blob: cfdc88d896f8c2d0cc555c077f7727ec2d5cd350 [file] [log] [blame]
/*
* Copyright (c) 2019 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "./vp9_rtcd.h"
#include "test/acm_random.h"
#include "test/buffer.h"
#include "test/register_state_check.h"
#include "vpx_ports/vpx_timer.h"
namespace {
using ::libvpx_test::ACMRandom;
using ::libvpx_test::Buffer;
typedef void (*YUVTemporalFilterFunc)(
const uint8_t *y_src, int y_src_stride, const uint8_t *y_pre,
int y_pre_stride, const uint8_t *u_src, const uint8_t *v_src,
int uv_src_stride, const uint8_t *u_pre, const uint8_t *v_pre,
int uv_pre_stride, unsigned int block_width, unsigned int block_height,
int ss_x, int ss_y, int strength, const int *const blk_fw, int use_32x32,
uint32_t *y_accumulator, uint16_t *y_count, uint32_t *u_accumulator,
uint16_t *u_count, uint32_t *v_accumulator, uint16_t *v_count);
struct TemporalFilterWithBd {
TemporalFilterWithBd(YUVTemporalFilterFunc func, int bitdepth)
: temporal_filter(func), bd(bitdepth) {}
YUVTemporalFilterFunc temporal_filter;
int bd;
};
std::ostream &operator<<(std::ostream &os, const TemporalFilterWithBd &tf) {
return os << "Bitdepth: " << tf.bd;
}
int GetFilterWeight(unsigned int row, unsigned int col,
unsigned int block_height, unsigned int block_width,
const int *const blk_fw, int use_32x32) {
if (use_32x32) {
return blk_fw[0];
}
return blk_fw[2 * (row >= block_height / 2) + (col >= block_width / 2)];
}
template <typename PixelType>
int GetModIndex(int sum_dist, int index, int rounding, int strength,
int filter_weight) {
int mod = sum_dist * 3 / index;
mod += rounding;
mod >>= strength;
mod = VPXMIN(16, mod);
mod = 16 - mod;
mod *= filter_weight;
return mod;
}
template <>
int GetModIndex<uint8_t>(int sum_dist, int index, int rounding, int strength,
int filter_weight) {
unsigned int index_mult[14] = { 0, 0, 0, 0, 49152,
39322, 32768, 28087, 24576, 21846,
19661, 17874, 0, 15124 };
assert(index >= 0 && index <= 13);
assert(index_mult[index] != 0);
int mod = (clamp(sum_dist, 0, UINT16_MAX) * index_mult[index]) >> 16;
mod += rounding;
mod >>= strength;
mod = VPXMIN(16, mod);
mod = 16 - mod;
mod *= filter_weight;
return mod;
}
template <>
int GetModIndex<uint16_t>(int sum_dist, int index, int rounding, int strength,
int filter_weight) {
int64_t index_mult[14] = { 0U, 0U, 0U, 0U,
3221225472U, 2576980378U, 2147483648U, 1840700270U,
1610612736U, 1431655766U, 1288490189U, 1171354718U,
0U, 991146300U };
assert(index >= 0 && index <= 13);
assert(index_mult[index] != 0);
int mod = static_cast<int>((sum_dist * index_mult[index]) >> 32);
mod += rounding;
mod >>= strength;
mod = VPXMIN(16, mod);
mod = 16 - mod;
mod *= filter_weight;
return mod;
}
template <typename PixelType>
void ApplyReferenceFilter(
const Buffer<PixelType> &y_src, const Buffer<PixelType> &y_pre,
const Buffer<PixelType> &u_src, const Buffer<PixelType> &v_src,
const Buffer<PixelType> &u_pre, const Buffer<PixelType> &v_pre,
unsigned int block_width, unsigned int block_height, int ss_x, int ss_y,
int strength, const int *const blk_fw, int use_32x32,
Buffer<uint32_t> *y_accumulator, Buffer<uint16_t> *y_counter,
Buffer<uint32_t> *u_accumulator, Buffer<uint16_t> *u_counter,
Buffer<uint32_t> *v_accumulator, Buffer<uint16_t> *v_counter) {
const PixelType *y_src_ptr = y_src.TopLeftPixel();
const PixelType *y_pre_ptr = y_pre.TopLeftPixel();
const PixelType *u_src_ptr = u_src.TopLeftPixel();
const PixelType *u_pre_ptr = u_pre.TopLeftPixel();
const PixelType *v_src_ptr = v_src.TopLeftPixel();
const PixelType *v_pre_ptr = v_pre.TopLeftPixel();
const int uv_block_width = block_width >> ss_x,
uv_block_height = block_height >> ss_y;
const int y_src_stride = y_src.stride(), y_pre_stride = y_pre.stride();
const int uv_src_stride = u_src.stride(), uv_pre_stride = u_pre.stride();
const int y_diff_stride = block_width, uv_diff_stride = uv_block_width;
Buffer<int> y_dif = Buffer<int>(block_width, block_height, 0);
Buffer<int> u_dif = Buffer<int>(uv_block_width, uv_block_height, 0);
Buffer<int> v_dif = Buffer<int>(uv_block_width, uv_block_height, 0);
ASSERT_TRUE(y_dif.Init());
ASSERT_TRUE(u_dif.Init());
ASSERT_TRUE(v_dif.Init());
y_dif.Set(0);
u_dif.Set(0);
v_dif.Set(0);
int *y_diff_ptr = y_dif.TopLeftPixel();
int *u_diff_ptr = u_dif.TopLeftPixel();
int *v_diff_ptr = v_dif.TopLeftPixel();
uint32_t *y_accum = y_accumulator->TopLeftPixel();
uint32_t *u_accum = u_accumulator->TopLeftPixel();
uint32_t *v_accum = v_accumulator->TopLeftPixel();
uint16_t *y_count = y_counter->TopLeftPixel();
uint16_t *u_count = u_counter->TopLeftPixel();
uint16_t *v_count = v_counter->TopLeftPixel();
const int y_accum_stride = y_accumulator->stride();
const int u_accum_stride = u_accumulator->stride();
const int v_accum_stride = v_accumulator->stride();
const int y_count_stride = y_counter->stride();
const int u_count_stride = u_counter->stride();
const int v_count_stride = v_counter->stride();
const int rounding = (1 << strength) >> 1;
// Get the square diffs
for (int row = 0; row < static_cast<int>(block_height); row++) {
for (int col = 0; col < static_cast<int>(block_width); col++) {
const int diff = y_src_ptr[row * y_src_stride + col] -
y_pre_ptr[row * y_pre_stride + col];
y_diff_ptr[row * y_diff_stride + col] = diff * diff;
}
}
for (int row = 0; row < uv_block_height; row++) {
for (int col = 0; col < uv_block_width; col++) {
const int u_diff = u_src_ptr[row * uv_src_stride + col] -
u_pre_ptr[row * uv_pre_stride + col];
const int v_diff = v_src_ptr[row * uv_src_stride + col] -
v_pre_ptr[row * uv_pre_stride + col];
u_diff_ptr[row * uv_diff_stride + col] = u_diff * u_diff;
v_diff_ptr[row * uv_diff_stride + col] = v_diff * v_diff;
}
}
// Apply the filter to luma
for (int row = 0; row < static_cast<int>(block_height); row++) {
for (int col = 0; col < static_cast<int>(block_width); col++) {
const int uv_row = row >> ss_y;
const int uv_col = col >> ss_x;
const int filter_weight = GetFilterWeight(row, col, block_height,
block_width, blk_fw, use_32x32);
// First we get the modifier for the current y pixel
const int y_pixel = y_pre_ptr[row * y_pre_stride + col];
int y_num_used = 0;
int y_mod = 0;
// Sum the neighboring 3x3 y pixels
for (int row_step = -1; row_step <= 1; row_step++) {
for (int col_step = -1; col_step <= 1; col_step++) {
const int sub_row = row + row_step;
const int sub_col = col + col_step;
if (sub_row >= 0 && sub_row < static_cast<int>(block_height) &&
sub_col >= 0 && sub_col < static_cast<int>(block_width)) {
y_mod += y_diff_ptr[sub_row * y_diff_stride + sub_col];
y_num_used++;
}
}
}
// Sum the corresponding uv pixels to the current y modifier
// Note we are rounding down instead of rounding to the nearest pixel.
y_mod += u_diff_ptr[uv_row * uv_diff_stride + uv_col];
y_mod += v_diff_ptr[uv_row * uv_diff_stride + uv_col];
y_num_used += 2;
// Set the modifier
y_mod = GetModIndex<PixelType>(y_mod, y_num_used, rounding, strength,
filter_weight);
// Accumulate the result
y_count[row * y_count_stride + col] += y_mod;
y_accum[row * y_accum_stride + col] += y_mod * y_pixel;
}
}
// Apply the filter to chroma
for (int uv_row = 0; uv_row < uv_block_height; uv_row++) {
for (int uv_col = 0; uv_col < uv_block_width; uv_col++) {
const int y_row = uv_row << ss_y;
const int y_col = uv_col << ss_x;
const int filter_weight = GetFilterWeight(
uv_row, uv_col, uv_block_height, uv_block_width, blk_fw, use_32x32);
const int u_pixel = u_pre_ptr[uv_row * uv_pre_stride + uv_col];
const int v_pixel = v_pre_ptr[uv_row * uv_pre_stride + uv_col];
int uv_num_used = 0;
int u_mod = 0, v_mod = 0;
// Sum the neighboring 3x3 chromal pixels to the chroma modifier
for (int row_step = -1; row_step <= 1; row_step++) {
for (int col_step = -1; col_step <= 1; col_step++) {
const int sub_row = uv_row + row_step;
const int sub_col = uv_col + col_step;
if (sub_row >= 0 && sub_row < uv_block_height && sub_col >= 0 &&
sub_col < uv_block_width) {
u_mod += u_diff_ptr[sub_row * uv_diff_stride + sub_col];
v_mod += v_diff_ptr[sub_row * uv_diff_stride + sub_col];
uv_num_used++;
}
}
}
// Sum all the luma pixels associated with the current luma pixel
for (int row_step = 0; row_step < 1 + ss_y; row_step++) {
for (int col_step = 0; col_step < 1 + ss_x; col_step++) {
const int sub_row = y_row + row_step;
const int sub_col = y_col + col_step;
const int y_diff = y_diff_ptr[sub_row * y_diff_stride + sub_col];
u_mod += y_diff;
v_mod += y_diff;
uv_num_used++;
}
}
// Set the modifier
u_mod = GetModIndex<PixelType>(u_mod, uv_num_used, rounding, strength,
filter_weight);
v_mod = GetModIndex<PixelType>(v_mod, uv_num_used, rounding, strength,
filter_weight);
// Accumulate the result
u_count[uv_row * u_count_stride + uv_col] += u_mod;
u_accum[uv_row * u_accum_stride + uv_col] += u_mod * u_pixel;
v_count[uv_row * v_count_stride + uv_col] += v_mod;
v_accum[uv_row * v_accum_stride + uv_col] += v_mod * v_pixel;
}
}
}
class YUVTemporalFilterTest
: public ::testing::TestWithParam<TemporalFilterWithBd> {
public:
virtual void SetUp() {
filter_func_ = GetParam().temporal_filter;
bd_ = GetParam().bd;
use_highbd_ = (bd_ != 8);
rnd_.Reset(ACMRandom::DeterministicSeed());
saturate_test_ = 0;
num_repeats_ = 10;
ASSERT_TRUE(bd_ == 8 || bd_ == 10 || bd_ == 12);
}
protected:
template <typename PixelType>
void CompareTestWithParam(int width, int height, int ss_x, int ss_y,
int filter_strength, int use_32x32,
const int *filter_weight);
template <typename PixelType>
void RunTestFilterWithParam(int width, int height, int ss_x, int ss_y,
int filter_strength, int use_32x32,
const int *filter_weight);
YUVTemporalFilterFunc filter_func_;
ACMRandom rnd_;
int saturate_test_;
int num_repeats_;
int use_highbd_;
int bd_;
};
template <typename PixelType>
void YUVTemporalFilterTest::CompareTestWithParam(int width, int height,
int ss_x, int ss_y,
int filter_strength,
int use_32x32,
const int *filter_weight) {
const int uv_width = width >> ss_x, uv_height = height >> ss_y;
Buffer<PixelType> y_src = Buffer<PixelType>(width, height, 0);
Buffer<PixelType> y_pre = Buffer<PixelType>(width, height, 0);
Buffer<uint16_t> y_count_ref = Buffer<uint16_t>(width, height, 0);
Buffer<uint32_t> y_accum_ref = Buffer<uint32_t>(width, height, 0);
Buffer<uint16_t> y_count_tst = Buffer<uint16_t>(width, height, 0);
Buffer<uint32_t> y_accum_tst = Buffer<uint32_t>(width, height, 0);
Buffer<PixelType> u_src = Buffer<PixelType>(uv_width, uv_height, 0);
Buffer<PixelType> u_pre = Buffer<PixelType>(uv_width, uv_height, 0);
Buffer<uint16_t> u_count_ref = Buffer<uint16_t>(uv_width, uv_height, 0);
Buffer<uint32_t> u_accum_ref = Buffer<uint32_t>(uv_width, uv_height, 0);
Buffer<uint16_t> u_count_tst = Buffer<uint16_t>(uv_width, uv_height, 0);
Buffer<uint32_t> u_accum_tst = Buffer<uint32_t>(uv_width, uv_height, 0);
Buffer<PixelType> v_src = Buffer<PixelType>(uv_width, uv_height, 0);
Buffer<PixelType> v_pre = Buffer<PixelType>(uv_width, uv_height, 0);
Buffer<uint16_t> v_count_ref = Buffer<uint16_t>(uv_width, uv_height, 0);
Buffer<uint32_t> v_accum_ref = Buffer<uint32_t>(uv_width, uv_height, 0);
Buffer<uint16_t> v_count_tst = Buffer<uint16_t>(uv_width, uv_height, 0);
Buffer<uint32_t> v_accum_tst = Buffer<uint32_t>(uv_width, uv_height, 0);
ASSERT_TRUE(y_src.Init());
ASSERT_TRUE(y_pre.Init());
ASSERT_TRUE(y_count_ref.Init());
ASSERT_TRUE(y_accum_ref.Init());
ASSERT_TRUE(y_count_tst.Init());
ASSERT_TRUE(y_accum_tst.Init());
ASSERT_TRUE(u_src.Init());
ASSERT_TRUE(u_pre.Init());
ASSERT_TRUE(u_count_ref.Init());
ASSERT_TRUE(u_accum_ref.Init());
ASSERT_TRUE(u_count_tst.Init());
ASSERT_TRUE(u_accum_tst.Init());
ASSERT_TRUE(v_src.Init());
ASSERT_TRUE(v_pre.Init());
ASSERT_TRUE(v_count_ref.Init());
ASSERT_TRUE(v_accum_ref.Init());
ASSERT_TRUE(v_count_tst.Init());
ASSERT_TRUE(v_accum_tst.Init());
y_accum_ref.Set(0);
y_accum_tst.Set(0);
y_count_ref.Set(0);
y_count_tst.Set(0);
u_accum_ref.Set(0);
u_accum_tst.Set(0);
u_count_ref.Set(0);
u_count_tst.Set(0);
v_accum_ref.Set(0);
v_accum_tst.Set(0);
v_count_ref.Set(0);
v_count_tst.Set(0);
for (int repeats = 0; repeats < num_repeats_; repeats++) {
if (saturate_test_) {
const int max_val = (1 << bd_) - 1;
y_src.Set(max_val);
y_pre.Set(0);
u_src.Set(max_val);
u_pre.Set(0);
v_src.Set(max_val);
v_pre.Set(0);
} else {
y_src.Set(&rnd_, 0, 7 << (bd_ - 8));
y_pre.Set(&rnd_, 0, 7 << (bd_ - 8));
u_src.Set(&rnd_, 0, 7 << (bd_ - 8));
u_pre.Set(&rnd_, 0, 7 << (bd_ - 8));
v_src.Set(&rnd_, 0, 7 << (bd_ - 8));
v_pre.Set(&rnd_, 0, 7 << (bd_ - 8));
}
ApplyReferenceFilter<PixelType>(
y_src, y_pre, u_src, v_src, u_pre, v_pre, width, height, ss_x, ss_y,
filter_strength, filter_weight, use_32x32, &y_accum_ref, &y_count_ref,
&u_accum_ref, &u_count_ref, &v_accum_ref, &v_count_ref);
ASM_REGISTER_STATE_CHECK(filter_func_(
reinterpret_cast<const uint8_t *>(y_src.TopLeftPixel()), y_src.stride(),
reinterpret_cast<const uint8_t *>(y_pre.TopLeftPixel()), y_pre.stride(),
reinterpret_cast<const uint8_t *>(u_src.TopLeftPixel()),
reinterpret_cast<const uint8_t *>(v_src.TopLeftPixel()), u_src.stride(),
reinterpret_cast<const uint8_t *>(u_pre.TopLeftPixel()),
reinterpret_cast<const uint8_t *>(v_pre.TopLeftPixel()), u_pre.stride(),
width, height, ss_x, ss_y, filter_strength, filter_weight, use_32x32,
y_accum_tst.TopLeftPixel(), y_count_tst.TopLeftPixel(),
u_accum_tst.TopLeftPixel(), u_count_tst.TopLeftPixel(),
v_accum_tst.TopLeftPixel(), v_count_tst.TopLeftPixel()));
EXPECT_TRUE(y_accum_tst.CheckValues(y_accum_ref));
EXPECT_TRUE(y_count_tst.CheckValues(y_count_ref));
EXPECT_TRUE(u_accum_tst.CheckValues(u_accum_ref));
EXPECT_TRUE(u_count_tst.CheckValues(u_count_ref));
EXPECT_TRUE(v_accum_tst.CheckValues(v_accum_ref));
EXPECT_TRUE(v_count_tst.CheckValues(v_count_ref));
if (HasFailure()) {
if (use_32x32) {
printf("SS_X: %d, SS_Y: %d, Strength: %d, Weight: %d\n", ss_x, ss_y,
filter_strength, *filter_weight);
} else {
printf("SS_X: %d, SS_Y: %d, Strength: %d, Weights: %d,%d,%d,%d\n", ss_x,
ss_y, filter_strength, filter_weight[0], filter_weight[1],
filter_weight[2], filter_weight[3]);
}
y_accum_tst.PrintDifference(y_accum_ref);
y_count_tst.PrintDifference(y_count_ref);
u_accum_tst.PrintDifference(u_accum_ref);
u_count_tst.PrintDifference(u_count_ref);
v_accum_tst.PrintDifference(v_accum_ref);
v_count_tst.PrintDifference(v_count_ref);
return;
}
}
}
template <typename PixelType>
void YUVTemporalFilterTest::RunTestFilterWithParam(int width, int height,
int ss_x, int ss_y,
int filter_strength,
int use_32x32,
const int *filter_weight) {
const int uv_width = width >> ss_x, uv_height = height >> ss_y;
Buffer<PixelType> y_src = Buffer<PixelType>(width, height, 0);
Buffer<PixelType> y_pre = Buffer<PixelType>(width, height, 0);
Buffer<uint16_t> y_count = Buffer<uint16_t>(width, height, 0);
Buffer<uint32_t> y_accum = Buffer<uint32_t>(width, height, 0);
Buffer<PixelType> u_src = Buffer<PixelType>(uv_width, uv_height, 0);
Buffer<PixelType> u_pre = Buffer<PixelType>(uv_width, uv_height, 0);
Buffer<uint16_t> u_count = Buffer<uint16_t>(uv_width, uv_height, 0);
Buffer<uint32_t> u_accum = Buffer<uint32_t>(uv_width, uv_height, 0);
Buffer<PixelType> v_src = Buffer<PixelType>(uv_width, uv_height, 0);
Buffer<PixelType> v_pre = Buffer<PixelType>(uv_width, uv_height, 0);
Buffer<uint16_t> v_count = Buffer<uint16_t>(uv_width, uv_height, 0);
Buffer<uint32_t> v_accum = Buffer<uint32_t>(uv_width, uv_height, 0);
ASSERT_TRUE(y_src.Init());
ASSERT_TRUE(y_pre.Init());
ASSERT_TRUE(y_count.Init());
ASSERT_TRUE(y_accum.Init());
ASSERT_TRUE(u_src.Init());
ASSERT_TRUE(u_pre.Init());
ASSERT_TRUE(u_count.Init());
ASSERT_TRUE(u_accum.Init());
ASSERT_TRUE(v_src.Init());
ASSERT_TRUE(v_pre.Init());
ASSERT_TRUE(v_count.Init());
ASSERT_TRUE(v_accum.Init());
y_accum.Set(0);
y_count.Set(0);
u_accum.Set(0);
u_count.Set(0);
v_accum.Set(0);
v_count.Set(0);
y_src.Set(&rnd_, 0, 7 << (bd_ - 8));
y_pre.Set(&rnd_, 0, 7 << (bd_ - 8));
u_src.Set(&rnd_, 0, 7 << (bd_ - 8));
u_pre.Set(&rnd_, 0, 7 << (bd_ - 8));
v_src.Set(&rnd_, 0, 7 << (bd_ - 8));
v_pre.Set(&rnd_, 0, 7 << (bd_ - 8));
for (int repeats = 0; repeats < num_repeats_; repeats++) {
ASM_REGISTER_STATE_CHECK(filter_func_(
reinterpret_cast<const uint8_t *>(y_src.TopLeftPixel()), y_src.stride(),
reinterpret_cast<const uint8_t *>(y_pre.TopLeftPixel()), y_pre.stride(),
reinterpret_cast<const uint8_t *>(u_src.TopLeftPixel()),
reinterpret_cast<const uint8_t *>(v_src.TopLeftPixel()), u_src.stride(),
reinterpret_cast<const uint8_t *>(u_pre.TopLeftPixel()),
reinterpret_cast<const uint8_t *>(v_pre.TopLeftPixel()), u_pre.stride(),
width, height, ss_x, ss_y, filter_strength, filter_weight, use_32x32,
y_accum.TopLeftPixel(), y_count.TopLeftPixel(), u_accum.TopLeftPixel(),
u_count.TopLeftPixel(), v_accum.TopLeftPixel(),
v_count.TopLeftPixel()));
}
}
TEST_P(YUVTemporalFilterTest, Use32x32) {
const int width = 32, height = 32;
const int use_32x32 = 1;
for (int ss_x = 0; ss_x <= 1; ss_x++) {
for (int ss_y = 0; ss_y <= 1; ss_y++) {
for (int filter_strength = 0; filter_strength <= 6;
filter_strength += 2) {
for (int filter_weight = 0; filter_weight <= 2; filter_weight++) {
if (use_highbd_) {
const int adjusted_strength = filter_strength + 2 * (bd_ - 8);
CompareTestWithParam<uint16_t>(width, height, ss_x, ss_y,
adjusted_strength, use_32x32,
&filter_weight);
} else {
CompareTestWithParam<uint8_t>(width, height, ss_x, ss_y,
filter_strength, use_32x32,
&filter_weight);
}
ASSERT_FALSE(HasFailure());
}
}
}
}
}
TEST_P(YUVTemporalFilterTest, Use16x16) {
const int width = 32, height = 32;
const int use_32x32 = 0;
for (int ss_x = 0; ss_x <= 1; ss_x++) {
for (int ss_y = 0; ss_y <= 1; ss_y++) {
for (int filter_idx = 0; filter_idx < 3 * 3 * 3 * 3; filter_idx++) {
// Set up the filter
int filter_weight[4];
int filter_idx_cp = filter_idx;
for (int idx = 0; idx < 4; idx++) {
filter_weight[idx] = filter_idx_cp % 3;
filter_idx_cp /= 3;
}
// Test each parameter
for (int filter_strength = 0; filter_strength <= 6;
filter_strength += 2) {
if (use_highbd_) {
const int adjusted_strength = filter_strength + 2 * (bd_ - 8);
CompareTestWithParam<uint16_t>(width, height, ss_x, ss_y,
adjusted_strength, use_32x32,
filter_weight);
} else {
CompareTestWithParam<uint8_t>(width, height, ss_x, ss_y,
filter_strength, use_32x32,
filter_weight);
}
ASSERT_FALSE(HasFailure());
}
}
}
}
}
TEST_P(YUVTemporalFilterTest, SaturationTest) {
const int width = 32, height = 32;
const int use_32x32 = 1;
const int filter_weight = 1;
saturate_test_ = 1;
for (int ss_x = 0; ss_x <= 1; ss_x++) {
for (int ss_y = 0; ss_y <= 1; ss_y++) {
for (int filter_strength = 0; filter_strength <= 6;
filter_strength += 2) {
if (use_highbd_) {
const int adjusted_strength = filter_strength + 2 * (bd_ - 8);
CompareTestWithParam<uint16_t>(width, height, ss_x, ss_y,
adjusted_strength, use_32x32,
&filter_weight);
} else {
CompareTestWithParam<uint8_t>(width, height, ss_x, ss_y,
filter_strength, use_32x32,
&filter_weight);
}
ASSERT_FALSE(HasFailure());
}
}
}
}
TEST_P(YUVTemporalFilterTest, DISABLED_Speed) {
const int width = 32, height = 32;
num_repeats_ = 1000;
for (int use_32x32 = 0; use_32x32 <= 1; use_32x32++) {
const int num_filter_weights = use_32x32 ? 3 : 3 * 3 * 3 * 3;
for (int ss_x = 0; ss_x <= 1; ss_x++) {
for (int ss_y = 0; ss_y <= 1; ss_y++) {
for (int filter_idx = 0; filter_idx < num_filter_weights;
filter_idx++) {
// Set up the filter
int filter_weight[4];
int filter_idx_cp = filter_idx;
for (int idx = 0; idx < 4; idx++) {
filter_weight[idx] = filter_idx_cp % 3;
filter_idx_cp /= 3;
}
// Test each parameter
for (int filter_strength = 0; filter_strength <= 6;
filter_strength += 2) {
vpx_usec_timer timer;
vpx_usec_timer_start(&timer);
if (use_highbd_) {
RunTestFilterWithParam<uint16_t>(width, height, ss_x, ss_y,
filter_strength, use_32x32,
filter_weight);
} else {
RunTestFilterWithParam<uint8_t>(width, height, ss_x, ss_y,
filter_strength, use_32x32,
filter_weight);
}
vpx_usec_timer_mark(&timer);
const int elapsed_time =
static_cast<int>(vpx_usec_timer_elapsed(&timer));
printf(
"Bitdepth: %d, Use 32X32: %d, SS_X: %d, SS_Y: %d, Weight Idx: "
"%d, Strength: %d, Time: %5d\n",
bd_, use_32x32, ss_x, ss_y, filter_idx, filter_strength,
elapsed_time);
}
}
}
}
}
}
#if CONFIG_VP9_HIGHBITDEPTH
#define WRAP_HIGHBD_FUNC(func, bd) \
void wrap_##func##_##bd( \
const uint8_t *y_src, int y_src_stride, const uint8_t *y_pre, \
int y_pre_stride, const uint8_t *u_src, const uint8_t *v_src, \
int uv_src_stride, const uint8_t *u_pre, const uint8_t *v_pre, \
int uv_pre_stride, unsigned int block_width, unsigned int block_height, \
int ss_x, int ss_y, int strength, const int *const blk_fw, \
int use_32x32, uint32_t *y_accumulator, uint16_t *y_count, \
uint32_t *u_accumulator, uint16_t *u_count, uint32_t *v_accumulator, \
uint16_t *v_count) { \
func(reinterpret_cast<const uint16_t *>(y_src), y_src_stride, \
reinterpret_cast<const uint16_t *>(y_pre), y_pre_stride, \
reinterpret_cast<const uint16_t *>(u_src), \
reinterpret_cast<const uint16_t *>(v_src), uv_src_stride, \
reinterpret_cast<const uint16_t *>(u_pre), \
reinterpret_cast<const uint16_t *>(v_pre), uv_pre_stride, \
block_width, block_height, ss_x, ss_y, strength, blk_fw, use_32x32, \
y_accumulator, y_count, u_accumulator, u_count, v_accumulator, \
v_count); \
}
WRAP_HIGHBD_FUNC(vp9_highbd_apply_temporal_filter_c, 10);
WRAP_HIGHBD_FUNC(vp9_highbd_apply_temporal_filter_c, 12);
INSTANTIATE_TEST_SUITE_P(
C, YUVTemporalFilterTest,
::testing::Values(
TemporalFilterWithBd(&wrap_vp9_highbd_apply_temporal_filter_c_10, 10),
TemporalFilterWithBd(&wrap_vp9_highbd_apply_temporal_filter_c_12, 12)));
#if HAVE_SSE4_1
WRAP_HIGHBD_FUNC(vp9_highbd_apply_temporal_filter_sse4_1, 10);
WRAP_HIGHBD_FUNC(vp9_highbd_apply_temporal_filter_sse4_1, 12);
INSTANTIATE_TEST_SUITE_P(
SSE4_1, YUVTemporalFilterTest,
::testing::Values(
TemporalFilterWithBd(&wrap_vp9_highbd_apply_temporal_filter_sse4_1_10,
10),
TemporalFilterWithBd(&wrap_vp9_highbd_apply_temporal_filter_sse4_1_12,
12)));
#endif // HAVE_SSE4_1
#else
INSTANTIATE_TEST_SUITE_P(
C, YUVTemporalFilterTest,
::testing::Values(TemporalFilterWithBd(&vp9_apply_temporal_filter_c, 8)));
#if HAVE_SSE4_1
INSTANTIATE_TEST_SUITE_P(SSE4_1, YUVTemporalFilterTest,
::testing::Values(TemporalFilterWithBd(
&vp9_apply_temporal_filter_sse4_1, 8)));
#endif // HAVE_SSE4_1
#endif // CONFIG_VP9_HIGHBITDEPTH
} // namespace