okay: this is the address of a non-static member, and therefore | 
|  | // a member pointer constant. | 
|  | if (Arg->isTypeDependent() || Arg->isValueDependent()) { | 
|  | Converted = TemplateArgument(Arg); | 
|  | } else { | 
|  | ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); | 
|  | Converted = TemplateArgument(D, ParamType); | 
|  | } | 
|  | return Invalid; | 
|  | } | 
|  |  | 
|  | // We found something else, but we don't know specifically what it is. | 
|  | S.Diag(Arg->getLocStart(), | 
|  | diag::err_template_arg_not_pointer_to_member_form) | 
|  | << Arg->getSourceRange(); | 
|  | S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check a template argument against its corresponding | 
|  | /// non-type template parameter. | 
|  | /// | 
|  | /// This routine implements the semantics of C++ [temp.arg.nontype]. | 
|  | /// If an error occurred, it returns ExprError(); otherwise, it | 
|  | /// returns the converted template argument. \p ParamType is the | 
|  | /// type of the non-type template parameter after it has been instantiated. | 
|  | ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, | 
|  | QualType ParamType, Expr *Arg, | 
|  | TemplateArgument &Converted, | 
|  | CheckTemplateArgumentKind CTAK) { | 
|  | SourceLocation StartLoc = Arg->getLocStart(); | 
|  |  | 
|  | // If the parameter type somehow involves auto, deduce the type now. | 
|  | if (getLangOpts().CPlusPlus17 && ParamType->isUndeducedType()) { | 
|  | // During template argument deduction, we allow 'decltype(auto)' to | 
|  | // match an arbitrary dependent argument. | 
|  | // FIXME: The language rules don't say what happens in this case. | 
|  | // FIXME: We get an opaque dependent type out of decltype(auto) if the | 
|  | // expression is merely instantiation-dependent; is this enough? | 
|  | if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) { | 
|  | auto *AT = dyn_cast<AutoType>(ParamType); | 
|  | if (AT && AT->isDecltypeAuto()) { | 
|  | Converted = TemplateArgument(Arg); | 
|  | return Arg; | 
|  | } | 
|  | } | 
|  |  | 
|  | // When checking a deduced template argument, deduce from its type even if | 
|  | // the type is dependent, in order to check the types of non-type template | 
|  | // arguments line up properly in partial ordering. | 
|  | Optional<unsigned> Depth; | 
|  | if (CTAK != CTAK_Specified) | 
|  | Depth = Param->getDepth() + 1; | 
|  | if (DeduceAutoType( | 
|  | Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()), | 
|  | Arg, ParamType, Depth) == DAR_Failed) { | 
|  | Diag(Arg->getExprLoc(), | 
|  | diag::err_non_type_template_parm_type_deduction_failure) | 
|  | << Param->getDeclName() << Param->getType() << Arg->getType() | 
|  | << Arg->getSourceRange(); | 
|  | Diag(Param->getLocation(), diag::note_template_param_here); | 
|  | return ExprError(); | 
|  | } | 
|  | // CheckNonTypeTemplateParameterType will produce a diagnostic if there's | 
|  | // an error. The error message normally references the parameter | 
|  | // declaration, but here we'll pass the argument location because that's | 
|  | // where the parameter type is deduced. | 
|  | ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc()); | 
|  | if (ParamType.isNull()) { | 
|  | Diag(Param->getLocation(), diag::note_template_param_here); | 
|  | return ExprError(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We should have already dropped all cv-qualifiers by now. | 
|  | assert(!ParamType.hasQualifiers() && | 
|  | "non-type template parameter type cannot be qualified"); | 
|  |  | 
|  | if (CTAK == CTAK_Deduced && | 
|  | !Context.hasSameType(ParamType.getNonLValueExprType(Context), | 
|  | Arg->getType())) { | 
|  | // FIXME: If either type is dependent, we skip the check. This isn't | 
|  | // correct, since during deduction we're supposed to have replaced each | 
|  | // template parameter with some unique (non-dependent) placeholder. | 
|  | // FIXME: If the argument type contains 'auto', we carry on and fail the | 
|  | // type check in order to force specific types to be more specialized than | 
|  | // 'auto'. It's not clear how partial ordering with 'auto' is supposed to | 
|  | // work. | 
|  | if ((ParamType->isDependentType() || Arg->isTypeDependent()) && | 
|  | !Arg->getType()->getContainedAutoType()) { | 
|  | Converted = TemplateArgument(Arg); | 
|  | return Arg; | 
|  | } | 
|  | // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770, | 
|  | // we should actually be checking the type of the template argument in P, | 
|  | // not the type of the template argument deduced from A, against the | 
|  | // template parameter type. | 
|  | Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) | 
|  | << Arg->getType() | 
|  | << ParamType.getUnqualifiedType(); | 
|  | Diag(Param->getLocation(), diag::note_template_param_here); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | // If either the parameter has a dependent type or the argument is | 
|  | // type-dependent, there's nothing we can check now. | 
|  | if (ParamType->isDependentType() || Arg->isTypeDependent()) { | 
|  | // FIXME: Produce a cloned, canonical expression? | 
|  | Converted = TemplateArgument(Arg); | 
|  | return Arg; | 
|  | } | 
|  |  | 
|  | // The initialization of the parameter from the argument is | 
|  | // a constant-evaluated context. | 
|  | EnterExpressionEvaluationContext ConstantEvaluated( | 
|  | *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); | 
|  |  | 
|  | if (getLangOpts().CPlusPlus17) { | 
|  | // C++17 [temp.arg.nontype]p1: | 
|  | //   A template-argument for a non-type template parameter shall be | 
|  | //   a converted constant expression of the type of the template-parameter. | 
|  | APValue Value; | 
|  | ExprResult ArgResult = CheckConvertedConstantExpression( | 
|  | Arg, ParamType, Value, CCEK_TemplateArg); | 
|  | if (ArgResult.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | // For a value-dependent argument, CheckConvertedConstantExpression is | 
|  | // permitted (and expected) to be unable to determine a value. | 
|  | if (ArgResult.get()->isValueDependent()) { | 
|  | Converted = TemplateArgument(ArgResult.get()); | 
|  | return ArgResult; | 
|  | } | 
|  |  | 
|  | QualType CanonParamType = Context.getCanonicalType(ParamType); | 
|  |  | 
|  | // Convert the APValue to a TemplateArgument. | 
|  | switch (Value.getKind()) { | 
|  | case APValue::Uninitialized: | 
|  | assert(ParamType->isNullPtrType()); | 
|  | Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true); | 
|  | break; | 
|  | case APValue::Int: | 
|  | assert(ParamType->isIntegralOrEnumerationType()); | 
|  | Converted = TemplateArgument(Context, Value.getInt(), CanonParamType); | 
|  | break; | 
|  | case APValue::MemberPointer: { | 
|  | assert(ParamType->isMemberPointerType()); | 
|  |  | 
|  | // FIXME: We need TemplateArgument representation and mangling for these. | 
|  | if (!Value.getMemberPointerPath().empty()) { | 
|  | Diag(Arg->getLocStart(), | 
|  | diag::err_template_arg_member_ptr_base_derived_not_supported) | 
|  | << Value.getMemberPointerDecl() << ParamType | 
|  | << Arg->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl()); | 
|  | Converted = VD ? TemplateArgument(VD, CanonParamType) | 
|  | : TemplateArgument(CanonParamType, /*isNullPtr*/true); | 
|  | break; | 
|  | } | 
|  | case APValue::LValue: { | 
|  | //   For a non-type template-parameter of pointer or reference type, | 
|  | //   the value of the constant expression shall not refer to | 
|  | assert(ParamType->isPointerType() || ParamType->isReferenceType() || | 
|  | ParamType->isNullPtrType()); | 
|  | // -- a temporary object | 
|  | // -- a string literal | 
|  | // -- the result of a typeid expression, or | 
|  | // -- a predefined __func__ variable | 
|  | if (auto *E = Value.getLValueBase().dyn_cast<const Expr*>()) { | 
|  | if (isa<CXXUuidofExpr>(E)) { | 
|  | Converted = TemplateArgument(ArgResult.get()); | 
|  | break; | 
|  | } | 
|  | Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) | 
|  | << Arg->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  | auto *VD = const_cast<ValueDecl *>( | 
|  | Value.getLValueBase().dyn_cast<const ValueDecl *>()); | 
|  | // -- a subobject | 
|  | if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 && | 
|  | VD && VD->getType()->isArrayType() && | 
|  | Value.getLValuePath()[0].ArrayIndex == 0 && | 
|  | !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) { | 
|  | // Per defect report (no number yet): | 
|  | //   ... other than a pointer to the first element of a complete array | 
|  | //       object. | 
|  | } else if (!Value.hasLValuePath() || Value.getLValuePath().size() || | 
|  | Value.isLValueOnePastTheEnd()) { | 
|  | Diag(StartLoc, diag::err_non_type_template_arg_subobject) | 
|  | << Value.getAsString(Context, ParamType); | 
|  | return ExprError(); | 
|  | } | 
|  | assert((VD || !ParamType->isReferenceType()) && | 
|  | "null reference should not be a constant expression"); | 
|  | assert((!VD || !ParamType->isNullPtrType()) && | 
|  | "non-null value of type nullptr_t?"); | 
|  | Converted = VD ? TemplateArgument(VD, CanonParamType) | 
|  | : TemplateArgument(CanonParamType, /*isNullPtr*/true); | 
|  | break; | 
|  | } | 
|  | case APValue::AddrLabelDiff: | 
|  | return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff); | 
|  | case APValue::Float: | 
|  | case APValue::ComplexInt: | 
|  | case APValue::ComplexFloat: | 
|  | case APValue::Vector: | 
|  | case APValue::Array: | 
|  | case APValue::Struct: | 
|  | case APValue::Union: | 
|  | llvm_unreachable("invalid kind for template argument"); | 
|  | } | 
|  |  | 
|  | return ArgResult.get(); | 
|  | } | 
|  |  | 
|  | // C++ [temp.arg.nontype]p5: | 
|  | //   The following conversions are performed on each expression used | 
|  | //   as a non-type template-argument. If a non-type | 
|  | //   template-argument cannot be converted to the type of the | 
|  | //   corresponding template-parameter then the program is | 
|  | //   ill-formed. | 
|  | if (ParamType->isIntegralOrEnumerationType()) { | 
|  | // C++11: | 
|  | //   -- for a non-type template-parameter of integral or | 
|  | //      enumeration type, conversions permitted in a converted | 
|  | //      constant expression are applied. | 
|  | // | 
|  | // C++98: | 
|  | //   -- for a non-type template-parameter of integral or | 
|  | //      enumeration type, integral promotions (4.5) and integral | 
|  | //      conversions (4.7) are applied. | 
|  |  | 
|  | if (getLangOpts().CPlusPlus11) { | 
|  | // C++ [temp.arg.nontype]p1: | 
|  | //   A template-argument for a non-type, non-template template-parameter | 
|  | //   shall be one of: | 
|  | // | 
|  | //     -- for a non-type template-parameter of integral or enumeration | 
|  | //        type, a converted constant expression of the type of the | 
|  | //        template-parameter; or | 
|  | llvm::APSInt Value; | 
|  | ExprResult ArgResult = | 
|  | CheckConvertedConstantExpression(Arg, ParamType, Value, | 
|  | CCEK_TemplateArg); | 
|  | if (ArgResult.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | // We can't check arbitrary value-dependent arguments. | 
|  | if (ArgResult.get()->isValueDependent()) { | 
|  | Converted = TemplateArgument(ArgResult.get()); | 
|  | return ArgResult; | 
|  | } | 
|  |  | 
|  | // Widen the argument value to sizeof(parameter type). This is almost | 
|  | // always a no-op, except when the parameter type is bool. In | 
|  | // that case, this may extend the argument from 1 bit to 8 bits. | 
|  | QualType IntegerType = ParamType; | 
|  | if (const EnumType *Enum = IntegerType->getAs<EnumType>()) | 
|  | IntegerType = Enum->getDecl()->getIntegerType(); | 
|  | Value = Value.extOrTrunc(Context.getTypeSize(IntegerType)); | 
|  |  | 
|  | Converted = TemplateArgument(Context, Value, | 
|  | Context.getCanonicalType(ParamType)); | 
|  | return ArgResult; | 
|  | } | 
|  |  | 
|  | ExprResult ArgResult = DefaultLvalueConversion(Arg); | 
|  | if (ArgResult.isInvalid()) | 
|  | return ExprError(); | 
|  | Arg = ArgResult.get(); | 
|  |  | 
|  | QualType ArgType = Arg->getType(); | 
|  |  | 
|  | // C++ [temp.arg.nontype]p1: | 
|  | //   A template-argument for a non-type, non-template | 
|  | //   template-parameter shall be one of: | 
|  | // | 
|  | //     -- an integral constant-expression of integral or enumeration | 
|  | //        type; or | 
|  | //     -- the name of a non-type template-parameter; or | 
|  | llvm::APSInt Value; | 
|  | if (!ArgType->isIntegralOrEnumerationType()) { | 
|  | Diag(Arg->getLocStart(), | 
|  | diag::err_template_arg_not_integral_or_enumeral) | 
|  | << ArgType << Arg->getSourceRange(); | 
|  | Diag(Param->getLocation(), diag::note_template_param_here); | 
|  | return ExprError(); | 
|  | } else if (!Arg->isValueDependent()) { | 
|  | class TmplArgICEDiagnoser : public VerifyICEDiagnoser { | 
|  | QualType T; | 
|  |  | 
|  | public: | 
|  | TmplArgICEDiagnoser(QualType T) : T(T) { } | 
|  |  | 
|  | void diagnoseNotICE(Sema &S, SourceLocation Loc, | 
|  | SourceRange SR) override { | 
|  | S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR; | 
|  | } | 
|  | } Diagnoser(ArgType); | 
|  |  | 
|  | Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser, | 
|  | false).get(); | 
|  | if (!Arg) | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | // From here on out, all we care about is the unqualified form | 
|  | // of the argument type. | 
|  | ArgType = ArgType.getUnqualifiedType(); | 
|  |  | 
|  | // Try to convert the argument to the parameter's type. | 
|  | if (Context.hasSameType(ParamType, ArgType)) { | 
|  | // Okay: no conversion necessary | 
|  | } else if (ParamType->isBooleanType()) { | 
|  | // This is an integral-to-boolean conversion. | 
|  | Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get(); | 
|  | } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || | 
|  | !ParamType->isEnumeralType()) { | 
|  | // This is an integral promotion or conversion. | 
|  | Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get(); | 
|  | } else { | 
|  | // We can't perform this conversion. | 
|  | Diag(Arg->getLocStart(), | 
|  | diag::err_template_arg_not_convertible) | 
|  | << Arg->getType() << ParamType << Arg->getSourceRange(); | 
|  | Diag(Param->getLocation(), diag::note_template_param_here); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | // Add the value of this argument to the list of converted | 
|  | // arguments. We use the bitwidth and signedness of the template | 
|  | // parameter. | 
|  | if (Arg->isValueDependent()) { | 
|  | // The argument is value-dependent. Create a new | 
|  | // TemplateArgument with the converted expression. | 
|  | Converted = TemplateArgument(Arg); | 
|  | return Arg; | 
|  | } | 
|  |  | 
|  | QualType IntegerType = Context.getCanonicalType(ParamType); | 
|  | if (const EnumType *Enum = IntegerType->getAs<EnumType>()) | 
|  | IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); | 
|  |  | 
|  | if (ParamType->isBooleanType()) { | 
|  | // Value must be zero or one. | 
|  | Value = Value != 0; | 
|  | unsigned AllowedBits = Context.getTypeSize(IntegerType); | 
|  | if (Value.getBitWidth() != AllowedBits) | 
|  | Value = Value.extOrTrunc(AllowedBits); | 
|  | Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); | 
|  | } else { | 
|  | llvm::APSInt OldValue = Value; | 
|  |  | 
|  | // Coerce the template argument's value to the value it will have | 
|  | // based on the template parameter's type. | 
|  | unsigned AllowedBits = Context.getTypeSize(IntegerType); | 
|  | if (Value.getBitWidth() != AllowedBits) | 
|  | Value = Value.extOrTrunc(AllowedBits); | 
|  | Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); | 
|  |  | 
|  | // Complain if an unsigned parameter received a negative value. | 
|  | if (IntegerType->isUnsignedIntegerOrEnumerationType() | 
|  | && (OldValue.isSigned() && OldValue.isNegative())) { | 
|  | Diag(Arg->getLocStart(), diag::warn_template_arg_negative) | 
|  | << OldValue.toString(10) << Value.toString(10) << Param->getType() | 
|  | << Arg->getSourceRange(); | 
|  | Diag(Param->getLocation(), diag::note_template_param_here); | 
|  | } | 
|  |  | 
|  | // Complain if we overflowed the template parameter's type. | 
|  | unsigned RequiredBits; | 
|  | if (IntegerType->isUnsignedIntegerOrEnumerationType()) | 
|  | RequiredBits = OldValue.getActiveBits(); | 
|  | else if (OldValue.isUnsigned()) | 
|  | RequiredBits = OldValue.getActiveBits() + 1; | 
|  | else | 
|  | RequiredBits = OldValue.getMinSignedBits(); | 
|  | if (RequiredBits > AllowedBits) { | 
|  | Diag(Arg->getLocStart(), | 
|  | diag::warn_template_arg_too_large) | 
|  | << OldValue.toString(10) << Value.toString(10) << Param->getType() | 
|  | << Arg->getSourceRange(); | 
|  | Diag(Param->getLocation(), diag::note_template_param_here); | 
|  | } | 
|  | } | 
|  |  | 
|  | Converted = TemplateArgument(Context, Value, | 
|  | ParamType->isEnumeralType() | 
|  | ? Context.getCanonicalType(ParamType) | 
|  | : IntegerType); | 
|  | return Arg; | 
|  | } | 
|  |  | 
|  | QualType ArgType = Arg->getType(); | 
|  | DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction | 
|  |  | 
|  | // Handle pointer-to-function, reference-to-function, and | 
|  | // pointer-to-member-function all in (roughly) the same way. | 
|  | if (// -- For a non-type template-parameter of type pointer to | 
|  | //    function, only the function-to-pointer conversion (4.3) is | 
|  | //    applied. If the template-argument represents a set of | 
|  | //    overloaded functions (or a pointer to such), the matching | 
|  | //    function is selected from the set (13.4). | 
|  | (ParamType->isPointerType() && | 
|  | ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || | 
|  | // -- For a non-type template-parameter of type reference to | 
|  | //    function, no conversions apply. If the template-argument | 
|  | //    represents a set of overloaded functions, the matching | 
|  | //    function is selected from the set (13.4). | 
|  | (ParamType->isReferenceType() && | 
|  | ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || | 
|  | // -- For a non-type template-parameter of type pointer to | 
|  | //    member function, no conversions apply. If the | 
|  | //    template-argument represents a set of overloaded member | 
|  | //    functions, the matching member function is selected from | 
|  | //    the set (13.4). | 
|  | (ParamType->isMemberPointerType() && | 
|  | ParamType->getAs<MemberPointerType>()->getPointeeType() | 
|  | ->isFunctionType())) { | 
|  |  | 
|  | if (Arg->getType() == Context.OverloadTy) { | 
|  | if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, | 
|  | true, | 
|  | FoundResult)) { | 
|  | if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) | 
|  | return ExprError(); | 
|  |  | 
|  | Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); | 
|  | ArgType = Arg->getType(); | 
|  | } else | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | if (!ParamType->isMemberPointerType()) { | 
|  | if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, | 
|  | ParamType, | 
|  | Arg, Converted)) | 
|  | return ExprError(); | 
|  | return Arg; | 
|  | } | 
|  |  | 
|  | if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, | 
|  | Converted)) | 
|  | return ExprError(); | 
|  | return Arg; | 
|  | } | 
|  |  | 
|  | if (ParamType->isPointerType()) { | 
|  | //   -- for a non-type template-parameter of type pointer to | 
|  | //      object, qualification conversions (4.4) and the | 
|  | //      array-to-pointer conversion (4.2) are applied. | 
|  | // C++0x also allows a value of std::nullptr_t. | 
|  | assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && | 
|  | "Only object pointers allowed here"); | 
|  |  | 
|  | if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, | 
|  | ParamType, | 
|  | Arg, Converted)) | 
|  | return ExprError(); | 
|  | return Arg; | 
|  | } | 
|  |  | 
|  | if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { | 
|  | //   -- For a non-type template-parameter of type reference to | 
|  | //      object, no conversions apply. The type referred to by the | 
|  | //      reference may be more cv-qualified than the (otherwise | 
|  | //      identical) type of the template-argument. The | 
|  | //      template-parameter is bound directly to the | 
|  | //      template-argument, which must be an lvalue. | 
|  | assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && | 
|  | "Only object references allowed here"); | 
|  |  | 
|  | if (Arg->getType() == Context.OverloadTy) { | 
|  | if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, | 
|  | ParamRefType->getPointeeType(), | 
|  | true, | 
|  | FoundResult)) { | 
|  | if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) | 
|  | return ExprError(); | 
|  |  | 
|  | Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); | 
|  | ArgType = Arg->getType(); | 
|  | } else | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, | 
|  | ParamType, | 
|  | Arg, Converted)) | 
|  | return ExprError(); | 
|  | return Arg; | 
|  | } | 
|  |  | 
|  | // Deal with parameters of type std::nullptr_t. | 
|  | if (ParamType->isNullPtrType()) { | 
|  | if (Arg->isTypeDependent() || Arg->isValueDependent()) { | 
|  | Converted = TemplateArgument(Arg); | 
|  | return Arg; | 
|  | } | 
|  |  | 
|  | switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) { | 
|  | case NPV_NotNullPointer: | 
|  | Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) | 
|  | << Arg->getType() << ParamType; | 
|  | Diag(Param->getLocation(), diag::note_template_param_here); | 
|  | return ExprError(); | 
|  |  | 
|  | case NPV_Error: | 
|  | return ExprError(); | 
|  |  | 
|  | case NPV_NullPointer: | 
|  | Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); | 
|  | Converted = TemplateArgument(Context.getCanonicalType(ParamType), | 
|  | /*isNullPtr*/true); | 
|  | return Arg; | 
|  | } | 
|  | } | 
|  |  | 
|  | //     -- For a non-type template-parameter of type pointer to data | 
|  | //        member, qualification conversions (4.4) are applied. | 
|  | assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); | 
|  |  | 
|  | if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, | 
|  | Converted)) | 
|  | return ExprError(); | 
|  | return Arg; | 
|  | } | 
|  |  | 
|  | static void DiagnoseTemplateParameterListArityMismatch( | 
|  | Sema &S, TemplateParameterList *New, TemplateParameterList *Old, | 
|  | Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc); | 
|  |  | 
|  | /// Check a template argument against its corresponding | 
|  | /// template template parameter. | 
|  | /// | 
|  | /// This routine implements the semantics of C++ [temp.arg.template]. | 
|  | /// It returns true if an error occurred, and false otherwise. | 
|  | bool Sema::CheckTemplateTemplateArgument(TemplateParameterList *Params, | 
|  | TemplateArgumentLoc &Arg) { | 
|  | TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern(); | 
|  | TemplateDecl *Template = Name.getAsTemplateDecl(); | 
|  | if (!Template) { | 
|  | // Any dependent template name is fine. | 
|  | assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Template->isInvalidDecl()) | 
|  | return true; | 
|  |  | 
|  | // C++0x [temp.arg.template]p1: | 
|  | //   A template-argument for a template template-parameter shall be | 
|  | //   the name of a class template or an alias template, expressed as an | 
|  | //   id-expression. When the template-argument names a class template, only | 
|  | //   primary class templates are considered when matching the | 
|  | //   template template argument with the corresponding parameter; | 
|  | //   partial specializations are not considered even if their | 
|  | //   parameter lists match that of the template template parameter. | 
|  | // | 
|  | // Note that we also allow template template parameters here, which | 
|  | // will happen when we are dealing with, e.g., class template | 
|  | // partial specializations. | 
|  | if (!isa<ClassTemplateDecl>(Template) && | 
|  | !isa<TemplateTemplateParmDecl>(Template) && | 
|  | !isa<TypeAliasTemplateDecl>(Template) && | 
|  | !isa<BuiltinTemplateDecl>(Template)) { | 
|  | assert(isa<FunctionTemplateDecl>(Template) && | 
|  | "Only function templates are possible here"); | 
|  | Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template); | 
|  | Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) | 
|  | << Template; | 
|  | } | 
|  |  | 
|  | // C++1z [temp.arg.template]p3: (DR 150) | 
|  | //   A template-argument matches a template template-parameter P when P | 
|  | //   is at least as specialized as the template-argument A. | 
|  | if (getLangOpts().RelaxedTemplateTemplateArgs) { | 
|  | // Quick check for the common case: | 
|  | //   If P contains a parameter pack, then A [...] matches P if each of A's | 
|  | //   template parameters matches the corresponding template parameter in | 
|  | //   the template-parameter-list of P. | 
|  | if (TemplateParameterListsAreEqual( | 
|  | Template->getTemplateParameters(), Params, false, | 
|  | TPL_TemplateTemplateArgumentMatch, Arg.getLocation())) | 
|  | return false; | 
|  |  | 
|  | if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template, | 
|  | Arg.getLocation())) | 
|  | return false; | 
|  | // FIXME: Produce better diagnostics for deduction failures. | 
|  | } | 
|  |  | 
|  | return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), | 
|  | Params, | 
|  | true, | 
|  | TPL_TemplateTemplateArgumentMatch, | 
|  | Arg.getLocation()); | 
|  | } | 
|  |  | 
|  | /// Given a non-type template argument that refers to a | 
|  | /// declaration and the type of its corresponding non-type template | 
|  | /// parameter, produce an expression that properly refers to that | 
|  | /// declaration. | 
|  | ExprResult | 
|  | Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, | 
|  | QualType ParamType, | 
|  | SourceLocation Loc) { | 
|  | // C++ [temp.param]p8: | 
|  | // | 
|  | //   A non-type template-parameter of type "array of T" or | 
|  | //   "function returning T" is adjusted to be of type "pointer to | 
|  | //   T" or "pointer to function returning T", respectively. | 
|  | if (ParamType->isArrayType()) | 
|  | ParamType = Context.getArrayDecayedType(ParamType); | 
|  | else if (ParamType->isFunctionType()) | 
|  | ParamType = Context.getPointerType(ParamType); | 
|  |  | 
|  | // For a NULL non-type template argument, return nullptr casted to the | 
|  | // parameter's type. | 
|  | if (Arg.getKind() == TemplateArgument::NullPtr) { | 
|  | return ImpCastExprToType( | 
|  | new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), | 
|  | ParamType, | 
|  | ParamType->getAs<MemberPointerType>() | 
|  | ? CK_NullToMemberPointer | 
|  | : CK_NullToPointer); | 
|  | } | 
|  | assert(Arg.getKind() == TemplateArgument::Declaration && | 
|  | "Only declaration template arguments permitted here"); | 
|  |  | 
|  | ValueDecl *VD = Arg.getAsDecl(); | 
|  |  | 
|  | if (VD->getDeclContext()->isRecord() && | 
|  | (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) || | 
|  | isa<IndirectFieldDecl>(VD))) { | 
|  | // If the value is a class member, we might have a pointer-to-member. | 
|  | // Determine whether the non-type template template parameter is of | 
|  | // pointer-to-member type. If so, we need to build an appropriate | 
|  | // expression for a pointer-to-member, since a "normal" DeclRefExpr | 
|  | // would refer to the member itself. | 
|  | if (ParamType->isMemberPointerType()) { | 
|  | QualType ClassType | 
|  | = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); | 
|  | NestedNameSpecifier *Qualifier | 
|  | = NestedNameSpecifier::Create(Context, nullptr, false, | 
|  | ClassType.getTypePtr()); | 
|  | CXXScopeSpec SS; | 
|  | SS.MakeTrivial(Context, Qualifier, Loc); | 
|  |  | 
|  | // The actual value-ness of this is unimportant, but for | 
|  | // internal consistency's sake, references to instance methods | 
|  | // are r-values. | 
|  | ExprValueKind VK = VK_LValue; | 
|  | if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) | 
|  | VK = VK_RValue; | 
|  |  | 
|  | ExprResult RefExpr = BuildDeclRefExpr(VD, | 
|  | VD->getType().getNonReferenceType(), | 
|  | VK, | 
|  | Loc, | 
|  | &SS); | 
|  | if (RefExpr.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); | 
|  |  | 
|  | // We might need to perform a trailing qualification conversion, since | 
|  | // the element type on the parameter could be more qualified than the | 
|  | // element type in the expression we constructed. | 
|  | bool ObjCLifetimeConversion; | 
|  | if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), | 
|  | ParamType.getUnqualifiedType(), false, | 
|  | ObjCLifetimeConversion)) | 
|  | RefExpr = ImpCastExprToType(RefExpr.get(), ParamType.getUnqualifiedType(), CK_NoOp); | 
|  |  | 
|  | assert(!RefExpr.isInvalid() && | 
|  | Context.hasSameType(((Expr*) RefExpr.get())->getType(), | 
|  | ParamType.getUnqualifiedType())); | 
|  | return RefExpr; | 
|  | } | 
|  | } | 
|  |  | 
|  | QualType T = VD->getType().getNonReferenceType(); | 
|  |  | 
|  | if (ParamType->isPointerType()) { | 
|  | // When the non-type template parameter is a pointer, take the | 
|  | // address of the declaration. | 
|  | ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); | 
|  | if (RefExpr.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | if (!Context.hasSameUnqualifiedType(ParamType->getPointeeType(), T) && | 
|  | (T->isFunctionType() || T->isArrayType())) { | 
|  | // Decay functions and arrays unless we're forming a pointer to array. | 
|  | RefExpr = DefaultFunctionArrayConversion(RefExpr.get()); | 
|  | if (RefExpr.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | return RefExpr; | 
|  | } | 
|  |  | 
|  | // Take the address of everything else | 
|  | return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); | 
|  | } | 
|  |  | 
|  | ExprValueKind VK = VK_RValue; | 
|  |  | 
|  | // If the non-type template parameter has reference type, qualify the | 
|  | // resulting declaration reference with the extra qualifiers on the | 
|  | // type that the reference refers to. | 
|  | if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { | 
|  | VK = VK_LValue; | 
|  | T = Context.getQualifiedType(T, | 
|  | TargetRef->getPointeeType().getQualifiers()); | 
|  | } else if (isa<FunctionDecl>(VD)) { | 
|  | // References to functions are always lvalues. | 
|  | VK = VK_LValue; | 
|  | } | 
|  |  | 
|  | return BuildDeclRefExpr(VD, T, VK, Loc); | 
|  | } | 
|  |  | 
|  | /// Construct a new expression that refers to the given | 
|  | /// integral template argument with the given source-location | 
|  | /// information. | 
|  | /// | 
|  | /// This routine takes care of the mapping from an integral template | 
|  | /// argument (which may have any integral type) to the appropriate | 
|  | /// literal value. | 
|  | ExprResult | 
|  | Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, | 
|  | SourceLocation Loc) { | 
|  | assert(Arg.getKind() == TemplateArgument::Integral && | 
|  | "Operation is only valid for integral template arguments"); | 
|  | QualType OrigT = Arg.getIntegralType(); | 
|  |  | 
|  | // If this is an enum type that we're instantiating, we need to use an integer | 
|  | // type the same size as the enumerator.  We don't want to build an | 
|  | // IntegerLiteral with enum type.  The integer type of an enum type can be of | 
|  | // any integral type with C++11 enum classes, make sure we create the right | 
|  | // type of literal for it. | 
|  | QualType T = OrigT; | 
|  | if (const EnumType *ET = OrigT->getAs<EnumType>()) | 
|  | T = ET->getDecl()->getIntegerType(); | 
|  |  | 
|  | Expr *E; | 
|  | if (T->isAnyCharacterType()) { | 
|  | CharacterLiteral::CharacterKind Kind; | 
|  | if (T->isWideCharType()) | 
|  | Kind = CharacterLiteral::Wide; | 
|  | else if (T->isChar8Type() && getLangOpts().Char8) | 
|  | Kind = CharacterLiteral::UTF8; | 
|  | else if (T->isChar16Type()) | 
|  | Kind = CharacterLiteral::UTF16; | 
|  | else if (T->isChar32Type()) | 
|  | Kind = CharacterLiteral::UTF32; | 
|  | else | 
|  | Kind = CharacterLiteral::Ascii; | 
|  |  | 
|  | E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(), | 
|  | Kind, T, Loc); | 
|  | } else if (T->isBooleanType()) { | 
|  | E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(), | 
|  | T, Loc); | 
|  | } else if (T->isNullPtrType()) { | 
|  | E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); | 
|  | } else { | 
|  | E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc); | 
|  | } | 
|  |  | 
|  | if (OrigT->isEnumeralType()) { | 
|  | // FIXME: This is a hack. We need a better way to handle substituted | 
|  | // non-type template parameters. | 
|  | E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E, | 
|  | nullptr, | 
|  | Context.getTrivialTypeSourceInfo(OrigT, Loc), | 
|  | Loc, Loc); | 
|  | } | 
|  |  | 
|  | return E; | 
|  | } | 
|  |  | 
|  | /// Match two template parameters within template parameter lists. | 
|  | static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, | 
|  | bool Complain, | 
|  | Sema::TemplateParameterListEqualKind Kind, | 
|  | SourceLocation TemplateArgLoc) { | 
|  | // Check the actual kind (type, non-type, template). | 
|  | if (Old->getKind() != New->getKind()) { | 
|  | if (Complain) { | 
|  | unsigned NextDiag = diag::err_template_param_different_kind; | 
|  | if (TemplateArgLoc.isValid()) { | 
|  | S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); | 
|  | NextDiag = diag::note_template_param_different_kind; | 
|  | } | 
|  | S.Diag(New->getLocation(), NextDiag) | 
|  | << (Kind != Sema::TPL_TemplateMatch); | 
|  | S.Diag(Old->getLocation(), diag::note_template_prev_declaration) | 
|  | << (Kind != Sema::TPL_TemplateMatch); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check that both are parameter packs or neither are parameter packs. | 
|  | // However, if we are matching a template template argument to a | 
|  | // template template parameter, the template template parameter can have | 
|  | // a parameter pack where the template template argument does not. | 
|  | if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && | 
|  | !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && | 
|  | Old->isTemplateParameterPack())) { | 
|  | if (Complain) { | 
|  | unsigned NextDiag = diag::err_template_parameter_pack_non_pack; | 
|  | if (TemplateArgLoc.isValid()) { | 
|  | S.Diag(TemplateArgLoc, | 
|  | diag::err_template_arg_template_params_mismatch); | 
|  | NextDiag = diag::note_template_parameter_pack_non_pack; | 
|  | } | 
|  |  | 
|  | unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 | 
|  | : isa<NonTypeTemplateParmDecl>(New)? 1 | 
|  | : 2; | 
|  | S.Diag(New->getLocation(), NextDiag) | 
|  | << ParamKind << New->isParameterPack(); | 
|  | S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) | 
|  | << ParamKind << Old->isParameterPack(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // For non-type template parameters, check the type of the parameter. | 
|  | if (NonTypeTemplateParmDecl *OldNTTP | 
|  | = dyn_cast<NonTypeTemplateParmDecl>(Old)) { | 
|  | NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); | 
|  |  | 
|  | // If we are matching a template template argument to a template | 
|  | // template parameter and one of the non-type template parameter types | 
|  | // is dependent, then we must wait until template instantiation time | 
|  | // to actually compare the arguments. | 
|  | if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && | 
|  | (OldNTTP->getType()->isDependentType() || | 
|  | NewNTTP->getType()->isDependentType())) | 
|  | return true; | 
|  |  | 
|  | if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { | 
|  | if (Complain) { | 
|  | unsigned NextDiag = diag::err_template_nontype_parm_different_type; | 
|  | if (TemplateArgLoc.isValid()) { | 
|  | S.Diag(TemplateArgLoc, | 
|  | diag::err_template_arg_template_params_mismatch); | 
|  | NextDiag = diag::note_template_nontype_parm_different_type; | 
|  | } | 
|  | S.Diag(NewNTTP->getLocation(), NextDiag) | 
|  | << NewNTTP->getType() | 
|  | << (Kind != Sema::TPL_TemplateMatch); | 
|  | S.Diag(OldNTTP->getLocation(), | 
|  | diag::note_template_nontype_parm_prev_declaration) | 
|  | << OldNTTP->getType(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // For template template parameters, check the template parameter types. | 
|  | // The template parameter lists of template template | 
|  | // parameters must agree. | 
|  | if (TemplateTemplateParmDecl *OldTTP | 
|  | = dyn_cast<TemplateTemplateParmDecl>(Old)) { | 
|  | TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); | 
|  | return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), | 
|  | OldTTP->getTemplateParameters(), | 
|  | Complain, | 
|  | (Kind == Sema::TPL_TemplateMatch | 
|  | ? Sema::TPL_TemplateTemplateParmMatch | 
|  | : Kind), | 
|  | TemplateArgLoc); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Diagnose a known arity mismatch when comparing template argument | 
|  | /// lists. | 
|  | static | 
|  | void DiagnoseTemplateParameterListArityMismatch(Sema &S, | 
|  | TemplateParameterList *New, | 
|  | TemplateParameterList *Old, | 
|  | Sema::TemplateParameterListEqualKind Kind, | 
|  | SourceLocation TemplateArgLoc) { | 
|  | unsigned NextDiag = diag::err_template_param_list_different_arity; | 
|  | if (TemplateArgLoc.isValid()) { | 
|  | S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); | 
|  | NextDiag = diag::note_template_param_list_different_arity; | 
|  | } | 
|  | S.Diag(New->getTemplateLoc(), NextDiag) | 
|  | << (New->size() > Old->size()) | 
|  | << (Kind != Sema::TPL_TemplateMatch) | 
|  | << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); | 
|  | S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) | 
|  | << (Kind != Sema::TPL_TemplateMatch) | 
|  | << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); | 
|  | } | 
|  |  | 
|  | /// Determine whether the given template parameter lists are | 
|  | /// equivalent. | 
|  | /// | 
|  | /// \param New  The new template parameter list, typically written in the | 
|  | /// source code as part of a new template declaration. | 
|  | /// | 
|  | /// \param Old  The old template parameter list, typically found via | 
|  | /// name lookup of the template declared with this template parameter | 
|  | /// list. | 
|  | /// | 
|  | /// \param Complain  If true, this routine will produce a diagnostic if | 
|  | /// the template parameter lists are not equivalent. | 
|  | /// | 
|  | /// \param Kind describes how we are to match the template parameter lists. | 
|  | /// | 
|  | /// \param TemplateArgLoc If this source location is valid, then we | 
|  | /// are actually checking the template parameter list of a template | 
|  | /// argument (New) against the template parameter list of its | 
|  | /// corresponding template template parameter (Old). We produce | 
|  | /// slightly different diagnostics in this scenario. | 
|  | /// | 
|  | /// \returns True if the template parameter lists are equal, false | 
|  | /// otherwise. | 
|  | bool | 
|  | Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, | 
|  | TemplateParameterList *Old, | 
|  | bool Complain, | 
|  | TemplateParameterListEqualKind Kind, | 
|  | SourceLocation TemplateArgLoc) { | 
|  | if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { | 
|  | if (Complain) | 
|  | DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, | 
|  | TemplateArgLoc); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // C++0x [temp.arg.template]p3: | 
|  | //   A template-argument matches a template template-parameter (call it P) | 
|  | //   when each of the template parameters in the template-parameter-list of | 
|  | //   the template-argument's corresponding class template or alias template | 
|  | //   (call it A) matches the corresponding template parameter in the | 
|  | //   template-parameter-list of P. [...] | 
|  | TemplateParameterList::iterator NewParm = New->begin(); | 
|  | TemplateParameterList::iterator NewParmEnd = New->end(); | 
|  | for (TemplateParameterList::iterator OldParm = Old->begin(), | 
|  | OldParmEnd = Old->end(); | 
|  | OldParm != OldParmEnd; ++OldParm) { | 
|  | if (Kind != TPL_TemplateTemplateArgumentMatch || | 
|  | !(*OldParm)->isTemplateParameterPack()) { | 
|  | if (NewParm == NewParmEnd) { | 
|  | if (Complain) | 
|  | DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, | 
|  | TemplateArgLoc); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, | 
|  | Kind, TemplateArgLoc)) | 
|  | return false; | 
|  |  | 
|  | ++NewParm; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // C++0x [temp.arg.template]p3: | 
|  | //   [...] When P's template- parameter-list contains a template parameter | 
|  | //   pack (14.5.3), the template parameter pack will match zero or more | 
|  | //   template parameters or template parameter packs in the | 
|  | //   template-parameter-list of A with the same type and form as the | 
|  | //   template parameter pack in P (ignoring whether those template | 
|  | //   parameters are template parameter packs). | 
|  | for (; NewParm != NewParmEnd; ++NewParm) { | 
|  | if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, | 
|  | Kind, TemplateArgLoc)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure we exhausted all of the arguments. | 
|  | if (NewParm != NewParmEnd) { | 
|  | if (Complain) | 
|  | DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, | 
|  | TemplateArgLoc); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check whether a template can be declared within this scope. | 
|  | /// | 
|  | /// If the template declaration is valid in this scope, returns | 
|  | /// false. Otherwise, issues a diagnostic and returns true. | 
|  | bool | 
|  | Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { | 
|  | if (!S) | 
|  | return false; | 
|  |  | 
|  | // Find the nearest enclosing declaration scope. | 
|  | while ((S->getFlags() & Scope::DeclScope) == 0 || | 
|  | (S->getFlags() & Scope::TemplateParamScope) != 0) | 
|  | S = S->getParent(); | 
|  |  | 
|  | // C++ [temp]p4: | 
|  | //   A template [...] shall not have C linkage. | 
|  | DeclContext *Ctx = S->getEntity(); | 
|  | if (Ctx && Ctx->isExternCContext()) { | 
|  | Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) | 
|  | << TemplateParams->getSourceRange(); | 
|  | if (const LinkageSpecDecl *LSD = Ctx->getExternCContext()) | 
|  | Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); | 
|  | return true; | 
|  | } | 
|  | Ctx = Ctx->getRedeclContext(); | 
|  |  | 
|  | // C++ [temp]p2: | 
|  | //   A template-declaration can appear only as a namespace scope or | 
|  | //   class scope declaration. | 
|  | if (Ctx) { | 
|  | if (Ctx->isFileContext()) | 
|  | return false; | 
|  | if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) { | 
|  | // C++ [temp.mem]p2: | 
|  | //   A local class shall not have member templates. | 
|  | if (RD->isLocalClass()) | 
|  | return Diag(TemplateParams->getTemplateLoc(), | 
|  | diag::err_template_inside_local_class) | 
|  | << TemplateParams->getSourceRange(); | 
|  | else | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Diag(TemplateParams->getTemplateLoc(), | 
|  | diag::err_template_outside_namespace_or_class_scope) | 
|  | << TemplateParams->getSourceRange(); | 
|  | } | 
|  |  | 
|  | /// Determine what kind of template specialization the given declaration | 
|  | /// is. | 
|  | static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { | 
|  | if (!D) | 
|  | return TSK_Undeclared; | 
|  |  | 
|  | if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) | 
|  | return Record->getTemplateSpecializationKind(); | 
|  | if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) | 
|  | return Function->getTemplateSpecializationKind(); | 
|  | if (VarDecl *Var = dyn_cast<VarDecl>(D)) | 
|  | return Var->getTemplateSpecializationKind(); | 
|  |  | 
|  | return TSK_Undeclared; | 
|  | } | 
|  |  | 
|  | /// Check whether a specialization is well-formed in the current | 
|  | /// context. | 
|  | /// | 
|  | /// This routine determines whether a template specialization can be declared | 
|  | /// in the current context (C++ [temp.expl.spec]p2). | 
|  | /// | 
|  | /// \param S the semantic analysis object for which this check is being | 
|  | /// performed. | 
|  | /// | 
|  | /// \param Specialized the entity being specialized or instantiated, which | 
|  | /// may be a kind of template (class template, function template, etc.) or | 
|  | /// a member of a class template (member function, static data member, | 
|  | /// member class). | 
|  | /// | 
|  | /// \param PrevDecl the previous declaration of this entity, if any. | 
|  | /// | 
|  | /// \param Loc the location of the explicit specialization or instantiation of | 
|  | /// this entity. | 
|  | /// | 
|  | /// \param IsPartialSpecialization whether this is a partial specialization of | 
|  | /// a class template. | 
|  | /// | 
|  | /// \returns true if there was an error that we cannot recover from, false | 
|  | /// otherwise. | 
|  | static bool CheckTemplateSpecializationScope(Sema &S, | 
|  | NamedDecl *Specialized, | 
|  | NamedDecl *PrevDecl, | 
|  | SourceLocation Loc, | 
|  | bool IsPartialSpecialization) { | 
|  | // Keep these "kind" numbers in sync with the %select statements in the | 
|  | // various diagnostics emitted by this routine. | 
|  | int EntityKind = 0; | 
|  | if (isa<ClassTemplateDecl>(Specialized)) | 
|  | EntityKind = IsPartialSpecialization? 1 : 0; | 
|  | else if (isa<VarTemplateDecl>(Specialized)) | 
|  | EntityKind = IsPartialSpecialization ? 3 : 2; | 
|  | else if (isa<FunctionTemplateDecl>(Specialized)) | 
|  | EntityKind = 4; | 
|  | else if (isa<CXXMethodDecl>(Specialized)) | 
|  | EntityKind = 5; | 
|  | else if (isa<VarDecl>(Specialized)) | 
|  | EntityKind = 6; | 
|  | else if (isa<RecordDecl>(Specialized)) | 
|  | EntityKind = 7; | 
|  | else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11) | 
|  | EntityKind = 8; | 
|  | else { | 
|  | S.Diag(Loc, diag::err_template_spec_unknown_kind) | 
|  | << S.getLangOpts().CPlusPlus11; | 
|  | S.Diag(Specialized->getLocation(), diag::note_specialized_entity); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // C++ [temp.expl.spec]p2: | 
|  | //   An explicit specialization may be declared in any scope in which | 
|  | //   the corresponding primary template may be defined. | 
|  | if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { | 
|  | S.Diag(Loc, diag::err_template_spec_decl_function_scope) | 
|  | << Specialized; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // C++ [temp.class.spec]p6: | 
|  | //   A class template partial specialization may be declared in any | 
|  | //   scope in which the primary template may be defined. | 
|  | DeclContext *SpecializedContext = | 
|  | Specialized->getDeclContext()->getRedeclContext(); | 
|  | DeclContext *DC = S.CurContext->getRedeclContext(); | 
|  |  | 
|  | // Make sure that this redeclaration (or definition) occurs in the same | 
|  | // scope or an enclosing namespace. | 
|  | if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext) | 
|  | : DC->Equals(SpecializedContext))) { | 
|  | if (isa<TranslationUnitDecl>(SpecializedContext)) | 
|  | S.Diag(Loc, diag::err_template_spec_redecl_global_scope) | 
|  | << EntityKind << Specialized; | 
|  | else { | 
|  | auto *ND = cast<NamedDecl>(SpecializedContext); | 
|  | int Diag = diag::err_template_spec_redecl_out_of_scope; | 
|  | if (S.getLangOpts().MicrosoftExt && !DC->isRecord()) | 
|  | Diag = diag::ext_ms_template_spec_redecl_out_of_scope; | 
|  | S.Diag(Loc, Diag) << EntityKind << Specialized | 
|  | << ND << isa<CXXRecordDecl>(ND); | 
|  | } | 
|  |  | 
|  | S.Diag(Specialized->getLocation(), diag::note_specialized_entity); | 
|  |  | 
|  | // Don't allow specializing in the wrong class during error recovery. | 
|  | // Otherwise, things can go horribly wrong. | 
|  | if (DC->isRecord()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) { | 
|  | if (!E->isTypeDependent()) | 
|  | return SourceLocation(); | 
|  | DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); | 
|  | Checker.TraverseStmt(E); | 
|  | if (Checker.MatchLoc.isInvalid()) | 
|  | return E->getSourceRange(); | 
|  | return Checker.MatchLoc; | 
|  | } | 
|  |  | 
|  | static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) { | 
|  | if (!TL.getType()->isDependentType()) | 
|  | return SourceLocation(); | 
|  | DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); | 
|  | Checker.TraverseTypeLoc(TL); | 
|  | if (Checker.MatchLoc.isInvalid()) | 
|  | return TL.getSourceRange(); | 
|  | return Checker.MatchLoc; | 
|  | } | 
|  |  | 
|  | /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs | 
|  | /// that checks non-type template partial specialization arguments. | 
|  | static bool CheckNonTypeTemplatePartialSpecializationArgs( | 
|  | Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param, | 
|  | const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) { | 
|  | for (unsigned I = 0; I != NumArgs; ++I) { | 
|  | if (Args[I].getKind() == TemplateArgument::Pack) { | 
|  | if (CheckNonTypeTemplatePartialSpecializationArgs( | 
|  | S, TemplateNameLoc, Param, Args[I].pack_begin(), | 
|  | Args[I].pack_size(), IsDefaultArgument)) | 
|  | return true; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Args[I].getKind() != TemplateArgument::Expression) | 
|  | continue; | 
|  |  | 
|  | Expr *ArgExpr = Args[I].getAsExpr(); | 
|  |  | 
|  | // We can have a pack expansion of any of the bullets below. | 
|  | if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) | 
|  | ArgExpr = Expansion->getPattern(); | 
|  |  | 
|  | // Strip off any implicit casts we added as part of type checking. | 
|  | while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) | 
|  | ArgExpr = ICE->getSubExpr(); | 
|  |  | 
|  | // C++ [temp.class.spec]p8: | 
|  | //   A non-type argument is non-specialized if it is the name of a | 
|  | //   non-type parameter. All other non-type arguments are | 
|  | //   specialized. | 
|  | // | 
|  | // Below, we check the two conditions that only apply to | 
|  | // specialized non-type arguments, so skip any non-specialized | 
|  | // arguments. | 
|  | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) | 
|  | if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) | 
|  | continue; | 
|  |  | 
|  | // C++ [temp.class.spec]p9: | 
|  | //   Within the argument list of a class template partial | 
|  | //   specialization, the following restrictions apply: | 
|  | //     -- A partially specialized non-type argument expression | 
|  | //        shall not involve a template parameter of the partial | 
|  | //        specialization except when the argument expression is a | 
|  | //        simple identifier. | 
|  | //     -- The type of a template parameter corresponding to a | 
|  | //        specialized non-type argument shall not be dependent on a | 
|  | //        parameter of the specialization. | 
|  | // DR1315 removes the first bullet, leaving an incoherent set of rules. | 
|  | // We implement a compromise between the original rules and DR1315: | 
|  | //     --  A specialized non-type template argument shall not be | 
|  | //         type-dependent and the corresponding template parameter | 
|  | //         shall have a non-dependent type. | 
|  | SourceRange ParamUseRange = | 
|  | findTemplateParameterInType(Param->getDepth(), ArgExpr); | 
|  | if (ParamUseRange.isValid()) { | 
|  | if (IsDefaultArgument) { | 
|  | S.Diag(TemplateNameLoc, | 
|  | diag::err_dependent_non_type_arg_in_partial_spec); | 
|  | S.Diag(ParamUseRange.getBegin(), | 
|  | diag::note_dependent_non_type_default_arg_in_partial_spec) | 
|  | << ParamUseRange; | 
|  | } else { | 
|  | S.Diag(ParamUseRange.getBegin(), | 
|  | diag::err_dependent_non_type_arg_in_partial_spec) | 
|  | << ParamUseRange; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ParamUseRange = findTemplateParameter( | 
|  | Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc()); | 
|  | if (ParamUseRange.isValid()) { | 
|  | S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getLocStart(), | 
|  | diag::err_dependent_typed_non_type_arg_in_partial_spec) | 
|  | << Param->getType(); | 
|  | S.Diag(Param->getLocation(), diag::note_template_param_here) | 
|  | << (IsDefaultArgument ? ParamUseRange : SourceRange()) | 
|  | << ParamUseRange; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check the non-type template arguments of a class template | 
|  | /// partial specialization according to C++ [temp.class.spec]p9. | 
|  | /// | 
|  | /// \param TemplateNameLoc the location of the template name. | 
|  | /// \param PrimaryTemplate the template parameters of the primary class | 
|  | ///        template. | 
|  | /// \param NumExplicit the number of explicitly-specified template arguments. | 
|  | /// \param TemplateArgs the template arguments of the class template | 
|  | ///        partial specialization. | 
|  | /// | 
|  | /// \returns \c true if there was an error, \c false otherwise. | 
|  | bool Sema::CheckTemplatePartialSpecializationArgs( | 
|  | SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate, | 
|  | unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) { | 
|  | // We have to be conservative when checking a template in a dependent | 
|  | // context. | 
|  | if (PrimaryTemplate->getDeclContext()->isDependentContext()) | 
|  | return false; | 
|  |  | 
|  | TemplateParameterList *TemplateParams = | 
|  | PrimaryTemplate->getTemplateParameters(); | 
|  | for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { | 
|  | NonTypeTemplateParmDecl *Param | 
|  | = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); | 
|  | if (!Param) | 
|  | continue; | 
|  |  | 
|  | if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc, | 
|  | Param, &TemplateArgs[I], | 
|  | 1, I >= NumExplicit)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | DeclResult Sema::ActOnClassTemplateSpecialization( | 
|  | Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, | 
|  | SourceLocation ModulePrivateLoc, TemplateIdAnnotation &TemplateId, | 
|  | const ParsedAttributesView &Attr, | 
|  | MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) { | 
|  | assert(TUK != TUK_Reference && "References are not specializations"); | 
|  |  | 
|  | CXXScopeSpec &SS = TemplateId.SS; | 
|  |  | 
|  | // NOTE: KWLoc is the location of the tag keyword. This will instead | 
|  | // store the location of the outermost template keyword in the declaration. | 
|  | SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 | 
|  | ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc; | 
|  | SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc; | 
|  | SourceLocation LAngleLoc = TemplateId.LAngleLoc; | 
|  | SourceLocation RAngleLoc = TemplateId.RAngleLoc; | 
|  |  | 
|  | // Find the class template we're specializing | 
|  | TemplateName Name = TemplateId.Template.get(); | 
|  | ClassTemplateDecl *ClassTemplate | 
|  | = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); | 
|  |  | 
|  | if (!ClassTemplate) { | 
|  | Diag(TemplateNameLoc, diag::err_not_class_template_specialization) | 
|  | << (Name.getAsTemplateDecl() && | 
|  | isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool isMemberSpecialization = false; | 
|  | bool isPartialSpecialization = false; | 
|  |  | 
|  | // Check the validity of the template headers that introduce this | 
|  | // template. | 
|  | // FIXME: We probably shouldn't complain about these headers for | 
|  | // friend declarations. | 
|  | bool Invalid = false; | 
|  | TemplateParameterList *TemplateParams = | 
|  | MatchTemplateParametersToScopeSpecifier( | 
|  | KWLoc, TemplateNameLoc, SS, &TemplateId, | 
|  | TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization, | 
|  | Invalid); | 
|  | if (Invalid) | 
|  | return true; | 
|  |  | 
|  | if (TemplateParams && TemplateParams->size() > 0) { | 
|  | isPartialSpecialization = true; | 
|  |  | 
|  | if (TUK == TUK_Friend) { | 
|  | Diag(KWLoc, diag::err_partial_specialization_friend) | 
|  | << SourceRange(LAngleLoc, RAngleLoc); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // C++ [temp.class.spec]p10: | 
|  | //   The template parameter list of a specialization shall not | 
|  | //   contain default template argument values. | 
|  | for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { | 
|  | Decl *Param = TemplateParams->getParam(I); | 
|  | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { | 
|  | if (TTP->hasDefaultArgument()) { | 
|  | Diag(TTP->getDefaultArgumentLoc(), | 
|  | diag::err_default_arg_in_partial_spec); | 
|  | TTP->removeDefaultArgument(); | 
|  | } | 
|  | } else if (NonTypeTemplateParmDecl *NTTP | 
|  | = dyn_cast<NonTypeTemplateParmDecl>(Param)) { | 
|  | if (Expr *DefArg = NTTP->getDefaultArgument()) { | 
|  | Diag(NTTP->getDefaultArgumentLoc(), | 
|  | diag::err_default_arg_in_partial_spec) | 
|  | << DefArg->getSourceRange(); | 
|  | NTTP->removeDefaultArgument(); | 
|  | } | 
|  | } else { | 
|  | TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); | 
|  | if (TTP->hasDefaultArgument()) { | 
|  | Diag(TTP->getDefaultArgument().getLocation(), | 
|  | diag::err_default_arg_in_partial_spec) | 
|  | << TTP->getDefaultArgument().getSourceRange(); | 
|  | TTP->removeDefaultArgument(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (TemplateParams) { | 
|  | if (TUK == TUK_Friend) | 
|  | Diag(KWLoc, diag::err_template_spec_friend) | 
|  | << FixItHint::CreateRemoval( | 
|  | SourceRange(TemplateParams->getTemplateLoc(), | 
|  | TemplateParams->getRAngleLoc())) | 
|  | << SourceRange(LAngleLoc, RAngleLoc); | 
|  | } else { | 
|  | assert(TUK == TUK_Friend && "should have a 'template<>' for this decl"); | 
|  | } | 
|  |  | 
|  | // Check that the specialization uses the same tag kind as the | 
|  | // original template. | 
|  | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); | 
|  | assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); | 
|  | if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), | 
|  | Kind, TUK == TUK_Definition, KWLoc, | 
|  | ClassTemplate->getIdentifier())) { | 
|  | Diag(KWLoc, diag::err_use_with_wrong_tag) | 
|  | << ClassTemplate | 
|  | << FixItHint::CreateReplacement(KWLoc, | 
|  | ClassTemplate->getTemplatedDecl()->getKindName()); | 
|  | Diag(ClassTemplate->getTemplatedDecl()->getLocation(), | 
|  | diag::note_previous_use); | 
|  | Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); | 
|  | } | 
|  |  | 
|  | // Translate the parser's template argument list in our AST format. | 
|  | TemplateArgumentListInfo TemplateArgs = | 
|  | makeTemplateArgumentListInfo(*this, TemplateId); | 
|  |  | 
|  | // Check for unexpanded parameter packs in any of the template arguments. | 
|  | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) | 
|  | if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], | 
|  | UPPC_PartialSpecialization)) | 
|  | return true; | 
|  |  | 
|  | // Check that the template argument list is well-formed for this | 
|  | // template. | 
|  | SmallVector<TemplateArgument, 4> Converted; | 
|  | if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, | 
|  | TemplateArgs, false, Converted)) | 
|  | return true; | 
|  |  | 
|  | // Find the class template (partial) specialization declaration that | 
|  | // corresponds to these arguments. | 
|  | if (isPartialSpecialization) { | 
|  | if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate, | 
|  | TemplateArgs.size(), Converted)) | 
|  | return true; | 
|  |  | 
|  | // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we | 
|  | // also do it during instantiation. | 
|  | bool InstantiationDependent; | 
|  | if (!Name.isDependent() && | 
|  | !TemplateSpecializationType::anyDependentTemplateArguments( | 
|  | TemplateArgs.arguments(), InstantiationDependent)) { | 
|  | Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) | 
|  | << ClassTemplate->getDeclName(); | 
|  | isPartialSpecialization = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | ClassTemplateSpecializationDecl *PrevDecl = nullptr; | 
|  |  | 
|  | if (isPartialSpecialization) | 
|  | // FIXME: Template parameter list matters, too | 
|  | PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InsertPos); | 
|  | else | 
|  | PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos); | 
|  |  | 
|  | ClassTemplateSpecializationDecl *Specialization = nullptr; | 
|  |  | 
|  | // Check whether we can declare a class template specialization in | 
|  | // the current scope. | 
|  | if (TUK != TUK_Friend && | 
|  | CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, | 
|  | TemplateNameLoc, | 
|  | isPartialSpecialization)) | 
|  | return true; | 
|  |  | 
|  | // The canonical type | 
|  | QualType CanonType; | 
|  | if (isPartialSpecialization) { | 
|  | // Build the canonical type that describes the converted template | 
|  | // arguments of the class template partial specialization. | 
|  | TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); | 
|  | CanonType = Context.getTemplateSpecializationType(CanonTemplate, | 
|  | Converted); | 
|  |  | 
|  | if (Context.hasSameType(CanonType, | 
|  | ClassTemplate->getInjectedClassNameSpecialization())) { | 
|  | // C++ [temp.class.spec]p9b3: | 
|  | // | 
|  | //   -- The argument list of the specialization shall not be identical | 
|  | //      to the implicit argument list of the primary template. | 
|  | // | 
|  | // This rule has since been removed, because it's redundant given DR1495, | 
|  | // but we keep it because it produces better diagnostics and recovery. | 
|  | Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) | 
|  | << /*class template*/0 << (TUK == TUK_Definition) | 
|  | << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); | 
|  | return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, | 
|  | ClassTemplate->getIdentifier(), | 
|  | TemplateNameLoc, | 
|  | Attr, | 
|  | TemplateParams, | 
|  | AS_none, /*ModulePrivateLoc=*/SourceLocation(), | 
|  | /*FriendLoc*/SourceLocation(), | 
|  | TemplateParameterLists.size() - 1, | 
|  | TemplateParameterLists.data()); | 
|  | } | 
|  |  | 
|  | // Create a new class template partial specialization declaration node. | 
|  | ClassTemplatePartialSpecializationDecl *PrevPartial | 
|  | = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); | 
|  | ClassTemplatePartialSpecializationDecl *Partial | 
|  | = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, | 
|  | ClassTemplate->getDeclContext(), | 
|  | KWLoc, TemplateNameLoc, | 
|  | TemplateParams, | 
|  | ClassTemplate, | 
|  | Converted, | 
|  | TemplateArgs, | 
|  | CanonType, | 
|  | PrevPartial); | 
|  | SetNestedNameSpecifier(Partial, SS); | 
|  | if (TemplateParameterLists.size() > 1 && SS.isSet()) { | 
|  | Partial->setTemplateParameterListsInfo( | 
|  | Context, TemplateParameterLists.drop_back(1)); | 
|  | } | 
|  |  | 
|  | if (!PrevPartial) | 
|  | ClassTemplate->AddPartialSpecialization(Partial, InsertPos); | 
|  | Specialization = Partial; | 
|  |  | 
|  | // If we are providing an explicit specialization of a member class | 
|  | // template specialization, make a note of that. | 
|  | if (PrevPartial && PrevPartial->getInstantiatedFromMember()) | 
|  | PrevPartial->setMemberSpecialization(); | 
|  |  | 
|  | CheckTemplatePartialSpecialization(Partial); | 
|  | } else { | 
|  | // Create a new class template specialization declaration node for | 
|  | // this explicit specialization or friend declaration. | 
|  | Specialization | 
|  | = ClassTemplateSpecializationDecl::Create(Context, Kind, | 
|  | ClassTemplate->getDeclContext(), | 
|  | KWLoc, TemplateNameLoc, | 
|  | ClassTemplate, | 
|  | Converted, | 
|  | PrevDecl); | 
|  | SetNestedNameSpecifier(Specialization, SS); | 
|  | if (TemplateParameterLists.size() > 0) { | 
|  | Specialization->setTemplateParameterListsInfo(Context, | 
|  | TemplateParameterLists); | 
|  | } | 
|  |  | 
|  | if (!PrevDecl) | 
|  | ClassTemplate->AddSpecialization(Specialization, InsertPos); | 
|  |  | 
|  | if (CurContext->isDependentContext()) { | 
|  | TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); | 
|  | CanonType = Context.getTemplateSpecializationType( | 
|  | CanonTemplate, Converted); | 
|  | } else { | 
|  | CanonType = Context.getTypeDeclType(Specialization); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [temp.expl.spec]p6: | 
|  | //   If a template, a member template or the member of a class template is | 
|  | //   explicitly specialized then that specialization shall be declared | 
|  | //   before the first use of that specialization that would cause an implicit | 
|  | //   instantiation to take place, in every translation unit in which such a | 
|  | //   use occurs; no diagnostic is required. | 
|  | if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { | 
|  | bool Okay = false; | 
|  | for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { | 
|  | // Is there any previous explicit specialization declaration? | 
|  | if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { | 
|  | Okay = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Okay) { | 
|  | SourceRange Range(TemplateNameLoc, RAngleLoc); | 
|  | Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) | 
|  | << Context.getTypeDeclType(Specialization) << Range; | 
|  |  | 
|  | Diag(PrevDecl->getPointOfInstantiation(), | 
|  | diag::note_instantiation_required_here) | 
|  | << (PrevDecl->getTemplateSpecializationKind() | 
|  | != TSK_ImplicitInstantiation); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is not a friend, note that this is an explicit specialization. | 
|  | if (TUK != TUK_Friend) | 
|  | Specialization->setSpecializationKind(TSK_ExplicitSpecialization); | 
|  |  | 
|  | // Check that this isn't a redefinition of this specialization. | 
|  | if (TUK == TUK_Definition) { | 
|  | RecordDecl *Def = Specialization->getDefinition(); | 
|  | NamedDecl *Hidden = nullptr; | 
|  | if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) { | 
|  | SkipBody->ShouldSkip = true; | 
|  | makeMergedDefinitionVisible(Hidden); | 
|  | // From here on out, treat this as just a redeclaration. | 
|  | TUK = TUK_Declaration; | 
|  | } else if (Def) { | 
|  | SourceRange Range(TemplateNameLoc, RAngleLoc); | 
|  | Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range; | 
|  | Diag(Def->getLocation(), diag::note_previous_definition); | 
|  | Specialization->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | ProcessDeclAttributeList(S, Specialization, Attr); | 
|  |  | 
|  | // Add alignment attributes if necessary; these attributes are checked when | 
|  | // the ASTContext lays out the structure. | 
|  | if (TUK == TUK_Definition) { | 
|  | AddAlignmentAttributesForRecord(Specialization); | 
|  | AddMsStructLayoutForRecord(Specialization); | 
|  | } | 
|  |  | 
|  | if (ModulePrivateLoc.isValid()) | 
|  | Diag(Specialization->getLocation(), diag::err_module_private_specialization) | 
|  | << (isPartialSpecialization? 1 : 0) | 
|  | << FixItHint::CreateRemoval(ModulePrivateLoc); | 
|  |  | 
|  | // Build the fully-sugared type for this class template | 
|  | // specialization as the user wrote in the specialization | 
|  | // itself. This means that we'll pretty-print the type retrieved | 
|  | // from the specialization's declaration the way that the user | 
|  | // actually wrote the specialization, rather than formatting the | 
|  | // name based on the "canonical" representation used to store the | 
|  | // template arguments in the specialization. | 
|  | TypeSourceInfo *WrittenTy | 
|  | = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, | 
|  | TemplateArgs, CanonType); | 
|  | if (TUK != TUK_Friend) { | 
|  | Specialization->setTypeAsWritten(WrittenTy); | 
|  | Specialization->setTemplateKeywordLoc(TemplateKWLoc); | 
|  | } | 
|  |  | 
|  | // C++ [temp.expl.spec]p9: | 
|  | //   A template explicit specialization is in the scope of the | 
|  | //   namespace in which the template was defined. | 
|  | // | 
|  | // We actually implement this paragraph where we set the semantic | 
|  | // context (in the creation of the ClassTemplateSpecializationDecl), | 
|  | // but we also maintain the lexical context where the actual | 
|  | // definition occurs. | 
|  | Specialization->setLexicalDeclContext(CurContext); | 
|  |  | 
|  | // We may be starting the definition of this specialization. | 
|  | if (TUK == TUK_Definition) | 
|  | Specialization->startDefinition(); | 
|  |  | 
|  | if (TUK == TUK_Friend) { | 
|  | FriendDecl *Friend = FriendDecl::Create(Context, CurContext, | 
|  | TemplateNameLoc, | 
|  | WrittenTy, | 
|  | /*FIXME:*/KWLoc); | 
|  | Friend->setAccess(AS_public); | 
|  | CurContext->addDecl(Friend); | 
|  | } else { | 
|  | // Add the specialization into its lexical context, so that it can | 
|  | // be seen when iterating through the list of declarations in that | 
|  | // context. However, specializations are not found by name lookup. | 
|  | CurContext->addDecl(Specialization); | 
|  | } | 
|  | return Specialization; | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnTemplateDeclarator(Scope *S, | 
|  | MultiTemplateParamsArg TemplateParameterLists, | 
|  | Declarator &D) { | 
|  | Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists); | 
|  | ActOnDocumentableDecl(NewDecl); | 
|  | return NewDecl; | 
|  | } | 
|  |  | 
|  | /// Strips various properties off an implicit instantiation | 
|  | /// that has just been explicitly specialized. | 
|  | static void StripImplicitInstantiation(NamedDecl *D) { | 
|  | D->dropAttr<DLLImportAttr>(); | 
|  | D->dropAttr<DLLExportAttr>(); | 
|  |  | 
|  | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) | 
|  | FD->setInlineSpecified(false); | 
|  | } | 
|  |  | 
|  | /// Compute the diagnostic location for an explicit instantiation | 
|  | //  declaration or definition. | 
|  | static SourceLocation DiagLocForExplicitInstantiation( | 
|  | NamedDecl* D, SourceLocation PointOfInstantiation) { | 
|  | // Explicit instantiations following a specialization have no effect and | 
|  | // hence no PointOfInstantiation. In that case, walk decl backwards | 
|  | // until a valid name loc is found. | 
|  | SourceLocation PrevDiagLoc = PointOfInstantiation; | 
|  | for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); | 
|  | Prev = Prev->getPreviousDecl()) { | 
|  | PrevDiagLoc = Prev->getLocation(); | 
|  | } | 
|  | assert(PrevDiagLoc.isValid() && | 
|  | "Explicit instantiation without point of instantiation?"); | 
|  | return PrevDiagLoc; | 
|  | } | 
|  |  | 
|  | /// Diagnose cases where we have an explicit template specialization | 
|  | /// before/after an explicit template instantiation, producing diagnostics | 
|  | /// for those cases where they are required and determining whether the | 
|  | /// new specialization/instantiation will have any effect. | 
|  | /// | 
|  | /// \param NewLoc the location of the new explicit specialization or | 
|  | /// instantiation. | 
|  | /// | 
|  | /// \param NewTSK the kind of the new explicit specialization or instantiation. | 
|  | /// | 
|  | /// \param PrevDecl the previous declaration of the entity. | 
|  | /// | 
|  | /// \param PrevTSK the kind of the old explicit specialization or instantiatin. | 
|  | /// | 
|  | /// \param PrevPointOfInstantiation if valid, indicates where the previus | 
|  | /// declaration was instantiated (either implicitly or explicitly). | 
|  | /// | 
|  | /// \param HasNoEffect will be set to true to indicate that the new | 
|  | /// specialization or instantiation has no effect and should be ignored. | 
|  | /// | 
|  | /// \returns true if there was an error that should prevent the introduction of | 
|  | /// the new declaration into the AST, false otherwise. | 
|  | bool | 
|  | Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, | 
|  | TemplateSpecializationKind NewTSK, | 
|  | NamedDecl *PrevDecl, | 
|  | TemplateSpecializationKind PrevTSK, | 
|  | SourceLocation PrevPointOfInstantiation, | 
|  | bool &HasNoEffect) { | 
|  | HasNoEffect = false; | 
|  |  | 
|  | switch (NewTSK) { | 
|  | case TSK_Undeclared: | 
|  | case TSK_ImplicitInstantiation: | 
|  | assert( | 
|  | (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && | 
|  | "previous declaration must be implicit!"); | 
|  | return false; | 
|  |  | 
|  | case TSK_ExplicitSpecialization: | 
|  | switch (PrevTSK) { | 
|  | case TSK_Undeclared: | 
|  | case TSK_ExplicitSpecialization: | 
|  | // Okay, we're just specializing something that is either already | 
|  | // explicitly specialized or has merely been mentioned without any | 
|  | // instantiation. | 
|  | return false; | 
|  |  | 
|  | case TSK_ImplicitInstantiation: | 
|  | if (PrevPointOfInstantiation.isInvalid()) { | 
|  | // The declaration itself has not actually been instantiated, so it is | 
|  | // still okay to specialize it. | 
|  | StripImplicitInstantiation(PrevDecl); | 
|  | return false; | 
|  | } | 
|  | // Fall through | 
|  | LLVM_FALLTHROUGH; | 
|  |  | 
|  | case TSK_ExplicitInstantiationDeclaration: | 
|  | case TSK_ExplicitInstantiationDefinition: | 
|  | assert((PrevTSK == TSK_ImplicitInstantiation || | 
|  | PrevPointOfInstantiation.isValid()) && | 
|  | "Explicit instantiation without point of instantiation?"); | 
|  |  | 
|  | // C++ [temp.expl.spec]p6: | 
|  | //   If a template, a member template or the member of a class template | 
|  | //   is explicitly specialized then that specialization shall be declared | 
|  | //   before the first use of that specialization that would cause an | 
|  | //   implicit instantiation to take place, in every translation unit in | 
|  | //   which such a use occurs; no diagnostic is required. | 
|  | for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { | 
|  | // Is there any previous explicit specialization declaration? | 
|  | if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Diag(NewLoc, diag::err_specialization_after_instantiation) | 
|  | << PrevDecl; | 
|  | Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) | 
|  | << (PrevTSK != TSK_ImplicitInstantiation); | 
|  |  | 
|  | return true; | 
|  | } | 
|  | llvm_unreachable("The switch over PrevTSK must be exhaustive."); | 
|  |  | 
|  | case TSK_ExplicitInstantiationDeclaration: | 
|  | switch (PrevTSK) { | 
|  | case TSK_ExplicitInstantiationDeclaration: | 
|  | // This explicit instantiation declaration is redundant (that's okay). | 
|  | HasNoEffect = true; | 
|  | return false; | 
|  |  | 
|  | case TSK_Undeclared: | 
|  | case TSK_ImplicitInstantiation: | 
|  | // We're explicitly instantiating something that may have already been | 
|  | // implicitly instantiated; that's fine. | 
|  | return false; | 
|  |  | 
|  | case TSK_ExplicitSpecialization: | 
|  | // C++0x [temp.explicit]p4: | 
|  | //   For a given set of template parameters, if an explicit instantiation | 
|  | //   of a template appears after a declaration of an explicit | 
|  | //   specialization for that template, the explicit instantiation has no | 
|  | //   effect. | 
|  | HasNoEffect = true; | 
|  | return false; | 
|  |  | 
|  | case TSK_ExplicitInstantiationDefinition: | 
|  | // C++0x [temp.explicit]p10: | 
|  | //   If an entity is the subject of both an explicit instantiation | 
|  | //   declaration and an explicit instantiation definition in the same | 
|  | //   translation unit, the definition shall follow the declaration. | 
|  | Diag(NewLoc, | 
|  | diag::err_explicit_instantiation_declaration_after_definition); | 
|  |  | 
|  | // Explicit instantiations following a specialization have no effect and | 
|  | // hence no PrevPointOfInstantiation. In that case, walk decl backwards | 
|  | // until a valid name loc is found. | 
|  | Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), | 
|  | diag::note_explicit_instantiation_definition_here); | 
|  | HasNoEffect = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case TSK_ExplicitInstantiationDefinition: | 
|  | switch (PrevTSK) { | 
|  | case TSK_Undeclared: | 
|  | case TSK_ImplicitInstantiation: | 
|  | // We're explicitly instantiating something that may have already been | 
|  | // implicitly instantiated; that's fine. | 
|  | return false; | 
|  |  | 
|  | case TSK_ExplicitSpecialization: | 
|  | // C++ DR 259, C++0x [temp.explicit]p4: | 
|  | //   For a given set of template parameters, if an explicit | 
|  | //   instantiation of a template appears after a declaration of | 
|  | //   an explicit specialization for that template, the explicit | 
|  | //   instantiation has no effect. | 
|  | Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization) | 
|  | << PrevDecl; | 
|  | Diag(PrevDecl->getLocation(), | 
|  | diag::note_previous_template_specialization); | 
|  | HasNoEffect = true; | 
|  | return false; | 
|  |  | 
|  | case TSK_ExplicitInstantiationDeclaration: | 
|  | // We're explicitly instantiating a definition for something for which we | 
|  | // were previously asked to suppress instantiations. That's fine. | 
|  |  | 
|  | // C++0x [temp.explicit]p4: | 
|  | //   For a given set of template parameters, if an explicit instantiation | 
|  | //   of a template appears after a declaration of an explicit | 
|  | //   specialization for that template, the explicit instantiation has no | 
|  | //   effect. | 
|  | for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { | 
|  | // Is there any previous explicit specialization declaration? | 
|  | if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { | 
|  | HasNoEffect = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  |  | 
|  | case TSK_ExplicitInstantiationDefinition: | 
|  | // C++0x [temp.spec]p5: | 
|  | //   For a given template and a given set of template-arguments, | 
|  | //     - an explicit instantiation definition shall appear at most once | 
|  | //       in a program, | 
|  |  | 
|  | // MSVCCompat: MSVC silently ignores duplicate explicit instantiations. | 
|  | Diag(NewLoc, (getLangOpts().MSVCCompat) | 
|  | ? diag::ext_explicit_instantiation_duplicate | 
|  | : diag::err_explicit_instantiation_duplicate) | 
|  | << PrevDecl; | 
|  | Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), | 
|  | diag::note_previous_explicit_instantiation); | 
|  | HasNoEffect = true; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Missing specialization/instantiation case?"); | 
|  | } | 
|  |  | 
|  | /// Perform semantic analysis for the given dependent function | 
|  | /// template specialization. | 
|  | /// | 
|  | /// The only possible way to get a dependent function template specialization | 
|  | /// is with a friend declaration, like so: | 
|  | /// | 
|  | /// \code | 
|  | ///   template \<class T> void foo(T); | 
|  | ///   template \<class T> class A { | 
|  | ///     friend void foo<>(T); | 
|  | ///   }; | 
|  | /// \endcode | 
|  | /// | 
|  | /// There really isn't any useful analysis we can do here, so we | 
|  | /// just store the information. | 
|  | bool | 
|  | Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, | 
|  | const TemplateArgumentListInfo &ExplicitTemplateArgs, | 
|  | LookupResult &Previous) { | 
|  | // Remove anything from Previous that isn't a function template in | 
|  | // the correct context. | 
|  | DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); | 
|  | LookupResult::Filter F = Previous.makeFilter(); | 
|  | enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing }; | 
|  | SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates; | 
|  | while (F.hasNext()) { | 
|  | NamedDecl *D = F.next()->getUnderlyingDecl(); | 
|  | if (!isa<FunctionTemplateDecl>(D)) { | 
|  | F.erase(); | 
|  | DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!FDLookupContext->InEnclosingNamespaceSetOf( | 
|  | D->getDeclContext()->getRedeclContext())) { | 
|  | F.erase(); | 
|  | DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D)); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | F.done(); | 
|  |  | 
|  | if (Previous.empty()) { | 
|  | Diag(FD->getLocation(), | 
|  | diag::err_dependent_function_template_spec_no_match); | 
|  | for (auto &P : DiscardedCandidates) | 
|  | Diag(P.second->getLocation(), | 
|  | diag::note_dependent_function_template_spec_discard_reason) | 
|  | << P.first; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), | 
|  | ExplicitTemplateArgs); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Perform semantic analysis for the given function template | 
|  | /// specialization. | 
|  | /// | 
|  | /// This routine performs all of the semantic analysis required for an | 
|  | /// explicit function template specialization. On successful completion, | 
|  | /// the function declaration \p FD will become a function template | 
|  | /// specialization. | 
|  | /// | 
|  | /// \param FD the function declaration, which will be updated to become a | 
|  | /// function template specialization. | 
|  | /// | 
|  | /// \param ExplicitTemplateArgs the explicitly-provided template arguments, | 
|  | /// if any. Note that this may be valid info even when 0 arguments are | 
|  | /// explicitly provided as in, e.g., \c void sort<>(char*, char*); | 
|  | /// as it anyway contains info on the angle brackets locations. | 
|  | /// | 
|  | /// \param Previous the set of declarations that may be specialized by | 
|  | /// this function specialization. | 
|  | bool Sema::CheckFunctionTemplateSpecialization( | 
|  | FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, | 
|  | LookupResult &Previous) { | 
|  | // The set of function template specializations that could match this | 
|  | // explicit function template specialization. | 
|  | UnresolvedSet<8> Candidates; | 
|  | TemplateSpecCandidateSet FailedCandidates(FD->getLocation(), | 
|  | /*ForTakingAddress=*/false); | 
|  |  | 
|  | llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8> | 
|  | ConvertedTemplateArgs; | 
|  |  | 
|  | DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); | 
|  | for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); | 
|  | I != E; ++I) { | 
|  | NamedDecl *Ovl = (*I)->getUnderlyingDecl(); | 
|  | if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { | 
|  | // Only consider templates found within the same semantic lookup scope as | 
|  | // FD. | 
|  | if (!FDLookupContext->InEnclosingNamespaceSetOf( | 
|  | Ovl->getDeclContext()->getRedeclContext())) | 
|  | continue; | 
|  |  | 
|  | // When matching a constexpr member function template specialization | 
|  | // against the primary template, we don't yet know whether the | 
|  | // specialization has an implicit 'const' (because we don't know whether | 
|  | // it will be a static member function until we know which template it | 
|  | // specializes), so adjust it now assuming it specializes this template. | 
|  | QualType FT = FD->getType(); | 
|  | if (FD->isConstexpr()) { | 
|  | CXXMethodDecl *OldMD = | 
|  | dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl()); | 
|  | if (OldMD && OldMD->isConst()) { | 
|  | const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>(); | 
|  | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); | 
|  | EPI.TypeQuals |= Qualifiers::Const; | 
|  | FT = Context.getFunctionType(FPT->getReturnType(), | 
|  | FPT->getParamTypes(), EPI); | 
|  | } | 
|  | } | 
|  |  | 
|  | TemplateArgumentListInfo Args; | 
|  | if (ExplicitTemplateArgs) | 
|  | Args = *ExplicitTemplateArgs; | 
|  |  | 
|  | // C++ [temp.expl.spec]p11: | 
|  | //   A trailing template-argument can be left unspecified in the | 
|  | //   template-id naming an explicit function template specialization | 
|  | //   provided it can be deduced from the function argument type. | 
|  | // Perform template argument deduction to determine whether we may be | 
|  | // specializing this template. | 
|  | // FIXME: It is somewhat wasteful to build | 
|  | TemplateDeductionInfo Info(FailedCandidates.getLocation()); | 
|  | FunctionDecl *Specialization = nullptr; | 
|  | if (TemplateDeductionResult TDK = DeduceTemplateArguments( | 
|  | cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()), | 
|  | ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization, | 
|  | Info)) { | 
|  | // Template argument deduction failed; record why it failed, so | 
|  | // that we can provide nifty diagnostics. | 
|  | FailedCandidates.addCandidate().set( | 
|  | I.getPair(), FunTmpl->getTemplatedDecl(), | 
|  | MakeDeductionFailureInfo(Context, TDK, Info)); | 
|  | (void)TDK; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Target attributes are part of the cuda function signature, so | 
|  | // the deduced template's cuda target must match that of the | 
|  | // specialization.  Given that C++ template deduction does not | 
|  | // take target attributes into account, we reject candidates | 
|  | // here that have a different target. | 
|  | if (LangOpts.CUDA && | 
|  | IdentifyCUDATarget(Specialization, | 
|  | /* IgnoreImplicitHDAttributes = */ true) != | 
|  | IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttributes = */ true)) { | 
|  | FailedCandidates.addCandidate().set( | 
|  | I.getPair(), FunTmpl->getTemplatedDecl(), | 
|  | MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Record this candidate. | 
|  | if (ExplicitTemplateArgs) | 
|  | ConvertedTemplateArgs[Specialization] = std::move(Args); | 
|  | Candidates.addDecl(Specialization, I.getAccess()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Find the most specialized function template. | 
|  | UnresolvedSetIterator Result = getMostSpecialized( | 
|  | Candidates.begin(), Candidates.end(), FailedCandidates, | 
|  | FD->getLocation(), | 
|  | PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(), | 
|  | PDiag(diag::err_function_template_spec_ambiguous) | 
|  | << FD->getDeclName() << (ExplicitTemplateArgs != nullptr), | 
|  | PDiag(diag::note_function_template_spec_matched)); | 
|  |  | 
|  | if (Result == Candidates.end()) | 
|  | return true; | 
|  |  | 
|  | // Ignore access information;  it doesn't figure into redeclaration checking. | 
|  | FunctionDecl *Specialization = cast<FunctionDecl>(*Result); | 
|  |  | 
|  | FunctionTemplateSpecializationInfo *SpecInfo | 
|  | = Specialization->getTemplateSpecializationInfo(); | 
|  | assert(SpecInfo && "Function template specialization info missing?"); | 
|  |  | 
|  | // Note: do not overwrite location info if previous template | 
|  | // specialization kind was explicit. | 
|  | TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); | 
|  | if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { | 
|  | Specialization->setLocation(FD->getLocation()); | 
|  | Specialization->setLexicalDeclContext(FD->getLexicalDeclContext()); | 
|  | // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr | 
|  | // function can differ from the template declaration with respect to | 
|  | // the constexpr specifier. | 
|  | // FIXME: We need an update record for this AST mutation. | 
|  | // FIXME: What if there are multiple such prior declarations (for instance, | 
|  | // from different modules)? | 
|  | Specialization->setConstexpr(FD->isConstexpr()); | 
|  | } | 
|  |  | 
|  | // FIXME: Check if the prior specialization has a point of instantiation. | 
|  | // If so, we have run afoul of . | 
|  |  | 
|  | // If this is a friend declaration, then we're not really declaring | 
|  | // an explicit specialization. | 
|  | bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); | 
|  |  | 
|  | // Check the scope of this explicit specialization. | 
|  | if (!isFriend && | 
|  | CheckTemplateSpecializationScope(*this, | 
|  | Specialization->getPrimaryTemplate(), | 
|  | Specialization, FD->getLocation(), | 
|  | false)) | 
|  | return true; | 
|  |  | 
|  | // C++ [temp.expl.spec]p6: | 
|  | //   If a template, a member template or the member of a class template is | 
|  | //   explicitly specialized then that specialization shall be declared | 
|  | //   before the first use of that specialization that would cause an implicit | 
|  | //   instantiation to take place, in every translation unit in which such a | 
|  | //   use occurs; no diagnostic is required. | 
|  | bool HasNoEffect = false; | 
|  | if (!isFriend && | 
|  | CheckSpecializationInstantiationRedecl(FD->getLocation(), | 
|  | TSK_ExplicitSpecialization, | 
|  | Specialization, | 
|  | SpecInfo->getTemplateSpecializationKind(), | 
|  | SpecInfo->getPointOfInstantiation(), | 
|  | HasNoEffect)) | 
|  | return true; | 
|  |  | 
|  | // Mark the prior declaration as an explicit specialization, so that later | 
|  | // clients know that this is an explicit specialization. | 
|  | if (!isFriend) { | 
|  | // Since explicit specializations do not inherit '=delete' from their | 
|  | // primary function template - check if the 'specialization' that was | 
|  | // implicitly generated (during template argument deduction for partial | 
|  | // ordering) from the most specialized of all the function templates that | 
|  | // 'FD' could have been specializing, has a 'deleted' definition.  If so, | 
|  | // first check that it was implicitly generated during template argument | 
|  | // deduction by making sure it wasn't referenced, and then reset the deleted | 
|  | // flag to not-deleted, so that we can inherit that information from 'FD'. | 
|  | if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() && | 
|  | !Specialization->getCanonicalDecl()->isReferenced()) { | 
|  | // FIXME: This assert will not hold in the presence of modules. | 
|  | assert( | 
|  | Specialization->getCanonicalDecl() == Specialization && | 
|  | "This must be the only existing declaration of this specialization"); | 
|  | // FIXME: We need an update record for this AST mutation. | 
|  | Specialization->setDeletedAsWritten(false); | 
|  | } | 
|  | // FIXME: We need an update record for this AST mutation. | 
|  | SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); | 
|  | MarkUnusedFileScopedDecl(Specialization); | 
|  | } | 
|  |  | 
|  | // Turn the given function declaration into a function template | 
|  | // specialization, with the template arguments from the previous | 
|  | // specialization. | 
|  | // Take copies of (semantic and syntactic) template argument lists. | 
|  | const TemplateArgumentList* TemplArgs = new (Context) | 
|  | TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); | 
|  | FD->setFunctionTemplateSpecialization( | 
|  | Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr, | 
|  | SpecInfo->getTemplateSpecializationKind(), | 
|  | ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr); | 
|  |  | 
|  | // A function template specialization inherits the target attributes | 
|  | // of its template.  (We require the attributes explicitly in the | 
|  | // code to match, but a template may have implicit attributes by | 
|  | // virtue e.g. of being constexpr, and it passes these implicit | 
|  | // attributes on to its specializations.) | 
|  | if (LangOpts.CUDA) | 
|  | inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate()); | 
|  |  | 
|  | // The "previous declaration" for this function template specialization is | 
|  | // the prior function template specialization. | 
|  | Previous.clear(); | 
|  | Previous.addDecl(Specialization); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Perform semantic analysis for the given non-template member | 
|  | /// specialization. | 
|  | /// | 
|  | /// This routine performs all of the semantic analysis required for an | 
|  | /// explicit member function specialization. On successful completion, | 
|  | /// the function declaration \p FD will become a member function | 
|  | /// specialization. | 
|  | /// | 
|  | /// \param Member the member declaration, which will be updated to become a | 
|  | /// specialization. | 
|  | /// | 
|  | /// \param Previous the set of declarations, one of which may be specialized | 
|  | /// by this function specialization;  the set will be modified to contain the | 
|  | /// redeclared member. | 
|  | bool | 
|  | Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { | 
|  | assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); | 
|  |  | 
|  | // Try to find the member we are instantiating. | 
|  | NamedDecl *FoundInstantiation = nullptr; | 
|  | NamedDecl *Instantiation = nullptr; | 
|  | NamedDecl *InstantiatedFrom = nullptr; | 
|  | MemberSpecializationInfo *MSInfo = nullptr; | 
|  |  | 
|  | if (Previous.empty()) { | 
|  | // Nowhere to look anyway. | 
|  | } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { | 
|  | for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); | 
|  | I != E; ++I) { | 
|  | NamedDecl *D = (*I)->getUnderlyingDecl(); | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { | 
|  | QualType Adjusted = Function->getType(); | 
|  | if (!hasExplicitCallingConv(Adjusted)) | 
|  | Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType()); | 
|  | // This doesn't handle deduced return types, but both function | 
|  | // declarations should be undeduced at this point. | 
|  | if (Context.hasSameType(Adjusted, Method->getType())) { | 
|  | FoundInstantiation = *I; | 
|  | Instantiation = Method; | 
|  | InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); | 
|  | MSInfo = Method->getMemberSpecializationInfo(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (isa<VarDecl>(Member)) { | 
|  | VarDecl *PrevVar; | 
|  | if (Previous.isSingleResult() && | 
|  | (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) | 
|  | if (PrevVar->isStaticDataMember()) { | 
|  | FoundInstantiation = Previous.getRepresentativeDecl(); | 
|  | Instantiation = PrevVar; | 
|  | InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); | 
|  | MSInfo = PrevVar->getMemberSpecializationInfo(); | 
|  | } | 
|  | } else if (isa<RecordDecl>(Member)) { | 
|  | CXXRecordDecl *PrevRecord; | 
|  | if (Previous.isSingleResult() && | 
|  | (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { | 
|  | FoundInstantiation = Previous.getRepresentativeDecl(); | 
|  | Instantiation = PrevRecord; | 
|  | InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); | 
|  | MSInfo = PrevRecord->getMemberSpecializationInfo(); | 
|  | } | 
|  | } else if (isa<EnumDecl>(Member)) { | 
|  | EnumDecl *PrevEnum; | 
|  | if (Previous.isSingleResult() && | 
|  | (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { | 
|  | FoundInstantiation = Previous.getRepresentativeDecl(); | 
|  | Instantiation = PrevEnum; | 
|  | InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); | 
|  | MSInfo = PrevEnum->getMemberSpecializationInfo(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Instantiation) { | 
|  | // There is no previous declaration that matches. Since member | 
|  | // specializations are always out-of-line, the caller will complain about | 
|  | // this mismatch later. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // A member specialization in a friend declaration isn't really declaring | 
|  | // an explicit specialization, just identifying a specific (possibly implicit) | 
|  | // specialization. Don't change the template specialization kind. | 
|  | // | 
|  | // FIXME: Is this really valid? Other compilers reject. | 
|  | if (Member->getFriendObjectKind() != Decl::FOK_None) { | 
|  | // Preserve instantiation information. | 
|  | if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { | 
|  | cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( | 
|  | cast<CXXMethodDecl>(InstantiatedFrom), | 
|  | cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); | 
|  | } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { | 
|  | cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( | 
|  | cast<CXXRecordDecl>(InstantiatedFrom), | 
|  | cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); | 
|  | } | 
|  |  | 
|  | Previous.clear(); | 
|  | Previous.addDecl(FoundInstantiation); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Make sure that this is a specialization of a member. | 
|  | if (!InstantiatedFrom) { | 
|  | Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) | 
|  | << Member; | 
|  | Diag(Instantiation->getLocation(), diag::note_specialized_decl); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // C++ [temp.expl.spec]p6: | 
|  | //   If a template, a member template or the member of a class template is | 
|  | //   explicitly specialized then that specialization shall be declared | 
|  | //   before the first use of that specialization that would cause an implicit | 
|  | //   instantiation to take place, in every translation unit in which such a | 
|  | //   use occurs; no diagnostic is required. | 
|  | assert(MSInfo && "Member specialization info missing?"); | 
|  |  | 
|  | bool HasNoEffect = false; | 
|  | if (CheckSpecializationInstantiationRedecl(Member->getLocation(), | 
|  | TSK_ExplicitSpecialization, | 
|  | Instantiation, | 
|  | MSInfo->getTemplateSpecializationKind(), | 
|  | MSInfo->getPointOfInstantiation(), | 
|  | HasNoEffect)) | 
|  | return true; | 
|  |  | 
|  | // Check the scope of this explicit specialization. | 
|  | if (CheckTemplateSpecializationScope(*this, | 
|  | InstantiatedFrom, | 
|  | Instantiation, Member->getLocation(), | 
|  | false)) | 
|  | return true; | 
|  |  | 
|  | // Note that this member specialization is an "instantiation of" the | 
|  | // corresponding member of the original template. | 
|  | if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) { | 
|  | FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); | 
|  | if (InstantiationFunction->getTemplateSpecializationKind() == | 
|  | TSK_ImplicitInstantiation) { | 
|  | // Explicit specializations of member functions of class templates do not | 
|  | // inherit '=delete' from the member function they are specializing. | 
|  | if (InstantiationFunction->isDeleted()) { | 
|  | // FIXME: This assert will not hold in the presence of modules. | 
|  | assert(InstantiationFunction->getCanonicalDecl() == | 
|  | InstantiationFunction); | 
|  | // FIXME: We need an update record for this AST mutation. | 
|  | InstantiationFunction->setDeletedAsWritten(false); | 
|  | } | 
|  | } | 
|  |  | 
|  | MemberFunction->setInstantiationOfMemberFunction( | 
|  | cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); | 
|  | } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) { | 
|  | MemberVar->setInstantiationOfStaticDataMember( | 
|  | cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); | 
|  | } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) { | 
|  | MemberClass->setInstantiationOfMemberClass( | 
|  | cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); | 
|  | } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) { | 
|  | MemberEnum->setInstantiationOfMemberEnum( | 
|  | cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); | 
|  | } else { | 
|  | llvm_unreachable("unknown member specialization kind"); | 
|  | } | 
|  |  | 
|  | // Save the caller the trouble of having to figure out which declaration | 
|  | // this specialization matches. | 
|  | Previous.clear(); | 
|  | Previous.addDecl(FoundInstantiation); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Complete the explicit specialization of a member of a class template by | 
|  | /// updating the instantiated member to be marked as an explicit specialization. | 
|  | /// | 
|  | /// \param OrigD The member declaration instantiated from the template. | 
|  | /// \param Loc The location of the explicit specialization of the member. | 
|  | template<typename DeclT> | 
|  | static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD, | 
|  | SourceLocation Loc) { | 
|  | if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) | 
|  | return; | 
|  |  | 
|  | // FIXME: Inform AST mutation listeners of this AST mutation. | 
|  | // FIXME: If there are multiple in-class declarations of the member (from | 
|  | // multiple modules, or a declaration and later definition of a member type), | 
|  | // should we update all of them? | 
|  | OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization); | 
|  | OrigD->setLocation(Loc); | 
|  | } | 
|  |  | 
|  | void Sema::CompleteMemberSpecialization(NamedDecl *Member, | 
|  | LookupResult &Previous) { | 
|  | NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl()); | 
|  | if (Instantiation == Member) | 
|  | return; | 
|  |  | 
|  | if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation)) | 
|  | completeMemberSpecializationImpl(*this, Function, Member->getLocation()); | 
|  | else if (auto *Var = dyn_cast<VarDecl>(Instantiation)) | 
|  | completeMemberSpecializationImpl(*this, Var, Member->getLocation()); | 
|  | else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation)) | 
|  | completeMemberSpecializationImpl(*this, Record, Member->getLocation()); | 
|  | else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation)) | 
|  | completeMemberSpecializationImpl(*this, Enum, Member->getLocation()); | 
|  | else | 
|  | llvm_unreachable("unknown member specialization kind"); | 
|  | } | 
|  |  | 
|  | /// Check the scope of an explicit instantiation. | 
|  | /// | 
|  | /// \returns true if a serious error occurs, false otherwise. | 
|  | static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, | 
|  | SourceLocation InstLoc, | 
|  | bool WasQualifiedName) { | 
|  | DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); | 
|  | DeclContext *CurContext = S.CurContext->getRedeclContext(); | 
|  |  | 
|  | if (CurContext->isRecord()) { | 
|  | S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) | 
|  | << D; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // C++11 [temp.explicit]p3: | 
|  | //   An explicit instantiation shall appear in an enclosing namespace of its | 
|  | //   template. If the name declared in the explicit instantiation is an | 
|  | //   unqualified name, the explicit instantiation shall appear in the | 
|  | //   namespace where its template is declared or, if that namespace is inline | 
|  | //   (7.3.1), any namespace from its enclosing namespace set. | 
|  | // | 
|  | // This is DR275, which we do not retroactively apply to C++98/03. | 
|  | if (WasQualifiedName) { | 
|  | if (CurContext->Encloses(OrigContext)) | 
|  | return false; | 
|  | } else { | 
|  | if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { | 
|  | if (WasQualifiedName) | 
|  | S.Diag(InstLoc, | 
|  | S.getLangOpts().CPlusPlus11? | 
|  | diag::err_explicit_instantiation_out_of_scope : | 
|  | diag::warn_explicit_instantiation_out_of_scope_0x) | 
|  | << D << NS; | 
|  | else | 
|  | S.Diag(InstLoc, | 
|  | S.getLangOpts().CPlusPlus11? | 
|  | diag::err_explicit_instantiation_unqualified_wrong_namespace : | 
|  | diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) | 
|  | << D << NS; | 
|  | } else | 
|  | S.Diag(InstLoc, | 
|  | S.getLangOpts().CPlusPlus11? | 
|  | diag::err_explicit_instantiation_must_be_global : | 
|  | diag::warn_explicit_instantiation_must_be_global_0x) | 
|  | << D; | 
|  | S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determine whether the given scope specifier has a template-id in it. | 
|  | static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { | 
|  | if (!SS.isSet()) | 
|  | return false; | 
|  |  | 
|  | // C++11 [temp.explicit]p3: | 
|  | //   If the explicit instantiation is for a member function, a member class | 
|  | //   or a static data member of a class template specialization, the name of | 
|  | //   the class template specialization in the qualified-id for the member | 
|  | //   name shall be a simple-template-id. | 
|  | // | 
|  | // C++98 has the same restriction, just worded differently. | 
|  | for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS; | 
|  | NNS = NNS->getPrefix()) | 
|  | if (const Type *T = NNS->getAsType()) | 
|  | if (isa<TemplateSpecializationType>(T)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Make a dllexport or dllimport attr on a class template specialization take | 
|  | /// effect. | 
|  | static void dllExportImportClassTemplateSpecialization( | 
|  | Sema &S, ClassTemplateSpecializationDecl *Def) { | 
|  | auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def)); | 
|  | assert(A && "dllExportImportClassTemplateSpecialization called " | 
|  | "on Def without dllexport or dllimport"); | 
|  |  | 
|  | // We reject explicit instantiations in class scope, so there should | 
|  | // never be any delayed exported classes to worry about. | 
|  | assert(S.DelayedDllExportClasses.empty() && | 
|  | "delayed exports present at explicit instantiation"); | 
|  | S.checkClassLevelDLLAttribute(Def); | 
|  |  | 
|  | // Propagate attribute to base class templates. | 
|  | for (auto &B : Def->bases()) { | 
|  | if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>( | 
|  | B.getType()->getAsCXXRecordDecl())) | 
|  | S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getLocStart()); | 
|  | } | 
|  |  | 
|  | S.referenceDLLExportedClassMethods(); | 
|  | } | 
|  |  | 
|  | // Explicit instantiation of a class template specialization | 
|  | DeclResult Sema::ActOnExplicitInstantiation( | 
|  | Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, | 
|  | unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS, | 
|  | TemplateTy TemplateD, SourceLocation TemplateNameLoc, | 
|  | SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn, | 
|  | SourceLocation RAngleLoc, const ParsedAttributesView &Attr) { | 
|  | // Find the class template we're specializing | 
|  | TemplateName Name = TemplateD.get(); | 
|  | TemplateDecl *TD = Name.getAsTemplateDecl(); | 
|  | // Check that the specialization uses the same tag kind as the | 
|  | // original template. | 
|  | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); | 
|  | assert(Kind != TTK_Enum && | 
|  | "Invalid enum tag in class template explicit instantiation!"); | 
|  |  | 
|  | ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD); | 
|  |  | 
|  | if (!ClassTemplate) { | 
|  | NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind); | 
|  | Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind; | 
|  | Diag(TD->getLocation(), diag::note_previous_use); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), | 
|  | Kind, /*isDefinition*/false, KWLoc, | 
|  | ClassTemplate->getIdentifier())) { | 
|  | Diag(KWLoc, diag::err_use_with_wrong_tag) | 
|  | << ClassTemplate | 
|  | << FixItHint::CreateReplacement(KWLoc, | 
|  | ClassTemplate->getTemplatedDecl()->getKindName()); | 
|  | Diag(ClassTemplate->getTemplatedDecl()->getLocation(), | 
|  | diag::note_previous_use); | 
|  | Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); | 
|  | } | 
|  |  | 
|  | // C++0x [temp.explicit]p2: | 
|  | //   There are two forms of explicit instantiation: an explicit instantiation | 
|  | //   definition and an explicit instantiation declaration. An explicit | 
|  | //   instantiation declaration begins with the extern keyword. [...] | 
|  | TemplateSpecializationKind TSK = ExternLoc.isInvalid() | 
|  | ? TSK_ExplicitInstantiationDefinition | 
|  | : TSK_ExplicitInstantiationDeclaration; | 
|  |  | 
|  | if (TSK == TSK_ExplicitInstantiationDeclaration) { | 
|  | // Check for dllexport class template instantiation declarations. | 
|  | for (const ParsedAttr &AL : Attr) { | 
|  | if (AL.getKind() == ParsedAttr::AT_DLLExport) { | 
|  | Diag(ExternLoc, | 
|  | diag::warn_attribute_dllexport_explicit_instantiation_decl); | 
|  | Diag(AL.getLoc(), diag::note_attribute); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) { | 
|  | Diag(ExternLoc, | 
|  | diag::warn_attribute_dllexport_explicit_instantiation_decl); | 
|  | Diag(A->getLocation(), diag::note_attribute); | 
|  | } | 
|  | } | 
|  |  | 
|  | // In MSVC mode, dllimported explicit instantiation definitions are treated as | 
|  | // instantiation declarations for most purposes. | 
|  | bool DLLImportExplicitInstantiationDef = false; | 
|  | if (TSK == TSK_ExplicitInstantiationDefinition && | 
|  | Context.getTargetInfo().getCXXABI().isMicrosoft()) { | 
|  | // Check for dllimport class template instantiation definitions. | 
|  | bool DLLImport = | 
|  | ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>(); | 
|  | for (const ParsedAttr &AL : Attr) { | 
|  | if (AL.getKind() == ParsedAttr::AT_DLLImport) | 
|  | DLLImport = true; | 
|  | if (AL.getKind() == ParsedAttr::AT_DLLExport) { | 
|  | // dllexport trumps dllimport here. | 
|  | DLLImport = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (DLLImport) { | 
|  | TSK = TSK_ExplicitInstantiationDeclaration; | 
|  | DLLImportExplicitInstantiationDef = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Translate the parser's template argument list in our AST format. | 
|  | TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); | 
|  | translateTemplateArguments(TemplateArgsIn, TemplateArgs); | 
|  |  | 
|  | // Check that the template argument list is well-formed for this | 
|  | // template. | 
|  | SmallVector<TemplateArgument, 4> Converted; | 
|  | if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, | 
|  | TemplateArgs, false, Converted)) | 
|  | return true; | 
|  |  | 
|  | // Find the class template specialization declaration that | 
|  | // corresponds to these arguments. | 
|  | void *InsertPos = nullptr; | 
|  | ClassTemplateSpecializationDecl *PrevDecl | 
|  | = ClassTemplate->findSpecialization(Converted, InsertPos); | 
|  |  | 
|  | TemplateSpecializationKind PrevDecl_TSK | 
|  | = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; | 
|  |  | 
|  | // C++0x [temp.explicit]p2: | 
|  | //   [...] An explicit instantiation shall appear in an enclosing | 
|  | //   namespace of its template. [...] | 
|  | // | 
|  | // This is C++ DR 275. | 
|  | if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, | 
|  | SS.isSet())) | 
|  | return true; | 
|  |  | 
|  | ClassTemplateSpecializationDecl *Specialization = nullptr; | 
|  |  | 
|  | bool HasNoEffect = false; | 
|  | if (PrevDecl) { | 
|  | if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, | 
|  | PrevDecl, PrevDecl_TSK, | 
|  | PrevDecl->getPointOfInstantiation(), | 
|  | HasNoEffect)) | 
|  | return PrevDecl; | 
|  |  | 
|  | // Even though HasNoEffect == true means that this explicit instantiation | 
|  | // has no effect on semantics, we go on to put its syntax in the AST. | 
|  |  | 
|  | if (PrevDecl_TSK == TSK_ImplicitInstantiation || | 
|  | PrevDecl_TSK == TSK_Undeclared) { | 
|  | // Since the only prior class template specialization with these | 
|  | // arguments was referenced but not declared, reuse that | 
|  | // declaration node as our own, updating the source location | 
|  | // for the template name to reflect our new declaration. | 
|  | // (Other source locations will be updated later.) | 
|  | Specialization = PrevDecl; | 
|  | Specialization->setLocation(TemplateNameLoc); | 
|  | PrevDecl = nullptr; | 
|  | } | 
|  |  | 
|  | if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && | 
|  | DLLImportExplicitInstantiationDef) { | 
|  | // The new specialization might add a dllimport attribute. | 
|  | HasNoEffect = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Specialization) { | 
|  | // Create a new class template specialization declaration node for | 
|  | // this explicit specialization. | 
|  | Specialization | 
|  | = ClassTemplateSpecializationDecl::Create(Context, Kind, | 
|  | ClassTemplate->getDeclContext(), | 
|  | KWLoc, TemplateNameLoc, | 
|  | ClassTemplate, | 
|  | Converted, | 
|  | PrevDecl); | 
|  | SetNestedNameSpecifier(Specialization, SS); | 
|  |  | 
|  | if (!HasNoEffect && !PrevDecl) { | 
|  | // Insert the new specialization. | 
|  | ClassTemplate->AddSpecialization(Specialization, InsertPos); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Build the fully-sugared type for this explicit instantiation as | 
|  | // the user wrote in the explicit instantiation itself. This means | 
|  | // that we'll pretty-print the type retrieved from the | 
|  | // specialization's declaration the way that the user actually wrote | 
|  | // the explicit instantiation, rather than formatting the name based | 
|  | // on the "canonical" representation used to store the template | 
|  | // arguments in the specialization. | 
|  | TypeSourceInfo *WrittenTy | 
|  | = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, | 
|  | TemplateArgs, | 
|  | Context.getTypeDeclType(Specialization)); | 
|  | Specialization->setTypeAsWritten(WrittenTy); | 
|  |  | 
|  | // Set source locations for keywords. | 
|  | Specialization->setExternLoc(ExternLoc); | 
|  | Specialization->setTemplateKeywordLoc(TemplateLoc); | 
|  | Specialization->setBraceRange(SourceRange()); | 
|  |  | 
|  | bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>(); | 
|  | ProcessDeclAttributeList(S, Specialization, Attr); | 
|  |  | 
|  | // Add the explicit instantiation into its lexical context. However, | 
|  | // since explicit instantiations are never found by name lookup, we | 
|  | // just put it into the declaration context directly. | 
|  | Specialization->setLexicalDeclContext(CurContext); | 
|  | CurContext->addDecl(Specialization); | 
|  |  | 
|  | // Syntax is now OK, so return if it has no other effect on semantics. | 
|  | if (HasNoEffect) { | 
|  | // Set the template specialization kind. | 
|  | Specialization->setTemplateSpecializationKind(TSK); | 
|  | return Specialization; | 
|  | } | 
|  |  | 
|  | // C++ [temp.explicit]p3: | 
|  | //   A definition of a class template or class member template | 
|  | //   shall be in scope at the point of the explicit instantiation of | 
|  | //   the class template or class member template. | 
|  | // | 
|  | // This check comes when we actually try to perform the | 
|  | // instantiation. | 
|  | ClassTemplateSpecializationDecl *Def | 
|  | = cast_or_null<ClassTemplateSpecializationDecl>( | 
|  | Specialization->getDefinition()); | 
|  | if (!Def) | 
|  | InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); | 
|  | else if (TSK == TSK_ExplicitInstantiationDefinition) { | 
|  | MarkVTableUsed(TemplateNameLoc, Specialization, true); | 
|  | Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); | 
|  | } | 
|  |  | 
|  | // Instantiate the members of this class template specialization. | 
|  | Def = cast_or_null<ClassTemplateSpecializationDecl>( | 
|  | Specialization->getDefinition()); | 
|  | if (Def) { | 
|  | TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); | 
|  | // Fix a TSK_ExplicitInstantiationDeclaration followed by a | 
|  | // TSK_ExplicitInstantiationDefinition | 
|  | if (Old_TSK == TSK_ExplicitInstantiationDeclaration && | 
|  | (TSK == TSK_ExplicitInstantiationDefinition || | 
|  | DLLImportExplicitInstantiationDef)) { | 
|  | // FIXME: Need to notify the ASTMutationListener that we did this. | 
|  | Def->setTemplateSpecializationKind(TSK); | 
|  |  | 
|  | if (!getDLLAttr(Def) && getDLLAttr(Specialization) && | 
|  | (Context.getTargetInfo().getCXXABI().isMicrosoft() || | 
|  | Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())) { | 
|  | // In the MS ABI, an explicit instantiation definition can add a dll | 
|  | // attribute to a template with a previous instantiation declaration. | 
|  | // MinGW doesn't allow this. | 
|  | auto *A = cast<InheritableAttr>( | 
|  | getDLLAttr(Specialization)->clone(getASTContext())); | 
|  | A->setInherited(true); | 
|  | Def->addAttr(A); | 
|  | dllExportImportClassTemplateSpecialization(*this, Def); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fix a TSK_ImplicitInstantiation followed by a | 
|  | // TSK_ExplicitInstantiationDefinition | 
|  | bool NewlyDLLExported = | 
|  | !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>(); | 
|  | if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported && | 
|  | (Context.getTargetInfo().getCXXABI().isMicrosoft() || | 
|  | Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())) { | 
|  | // In the MS ABI, an explicit instantiation definition can add a dll | 
|  | // attribute to a template with a previous implicit instantiation. | 
|  | // MinGW doesn't allow this. We limit clang to only adding dllexport, to | 
|  | // avoid potentially strange codegen behavior.  For example, if we extend | 
|  | // this conditional to dllimport, and we have a source file calling a | 
|  | // method on an implicitly instantiated template class instance and then | 
|  | // declaring a dllimport explicit instantiation definition for the same | 
|  | // template class, the codegen for the method call will not respect the | 
|  | // dllimport, while it will with cl. The Def will already have the DLL | 
|  | // attribute, since the Def and Specialization will be the same in the | 
|  | // case of Old_TSK == TSK_ImplicitInstantiation, and we already added the | 
|  | // attribute to the Specialization; we just need to make it take effect. | 
|  | assert(Def == Specialization && | 
|  | "Def and Specialization should match for implicit instantiation"); | 
|  | dllExportImportClassTemplateSpecialization(*this, Def); | 
|  | } | 
|  |  | 
|  | // Set the template specialization kind. Make sure it is set before | 
|  | // instantiating the members which will trigger ASTConsumer callbacks. | 
|  | Specialization->setTemplateSpecializationKind(TSK); | 
|  | InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); | 
|  | } else { | 
|  |  | 
|  | // Set the template specialization kind. | 
|  | Specialization->setTemplateSpecializationKind(TSK); | 
|  | } | 
|  |  | 
|  | return Specialization; | 
|  | } | 
|  |  | 
|  | // Explicit instantiation of a member class of a class template. | 
|  | DeclResult | 
|  | Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, | 
|  | SourceLocation TemplateLoc, unsigned TagSpec, | 
|  | SourceLocation KWLoc, CXXScopeSpec &SS, | 
|  | IdentifierInfo *Name, SourceLocation NameLoc, | 
|  | const ParsedAttributesView &Attr) { | 
|  |  | 
|  | bool Owned = false; | 
|  | bool IsDependent = false; | 
|  | Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, | 
|  | KWLoc, SS, Name, NameLoc, Attr, AS_none, | 
|  | /*ModulePrivateLoc=*/SourceLocation(), | 
|  | MultiTemplateParamsArg(), Owned, IsDependent, | 
|  | SourceLocation(), false, TypeResult(), | 
|  | /*IsTypeSpecifier*/false, | 
|  | /*IsTemplateParamOrArg*/false); | 
|  | assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); | 
|  |  | 
|  | if (!TagD) | 
|  | return true; | 
|  |  | 
|  | TagDecl *Tag = cast<TagDecl>(TagD); | 
|  | assert(!Tag->isEnum() && "shouldn't see enumerations here"); | 
|  |  | 
|  | if (Tag->isInvalidDecl()) | 
|  | return true; | 
|  |  | 
|  | CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); | 
|  | CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); | 
|  | if (!Pattern) { | 
|  | Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) | 
|  | << Context.getTypeDeclType(Record); | 
|  | Diag(Record->getLocation(), diag::note_nontemplate_decl_here); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // C++0x [temp.explicit]p2: | 
|  | //   If the explicit instantiation is for a class or member class, the | 
|  | //   elaborated-type-specifier in the declaration shall include a | 
|  | //   simple-template-id. | 
|  | // | 
|  | // C++98 has the same restriction, just worded differently. | 
|  | if (!ScopeSpecifierHasTemplateId(SS)) | 
|  | Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) | 
|  | << Record << SS.getRange(); | 
|  |  | 
|  | // C++0x [temp.explicit]p2: | 
|  | //   There are two forms of explicit instantiation: an explicit instantiation | 
|  | //   definition and an explicit instantiation declaration. An explicit | 
|  | //   instantiation declaration begins with the extern keyword. [...] | 
|  | TemplateSpecializationKind TSK | 
|  | = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition | 
|  | : TSK_ExplicitInstantiationDeclaration; | 
|  |  | 
|  | // C++0x [temp.explicit]p2: | 
|  | //   [...] An explicit instantiation shall appear in an enclosing | 
|  | //   namespace of its template. [...] | 
|  | // | 
|  | // This is C++ DR 275. | 
|  | CheckExplicitInstantiationScope(*this, Record, NameLoc, true); | 
|  |  | 
|  | // Verify that it is okay to explicitly instantiate here. | 
|  | CXXRecordDecl *PrevDecl | 
|  | = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); | 
|  | if (!PrevDecl && Record->getDefinition()) | 
|  | PrevDecl = Record; | 
|  | if (PrevDecl) { | 
|  | MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); | 
|  | bool HasNoEffect = false; | 
|  | assert(MSInfo && "No member specialization information?"); | 
|  | if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, | 
|  | PrevDecl, | 
|  | MSInfo->getTemplateSpecializationKind(), | 
|  | MSInfo->getPointOfInstantiation(), | 
|  | HasNoEffect)) | 
|  | return true; | 
|  | if (HasNoEffect) | 
|  | return TagD; | 
|  | } | 
|  |  | 
|  | CXXRecordDecl *RecordDef | 
|  | = cast_or_null<CXXRecordDecl>(Record->getDefinition()); | 
|  | if (!RecordDef) { | 
|  | // C++ [temp.explicit]p3: | 
|  | //   A definition of a member class of a class template shall be in scope | 
|  | //   at the point of an explicit instantiation of the member class. | 
|  | CXXRecordDecl *Def | 
|  | = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); | 
|  | if (!Def) { | 
|  | Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) | 
|  | << 0 << Record->getDeclName() << Record->getDeclContext(); | 
|  | Diag(Pattern->getLocation(), diag::note_forward_declaration) | 
|  | << Pattern; | 
|  | return true; | 
|  | } else { | 
|  | if (InstantiateClass(NameLoc, Record, Def, | 
|  | getTemplateInstantiationArgs(Record), | 
|  | TSK)) | 
|  | return true; | 
|  |  | 
|  | RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); | 
|  | if (!RecordDef) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Instantiate all of the members of the class. | 
|  | InstantiateClassMembers(NameLoc, RecordDef, | 
|  | getTemplateInstantiationArgs(Record), TSK); | 
|  |  | 
|  | if (TSK == TSK_ExplicitInstantiationDefinition) | 
|  | MarkVTableUsed(NameLoc, RecordDef, true); | 
|  |  | 
|  | // FIXME: We don't have any representation for explicit instantiations of | 
|  | // member classes. Such a representation is not needed for compilation, but it | 
|  | // should be available for clients that want to see all of the declarations in | 
|  | // the source code. | 
|  | return TagD; | 
|  | } | 
|  |  | 
|  | DeclResult Sema::ActOnExplicitInstantiation(Scope *S, | 
|  | SourceLocation ExternLoc, | 
|  | SourceLocation TemplateLoc, | 
|  | Declarator &D) { | 
|  | // Explicit instantiations always require a name. | 
|  | // TODO: check if/when DNInfo should replace Name. | 
|  | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); | 
|  | DeclarationName Name = NameInfo.getName(); | 
|  | if (!Name) { | 
|  | if (!D.isInvalidType()) | 
|  | Diag(D.getDeclSpec().getLocStart(), | 
|  | diag::err_explicit_instantiation_requires_name) | 
|  | << D.getDeclSpec().getSourceRange() | 
|  | << D.getSourceRange(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // The scope passed in may not be a decl scope.  Zip up the scope tree until | 
|  | // we find one that is. | 
|  | while ((S->getFlags() & Scope::DeclScope) == 0 || | 
|  | (S->getFlags() & Scope::TemplateParamScope) != 0) | 
|  | S = S->getParent(); | 
|  |  | 
|  | // Determine the type of the declaration. | 
|  | TypeSourceInfo *T = GetTypeForDeclarator(D, S); | 
|  | QualType R = T->getType(); | 
|  | if (R.isNull()) | 
|  | return true; | 
|  |  | 
|  | // C++ [dcl.stc]p1: | 
|  | //   A storage-class-specifier shall not be specified in [...] an explicit | 
|  | //   instantiation (14.7.2) directive. | 
|  | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) | 
|  | << Name; | 
|  | return true; | 
|  | } else if (D.getDeclSpec().getStorageClassSpec() | 
|  | != DeclSpec::SCS_unspecified) { | 
|  | // Complain about then remove the storage class specifier. | 
|  | Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); | 
|  |  | 
|  | D.getMutableDeclSpec().ClearStorageClassSpecs(); | 
|  | } | 
|  |  | 
|  | // C++0x [temp.explicit]p1: | 
|  | //   [...] An explicit instantiation of a function template shall not use the | 
|  | //   inline or constexpr specifiers. | 
|  | // Presumably, this also applies to member functions of class templates as | 
|  | // well. | 
|  | if (D.getDeclSpec().isInlineSpecified()) | 
|  | Diag(D.getDeclSpec().getInlineSpecLoc(), | 
|  | getLangOpts().CPlusPlus11 ? | 
|  | diag::err_explicit_instantiation_inline : | 
|  | diag::warn_explicit_instantiation_inline_0x) | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); | 
|  | if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType()) | 
|  | // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is | 
|  | // not already specified. | 
|  | Diag(D.getDeclSpec().getConstexprSpecLoc(), | 
|  | diag::err_explicit_instantiation_constexpr); | 
|  |  | 
|  | // A deduction guide is not on the list of entities that can be explicitly | 
|  | // instantiated. | 
|  | if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { | 
|  | Diag(D.getDeclSpec().getLocStart(), diag::err_deduction_guide_specialized) | 
|  | << /*explicit instantiation*/ 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // C++0x [temp.explicit]p2: | 
|  | //   There are two forms of explicit instantiation: an explicit instantiation | 
|  | //   definition and an explicit instantiation declaration. An explicit | 
|  | //   instantiation declaration begins with the extern keyword. [...] | 
|  | TemplateSpecializationKind TSK | 
|  | = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition | 
|  | : TSK_ExplicitInstantiationDeclaration; | 
|  |  | 
|  | LookupResult Previous(*this, NameInfo, LookupOrdinaryName); | 
|  | LookupParsedName(Previous, S, &D.getCXXScopeSpec()); | 
|  |  | 
|  | if (!R->isFunctionType()) { | 
|  | // C++ [temp.explicit]p1: | 
|  | //   A [...] static data member of a class template can be explicitly | 
|  | //   instantiated from the member definition associated with its class | 
|  | //   template. | 
|  | // C++1y [temp.explicit]p1: | 
|  | //   A [...] variable [...] template specialization can be explicitly | 
|  | //   instantiated from its template. | 
|  | if (Previous.isAmbiguous()) | 
|  | return true; | 
|  |  | 
|  | VarDecl *Prev = Previous.getAsSingle<VarDecl>(); | 
|  | VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>(); | 
|  |  | 
|  | if (!PrevTemplate) { | 
|  | if (!Prev || !Prev->isStaticDataMember()) { | 
|  | // We expect to see a data data member here. | 
|  | Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) | 
|  | << Name; | 
|  | for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); | 
|  | P != PEnd; ++P) | 
|  | Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!Prev->getInstantiatedFromStaticDataMember()) { | 
|  | // FIXME: Check for explicit specialization? | 
|  | Diag(D.getIdentifierLoc(), | 
|  | diag::err_explicit_instantiation_data_member_not_instantiated) | 
|  | << Prev; | 
|  | Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); | 
|  | // FIXME: Can we provide a note showing where this was declared? | 
|  | return true; | 
|  | } | 
|  | } else { | 
|  | // Explicitly instantiate a variable template. | 
|  |  | 
|  | // C++1y [dcl.spec.auto]p6: | 
|  | //   ... A program that uses auto or decltype(auto) in a context not | 
|  | //   explicitly allowed in this section is ill-formed. | 
|  | // | 
|  | // This includes auto-typed variable template instantiations. | 
|  | if (R->isUndeducedType()) { | 
|  | Diag(T->getTypeLoc().getLocStart(), | 
|  | diag::err_auto_not_allowed_var_inst); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { | 
|  | // C++1y [temp.explicit]p3: | 
|  | //   If the explicit instantiation is for a variable, the unqualified-id | 
|  | //   in the declaration shall be a template-id. | 
|  | Diag(D.getIdentifierLoc(), | 
|  | diag::err_explicit_instantiation_without_template_id) | 
|  | << PrevTemplate; | 
|  | Diag(PrevTemplate->getLocation(), | 
|  | diag::note_explicit_instantiation_here); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Translate the parser's template argument list into our AST format. | 
|  | TemplateArgumentListInfo TemplateArgs = | 
|  | makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); | 
|  |  | 
|  | DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc, | 
|  | D.getIdentifierLoc(), TemplateArgs); | 
|  | if (Res.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | // Ignore access control bits, we don't need them for redeclaration | 
|  | // checking. | 
|  | Prev = cast<VarDecl>(Res.get()); | 
|  | } | 
|  |  | 
|  | // C++0x [temp.explicit]p2: | 
|  | //   If the explicit instantiation is for a member function, a member class | 
|  | //   or a static data member of a class template specialization, the name of | 
|  | //   the class template specialization in the qualified-id for the member | 
|  | //   name shall be a simple-template-id. | 
|  | // | 
|  | // C++98 has the same restriction, just worded differently. | 
|  | // | 
|  | // This does not apply to variable template specializations, where the | 
|  | // template-id is in the unqualified-id instead. | 
|  | if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate) | 
|  | Diag(D.getIdentifierLoc(), | 
|  | diag::ext_explicit_instantiation_without_qualified_id) | 
|  | << Prev << D.getCXXScopeSpec().getRange(); | 
|  |  | 
|  | // Check the scope of this explicit instantiation. | 
|  | CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); | 
|  |  | 
|  | // Verify that it is okay to explicitly instantiate here. | 
|  | TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind(); | 
|  | SourceLocation POI = Prev->getPointOfInstantiation(); | 
|  | bool HasNoEffect = false; | 
|  | if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, | 
|  | PrevTSK, POI, HasNoEffect)) | 
|  | return true; | 
|  |  | 
|  | if (!HasNoEffect) { | 
|  | // Instantiate static data member or variable template. | 
|  | Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); | 
|  | if (PrevTemplate) { | 
|  | // Merge attributes. | 
|  | ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes()); | 
|  | } | 
|  | if (TSK == TSK_ExplicitInstantiationDefinition) | 
|  | InstantiateVariableDefinition(D.getIdentifierLoc(), Prev); | 
|  | } | 
|  |  | 
|  | // Check the new variable specialization against the parsed input. | 
|  | if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) { | 
|  | Diag(T->getTypeLoc().getLocStart(), | 
|  | diag::err_invalid_var_template_spec_type) | 
|  | << 0 << PrevTemplate << R << Prev->getType(); | 
|  | Diag(PrevTemplate->getLocation(), diag::note_template_declared_here) | 
|  | << 2 << PrevTemplate->getDeclName(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // FIXME: Create an ExplicitInstantiation node? | 
|  | return (Decl*) nullptr; | 
|  | } | 
|  |  | 
|  | // If the declarator is a template-id, translate the parser's template | 
|  | // argument list into our AST format. | 
|  | bool HasExplicitTemplateArgs = false; | 
|  | TemplateArgumentListInfo TemplateArgs; | 
|  | if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { | 
|  | TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); | 
|  | HasExplicitTemplateArgs = true; | 
|  | } | 
|  |  | 
|  | // C++ [temp.explicit]p1: | 
|  | //   A [...] function [...] can be explicitly instantiated from its template. | 
|  | //   A member function [...] of a class template can be explicitly | 
|  | //  instantiated from the member definition associated with its class | 
|  | //  template. | 
|  | UnresolvedSet<8> TemplateMatches; | 
|  | FunctionDecl *NonTemplateMatch = nullptr; | 
|  | TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc()); | 
|  | for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); | 
|  | P != PEnd; ++P) { | 
|  | NamedDecl *Prev = *P; | 
|  | if (!HasExplicitTemplateArgs) { | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { | 
|  | QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(), | 
|  | /*AdjustExceptionSpec*/true); | 
|  | if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) { | 
|  | if (Method->getPrimaryTemplate()) { | 
|  | TemplateMatches.addDecl(Method, P.getAccess()); | 
|  | } else { | 
|  | // FIXME: Can this assert ever happen?  Needs a test. | 
|  | assert(!NonTemplateMatch && "Multiple NonTemplateMatches"); | 
|  | NonTemplateMatch = Method; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); | 
|  | if (!FunTmpl) | 
|  | continue; | 
|  |  | 
|  | TemplateDeductionInfo Info(FailedCandidates.getLocation()); | 
|  | FunctionDecl *Specialization = nullptr; | 
|  | if (TemplateDeductionResult TDK | 
|  | = DeduceTemplateArguments(FunTmpl, | 
|  | (HasExplicitTemplateArgs ? &TemplateArgs | 
|  | : nullptr), | 
|  | R, Specialization, Info)) { | 
|  | // Keep track of almost-matches. | 
|  | FailedCandidates.addCandidate() | 
|  | .set(P.getPair(), FunTmpl->getTemplatedDecl(), | 
|  | MakeDeductionFailureInfo(Context, TDK, Info)); | 
|  | (void)TDK; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Target attributes are part of the cuda function signature, so | 
|  | // the cuda target of the instantiated function must match that of its | 
|  | // template.  Given that C++ template deduction does not take | 
|  | // target attributes into account, we reject candidates here that | 
|  | // have a different target. | 
|  | if (LangOpts.CUDA && | 
|  | IdentifyCUDATarget(Specialization, | 
|  | /* IgnoreImplicitHDAttributes = */ true) != | 
|  | IdentifyCUDATarget(D.getDeclSpec().getAttributes())) { | 
|  | FailedCandidates.addCandidate().set( | 
|  | P.getPair(), FunTmpl->getTemplatedDecl(), | 
|  | MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | TemplateMatches.addDecl(Specialization, P.getAccess()); | 
|  | } | 
|  |  | 
|  | FunctionDecl *Specialization = NonTemplateMatch; | 
|  | if (!Specialization) { | 
|  | // Find the most specialized function template specialization. | 
|  | UnresolvedSetIterator Result = getMostSpecialized( | 
|  | TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates, | 
|  | D.getIdentifierLoc(), | 
|  | PDiag(diag::err_explicit_instantiation_not_known) << Name, | 
|  | PDiag(diag::err_explicit_instantiation_ambiguous) << Name, | 
|  | PDiag(diag::note_explicit_instantiation_candidate)); | 
|  |  | 
|  | if (Result == TemplateMatches.end()) | 
|  | return true; | 
|  |  | 
|  | // Ignore access control bits, we don't need them for redeclaration checking. | 
|  | Specialization = cast<FunctionDecl>(*Result); | 
|  | } | 
|  |  | 
|  | // C++11 [except.spec]p4 | 
|  | // In an explicit instantiation an exception-specification may be specified, | 
|  | // but is not required. | 
|  | // If an exception-specification is specified in an explicit instantiation | 
|  | // directive, it shall be compatible with the exception-specifications of | 
|  | // other declarations of that function. | 
|  | if (auto *FPT = R->getAs<FunctionProtoType>()) | 
|  | if (FPT->hasExceptionSpec()) { | 
|  | unsigned DiagID = | 
|  | diag::err_mismatched_exception_spec_explicit_instantiation; | 
|  | if (getLangOpts().MicrosoftExt) | 
|  | DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation; | 
|  | bool Result = CheckEquivalentExceptionSpec( | 
|  | PDiag(DiagID) << Specialization->getType(), | 
|  | PDiag(diag::note_explicit_instantiation_here), | 
|  | Specialization->getType()->getAs<FunctionProtoType>(), | 
|  | Specialization->getLocation(), FPT, D.getLocStart()); | 
|  | // In Microsoft mode, mismatching exception specifications just cause a | 
|  | // warning. | 
|  | if (!getLangOpts().MicrosoftExt && Result) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { | 
|  | Diag(D.getIdentifierLoc(), | 
|  | diag::err_explicit_instantiation_member_function_not_instantiated) | 
|  | << Specialization | 
|  | << (Specialization->getTemplateSpecializationKind() == | 
|  | TSK_ExplicitSpecialization); | 
|  | Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); | 
|  | if (!PrevDecl && Specialization->isThisDeclarationADefinition()) | 
|  | PrevDecl = Specialization; | 
|  |  | 
|  | if (PrevDecl) { | 
|  | bool HasNoEffect = false; | 
|  | if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, | 
|  | PrevDecl, | 
|  | PrevDecl->getTemplateSpecializationKind(), | 
|  | PrevDecl->getPointOfInstantiation(), | 
|  | HasNoEffect)) | 
|  | return true; | 
|  |  | 
|  | // FIXME: We may still want to build some representation of this | 
|  | // explicit specialization. | 
|  | if (HasNoEffect) | 
|  | return (Decl*) nullptr; | 
|  | } | 
|  |  | 
|  | ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes()); | 
|  |  | 
|  | // In MSVC mode, dllimported explicit instantiation definitions are treated as | 
|  | // instantiation declarations. | 
|  | if (TSK == TSK_ExplicitInstantiationDefinition && | 
|  | Specialization->hasAttr<DLLImportAttr>() && | 
|  | Context.getTargetInfo().getCXXABI().isMicrosoft()) | 
|  | TSK = TSK_ExplicitInstantiationDeclaration; | 
|  |  | 
|  | Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); | 
|  |  | 
|  | if (Specialization->isDefined()) { | 
|  | // Let the ASTConsumer know that this function has been explicitly | 
|  | // instantiated now, and its linkage might have changed. | 
|  | Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization)); | 
|  | } else if (TSK == TSK_ExplicitInstantiationDefinition) | 
|  | InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); | 
|  |  | 
|  | // C++0x [temp.explicit]p2: | 
|  | //   If the explicit instantiation is for a member function, a member class | 
|  | //   or a static data member of a class template specialization, the name of | 
|  | //   the class template specialization in the qualified-id for the member | 
|  | //   name shall be a simple-template-id. | 
|  | // | 
|  | // C++98 has the same restriction, just worded differently. | 
|  | FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); | 
|  | if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl && | 
|  | D.getCXXScopeSpec().isSet() && | 
|  | !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) | 
|  | Diag(D.getIdentifierLoc(), | 
|  | diag::ext_explicit_instantiation_without_qualified_id) | 
|  | << Specialization << D.getCXXScopeSpec().getRange(); | 
|  |  | 
|  | CheckExplicitInstantiationScope(*this, | 
|  | FunTmpl? (NamedDecl *)FunTmpl | 
|  | : Specialization->getInstantiatedFromMemberFunction(), | 
|  | D.getIdentifierLoc(), | 
|  | D.getCXXScopeSpec().isSet()); | 
|  |  | 
|  | // FIXME: Create some kind of ExplicitInstantiationDecl here. | 
|  | return (Decl*) nullptr; | 
|  | } | 
|  |  | 
|  | TypeResult | 
|  | Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, | 
|  | const CXXScopeSpec &SS, IdentifierInfo *Name, | 
|  | SourceLocation TagLoc, SourceLocation NameLoc) { | 
|  | // This has to hold, because SS is expected to be defined. | 
|  | assert(Name && "Expected a name in a dependent tag"); | 
|  |  | 
|  | NestedNameSpecifier *NNS = SS.getScopeRep(); | 
|  | if (!NNS) | 
|  | return true; | 
|  |  | 
|  | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); | 
|  |  | 
|  | if (TUK == TUK_Declaration || TUK == TUK_Definition) { | 
|  | Diag(NameLoc, diag::err_dependent_tag_decl) | 
|  | << (TUK == TUK_Definition) << Kind << SS.getRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Create the resulting type. | 
|  | ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); | 
|  | QualType Result = Context.getDependentNameType(Kwd, NNS, Name); | 
|  |  | 
|  | // Create type-source location information for this type. | 
|  | TypeLocBuilder TLB; | 
|  | DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); | 
|  | TL.setElaboratedKeywordLoc(TagLoc); | 
|  | TL.setQualifierLoc(SS.getWithLocInContext(Context)); | 
|  | TL.setNameLoc(NameLoc); | 
|  | return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); | 
|  | } | 
|  |  | 
|  | TypeResult | 
|  | Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, | 
|  | const CXXScopeSpec &SS, const IdentifierInfo &II, | 
|  | SourceLocation IdLoc) { | 
|  | if (SS.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) | 
|  | Diag(TypenameLoc, | 
|  | getLangOpts().CPlusPlus11 ? | 
|  | diag::warn_cxx98_compat_typename_outside_of_template : | 
|  | diag::ext_typename_outside_of_template) | 
|  | << FixItHint::CreateRemoval(TypenameLoc); | 
|  |  | 
|  | NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); | 
|  | QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, | 
|  | TypenameLoc, QualifierLoc, II, IdLoc); | 
|  | if (T.isNull()) | 
|  | return true; | 
|  |  | 
|  | TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); | 
|  | if (isa<DependentNameType>(T)) { | 
|  | DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); | 
|  | TL.setElaboratedKeywordLoc(TypenameLoc); | 
|  | TL.setQualifierLoc(QualifierLoc); | 
|  | TL.setNameLoc(IdLoc); | 
|  | } else { | 
|  | ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); | 
|  | TL.setElaboratedKeywordLoc(TypenameLoc); | 
|  | TL.setQualifierLoc(QualifierLoc); | 
|  | TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); | 
|  | } | 
|  |  | 
|  | return CreateParsedType(T, TSI); | 
|  | } | 
|  |  | 
|  | TypeResult | 
|  | Sema::ActOnTypenameType(Scope *S, | 
|  | SourceLocation TypenameLoc, | 
|  | const CXXScopeSpec &SS, | 
|  | SourceLocation TemplateKWLoc, | 
|  | TemplateTy TemplateIn, | 
|  | IdentifierInfo *TemplateII, | 
|  | SourceLocation TemplateIILoc, | 
|  | SourceLocation LAngleLoc, | 
|  | ASTTemplateArgsPtr TemplateArgsIn, | 
|  | SourceLocation RAngleLoc) { | 
|  | if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) | 
|  | Diag(TypenameLoc, | 
|  | getLangOpts().CPlusPlus11 ? | 
|  | diag::warn_cxx98_compat_typename_outside_of_template : | 
|  | diag::ext_typename_outside_of_template) | 
|  | << FixItHint::CreateRemoval(TypenameLoc); | 
|  |  | 
|  | // Strangely, non-type results are not ignored by this lookup, so the | 
|  | // program is ill-formed if it finds an injected-class-name. | 
|  | if (TypenameLoc.isValid()) { | 
|  | auto *LookupRD = | 
|  | dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false)); | 
|  | if (LookupRD && LookupRD->getIdentifier() == TemplateII) { | 
|  | Diag(TemplateIILoc, | 
|  | diag::ext_out_of_line_qualified_id_type_names_constructor) | 
|  | << TemplateII << 0 /*injected-class-name used as template name*/ | 
|  | << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Translate the parser's template argument list in our AST format. | 
|  | TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); | 
|  | translateTemplateArguments(TemplateArgsIn, TemplateArgs); | 
|  |  | 
|  | TemplateName Template = TemplateIn.get(); | 
|  | if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { | 
|  | // Construct a dependent template specialization type. | 
|  | assert(DTN && "dependent template has non-dependent name?"); | 
|  | assert(DTN->getQualifier() == SS.getScopeRep()); | 
|  | QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, | 
|  | DTN->getQualifier(), | 
|  | DTN->getIdentifier(), | 
|  | TemplateArgs); | 
|  |  | 
|  | // Create source-location information for this type. | 
|  | TypeLocBuilder Builder; | 
|  | DependentTemplateSpecializationTypeLoc SpecTL | 
|  | = Builder.push<DependentTemplateSpecializationTypeLoc>(T); | 
|  | SpecTL.setElaboratedKeywordLoc(TypenameLoc); | 
|  | SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); | 
|  | SpecTL.setTemplateKeywordLoc(TemplateKWLoc); | 
|  | SpecTL.setTemplateNameLoc(TemplateIILoc); | 
|  | SpecTL.setLAngleLoc(LAngleLoc); | 
|  | SpecTL.setRAngleLoc(RAngleLoc); | 
|  | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) | 
|  | SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); | 
|  | return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); | 
|  | } | 
|  |  | 
|  | QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); | 
|  | if (T.isNull()) | 
|  | return true; | 
|  |  | 
|  | // Provide source-location information for the template specialization type. | 
|  | TypeLocBuilder Builder; | 
|  | TemplateSpecializationTypeLoc SpecTL | 
|  | = Builder.push<TemplateSpecializationTypeLoc>(T); | 
|  | SpecTL.setTemplateKeywordLoc(TemplateKWLoc); | 
|  | SpecTL.setTemplateNameLoc(TemplateIILoc); | 
|  | SpecTL.setLAngleLoc(LAngleLoc); | 
|  | SpecTL.setRAngleLoc(RAngleLoc); | 
|  | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) | 
|  | SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); | 
|  |  | 
|  | T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); | 
|  | ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); | 
|  | TL.setElaboratedKeywordLoc(TypenameLoc); | 
|  | TL.setQualifierLoc(SS.getWithLocInContext(Context)); | 
|  |  | 
|  | TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); | 
|  | return CreateParsedType(T, TSI); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Determine whether this failed name lookup should be treated as being | 
|  | /// disabled by a usage of std::enable_if. | 
|  | static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, | 
|  | SourceRange &CondRange, Expr *&Cond) { | 
|  | // We must be looking for a ::type... | 
|  | if (!II.isStr("type")) | 
|  | return false; | 
|  |  | 
|  | // ... within an explicitly-written template specialization... | 
|  | if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) | 
|  | return false; | 
|  | TypeLoc EnableIfTy = NNS.getTypeLoc(); | 
|  | TemplateSpecializationTypeLoc EnableIfTSTLoc = | 
|  | EnableIfTy.getAs<TemplateSpecializationTypeLoc>(); | 
|  | if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0) | 
|  | return false; | 
|  | const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr(); | 
|  |  | 
|  | // ... which names a complete class template declaration... | 
|  | const TemplateDecl *EnableIfDecl = | 
|  | EnableIfTST->getTemplateName().getAsTemplateDecl(); | 
|  | if (!EnableIfDecl || EnableIfTST->isIncompleteType()) | 
|  | return false; | 
|  |  | 
|  | // ... called "enable_if". | 
|  | const IdentifierInfo *EnableIfII = | 
|  | EnableIfDecl->getDeclName().getAsIdentifierInfo(); | 
|  | if (!EnableIfII || !EnableIfII->isStr("enable_if")) | 
|  | return false; | 
|  |  | 
|  | // Assume the first template argument is the condition. | 
|  | CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange(); | 
|  |  | 
|  | // Dig out the condition. | 
|  | Cond = nullptr; | 
|  | if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind() | 
|  | != TemplateArgument::Expression) | 
|  | return true; | 
|  |  | 
|  | Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression(); | 
|  |  | 
|  | // Ignore Boolean literals; they add no value. | 
|  | if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts())) | 
|  | Cond = nullptr; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Build the type that describes a C++ typename specifier, | 
|  | /// e.g., "typename T::type". | 
|  | QualType | 
|  | Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, | 
|  | SourceLocation KeywordLoc, | 
|  | NestedNameSpecifierLoc QualifierLoc, | 
|  | const IdentifierInfo &II, | 
|  | SourceLocation IILoc) { | 
|  | CXXScopeSpec SS; | 
|  | SS.Adopt(QualifierLoc); | 
|  |  | 
|  | DeclContext *Ctx = computeDeclContext(SS); | 
|  | if (!Ctx) { | 
|  | // If the nested-name-specifier is dependent and couldn't be | 
|  | // resolved to a type, build a typename type. | 
|  | assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); | 
|  | return Context.getDependentNameType(Keyword, | 
|  | QualifierLoc.getNestedNameSpecifier(), | 
|  | &II); | 
|  | } | 
|  |  | 
|  | // If the nested-name-specifier refers to the current instantiation, | 
|  | // the "typename" keyword itself is superfluous. In C++03, the | 
|  | // program is actually ill-formed. However, DR 382 (in C++0x CD1) | 
|  | // allows such extraneous "typename" keywords, and we retroactively | 
|  | // apply this DR to C++03 code with only a warning. In any case we continue. | 
|  |  | 
|  | if (RequireCompleteDeclContext(SS, Ctx)) | 
|  | return QualType(); | 
|  |  | 
|  | DeclarationName Name(&II); | 
|  | LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); | 
|  | LookupQualifiedName(Result, Ctx, SS); | 
|  | unsigned DiagID = 0; | 
|  | Decl *Referenced = nullptr; | 
|  | switch (Result.getResultKind()) { | 
|  | case LookupResult::NotFound: { | 
|  | // If we're looking up 'type' within a template named 'enable_if', produce | 
|  | // a more specific diagnostic. | 
|  | SourceRange CondRange; | 
|  | Expr *Cond = nullptr; | 
|  | if (isEnableIf(QualifierLoc, II, CondRange, Cond)) { | 
|  | // If we have a condition, narrow it down to the specific failed | 
|  | // condition. | 
|  | if (Cond) { | 
|  | Expr *FailedCond; | 
|  | std::string FailedDescription; | 
|  | std::tie(FailedCond, FailedDescription) = | 
|  | findFailedBooleanCondition(Cond, /*AllowTopLevelCond=*/true); | 
|  |  | 
|  | Diag(FailedCond->getExprLoc(), | 
|  | diag::err_typename_nested_not_found_requirement) | 
|  | << FailedDescription | 
|  | << FailedCond->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if) | 
|  | << Ctx << CondRange; | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | DiagID = diag::err_typename_nested_not_found; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case LookupResult::FoundUnresolvedValue: { | 
|  | // We found a using declaration that is a value. Most likely, the using | 
|  | // declaration itself is meant to have the 'typename' keyword. | 
|  | SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), | 
|  | IILoc); | 
|  | Diag(IILoc, diag::err_typename_refers_to_using_value_decl) | 
|  | << Name << Ctx << FullRange; | 
|  | if (UnresolvedUsingValueDecl *Using | 
|  | = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ | 
|  | SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); | 
|  | Diag(Loc, diag::note_using_value_decl_missing_typename) | 
|  | << FixItHint::CreateInsertion(Loc, "typename "); | 
|  | } | 
|  | } | 
|  | // Fall through to create a dependent typename type, from which we can recover | 
|  | // better. | 
|  | LLVM_FALLTHROUGH; | 
|  |  | 
|  | case LookupResult::NotFoundInCurrentInstantiation: | 
|  | // Okay, it's a member of an unknown instantiation. | 
|  | return Context.getDependentNameType(Keyword, | 
|  | QualifierLoc.getNestedNameSpecifier(), | 
|  | &II); | 
|  |  | 
|  | case LookupResult::Found: | 
|  | if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { | 
|  | // C++ [class.qual]p2: | 
|  | //   In a lookup in which function names are not ignored and the | 
|  | //   nested-name-specifier nominates a class C, if the name specified | 
|  | //   after the nested-name-specifier, when looked up in C, is the | 
|  | //   injected-class-name of C [...] then the name is instead considered | 
|  | //   to name the constructor of class C. | 
|  | // | 
|  | // Unlike in an elaborated-type-specifier, function names are not ignored | 
|  | // in typename-specifier lookup. However, they are ignored in all the | 
|  | // contexts where we form a typename type with no keyword (that is, in | 
|  | // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers). | 
|  | // | 
|  | // FIXME: That's not strictly true: mem-initializer-id lookup does not | 
|  | // ignore functions, but that appears to be an oversight. | 
|  | auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx); | 
|  | auto *FoundRD = dyn_cast<CXXRecordDecl>(Type); | 
|  | if (Keyword == ETK_Typename && LookupRD && FoundRD && | 
|  | FoundRD->isInjectedClassName() && | 
|  | declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) | 
|  | Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor) | 
|  | << &II << 1 << 0 /*'typename' keyword used*/; | 
|  |  | 
|  | // We found a type. Build an ElaboratedType, since the | 
|  | // typename-specifier was just sugar. | 
|  | MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); | 
|  | return Context.getElaboratedType(Keyword, | 
|  | QualifierLoc.getNestedNameSpecifier(), | 
|  | Context.getTypeDeclType(Type)); | 
|  | } | 
|  |  | 
|  | // C++ [dcl.type.simple]p2: | 
|  | //   A type-specifier of the form | 
|  | //     typename[opt] nested-name-specifier[opt] template-name | 
|  | //   is a placeholder for a deduced class type [...]. | 
|  | if (getLangOpts().CPlusPlus17) { | 
|  | if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) { | 
|  | return Context.getElaboratedType( | 
|  | Keyword, QualifierLoc.getNestedNameSpecifier(), | 
|  | Context.getDeducedTemplateSpecializationType(TemplateName(TD), | 
|  | QualType(), false)); | 
|  | } | 
|  | } | 
|  |  | 
|  | DiagID = diag::err_typename_nested_not_type; | 
|  | Referenced = Result.getFoundDecl(); | 
|  | break; | 
|  |  | 
|  | case LookupResult::FoundOverloaded: | 
|  | DiagID = diag::err_typename_nested_not_type; | 
|  | Referenced = *Result.begin(); | 
|  | break; | 
|  |  | 
|  | case LookupResult::Ambiguous: | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // If we get here, it's because name lookup did not find a | 
|  | // type. Emit an appropriate diagnostic and return an error. | 
|  | SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), | 
|  | IILoc); | 
|  | Diag(IILoc, DiagID) << FullRange << Name << Ctx; | 
|  | if (Referenced) | 
|  | Diag(Referenced->getLocation(), diag::note_typename_refers_here) | 
|  | << Name; | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // See Sema::RebuildTypeInCurrentInstantiation | 
|  | class CurrentInstantiationRebuilder | 
|  | : public TreeTransform<CurrentInstantiationRebuilder> { | 
|  | SourceLocation Loc; | 
|  | DeclarationName Entity; | 
|  |  | 
|  | public: | 
|  | typedef TreeTransform<CurrentInstantiationRebuilder> inherited; | 
|  |  | 
|  | CurrentInstantiationRebuilder(Sema &SemaRef, | 
|  | SourceLocation Loc, | 
|  | DeclarationName Entity) | 
|  | : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), | 
|  | Loc(Loc), Entity(Entity) { } | 
|  |  | 
|  | /// Determine whether the given type \p T has already been | 
|  | /// transformed. | 
|  | /// | 
|  | /// For the purposes of type reconstruction, a type has already been | 
|  | /// transformed if it is NULL or if it is not dependent. | 
|  | bool AlreadyTransformed(QualType T) { | 
|  | return T.isNull() || !T->isDependentType(); | 
|  | } | 
|  |  | 
|  | /// Returns the location of the entity whose type is being | 
|  | /// rebuilt. | 
|  | SourceLocation getBaseLocation() { return Loc; } | 
|  |  | 
|  | /// Returns the name of the entity whose type is being rebuilt. | 
|  | DeclarationName getBaseEntity() { return Entity; } | 
|  |  | 
|  | /// Sets the "base" location and entity when that | 
|  | /// information is known based on another transformation. | 
|  | void setBase(SourceLocation Loc, DeclarationName Entity) { | 
|  | this->Loc = Loc; | 
|  | this->Entity = Entity; | 
|  | } | 
|  |  | 
|  | ExprResult TransformLambdaExpr(LambdaExpr *E) { | 
|  | // Lambdas never need to be transformed. | 
|  | return E; | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Rebuilds a type within the context of the current instantiation. | 
|  | /// | 
|  | /// The type \p T is part of the type of an out-of-line member definition of | 
|  | /// a class template (or class template partial specialization) that was parsed | 
|  | /// and constructed before we entered the scope of the class template (or | 
|  | /// partial specialization thereof). This routine will rebuild that type now | 
|  | /// that we have entered the declarator's scope, which may produce different | 
|  | /// canonical types, e.g., | 
|  | /// | 
|  | /// \code | 
|  | /// template<typename T> | 
|  | /// struct X { | 
|  | ///   typedef T* pointer; | 
|  | ///   pointer data(); | 
|  | /// }; | 
|  | /// | 
|  | /// template<typename T> | 
|  | /// typename X<T>::pointer X<T>::data() { ... } | 
|  | /// \endcode | 
|  | /// | 
|  | /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, | 
|  | /// since we do not know that we can look into X<T> when we parsed the type. | 
|  | /// This function will rebuild the type, performing the lookup of "pointer" | 
|  | /// in X<T> and returning an ElaboratedType whose canonical type is the same | 
|  | /// as the canonical type of T*, allowing the return types of the out-of-line | 
|  | /// definition and the declaration to match. | 
|  | TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, | 
|  | SourceLocation Loc, | 
|  | DeclarationName Name) { | 
|  | if (!T || !T->getType()->isDependentType()) | 
|  | return T; | 
|  |  | 
|  | CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); | 
|  | return Rebuilder.TransformType(T); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { | 
|  | CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), | 
|  | DeclarationName()); | 
|  | return Rebuilder.TransformExpr(E); | 
|  | } | 
|  |  | 
|  | bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { | 
|  | if (SS.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); | 
|  | CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), | 
|  | DeclarationName()); | 
|  | NestedNameSpecifierLoc Rebuilt | 
|  | = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); | 
|  | if (!Rebuilt) | 
|  | return true; | 
|  |  | 
|  | SS.Adopt(Rebuilt); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Rebuild the template parameters now that we know we're in a current | 
|  | /// instantiation. | 
|  | bool Sema::RebuildTemplateParamsInCurrentInstantiation( | 
|  | TemplateParameterList *Params) { | 
|  | for (unsigned I = 0, N = Params->size(); I != N; ++I) { | 
|  | Decl *Param = Params->getParam(I); | 
|  |  | 
|  | // There is nothing to rebuild in a type parameter. | 
|  | if (isa<TemplateTypeParmDecl>(Param)) | 
|  | continue; | 
|  |  | 
|  | // Rebuild the template parameter list of a template template parameter. | 
|  | if (TemplateTemplateParmDecl *TTP | 
|  | = dyn_cast<TemplateTemplateParmDecl>(Param)) { | 
|  | if (RebuildTemplateParamsInCurrentInstantiation( | 
|  | TTP->getTemplateParameters())) | 
|  | return true; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Rebuild the type of a non-type template parameter. | 
|  | NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); | 
|  | TypeSourceInfo *NewTSI | 
|  | = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), | 
|  | NTTP->getLocation(), | 
|  | NTTP->getDeclName()); | 
|  | if (!NewTSI) | 
|  | return true; | 
|  |  | 
|  | if (NewTSI != NTTP->getTypeSourceInfo()) { | 
|  | NTTP->setTypeSourceInfo(NewTSI); | 
|  | NTTP->setType(NewTSI->getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Produces a formatted string that describes the binding of | 
|  | /// template parameters to template arguments. | 
|  | std::string | 
|  | Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, | 
|  | const TemplateArgumentList &Args) { | 
|  | return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); | 
|  | } | 
|  |  | 
|  | std::string | 
|  | Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, | 
|  | const TemplateArgument *Args, | 
|  | unsigned NumArgs) { | 
|  | SmallString<128> Str; | 
|  | llvm::raw_svector_ostream Out(Str); | 
|  |  | 
|  | if (!Params || Params->size() == 0 || NumArgs == 0) | 
|  | return std::string(); | 
|  |  | 
|  | for (unsigned I = 0, N = Params->size(); I != N; ++I) { | 
|  | if (I >= NumArgs) | 
|  | break; | 
|  |  | 
|  | if (I == 0) | 
|  | Out << "[with "; | 
|  | else | 
|  | Out << ", "; | 
|  |  | 
|  | if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { | 
|  | Out << Id->getName(); | 
|  | } else { | 
|  | Out << '$' << I; | 
|  | } | 
|  |  | 
|  | Out << " = "; | 
|  | Args[I].print(getPrintingPolicy(), Out); | 
|  | } | 
|  |  | 
|  | Out << ']'; | 
|  | return Out.str(); | 
|  | } | 
|  |  | 
|  | void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD, | 
|  | CachedTokens &Toks) { | 
|  | if (!FD) | 
|  | return; | 
|  |  | 
|  | auto LPT = llvm::make_unique<LateParsedTemplate>(); | 
|  |  | 
|  | // Take tokens to avoid allocations | 
|  | LPT->Toks.swap(Toks); | 
|  | LPT->D = FnD; | 
|  | LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT))); | 
|  |  | 
|  | FD->setLateTemplateParsed(true); | 
|  | } | 
|  |  | 
|  | void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) { | 
|  | if (!FD) | 
|  | return; | 
|  | FD->setLateTemplateParsed(false); | 
|  | } | 
|  |  | 
|  | bool Sema::IsInsideALocalClassWithinATemplateFunction() { | 
|  | DeclContext *DC = CurContext; | 
|  |  | 
|  | while (DC) { | 
|  | if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { | 
|  | const FunctionDecl *FD = RD->isLocalClass(); | 
|  | return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); | 
|  | } else if (DC->isTranslationUnit() || DC->isNamespace()) | 
|  | return false; | 
|  |  | 
|  | DC = DC->getParent(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// Walk the path from which a declaration was instantiated, and check | 
|  | /// that every explicit specialization along that path is visible. This enforces | 
|  | /// C++ [temp.expl.spec]/6: | 
|  | /// | 
|  | ///   If a template, a member template or a member of a class template is | 
|  | ///   explicitly specialized then that specialization shall be declared before | 
|  | ///   the first use of that specialization that would cause an implicit | 
|  | ///   instantiation to take place, in every translation unit in which such a | 
|  | ///   use occurs; no diagnostic is required. | 
|  | /// | 
|  | /// and also C++ [temp.class.spec]/1: | 
|  | /// | 
|  | ///   A partial specialization shall be declared before the first use of a | 
|  | ///   class template specialization that would make use of the partial | 
|  | ///   specialization as the result of an implicit or explicit instantiation | 
|  | ///   in every translation unit in which such a use occurs; no diagnostic is | 
|  | ///   required. | 
|  | class ExplicitSpecializationVisibilityChecker { | 
|  | Sema &S; | 
|  | SourceLocation Loc; | 
|  | llvm::SmallVector<Module *, 8> Modules; | 
|  |  | 
|  | public: | 
|  | ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc) | 
|  | : S(S), Loc(Loc) {} | 
|  |  | 
|  | void check(NamedDecl *ND) { | 
|  | if (auto *FD = dyn_cast<FunctionDecl>(ND)) | 
|  | return checkImpl(FD); | 
|  | if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) | 
|  | return checkImpl(RD); | 
|  | if (auto *VD = dyn_cast<VarDecl>(ND)) | 
|  | return checkImpl(VD); | 
|  | if (auto *ED = dyn_cast<EnumDecl>(ND)) | 
|  | return checkImpl(ED); | 
|  | } | 
|  |  | 
|  | private: | 
|  | void diagnose(NamedDecl *D, bool IsPartialSpec) { | 
|  | auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization | 
|  | : Sema::MissingImportKind::ExplicitSpecialization; | 
|  | const bool Recover = true; | 
|  |  | 
|  | // If we got a custom set of modules (because only a subset of the | 
|  | // declarations are interesting), use them, otherwise let | 
|  | // diagnoseMissingImport intelligently pick some. | 
|  | if (Modules.empty()) | 
|  | S.diagnoseMissingImport(Loc, D, Kind, Recover); | 
|  | else | 
|  | S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover); | 
|  | } | 
|  |  | 
|  | // Check a specific declaration. There are three problematic cases: | 
|  | // | 
|  | //  1) The declaration is an explicit specialization of a template | 
|  | //     specialization. | 
|  | //  2) The declaration is an explicit specialization of a member of an | 
|  | //     templated class. | 
|  | //  3) The declaration is an instantiation of a template, and that template | 
|  | //     is an explicit specialization of a member of a templated class. | 
|  | // | 
|  | // We don't need to go any deeper than that, as the instantiation of the | 
|  | // surrounding class / etc is not triggered by whatever triggered this | 
|  | // instantiation, and thus should be checked elsewhere. | 
|  | template<typename SpecDecl> | 
|  | void checkImpl(SpecDecl *Spec) { | 
|  | bool IsHiddenExplicitSpecialization = false; | 
|  | if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) { | 
|  | IsHiddenExplicitSpecialization = | 
|  | Spec->getMemberSpecializationInfo() | 
|  | ? !S.hasVisibleMemberSpecialization(Spec, &Modules) | 
|  | : !S.hasVisibleExplicitSpecialization(Spec, &Modules); | 
|  | } else { | 
|  | checkInstantiated(Spec); | 
|  | } | 
|  |  | 
|  | if (IsHiddenExplicitSpecialization) | 
|  | diagnose(Spec->getMostRecentDecl(), false); | 
|  | } | 
|  |  | 
|  | void checkInstantiated(FunctionDecl *FD) { | 
|  | if (auto *TD = FD->getPrimaryTemplate()) | 
|  | checkTemplate(TD); | 
|  | } | 
|  |  | 
|  | void checkInstantiated(CXXRecordDecl *RD) { | 
|  | auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD); | 
|  | if (!SD) | 
|  | return; | 
|  |  | 
|  | auto From = SD->getSpecializedTemplateOrPartial(); | 
|  | if (auto *TD = From.dyn_cast<ClassTemplateDecl *>()) | 
|  | checkTemplate(TD); | 
|  | else if (auto *TD = | 
|  | From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { | 
|  | if (!S.hasVisibleDeclaration(TD)) | 
|  | diagnose(TD, true); | 
|  | checkTemplate(TD); | 
|  | } | 
|  | } | 
|  |  | 
|  | void checkInstantiated(VarDecl *RD) { | 
|  | auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD); | 
|  | if (!SD) | 
|  | return; | 
|  |  | 
|  | auto From = SD->getSpecializedTemplateOrPartial(); | 
|  | if (auto *TD = From.dyn_cast<VarTemplateDecl *>()) | 
|  | checkTemplate(TD); | 
|  | else if (auto *TD = | 
|  | From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { | 
|  | if (!S.hasVisibleDeclaration(TD)) | 
|  | diagnose(TD, true); | 
|  | checkTemplate(TD); | 
|  | } | 
|  | } | 
|  |  | 
|  | void checkInstantiated(EnumDecl *FD) {} | 
|  |  | 
|  | template<typename TemplDecl> | 
|  | void checkTemplate(TemplDecl *TD) { | 
|  | if (TD->isMemberSpecialization()) { | 
|  | if (!S.hasVisibleMemberSpecialization(TD, &Modules)) | 
|  | diagnose(TD->getMostRecentDecl(), false); | 
|  | } | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) { | 
|  | if (!getLangOpts().Modules) | 
|  | return; | 
|  |  | 
|  | ExplicitSpecializationVisibilityChecker(*this, Loc).check(Spec); | 
|  | } | 
|  |  | 
|  | /// Check whether a template partial specialization that we've discovered | 
|  | /// is hidden, and produce suitable diagnostics if so. | 
|  | void Sema::checkPartialSpecializationVisibility(SourceLocation Loc, | 
|  | NamedDecl *Spec) { | 
|  | llvm::SmallVector<Module *, 8> Modules; | 
|  | if (!hasVisibleDeclaration(Spec, &Modules)) | 
|  | diagnoseMissingImport(Loc, Spec, Spec->getLocation(), Modules, | 
|  | MissingImportKind::PartialSpecialization, | 
|  | /*Recover*/true); | 
|  | } |