| /* |
| * Copyright (c) 2014 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <math.h> |
| #include <stdio.h> |
| |
| #include "./vp9_rtcd.h" |
| #include "./vpx_dsp_rtcd.h" |
| |
| #include "vpx/vpx_codec.h" |
| #include "vpx_dsp/vpx_dsp_common.h" |
| #include "vpx_mem/vpx_mem.h" |
| #include "vpx_ports/compiler_attributes.h" |
| |
| #include "vp9/common/vp9_blockd.h" |
| #include "vp9/common/vp9_common.h" |
| #include "vp9/common/vp9_mvref_common.h" |
| #include "vp9/common/vp9_pred_common.h" |
| #include "vp9/common/vp9_reconinter.h" |
| #include "vp9/common/vp9_reconintra.h" |
| #include "vp9/common/vp9_scan.h" |
| |
| #include "vp9/encoder/vp9_cost.h" |
| #include "vp9/encoder/vp9_encoder.h" |
| #include "vp9/encoder/vp9_pickmode.h" |
| #include "vp9/encoder/vp9_ratectrl.h" |
| #include "vp9/encoder/vp9_rd.h" |
| |
| typedef struct { |
| uint8_t *data; |
| int stride; |
| int in_use; |
| } PRED_BUFFER; |
| |
| typedef struct { |
| PRED_BUFFER *best_pred; |
| PREDICTION_MODE best_mode; |
| TX_SIZE best_tx_size; |
| TX_SIZE best_intra_tx_size; |
| MV_REFERENCE_FRAME best_ref_frame; |
| MV_REFERENCE_FRAME best_second_ref_frame; |
| uint8_t best_mode_skip_txfm; |
| INTERP_FILTER best_pred_filter; |
| } BEST_PICKMODE; |
| |
| static const int pos_shift_16x16[4][4] = { |
| { 9, 10, 13, 14 }, { 11, 12, 15, 16 }, { 17, 18, 21, 22 }, { 19, 20, 23, 24 } |
| }; |
| |
| static int mv_refs_rt(VP9_COMP *cpi, const VP9_COMMON *cm, const MACROBLOCK *x, |
| const MACROBLOCKD *xd, const TileInfo *const tile, |
| MODE_INFO *mi, MV_REFERENCE_FRAME ref_frame, |
| int_mv *mv_ref_list, int_mv *base_mv, int mi_row, |
| int mi_col, int use_base_mv) { |
| const int *ref_sign_bias = cm->ref_frame_sign_bias; |
| int i, refmv_count = 0; |
| |
| const POSITION *const mv_ref_search = mv_ref_blocks[mi->sb_type]; |
| |
| int different_ref_found = 0; |
| int context_counter = 0; |
| int const_motion = 0; |
| |
| // Blank the reference vector list |
| memset(mv_ref_list, 0, sizeof(*mv_ref_list) * MAX_MV_REF_CANDIDATES); |
| |
| // The nearest 2 blocks are treated differently |
| // if the size < 8x8 we get the mv from the bmi substructure, |
| // and we also need to keep a mode count. |
| for (i = 0; i < 2; ++i) { |
| const POSITION *const mv_ref = &mv_ref_search[i]; |
| if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { |
| const MODE_INFO *const candidate_mi = |
| xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride]; |
| // Keep counts for entropy encoding. |
| context_counter += mode_2_counter[candidate_mi->mode]; |
| different_ref_found = 1; |
| |
| if (candidate_mi->ref_frame[0] == ref_frame) |
| ADD_MV_REF_LIST(get_sub_block_mv(candidate_mi, 0, mv_ref->col, -1), |
| refmv_count, mv_ref_list, Done); |
| } |
| } |
| |
| const_motion = 1; |
| |
| // Check the rest of the neighbors in much the same way |
| // as before except we don't need to keep track of sub blocks or |
| // mode counts. |
| for (; i < MVREF_NEIGHBOURS && !refmv_count; ++i) { |
| const POSITION *const mv_ref = &mv_ref_search[i]; |
| if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { |
| const MODE_INFO *const candidate_mi = |
| xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride]; |
| different_ref_found = 1; |
| |
| if (candidate_mi->ref_frame[0] == ref_frame) |
| ADD_MV_REF_LIST(candidate_mi->mv[0], refmv_count, mv_ref_list, Done); |
| } |
| } |
| |
| // Since we couldn't find 2 mvs from the same reference frame |
| // go back through the neighbors and find motion vectors from |
| // different reference frames. |
| if (different_ref_found && !refmv_count) { |
| for (i = 0; i < MVREF_NEIGHBOURS; ++i) { |
| const POSITION *mv_ref = &mv_ref_search[i]; |
| if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { |
| const MODE_INFO *const candidate_mi = |
| xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride]; |
| |
| // If the candidate is INTRA we don't want to consider its mv. |
| IF_DIFF_REF_FRAME_ADD_MV(candidate_mi, ref_frame, ref_sign_bias, |
| refmv_count, mv_ref_list, Done); |
| } |
| } |
| } |
| if (use_base_mv && |
| !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame && |
| ref_frame == LAST_FRAME) { |
| // Get base layer mv. |
| MV_REF *candidate = |
| &cm->prev_frame |
| ->mvs[(mi_col >> 1) + (mi_row >> 1) * (cm->mi_cols >> 1)]; |
| if (candidate->mv[0].as_int != INVALID_MV) { |
| base_mv->as_mv.row = (candidate->mv[0].as_mv.row * 2); |
| base_mv->as_mv.col = (candidate->mv[0].as_mv.col * 2); |
| clamp_mv_ref(&base_mv->as_mv, xd); |
| } else { |
| base_mv->as_int = INVALID_MV; |
| } |
| } |
| |
| Done: |
| |
| x->mbmi_ext->mode_context[ref_frame] = counter_to_context[context_counter]; |
| |
| // Clamp vectors |
| for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i) |
| clamp_mv_ref(&mv_ref_list[i].as_mv, xd); |
| |
| return const_motion; |
| } |
| |
| static int combined_motion_search(VP9_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int_mv *tmp_mv, int *rate_mv, |
| int64_t best_rd_sofar, int use_base_mv) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| MODE_INFO *mi = xd->mi[0]; |
| struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0 } }; |
| const int step_param = cpi->sf.mv.fullpel_search_step_param; |
| const int sadpb = x->sadperbit16; |
| MV mvp_full; |
| const int ref = mi->ref_frame[0]; |
| const MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv; |
| MV center_mv; |
| uint32_t dis; |
| int rate_mode; |
| const MvLimits tmp_mv_limits = x->mv_limits; |
| int rv = 0; |
| int cost_list[5]; |
| int search_subpel = 1; |
| const YV12_BUFFER_CONFIG *scaled_ref_frame = |
| vp9_get_scaled_ref_frame(cpi, ref); |
| if (scaled_ref_frame) { |
| int i; |
| // Swap out the reference frame for a version that's been scaled to |
| // match the resolution of the current frame, allowing the existing |
| // motion search code to be used without additional modifications. |
| for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0]; |
| vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL); |
| } |
| vp9_set_mv_search_range(&x->mv_limits, &ref_mv); |
| |
| // Limit motion vector for large lightning change. |
| if (cpi->oxcf.speed > 5 && x->lowvar_highsumdiff) { |
| x->mv_limits.col_min = VPXMAX(x->mv_limits.col_min, -10); |
| x->mv_limits.row_min = VPXMAX(x->mv_limits.row_min, -10); |
| x->mv_limits.col_max = VPXMIN(x->mv_limits.col_max, 10); |
| x->mv_limits.row_max = VPXMIN(x->mv_limits.row_max, 10); |
| } |
| |
| assert(x->mv_best_ref_index[ref] <= 2); |
| if (x->mv_best_ref_index[ref] < 2) |
| mvp_full = x->mbmi_ext->ref_mvs[ref][x->mv_best_ref_index[ref]].as_mv; |
| else |
| mvp_full = x->pred_mv[ref]; |
| |
| mvp_full.col >>= 3; |
| mvp_full.row >>= 3; |
| |
| if (!use_base_mv) |
| center_mv = ref_mv; |
| else |
| center_mv = tmp_mv->as_mv; |
| |
| if (x->sb_use_mv_part) { |
| tmp_mv->as_mv.row = x->sb_mvrow_part >> 3; |
| tmp_mv->as_mv.col = x->sb_mvcol_part >> 3; |
| } else { |
| vp9_full_pixel_search( |
| cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method, sadpb, |
| cond_cost_list(cpi, cost_list), ¢er_mv, &tmp_mv->as_mv, INT_MAX, 0); |
| } |
| |
| x->mv_limits = tmp_mv_limits; |
| |
| // calculate the bit cost on motion vector |
| mvp_full.row = tmp_mv->as_mv.row * 8; |
| mvp_full.col = tmp_mv->as_mv.col * 8; |
| |
| *rate_mv = vp9_mv_bit_cost(&mvp_full, &ref_mv, x->nmvjointcost, x->mvcost, |
| MV_COST_WEIGHT); |
| |
| rate_mode = |
| cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref]][INTER_OFFSET(NEWMV)]; |
| rv = |
| !(RDCOST(x->rdmult, x->rddiv, (*rate_mv + rate_mode), 0) > best_rd_sofar); |
| |
| // For SVC on non-reference frame, avoid subpel for (0, 0) motion. |
| if (cpi->use_svc && cpi->svc.non_reference_frame) { |
| if (mvp_full.row == 0 && mvp_full.col == 0) search_subpel = 0; |
| } |
| |
| if (rv && search_subpel) { |
| SUBPEL_FORCE_STOP subpel_force_stop = cpi->sf.mv.subpel_force_stop; |
| if (use_base_mv && cpi->sf.base_mv_aggressive) subpel_force_stop = HALF_PEL; |
| if (cpi->sf.mv.enable_adaptive_subpel_force_stop) { |
| const int mv_thresh = cpi->sf.mv.adapt_subpel_force_stop.mv_thresh; |
| if (abs(tmp_mv->as_mv.row) >= mv_thresh || |
| abs(tmp_mv->as_mv.col) >= mv_thresh) |
| subpel_force_stop = cpi->sf.mv.adapt_subpel_force_stop.force_stop_above; |
| else |
| subpel_force_stop = cpi->sf.mv.adapt_subpel_force_stop.force_stop_below; |
| } |
| cpi->find_fractional_mv_step( |
| x, &tmp_mv->as_mv, &ref_mv, cpi->common.allow_high_precision_mv, |
| x->errorperbit, &cpi->fn_ptr[bsize], subpel_force_stop, |
| cpi->sf.mv.subpel_search_level, cond_cost_list(cpi, cost_list), |
| x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, 0, 0, |
| cpi->sf.use_accurate_subpel_search); |
| *rate_mv = vp9_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->nmvjointcost, |
| x->mvcost, MV_COST_WEIGHT); |
| } |
| |
| if (scaled_ref_frame) { |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i]; |
| } |
| return rv; |
| } |
| |
| static void block_variance(const uint8_t *src, int src_stride, |
| const uint8_t *ref, int ref_stride, int w, int h, |
| unsigned int *sse, int *sum, int block_size, |
| #if CONFIG_VP9_HIGHBITDEPTH |
| int use_highbitdepth, vpx_bit_depth_t bd, |
| #endif |
| uint32_t *sse8x8, int *sum8x8, uint32_t *var8x8) { |
| int i, j, k = 0; |
| |
| *sse = 0; |
| *sum = 0; |
| |
| for (i = 0; i < h; i += block_size) { |
| for (j = 0; j < w; j += block_size) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (use_highbitdepth) { |
| switch (bd) { |
| case VPX_BITS_8: |
| vpx_highbd_8_get8x8var(src + src_stride * i + j, src_stride, |
| ref + ref_stride * i + j, ref_stride, |
| &sse8x8[k], &sum8x8[k]); |
| break; |
| case VPX_BITS_10: |
| vpx_highbd_10_get8x8var(src + src_stride * i + j, src_stride, |
| ref + ref_stride * i + j, ref_stride, |
| &sse8x8[k], &sum8x8[k]); |
| break; |
| case VPX_BITS_12: |
| vpx_highbd_12_get8x8var(src + src_stride * i + j, src_stride, |
| ref + ref_stride * i + j, ref_stride, |
| &sse8x8[k], &sum8x8[k]); |
| break; |
| } |
| } else { |
| vpx_get8x8var(src + src_stride * i + j, src_stride, |
| ref + ref_stride * i + j, ref_stride, &sse8x8[k], |
| &sum8x8[k]); |
| } |
| #else |
| vpx_get8x8var(src + src_stride * i + j, src_stride, |
| ref + ref_stride * i + j, ref_stride, &sse8x8[k], |
| &sum8x8[k]); |
| #endif |
| *sse += sse8x8[k]; |
| *sum += sum8x8[k]; |
| var8x8[k] = sse8x8[k] - (uint32_t)(((int64_t)sum8x8[k] * sum8x8[k]) >> 6); |
| k++; |
| } |
| } |
| } |
| |
| static void calculate_variance(int bw, int bh, TX_SIZE tx_size, |
| unsigned int *sse_i, int *sum_i, |
| unsigned int *var_o, unsigned int *sse_o, |
| int *sum_o) { |
| const BLOCK_SIZE unit_size = txsize_to_bsize[tx_size]; |
| const int nw = 1 << (bw - b_width_log2_lookup[unit_size]); |
| const int nh = 1 << (bh - b_height_log2_lookup[unit_size]); |
| int i, j, k = 0; |
| |
| for (i = 0; i < nh; i += 2) { |
| for (j = 0; j < nw; j += 2) { |
| sse_o[k] = sse_i[i * nw + j] + sse_i[i * nw + j + 1] + |
| sse_i[(i + 1) * nw + j] + sse_i[(i + 1) * nw + j + 1]; |
| sum_o[k] = sum_i[i * nw + j] + sum_i[i * nw + j + 1] + |
| sum_i[(i + 1) * nw + j] + sum_i[(i + 1) * nw + j + 1]; |
| var_o[k] = sse_o[k] - (uint32_t)(((int64_t)sum_o[k] * sum_o[k]) >> |
| (b_width_log2_lookup[unit_size] + |
| b_height_log2_lookup[unit_size] + 6)); |
| k++; |
| } |
| } |
| } |
| |
| // Adjust the ac_thr according to speed, width, height and normalized sum |
| static int ac_thr_factor(const int speed, const int width, const int height, |
| const int norm_sum) { |
| if (speed >= 8 && norm_sum < 5) { |
| if (width <= 640 && height <= 480) |
| return 4; |
| else |
| return 2; |
| } |
| return 1; |
| } |
| |
| static TX_SIZE calculate_tx_size(VP9_COMP *const cpi, BLOCK_SIZE bsize, |
| MACROBLOCKD *const xd, unsigned int var, |
| unsigned int sse, int64_t ac_thr, |
| unsigned int source_variance, int is_intra) { |
| // TODO(marpan): Tune selection for intra-modes, screen content, etc. |
| TX_SIZE tx_size; |
| unsigned int var_thresh = is_intra ? (unsigned int)ac_thr : 1; |
| int limit_tx = 1; |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && |
| (source_variance == 0 || var < var_thresh)) |
| limit_tx = 0; |
| if (cpi->common.tx_mode == TX_MODE_SELECT) { |
| if (sse > (var << 2)) |
| tx_size = VPXMIN(max_txsize_lookup[bsize], |
| tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); |
| else |
| tx_size = TX_8X8; |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && limit_tx && |
| cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id)) |
| tx_size = TX_8X8; |
| else if (tx_size > TX_16X16 && limit_tx) |
| tx_size = TX_16X16; |
| // For screen-content force 4X4 tx_size over 8X8, for large variance. |
| if (cpi->oxcf.content == VP9E_CONTENT_SCREEN && tx_size == TX_8X8 && |
| bsize <= BLOCK_16X16 && ((var >> 5) > (unsigned int)ac_thr)) |
| tx_size = TX_4X4; |
| } else { |
| tx_size = VPXMIN(max_txsize_lookup[bsize], |
| tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); |
| } |
| return tx_size; |
| } |
| |
| static void compute_intra_yprediction(PREDICTION_MODE mode, BLOCK_SIZE bsize, |
| MACROBLOCK *x, MACROBLOCKD *xd) { |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| struct macroblock_plane *const p = &x->plane[0]; |
| uint8_t *const src_buf_base = p->src.buf; |
| uint8_t *const dst_buf_base = pd->dst.buf; |
| const int src_stride = p->src.stride; |
| const int dst_stride = pd->dst.stride; |
| // block and transform sizes, in number of 4x4 blocks log 2 ("*_b") |
| // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 |
| const TX_SIZE tx_size = max_txsize_lookup[bsize]; |
| const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; |
| int row, col; |
| // If mb_to_right_edge is < 0 we are in a situation in which |
| // the current block size extends into the UMV and we won't |
| // visit the sub blocks that are wholly within the UMV. |
| const int max_blocks_wide = |
| num_4x4_w + (xd->mb_to_right_edge >= 0 |
| ? 0 |
| : xd->mb_to_right_edge >> (5 + pd->subsampling_x)); |
| const int max_blocks_high = |
| num_4x4_h + (xd->mb_to_bottom_edge >= 0 |
| ? 0 |
| : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y)); |
| |
| // Keep track of the row and column of the blocks we use so that we know |
| // if we are in the unrestricted motion border. |
| for (row = 0; row < max_blocks_high; row += (1 << tx_size)) { |
| // Skip visiting the sub blocks that are wholly within the UMV. |
| for (col = 0; col < max_blocks_wide; col += (1 << tx_size)) { |
| p->src.buf = &src_buf_base[4 * (row * (int64_t)src_stride + col)]; |
| pd->dst.buf = &dst_buf_base[4 * (row * (int64_t)dst_stride + col)]; |
| vp9_predict_intra_block(xd, b_width_log2_lookup[bsize], tx_size, mode, |
| x->skip_encode ? p->src.buf : pd->dst.buf, |
| x->skip_encode ? src_stride : dst_stride, |
| pd->dst.buf, dst_stride, col, row, 0); |
| } |
| } |
| p->src.buf = src_buf_base; |
| pd->dst.buf = dst_buf_base; |
| } |
| |
| static void model_rd_for_sb_y_large(VP9_COMP *cpi, BLOCK_SIZE bsize, |
| MACROBLOCK *x, MACROBLOCKD *xd, |
| int *out_rate_sum, int64_t *out_dist_sum, |
| unsigned int *var_y, unsigned int *sse_y, |
| int mi_row, int mi_col, int *early_term, |
| int *flag_preduv_computed) { |
| // Note our transform coeffs are 8 times an orthogonal transform. |
| // Hence quantizer step is also 8 times. To get effective quantizer |
| // we need to divide by 8 before sending to modeling function. |
| unsigned int sse; |
| int rate; |
| int64_t dist; |
| struct macroblock_plane *const p = &x->plane[0]; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| const uint32_t dc_quant = pd->dequant[0]; |
| const uint32_t ac_quant = pd->dequant[1]; |
| int64_t dc_thr = dc_quant * dc_quant >> 6; |
| int64_t ac_thr = ac_quant * ac_quant >> 6; |
| unsigned int var; |
| int sum; |
| int skip_dc = 0; |
| |
| const int bw = b_width_log2_lookup[bsize]; |
| const int bh = b_height_log2_lookup[bsize]; |
| const int num8x8 = 1 << (bw + bh - 2); |
| unsigned int sse8x8[64] = { 0 }; |
| int sum8x8[64] = { 0 }; |
| unsigned int var8x8[64] = { 0 }; |
| TX_SIZE tx_size; |
| int i, k; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| const vpx_bit_depth_t bd = cpi->common.bit_depth; |
| #endif |
| // Calculate variance for whole partition, and also save 8x8 blocks' variance |
| // to be used in following transform skipping test. |
| block_variance(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, |
| 4 << bw, 4 << bh, &sse, &sum, 8, |
| #if CONFIG_VP9_HIGHBITDEPTH |
| cpi->common.use_highbitdepth, bd, |
| #endif |
| sse8x8, sum8x8, var8x8); |
| var = sse - (unsigned int)(((int64_t)sum * sum) >> (bw + bh + 4)); |
| |
| *var_y = var; |
| *sse_y = sse; |
| |
| #if CONFIG_VP9_TEMPORAL_DENOISING |
| if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) && |
| cpi->oxcf.speed > 5) |
| ac_thr = vp9_scale_acskip_thresh(ac_thr, cpi->denoiser.denoising_level, |
| (abs(sum) >> (bw + bh)), |
| cpi->svc.temporal_layer_id); |
| else |
| ac_thr *= ac_thr_factor(cpi->oxcf.speed, cpi->common.width, |
| cpi->common.height, abs(sum) >> (bw + bh)); |
| #else |
| ac_thr *= ac_thr_factor(cpi->oxcf.speed, cpi->common.width, |
| cpi->common.height, abs(sum) >> (bw + bh)); |
| #endif |
| |
| tx_size = calculate_tx_size(cpi, bsize, xd, var, sse, ac_thr, |
| x->source_variance, 0); |
| // The code below for setting skip flag assumes tranform size of at least 8x8, |
| // so force this lower limit on transform. |
| if (tx_size < TX_8X8) tx_size = TX_8X8; |
| xd->mi[0]->tx_size = tx_size; |
| |
| if (cpi->oxcf.content == VP9E_CONTENT_SCREEN && x->zero_temp_sad_source && |
| x->source_variance == 0) |
| dc_thr = dc_thr << 1; |
| |
| // Evaluate if the partition block is a skippable block in Y plane. |
| { |
| unsigned int sse16x16[16] = { 0 }; |
| int sum16x16[16] = { 0 }; |
| unsigned int var16x16[16] = { 0 }; |
| const int num16x16 = num8x8 >> 2; |
| |
| unsigned int sse32x32[4] = { 0 }; |
| int sum32x32[4] = { 0 }; |
| unsigned int var32x32[4] = { 0 }; |
| const int num32x32 = num8x8 >> 4; |
| |
| int ac_test = 1; |
| int dc_test = 1; |
| const int num = (tx_size == TX_8X8) |
| ? num8x8 |
| : ((tx_size == TX_16X16) ? num16x16 : num32x32); |
| const unsigned int *sse_tx = |
| (tx_size == TX_8X8) ? sse8x8 |
| : ((tx_size == TX_16X16) ? sse16x16 : sse32x32); |
| const unsigned int *var_tx = |
| (tx_size == TX_8X8) ? var8x8 |
| : ((tx_size == TX_16X16) ? var16x16 : var32x32); |
| |
| // Calculate variance if tx_size > TX_8X8 |
| if (tx_size >= TX_16X16) |
| calculate_variance(bw, bh, TX_8X8, sse8x8, sum8x8, var16x16, sse16x16, |
| sum16x16); |
| if (tx_size == TX_32X32) |
| calculate_variance(bw, bh, TX_16X16, sse16x16, sum16x16, var32x32, |
| sse32x32, sum32x32); |
| |
| // Skipping test |
| x->skip_txfm[0] = SKIP_TXFM_NONE; |
| for (k = 0; k < num; k++) |
| // Check if all ac coefficients can be quantized to zero. |
| if (!(var_tx[k] < ac_thr || var == 0)) { |
| ac_test = 0; |
| break; |
| } |
| |
| for (k = 0; k < num; k++) |
| // Check if dc coefficient can be quantized to zero. |
| if (!(sse_tx[k] - var_tx[k] < dc_thr || sse == var)) { |
| dc_test = 0; |
| break; |
| } |
| |
| if (ac_test) { |
| x->skip_txfm[0] = SKIP_TXFM_AC_ONLY; |
| |
| if (dc_test) x->skip_txfm[0] = SKIP_TXFM_AC_DC; |
| } else if (dc_test) { |
| skip_dc = 1; |
| } |
| } |
| |
| if (x->skip_txfm[0] == SKIP_TXFM_AC_DC) { |
| int skip_uv[2] = { 0 }; |
| unsigned int var_uv[2]; |
| unsigned int sse_uv[2]; |
| |
| *out_rate_sum = 0; |
| *out_dist_sum = sse << 4; |
| |
| // Transform skipping test in UV planes. |
| for (i = 1; i <= 2; i++) { |
| struct macroblock_plane *const p = &x->plane[i]; |
| struct macroblockd_plane *const pd = &xd->plane[i]; |
| const TX_SIZE uv_tx_size = get_uv_tx_size(xd->mi[0], pd); |
| const BLOCK_SIZE unit_size = txsize_to_bsize[uv_tx_size]; |
| const BLOCK_SIZE uv_bsize = get_plane_block_size(bsize, pd); |
| const int uv_bw = b_width_log2_lookup[uv_bsize]; |
| const int uv_bh = b_height_log2_lookup[uv_bsize]; |
| const int sf = (uv_bw - b_width_log2_lookup[unit_size]) + |
| (uv_bh - b_height_log2_lookup[unit_size]); |
| const uint32_t uv_dc_thr = pd->dequant[0] * pd->dequant[0] >> (6 - sf); |
| const uint32_t uv_ac_thr = pd->dequant[1] * pd->dequant[1] >> (6 - sf); |
| int j = i - 1; |
| |
| vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, i); |
| flag_preduv_computed[i - 1] = 1; |
| var_uv[j] = cpi->fn_ptr[uv_bsize].vf( |
| p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, &sse_uv[j]); |
| |
| if ((var_uv[j] < uv_ac_thr || var_uv[j] == 0) && |
| (sse_uv[j] - var_uv[j] < uv_dc_thr || sse_uv[j] == var_uv[j])) |
| skip_uv[j] = 1; |
| else |
| break; |
| } |
| |
| // If the transform in YUV planes are skippable, the mode search checks |
| // fewer inter modes and doesn't check intra modes. |
| if (skip_uv[0] & skip_uv[1]) { |
| *early_term = 1; |
| } |
| return; |
| } |
| |
| if (!skip_dc) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], |
| dc_quant >> (xd->bd - 5), &rate, &dist); |
| #else |
| vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], |
| dc_quant >> 3, &rate, &dist); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| } |
| |
| if (!skip_dc) { |
| *out_rate_sum = rate >> 1; |
| *out_dist_sum = dist << 3; |
| } else { |
| *out_rate_sum = 0; |
| *out_dist_sum = (sse - var) << 4; |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], |
| ac_quant >> (xd->bd - 5), &rate, &dist); |
| #else |
| vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], ac_quant >> 3, |
| &rate, &dist); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| *out_rate_sum += rate; |
| *out_dist_sum += dist << 4; |
| } |
| |
| static void model_rd_for_sb_y(VP9_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x, |
| MACROBLOCKD *xd, int *out_rate_sum, |
| int64_t *out_dist_sum, unsigned int *var_y, |
| unsigned int *sse_y, int is_intra) { |
| // Note our transform coeffs are 8 times an orthogonal transform. |
| // Hence quantizer step is also 8 times. To get effective quantizer |
| // we need to divide by 8 before sending to modeling function. |
| unsigned int sse; |
| int rate; |
| int64_t dist; |
| struct macroblock_plane *const p = &x->plane[0]; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| const int64_t dc_thr = p->quant_thred[0] >> 6; |
| const int64_t ac_thr = p->quant_thred[1] >> 6; |
| const uint32_t dc_quant = pd->dequant[0]; |
| const uint32_t ac_quant = pd->dequant[1]; |
| unsigned int var = cpi->fn_ptr[bsize].vf(p->src.buf, p->src.stride, |
| pd->dst.buf, pd->dst.stride, &sse); |
| int skip_dc = 0; |
| |
| *var_y = var; |
| *sse_y = sse; |
| |
| xd->mi[0]->tx_size = calculate_tx_size(cpi, bsize, xd, var, sse, ac_thr, |
| x->source_variance, is_intra); |
| |
| // Evaluate if the partition block is a skippable block in Y plane. |
| { |
| const BLOCK_SIZE unit_size = txsize_to_bsize[xd->mi[0]->tx_size]; |
| const unsigned int num_blk_log2 = |
| (b_width_log2_lookup[bsize] - b_width_log2_lookup[unit_size]) + |
| (b_height_log2_lookup[bsize] - b_height_log2_lookup[unit_size]); |
| const unsigned int sse_tx = sse >> num_blk_log2; |
| const unsigned int var_tx = var >> num_blk_log2; |
| |
| x->skip_txfm[0] = SKIP_TXFM_NONE; |
| // Check if all ac coefficients can be quantized to zero. |
| if (var_tx < ac_thr || var == 0) { |
| x->skip_txfm[0] = SKIP_TXFM_AC_ONLY; |
| // Check if dc coefficient can be quantized to zero. |
| if (sse_tx - var_tx < dc_thr || sse == var) |
| x->skip_txfm[0] = SKIP_TXFM_AC_DC; |
| } else { |
| if (sse_tx - var_tx < dc_thr || sse == var) skip_dc = 1; |
| } |
| } |
| |
| if (x->skip_txfm[0] == SKIP_TXFM_AC_DC) { |
| *out_rate_sum = 0; |
| *out_dist_sum = sse << 4; |
| return; |
| } |
| |
| if (!skip_dc) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], |
| dc_quant >> (xd->bd - 5), &rate, &dist); |
| #else |
| vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], |
| dc_quant >> 3, &rate, &dist); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| } |
| |
| if (!skip_dc) { |
| *out_rate_sum = rate >> 1; |
| *out_dist_sum = dist << 3; |
| } else { |
| *out_rate_sum = 0; |
| *out_dist_sum = (sse - var) << 4; |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], |
| ac_quant >> (xd->bd - 5), &rate, &dist); |
| #else |
| vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], ac_quant >> 3, |
| &rate, &dist); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| *out_rate_sum += rate; |
| *out_dist_sum += dist << 4; |
| } |
| |
| static void block_yrd(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *this_rdc, |
| int *skippable, int64_t *sse, BLOCK_SIZE bsize, |
| TX_SIZE tx_size, int rd_computed, int is_intra) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| const struct macroblockd_plane *pd = &xd->plane[0]; |
| struct macroblock_plane *const p = &x->plane[0]; |
| const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; |
| const int step = 1 << (tx_size << 1); |
| const int block_step = (1 << tx_size); |
| int block = 0, r, c; |
| const int max_blocks_wide = |
| num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5); |
| const int max_blocks_high = |
| num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5); |
| int eob_cost = 0; |
| const int bw = 4 * num_4x4_w; |
| const int bh = 4 * num_4x4_h; |
| |
| if (cpi->sf.use_simple_block_yrd && cpi->common.frame_type != KEY_FRAME && |
| (bsize < BLOCK_32X32 || |
| (cpi->use_svc && |
| (bsize < BLOCK_32X32 || cpi->svc.temporal_layer_id > 0)))) { |
| unsigned int var_y, sse_y; |
| (void)tx_size; |
| if (!rd_computed) |
| model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc->rate, &this_rdc->dist, |
| &var_y, &sse_y, is_intra); |
| *sse = INT_MAX; |
| *skippable = 0; |
| return; |
| } |
| |
| (void)cpi; |
| |
| // The max tx_size passed in is TX_16X16. |
| assert(tx_size != TX_32X32); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| vpx_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, |
| p->src.stride, pd->dst.buf, pd->dst.stride, |
| x->e_mbd.bd); |
| } else { |
| vpx_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, |
| pd->dst.buf, pd->dst.stride); |
| } |
| #else |
| vpx_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, |
| pd->dst.buf, pd->dst.stride); |
| #endif |
| *skippable = 1; |
| // Keep track of the row and column of the blocks we use so that we know |
| // if we are in the unrestricted motion border. |
| for (r = 0; r < max_blocks_high; r += block_step) { |
| for (c = 0; c < num_4x4_w; c += block_step) { |
| if (c < max_blocks_wide) { |
| const scan_order *const scan_order = &vp9_default_scan_orders[tx_size]; |
| tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); |
| tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); |
| tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| uint16_t *const eob = &p->eobs[block]; |
| const int diff_stride = bw; |
| const int16_t *src_diff; |
| src_diff = &p->src_diff[(r * diff_stride + c) << 2]; |
| |
| switch (tx_size) { |
| case TX_16X16: |
| vpx_hadamard_16x16(src_diff, diff_stride, coeff); |
| vp9_quantize_fp(coeff, 256, x->skip_block, p->round_fp, p->quant_fp, |
| qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, |
| scan_order->iscan); |
| break; |
| case TX_8X8: |
| vpx_hadamard_8x8(src_diff, diff_stride, coeff); |
| vp9_quantize_fp(coeff, 64, x->skip_block, p->round_fp, p->quant_fp, |
| qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, |
| scan_order->iscan); |
| break; |
| default: |
| assert(tx_size == TX_4X4); |
| x->fwd_txfm4x4(src_diff, coeff, diff_stride); |
| vp9_quantize_fp(coeff, 16, x->skip_block, p->round_fp, p->quant_fp, |
| qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, |
| scan_order->iscan); |
| break; |
| } |
| *skippable &= (*eob == 0); |
| eob_cost += 1; |
| } |
| block += step; |
| } |
| } |
| |
| this_rdc->rate = 0; |
| if (*sse < INT64_MAX) { |
| *sse = (*sse << 6) >> 2; |
| if (*skippable) { |
| this_rdc->dist = *sse; |
| return; |
| } |
| } |
| |
| block = 0; |
| this_rdc->dist = 0; |
| for (r = 0; r < max_blocks_high; r += block_step) { |
| for (c = 0; c < num_4x4_w; c += block_step) { |
| if (c < max_blocks_wide) { |
| tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); |
| tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); |
| tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| uint16_t *const eob = &p->eobs[block]; |
| |
| if (*eob == 1) |
| this_rdc->rate += (int)abs(qcoeff[0]); |
| else if (*eob > 1) |
| this_rdc->rate += vpx_satd(qcoeff, step << 4); |
| |
| this_rdc->dist += vp9_block_error_fp(coeff, dqcoeff, step << 4) >> 2; |
| } |
| block += step; |
| } |
| } |
| |
| // If skippable is set, rate gets clobbered later. |
| this_rdc->rate <<= (2 + VP9_PROB_COST_SHIFT); |
| this_rdc->rate += (eob_cost << VP9_PROB_COST_SHIFT); |
| } |
| |
| static void model_rd_for_sb_uv(VP9_COMP *cpi, BLOCK_SIZE plane_bsize, |
| MACROBLOCK *x, MACROBLOCKD *xd, |
| RD_COST *this_rdc, unsigned int *var_y, |
| unsigned int *sse_y, int start_plane, |
| int stop_plane) { |
| // Note our transform coeffs are 8 times an orthogonal transform. |
| // Hence quantizer step is also 8 times. To get effective quantizer |
| // we need to divide by 8 before sending to modeling function. |
| unsigned int sse; |
| int rate; |
| int64_t dist; |
| int i; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| uint64_t tot_var = *var_y; |
| uint64_t tot_sse = *sse_y; |
| #else |
| uint32_t tot_var = *var_y; |
| uint32_t tot_sse = *sse_y; |
| #endif |
| |
| this_rdc->rate = 0; |
| this_rdc->dist = 0; |
| |
| for (i = start_plane; i <= stop_plane; ++i) { |
| struct macroblock_plane *const p = &x->plane[i]; |
| struct macroblockd_plane *const pd = &xd->plane[i]; |
| const uint32_t dc_quant = pd->dequant[0]; |
| const uint32_t ac_quant = pd->dequant[1]; |
| const BLOCK_SIZE bs = plane_bsize; |
| unsigned int var; |
| if (!x->color_sensitivity[i - 1]) continue; |
| |
| var = cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, |
| pd->dst.stride, &sse); |
| assert(sse >= var); |
| tot_var += var; |
| tot_sse += sse; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs], |
| dc_quant >> (xd->bd - 5), &rate, &dist); |
| #else |
| vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs], |
| dc_quant >> 3, &rate, &dist); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| this_rdc->rate += rate >> 1; |
| this_rdc->dist += dist << 3; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], |
| ac_quant >> (xd->bd - 5), &rate, &dist); |
| #else |
| vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], ac_quant >> 3, |
| &rate, &dist); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| this_rdc->rate += rate; |
| this_rdc->dist += dist << 4; |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| *var_y = tot_var > UINT32_MAX ? UINT32_MAX : (uint32_t)tot_var; |
| *sse_y = tot_sse > UINT32_MAX ? UINT32_MAX : (uint32_t)tot_sse; |
| #else |
| *var_y = tot_var; |
| *sse_y = tot_sse; |
| #endif |
| } |
| |
| static int get_pred_buffer(PRED_BUFFER *p, int len) { |
| int i; |
| |
| for (i = 0; i < len; i++) { |
| if (!p[i].in_use) { |
| p[i].in_use = 1; |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| static void free_pred_buffer(PRED_BUFFER *p) { |
| if (p != NULL) p->in_use = 0; |
| } |
| |
| static void encode_breakout_test( |
| VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, int mi_col, |
| MV_REFERENCE_FRAME ref_frame, PREDICTION_MODE this_mode, unsigned int var_y, |
| unsigned int sse_y, struct buf_2d yv12_mb[][MAX_MB_PLANE], int *rate, |
| int64_t *dist, int *flag_preduv_computed) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| MODE_INFO *const mi = xd->mi[0]; |
| const BLOCK_SIZE uv_size = get_plane_block_size(bsize, &xd->plane[1]); |
| unsigned int var = var_y, sse = sse_y; |
| // Skipping threshold for ac. |
| unsigned int thresh_ac; |
| // Skipping threshold for dc. |
| unsigned int thresh_dc; |
| int motion_low = 1; |
| |
| if (cpi->use_svc && ref_frame == GOLDEN_FRAME) return; |
| if (mi->mv[0].as_mv.row > 64 || mi->mv[0].as_mv.row < -64 || |
| mi->mv[0].as_mv.col > 64 || mi->mv[0].as_mv.col < -64) |
| motion_low = 0; |
| if (x->encode_breakout > 0 && motion_low == 1) { |
| // Set a maximum for threshold to avoid big PSNR loss in low bit rate |
| // case. Use extreme low threshold for static frames to limit |
| // skipping. |
| const unsigned int max_thresh = 36000; |
| // The encode_breakout input |
| const unsigned int min_thresh = |
| VPXMIN(((unsigned int)x->encode_breakout << 4), max_thresh); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| const int shift = (xd->bd << 1) - 16; |
| #endif |
| |
| // Calculate threshold according to dequant value. |
| thresh_ac = (xd->plane[0].dequant[1] * xd->plane[0].dequant[1]) >> 3; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) { |
| thresh_ac = ROUND_POWER_OF_TWO(thresh_ac, shift); |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| thresh_ac = clamp(thresh_ac, min_thresh, max_thresh); |
| |
| // Adjust ac threshold according to partition size. |
| thresh_ac >>= |
| 8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); |
| |
| thresh_dc = (xd->plane[0].dequant[0] * xd->plane[0].dequant[0] >> 6); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) { |
| thresh_dc = ROUND_POWER_OF_TWO(thresh_dc, shift); |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| } else { |
| thresh_ac = 0; |
| thresh_dc = 0; |
| } |
| |
| // Y skipping condition checking for ac and dc. |
| if (var <= thresh_ac && (sse - var) <= thresh_dc) { |
| unsigned int sse_u, sse_v; |
| unsigned int var_u, var_v; |
| unsigned int thresh_ac_uv = thresh_ac; |
| unsigned int thresh_dc_uv = thresh_dc; |
| if (x->sb_is_skin) { |
| thresh_ac_uv = 0; |
| thresh_dc_uv = 0; |
| } |
| |
| if (!flag_preduv_computed[0] || !flag_preduv_computed[1]) { |
| xd->plane[1].pre[0] = yv12_mb[ref_frame][1]; |
| xd->plane[2].pre[0] = yv12_mb[ref_frame][2]; |
| vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, bsize); |
| } |
| |
| var_u = cpi->fn_ptr[uv_size].vf(x->plane[1].src.buf, x->plane[1].src.stride, |
| xd->plane[1].dst.buf, |
| xd->plane[1].dst.stride, &sse_u); |
| |
| // U skipping condition checking |
| if (((var_u << 2) <= thresh_ac_uv) && (sse_u - var_u <= thresh_dc_uv)) { |
| var_v = cpi->fn_ptr[uv_size].vf( |
| x->plane[2].src.buf, x->plane[2].src.stride, xd->plane[2].dst.buf, |
| xd->plane[2].dst.stride, &sse_v); |
| |
| // V skipping condition checking |
| if (((var_v << 2) <= thresh_ac_uv) && (sse_v - var_v <= thresh_dc_uv)) { |
| x->skip = 1; |
| |
| // The cost of skip bit needs to be added. |
| *rate = cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]] |
| [INTER_OFFSET(this_mode)]; |
| |
| // More on this part of rate |
| // rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1); |
| |
| // Scaling factor for SSE from spatial domain to frequency |
| // domain is 16. Adjust distortion accordingly. |
| // TODO(yunqingwang): In this function, only y-plane dist is |
| // calculated. |
| *dist = (sse << 4); // + ((sse_u + sse_v) << 4); |
| |
| // *disable_skip = 1; |
| } |
| } |
| } |
| } |
| |
| struct estimate_block_intra_args { |
| VP9_COMP *cpi; |
| MACROBLOCK *x; |
| PREDICTION_MODE mode; |
| int skippable; |
| RD_COST *rdc; |
| }; |
| |
| static void estimate_block_intra(int plane, int block, int row, int col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| void *arg) { |
| struct estimate_block_intra_args *const args = arg; |
| VP9_COMP *const cpi = args->cpi; |
| MACROBLOCK *const x = args->x; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size]; |
| uint8_t *const src_buf_base = p->src.buf; |
| uint8_t *const dst_buf_base = pd->dst.buf; |
| const int src_stride = p->src.stride; |
| const int dst_stride = pd->dst.stride; |
| RD_COST this_rdc; |
| |
| (void)block; |
| |
| p->src.buf = &src_buf_base[4 * (row * (int64_t)src_stride + col)]; |
| pd->dst.buf = &dst_buf_base[4 * (row * (int64_t)dst_stride + col)]; |
| // Use source buffer as an approximation for the fully reconstructed buffer. |
| vp9_predict_intra_block(xd, b_width_log2_lookup[plane_bsize], tx_size, |
| args->mode, x->skip_encode ? p->src.buf : pd->dst.buf, |
| x->skip_encode ? src_stride : dst_stride, pd->dst.buf, |
| dst_stride, col, row, plane); |
| |
| if (plane == 0) { |
| int64_t this_sse = INT64_MAX; |
| block_yrd(cpi, x, &this_rdc, &args->skippable, &this_sse, bsize_tx, |
| VPXMIN(tx_size, TX_16X16), 0, 1); |
| } else { |
| unsigned int var = 0; |
| unsigned int sse = 0; |
| model_rd_for_sb_uv(cpi, bsize_tx, x, xd, &this_rdc, &var, &sse, plane, |
| plane); |
| } |
| |
| p->src.buf = src_buf_base; |
| pd->dst.buf = dst_buf_base; |
| args->rdc->rate += this_rdc.rate; |
| args->rdc->dist += this_rdc.dist; |
| } |
| |
| static const THR_MODES mode_idx[MAX_REF_FRAMES][4] = { |
| { THR_DC, THR_V_PRED, THR_H_PRED, THR_TM }, |
| { THR_NEARESTMV, THR_NEARMV, THR_ZEROMV, THR_NEWMV }, |
| { THR_NEARESTG, THR_NEARG, THR_ZEROG, THR_NEWG }, |
| { THR_NEARESTA, THR_NEARA, THR_ZEROA, THR_NEWA }, |
| }; |
| |
| static const PREDICTION_MODE intra_mode_list[] = { DC_PRED, V_PRED, H_PRED, |
| TM_PRED }; |
| |
| static int mode_offset(const PREDICTION_MODE mode) { |
| if (mode >= NEARESTMV) { |
| return INTER_OFFSET(mode); |
| } else { |
| switch (mode) { |
| case DC_PRED: return 0; |
| case V_PRED: return 1; |
| case H_PRED: return 2; |
| case TM_PRED: return 3; |
| default: return -1; |
| } |
| } |
| } |
| |
| static INLINE int rd_less_than_thresh_row_mt(int64_t best_rd, int thresh, |
| const int *const thresh_fact) { |
| int is_rd_less_than_thresh; |
| is_rd_less_than_thresh = |
| best_rd < ((int64_t)thresh * (*thresh_fact) >> 5) || thresh == INT_MAX; |
| return is_rd_less_than_thresh; |
| } |
| |
| static INLINE void update_thresh_freq_fact_row_mt( |
| VP9_COMP *cpi, TileDataEnc *tile_data, int source_variance, |
| int thresh_freq_fact_idx, MV_REFERENCE_FRAME ref_frame, |
| THR_MODES best_mode_idx, PREDICTION_MODE mode) { |
| THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)]; |
| int freq_fact_idx = thresh_freq_fact_idx + thr_mode_idx; |
| int *freq_fact = &tile_data->row_base_thresh_freq_fact[freq_fact_idx]; |
| if (thr_mode_idx == best_mode_idx) |
| *freq_fact -= (*freq_fact >> 4); |
| else if (cpi->sf.limit_newmv_early_exit && mode == NEWMV && |
| ref_frame == LAST_FRAME && source_variance < 5) { |
| *freq_fact = VPXMIN(*freq_fact + RD_THRESH_INC, 32); |
| } else { |
| *freq_fact = VPXMIN(*freq_fact + RD_THRESH_INC, |
| cpi->sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT); |
| } |
| } |
| |
| static INLINE void update_thresh_freq_fact( |
| VP9_COMP *cpi, TileDataEnc *tile_data, unsigned int source_variance, |
| BLOCK_SIZE bsize, MV_REFERENCE_FRAME ref_frame, THR_MODES best_mode_idx, |
| PREDICTION_MODE mode) { |
| THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)]; |
| int *freq_fact = &tile_data->thresh_freq_fact[bsize][thr_mode_idx]; |
| if (thr_mode_idx == best_mode_idx) |
| *freq_fact -= (*freq_fact >> 4); |
| else if (cpi->sf.limit_newmv_early_exit && mode == NEWMV && |
| ref_frame == LAST_FRAME && source_variance < 5) { |
| *freq_fact = VPXMIN(*freq_fact + RD_THRESH_INC, 32); |
| } else { |
| *freq_fact = VPXMIN(*freq_fact + RD_THRESH_INC, |
| cpi->sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT); |
| } |
| } |
| |
| void vp9_pick_intra_mode(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *rd_cost, |
| BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mi = xd->mi[0]; |
| RD_COST this_rdc, best_rdc; |
| PREDICTION_MODE this_mode; |
| struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 }; |
| const TX_SIZE intra_tx_size = |
| VPXMIN(max_txsize_lookup[bsize], |
| tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); |
| MODE_INFO *const mic = xd->mi[0]; |
| int *bmode_costs; |
| const MODE_INFO *above_mi = xd->above_mi; |
| const MODE_INFO *left_mi = xd->left_mi; |
| const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, 0); |
| const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, 0); |
| bmode_costs = cpi->y_mode_costs[A][L]; |
| |
| (void)ctx; |
| vp9_rd_cost_reset(&best_rdc); |
| vp9_rd_cost_reset(&this_rdc); |
| |
| mi->ref_frame[0] = INTRA_FRAME; |
| // Initialize interp_filter here so we do not have to check for inter block |
| // modes in get_pred_context_switchable_interp() |
| mi->interp_filter = SWITCHABLE_FILTERS; |
| |
| mi->mv[0].as_int = INVALID_MV; |
| mi->uv_mode = DC_PRED; |
| memset(x->skip_txfm, 0, sizeof(x->skip_txfm)); |
| |
| // Change the limit of this loop to add other intra prediction |
| // mode tests. |
| for (this_mode = DC_PRED; this_mode <= H_PRED; ++this_mode) { |
| this_rdc.dist = this_rdc.rate = 0; |
| args.mode = this_mode; |
| args.skippable = 1; |
| args.rdc = &this_rdc; |
| mi->tx_size = intra_tx_size; |
| vp9_foreach_transformed_block_in_plane(xd, bsize, 0, estimate_block_intra, |
| &args); |
| if (args.skippable) { |
| x->skip_txfm[0] = SKIP_TXFM_AC_DC; |
| this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(&cpi->common, xd), 1); |
| } else { |
| x->skip_txfm[0] = SKIP_TXFM_NONE; |
| this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(&cpi->common, xd), 0); |
| } |
| this_rdc.rate += bmode_costs[this_mode]; |
| this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist); |
| |
| if (this_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = this_rdc; |
| mi->mode = this_mode; |
| } |
| } |
| |
| *rd_cost = best_rdc; |
| } |
| |
| static void init_ref_frame_cost(VP9_COMMON *const cm, MACROBLOCKD *const xd, |
| int ref_frame_cost[MAX_REF_FRAMES]) { |
| vpx_prob intra_inter_p = vp9_get_intra_inter_prob(cm, xd); |
| vpx_prob ref_single_p1 = vp9_get_pred_prob_single_ref_p1(cm, xd); |
| vpx_prob ref_single_p2 = vp9_get_pred_prob_single_ref_p2(cm, xd); |
| |
| ref_frame_cost[INTRA_FRAME] = vp9_cost_bit(intra_inter_p, 0); |
| ref_frame_cost[LAST_FRAME] = ref_frame_cost[GOLDEN_FRAME] = |
| ref_frame_cost[ALTREF_FRAME] = vp9_cost_bit(intra_inter_p, 1); |
| |
| ref_frame_cost[LAST_FRAME] += vp9_cost_bit(ref_single_p1, 0); |
| ref_frame_cost[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p1, 1); |
| ref_frame_cost[ALTREF_FRAME] += vp9_cost_bit(ref_single_p1, 1); |
| ref_frame_cost[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p2, 0); |
| ref_frame_cost[ALTREF_FRAME] += vp9_cost_bit(ref_single_p2, 1); |
| } |
| |
| typedef struct { |
| MV_REFERENCE_FRAME ref_frame; |
| PREDICTION_MODE pred_mode; |
| } REF_MODE; |
| |
| #define RT_INTER_MODES 12 |
| static const REF_MODE ref_mode_set[RT_INTER_MODES] = { |
| { LAST_FRAME, ZEROMV }, { LAST_FRAME, NEARESTMV }, |
| { GOLDEN_FRAME, ZEROMV }, { LAST_FRAME, NEARMV }, |
| { LAST_FRAME, NEWMV }, { GOLDEN_FRAME, NEARESTMV }, |
| { GOLDEN_FRAME, NEARMV }, { GOLDEN_FRAME, NEWMV }, |
| { ALTREF_FRAME, ZEROMV }, { ALTREF_FRAME, NEARESTMV }, |
| { ALTREF_FRAME, NEARMV }, { ALTREF_FRAME, NEWMV } |
| }; |
| |
| #define RT_INTER_MODES_SVC 8 |
| static const REF_MODE ref_mode_set_svc[RT_INTER_MODES_SVC] = { |
| { LAST_FRAME, ZEROMV }, { LAST_FRAME, NEARESTMV }, |
| { LAST_FRAME, NEARMV }, { GOLDEN_FRAME, ZEROMV }, |
| { GOLDEN_FRAME, NEARESTMV }, { GOLDEN_FRAME, NEARMV }, |
| { LAST_FRAME, NEWMV }, { GOLDEN_FRAME, NEWMV } |
| }; |
| |
| static INLINE void find_predictors( |
| VP9_COMP *cpi, MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame, |
| int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES], |
| int const_motion[MAX_REF_FRAMES], int *ref_frame_skip_mask, |
| const int flag_list[4], TileDataEnc *tile_data, int mi_row, int mi_col, |
| struct buf_2d yv12_mb[4][MAX_MB_PLANE], BLOCK_SIZE bsize, |
| int force_skip_low_temp_var, int comp_pred_allowed) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame); |
| TileInfo *const tile_info = &tile_data->tile_info; |
| // TODO(jingning) placeholder for inter-frame non-RD mode decision. |
| x->pred_mv_sad[ref_frame] = INT_MAX; |
| frame_mv[NEWMV][ref_frame].as_int = INVALID_MV; |
| frame_mv[ZEROMV][ref_frame].as_int = 0; |
| // this needs various further optimizations. to be continued.. |
| if ((cpi->ref_frame_flags & flag_list[ref_frame]) && (yv12 != NULL)) { |
| int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame]; |
| const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf; |
| vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf); |
| if (cm->use_prev_frame_mvs || comp_pred_allowed) { |
| vp9_find_mv_refs(cm, xd, xd->mi[0], ref_frame, candidates, mi_row, mi_col, |
| x->mbmi_ext->mode_context); |
| } else { |
| const_motion[ref_frame] = |
| mv_refs_rt(cpi, cm, x, xd, tile_info, xd->mi[0], ref_frame, |
| candidates, &frame_mv[NEWMV][ref_frame], mi_row, mi_col, |
| (int)(cpi->svc.use_base_mv && cpi->svc.spatial_layer_id)); |
| } |
| vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates, |
| &frame_mv[NEARESTMV][ref_frame], |
| &frame_mv[NEARMV][ref_frame]); |
| // Early exit for golden frame if force_skip_low_temp_var is set. |
| if (!vp9_is_scaled(sf) && bsize >= BLOCK_8X8 && |
| !(force_skip_low_temp_var && ref_frame == GOLDEN_FRAME)) { |
| vp9_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame, |
| bsize); |
| } |
| } else { |
| *ref_frame_skip_mask |= (1 << ref_frame); |
| } |
| } |
| |
| static void vp9_NEWMV_diff_bias(const NOISE_ESTIMATE *ne, MACROBLOCKD *xd, |
| PREDICTION_MODE this_mode, RD_COST *this_rdc, |
| BLOCK_SIZE bsize, int mv_row, int mv_col, |
| int is_last_frame, int lowvar_highsumdiff, |
| int is_skin) { |
| // Bias against MVs associated with NEWMV mode that are very different from |
| // top/left neighbors. |
| if (this_mode == NEWMV) { |
| int al_mv_average_row; |
| int al_mv_average_col; |
| int left_row, left_col; |
| int row_diff, col_diff; |
| int above_mv_valid = 0; |
| int left_mv_valid = 0; |
| int above_row = 0; |
| int above_col = 0; |
| |
| if (xd->above_mi) { |
| above_mv_valid = xd->above_mi->mv[0].as_int != INVALID_MV; |
| above_row = xd->above_mi->mv[0].as_mv.row; |
| above_col = xd->above_mi->mv[0].as_mv.col; |
| } |
| if (xd->left_mi) { |
| left_mv_valid = xd->left_mi->mv[0].as_int != INVALID_MV; |
| left_row = xd->left_mi->mv[0].as_mv.row; |
| left_col = xd->left_mi->mv[0].as_mv.col; |
| } |
| if (above_mv_valid && left_mv_valid) { |
| al_mv_average_row = (above_row + left_row + 1) >> 1; |
| al_mv_average_col = (above_col + left_col + 1) >> 1; |
| } else if (above_mv_valid) { |
| al_mv_average_row = above_row; |
| al_mv_average_col = above_col; |
| } else if (left_mv_valid) { |
| al_mv_average_row = left_row; |
| al_mv_average_col = left_col; |
| } else { |
| al_mv_average_row = al_mv_average_col = 0; |
| } |
| row_diff = (al_mv_average_row - mv_row); |
| col_diff = (al_mv_average_col - mv_col); |
| if (row_diff > 48 || row_diff < -48 || col_diff > 48 || col_diff < -48) { |
| if (bsize > BLOCK_32X32) |
| this_rdc->rdcost = this_rdc->rdcost << 1; |
| else |
| this_rdc->rdcost = 3 * this_rdc->rdcost >> 1; |
| } |
| } |
| // If noise estimation is enabled, and estimated level is above threshold, |
| // add a bias to LAST reference with small motion, for large blocks. |
| if (ne->enabled && ne->level >= kMedium && bsize >= BLOCK_32X32 && |
| is_last_frame && mv_row < 8 && mv_row > -8 && mv_col < 8 && mv_col > -8) |
| this_rdc->rdcost = 7 * (this_rdc->rdcost >> 3); |
| else if (lowvar_highsumdiff && !is_skin && bsize >= BLOCK_16X16 && |
| is_last_frame && mv_row < 16 && mv_row > -16 && mv_col < 16 && |
| mv_col > -16) |
| this_rdc->rdcost = 7 * (this_rdc->rdcost >> 3); |
| } |
| |
| #if CONFIG_VP9_TEMPORAL_DENOISING |
| static void vp9_pickmode_ctx_den_update( |
| VP9_PICKMODE_CTX_DEN *ctx_den, int64_t zero_last_cost_orig, |
| int ref_frame_cost[MAX_REF_FRAMES], |
| int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES], int reuse_inter_pred, |
| BEST_PICKMODE *bp) { |
| ctx_den->zero_last_cost_orig = zero_last_cost_orig; |
| ctx_den->ref_frame_cost = ref_frame_cost; |
| ctx_den->frame_mv = frame_mv; |
| ctx_den->reuse_inter_pred = reuse_inter_pred; |
| ctx_den->best_tx_size = bp->best_tx_size; |
| ctx_den->best_mode = bp->best_mode; |
| ctx_den->best_ref_frame = bp->best_ref_frame; |
| ctx_den->best_pred_filter = bp->best_pred_filter; |
| ctx_den->best_mode_skip_txfm = bp->best_mode_skip_txfm; |
| } |
| |
| static void recheck_zeromv_after_denoising( |
| VP9_COMP *cpi, MODE_INFO *const mi, MACROBLOCK *x, MACROBLOCKD *const xd, |
| VP9_DENOISER_DECISION decision, VP9_PICKMODE_CTX_DEN *ctx_den, |
| struct buf_2d yv12_mb[4][MAX_MB_PLANE], RD_COST *best_rdc, BLOCK_SIZE bsize, |
| int mi_row, int mi_col) { |
| // If INTRA or GOLDEN reference was selected, re-evaluate ZEROMV on |
| // denoised result. Only do this under noise conditions, and if rdcost of |
| // ZEROMV onoriginal source is not significantly higher than rdcost of best |
| // mode. |
| if (cpi->noise_estimate.enabled && cpi->noise_estimate.level > kLow && |
| ctx_den->zero_last_cost_orig < (best_rdc->rdcost << 3) && |
| ((ctx_den->best_ref_frame == INTRA_FRAME && decision >= FILTER_BLOCK) || |
| (ctx_den->best_ref_frame == GOLDEN_FRAME && |
| cpi->svc.number_spatial_layers == 1 && |
| decision == FILTER_ZEROMV_BLOCK))) { |
| // Check if we should pick ZEROMV on denoised signal. |
| VP9_COMMON *const cm = &cpi->common; |
| int rate = 0; |
| int64_t dist = 0; |
| uint32_t var_y = UINT_MAX; |
| uint32_t sse_y = UINT_MAX; |
| RD_COST this_rdc; |
| mi->mode = ZEROMV; |
| mi->ref_frame[0] = LAST_FRAME; |
| mi->ref_frame[1] = NONE; |
| set_ref_ptrs(cm, xd, mi->ref_frame[0], NONE); |
| mi->mv[0].as_int = 0; |
| mi->interp_filter = EIGHTTAP; |
| if (cpi->sf.default_interp_filter == BILINEAR) mi->interp_filter = BILINEAR; |
| xd->plane[0].pre[0] = yv12_mb[LAST_FRAME][0]; |
| vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); |
| model_rd_for_sb_y(cpi, bsize, x, xd, &rate, &dist, &var_y, &sse_y, 0); |
| this_rdc.rate = rate + ctx_den->ref_frame_cost[LAST_FRAME] + |
| cpi->inter_mode_cost[x->mbmi_ext->mode_context[LAST_FRAME]] |
| [INTER_OFFSET(ZEROMV)]; |
| this_rdc.dist = dist; |
| this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, rate, dist); |
| // Don't switch to ZEROMV if the rdcost for ZEROMV on denoised source |
| // is higher than best_ref mode (on original source). |
| if (this_rdc.rdcost > best_rdc->rdcost) { |
| this_rdc = *best_rdc; |
| mi->mode = ctx_den->best_mode; |
| mi->ref_frame[0] = ctx_den->best_ref_frame; |
| set_ref_ptrs(cm, xd, mi->ref_frame[0], NONE); |
| mi->interp_filter = ctx_den->best_pred_filter; |
| if (ctx_den->best_ref_frame == INTRA_FRAME) { |
| mi->mv[0].as_int = INVALID_MV; |
| mi->interp_filter = SWITCHABLE_FILTERS; |
| } else if (ctx_den->best_ref_frame == GOLDEN_FRAME) { |
| mi->mv[0].as_int = |
| ctx_den->frame_mv[ctx_den->best_mode][ctx_den->best_ref_frame] |
| .as_int; |
| if (ctx_den->reuse_inter_pred) { |
| xd->plane[0].pre[0] = yv12_mb[GOLDEN_FRAME][0]; |
| vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); |
| } |
| } |
| mi->tx_size = ctx_den->best_tx_size; |
| x->skip_txfm[0] = ctx_den->best_mode_skip_txfm; |
| } else { |
| ctx_den->best_ref_frame = LAST_FRAME; |
| *best_rdc = this_rdc; |
| } |
| } |
| } |
| #endif // CONFIG_VP9_TEMPORAL_DENOISING |
| |
| static INLINE int get_force_skip_low_temp_var(uint8_t *variance_low, int mi_row, |
| int mi_col, BLOCK_SIZE bsize) { |
| const int i = (mi_row & 0x7) >> 1; |
| const int j = (mi_col & 0x7) >> 1; |
| int force_skip_low_temp_var = 0; |
| // Set force_skip_low_temp_var based on the block size and block offset. |
| if (bsize == BLOCK_64X64) { |
| force_skip_low_temp_var = variance_low[0]; |
| } else if (bsize == BLOCK_64X32) { |
| if (!(mi_col & 0x7) && !(mi_row & 0x7)) { |
| force_skip_low_temp_var = variance_low[1]; |
| } else if (!(mi_col & 0x7) && (mi_row & 0x7)) { |
| force_skip_low_temp_var = variance_low[2]; |
| } |
| } else if (bsize == BLOCK_32X64) { |
| if (!(mi_col & 0x7) && !(mi_row & 0x7)) { |
| force_skip_low_temp_var = variance_low[3]; |
| } else if ((mi_col & 0x7) && !(mi_row & 0x7)) { |
| force_skip_low_temp_var = variance_low[4]; |
| } |
| } else if (bsize == BLOCK_32X32) { |
| if (!(mi_col & 0x7) && !(mi_row & 0x7)) { |
| force_skip_low_temp_var = variance_low[5]; |
| } else if ((mi_col & 0x7) && !(mi_row & 0x7)) { |
| force_skip_low_temp_var = variance_low[6]; |
| } else if (!(mi_col & 0x7) && (mi_row & 0x7)) { |
| force_skip_low_temp_var = variance_low[7]; |
| } else if ((mi_col & 0x7) && (mi_row & 0x7)) { |
| force_skip_low_temp_var = variance_low[8]; |
| } |
| } else if (bsize == BLOCK_16X16) { |
| force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]]; |
| } else if (bsize == BLOCK_32X16) { |
| // The col shift index for the second 16x16 block. |
| const int j2 = ((mi_col + 2) & 0x7) >> 1; |
| // Only if each 16x16 block inside has low temporal variance. |
| force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]] && |
| variance_low[pos_shift_16x16[i][j2]]; |
| } else if (bsize == BLOCK_16X32) { |
| // The row shift index for the second 16x16 block. |
| const int i2 = ((mi_row + 2) & 0x7) >> 1; |
| force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]] && |
| variance_low[pos_shift_16x16[i2][j]]; |
| } |
| return force_skip_low_temp_var; |
| } |
| |
| static void search_filter_ref(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *this_rdc, |
| int mi_row, int mi_col, PRED_BUFFER *tmp, |
| BLOCK_SIZE bsize, int reuse_inter_pred, |
| PRED_BUFFER **this_mode_pred, unsigned int *var_y, |
| unsigned int *sse_y, int force_smooth_filter, |
| int *this_early_term, int *flag_preduv_computed, |
| int use_model_yrd_large) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mi = xd->mi[0]; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| const int bw = num_4x4_blocks_wide_lookup[bsize] << 2; |
| |
| int pf_rate[3] = { 0 }; |
| int64_t pf_dist[3] = { 0 }; |
| int curr_rate[3] = { 0 }; |
| unsigned int pf_var[3] = { 0 }; |
| unsigned int pf_sse[3] = { 0 }; |
| TX_SIZE pf_tx_size[3] = { 0 }; |
| int64_t best_cost = INT64_MAX; |
| INTERP_FILTER best_filter = SWITCHABLE, filter; |
| PRED_BUFFER *current_pred = *this_mode_pred; |
| uint8_t skip_txfm = SKIP_TXFM_NONE; |
| int best_early_term = 0; |
| int best_flag_preduv_computed[2] = { 0 }; |
| INTERP_FILTER filter_start = force_smooth_filter ? EIGHTTAP_SMOOTH : EIGHTTAP; |
| INTERP_FILTER filter_end = EIGHTTAP_SMOOTH; |
| for (filter = filter_start; filter <= filter_end; ++filter) { |
| int64_t cost; |
| mi->interp_filter = filter; |
| vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); |
| // For large partition blocks, extra testing is done. |
| if (use_model_yrd_large) |
| model_rd_for_sb_y_large(cpi, bsize, x, xd, &pf_rate[filter], |
| &pf_dist[filter], &pf_var[filter], |
| &pf_sse[filter], mi_row, mi_col, this_early_term, |
| flag_preduv_computed); |
| else |
| model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rate[filter], &pf_dist[filter], |
| &pf_var[filter], &pf_sse[filter], 0); |
| curr_rate[filter] = pf_rate[filter]; |
| pf_rate[filter] += vp9_get_switchable_rate(cpi, xd); |
| cost = RDCOST(x->rdmult, x->rddiv, pf_rate[filter], pf_dist[filter]); |
| pf_tx_size[filter] = mi->tx_size; |
| if (cost < best_cost) { |
| best_filter = filter; |
| best_cost = cost; |
| skip_txfm = x->skip_txfm[0]; |
| best_early_term = *this_early_term; |
| best_flag_preduv_computed[0] = flag_preduv_computed[0]; |
| best_flag_preduv_computed[1] = flag_preduv_computed[1]; |
| |
| if (reuse_inter_pred) { |
| if (*this_mode_pred != current_pred) { |
| free_pred_buffer(*this_mode_pred); |
| *this_mode_pred = current_pred; |
| } |
| if (filter != filter_end) { |
| current_pred = &tmp[get_pred_buffer(tmp, 3)]; |
| pd->dst.buf = current_pred->data; |
| pd->dst.stride = bw; |
| } |
| } |
| } |
| } |
| |
| if (reuse_inter_pred && *this_mode_pred != current_pred) |
| free_pred_buffer(current_pred); |
| |
| mi->interp_filter = best_filter; |
| mi->tx_size = pf_tx_size[best_filter]; |
| this_rdc->rate = curr_rate[best_filter]; |
| this_rdc->dist = pf_dist[best_filter]; |
| *var_y = pf_var[best_filter]; |
| *sse_y = pf_sse[best_filter]; |
| x->skip_txfm[0] = skip_txfm; |
| *this_early_term = best_early_term; |
| flag_preduv_computed[0] = best_flag_preduv_computed[0]; |
| flag_preduv_computed[1] = best_flag_preduv_computed[1]; |
| if (reuse_inter_pred) { |
| pd->dst.buf = (*this_mode_pred)->data; |
| pd->dst.stride = (*this_mode_pred)->stride; |
| } else if (best_filter < filter_end) { |
| mi->interp_filter = best_filter; |
| vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); |
| } |
| } |
| |
| static int search_new_mv(VP9_COMP *cpi, MACROBLOCK *x, |
| int_mv frame_mv[][MAX_REF_FRAMES], |
| MV_REFERENCE_FRAME ref_frame, int gf_temporal_ref, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int best_pred_sad, int *rate_mv, |
| unsigned int best_sse_sofar, RD_COST *best_rdc) { |
| SVC *const svc = &cpi->svc; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mi = xd->mi[0]; |
| SPEED_FEATURES *const sf = &cpi->sf; |
| |
| if (ref_frame > LAST_FRAME && gf_temporal_ref && |
| cpi->oxcf.rc_mode == VPX_CBR) { |
| int tmp_sad; |
| uint32_t dis; |
| int cost_list[5] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX, INT_MAX }; |
| |
| if (bsize < BLOCK_16X16) return -1; |
| |
| tmp_sad = vp9_int_pro_motion_estimation( |
| cpi, x, bsize, mi_row, mi_col, |
| &x->mbmi_ext->ref_mvs[ref_frame][0].as_mv); |
| |
| if (tmp_sad > x->pred_mv_sad[LAST_FRAME]) return -1; |
| if (tmp_sad + (num_pels_log2_lookup[bsize] << 4) > best_pred_sad) return -1; |
| |
| frame_mv[NEWMV][ref_frame].as_int = mi->mv[0].as_int; |
| *rate_mv = vp9_mv_bit_cost(&frame_mv[NEWMV][ref_frame].as_mv, |
| &x->mbmi_ext->ref_mvs[ref_frame][0].as_mv, |
| x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); |
| frame_mv[NEWMV][ref_frame].as_mv.row >>= 3; |
| frame_mv[NEWMV][ref_frame].as_mv.col >>= 3; |
| |
| cpi->find_fractional_mv_step( |
| x, &frame_mv[NEWMV][ref_frame].as_mv, |
| &x->mbmi_ext->ref_mvs[ref_frame][0].as_mv, |
| cpi->common.allow_high_precision_mv, x->errorperbit, |
| &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, |
| cpi->sf.mv.subpel_search_level, cond_cost_list(cpi, cost_list), |
| x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref_frame], NULL, 0, 0, |
| cpi->sf.use_accurate_subpel_search); |
| } else if (svc->use_base_mv && svc->spatial_layer_id) { |
| if (frame_mv[NEWMV][ref_frame].as_int != INVALID_MV) { |
| const int pre_stride = xd->plane[0].pre[0].stride; |
| unsigned int base_mv_sse = UINT_MAX; |
| int scale = (cpi->rc.avg_frame_low_motion > 60) ? 2 : 4; |
| const uint8_t *const pre_buf = |
| xd->plane[0].pre[0].buf + |
| (frame_mv[NEWMV][ref_frame].as_mv.row >> 3) * pre_stride + |
| (frame_mv[NEWMV][ref_frame].as_mv.col >> 3); |
| cpi->fn_ptr[bsize].vf(x->plane[0].src.buf, x->plane[0].src.stride, |
| pre_buf, pre_stride, &base_mv_sse); |
| |
| // Exit NEWMV search if base_mv is (0,0) && bsize < BLOCK_16x16, |
| // for SVC encoding. |
| if (cpi->use_svc && svc->use_base_mv && bsize < BLOCK_16X16 && |
| frame_mv[NEWMV][ref_frame].as_mv.row == 0 && |
| frame_mv[NEWMV][ref_frame].as_mv.col == 0) |
| return -1; |
| |
| // Exit NEWMV search if base_mv_sse is large. |
| if (sf->base_mv_aggressive && base_mv_sse > (best_sse_sofar << scale)) |
| return -1; |
| if (base_mv_sse < (best_sse_sofar << 1)) { |
| // Base layer mv is good. |
| // Exit NEWMV search if the base_mv is (0, 0) and sse is low, since |
| // (0, 0) mode is already tested. |
| unsigned int base_mv_sse_normalized = |
| base_mv_sse >> |
| (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); |
| if (sf->base_mv_aggressive && base_mv_sse <= best_sse_sofar && |
| base_mv_sse_normalized < 400 && |
| frame_mv[NEWMV][ref_frame].as_mv.row == 0 && |
| frame_mv[NEWMV][ref_frame].as_mv.col == 0) |
| return -1; |
| if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col, |
| &frame_mv[NEWMV][ref_frame], rate_mv, |
| best_rdc->rdcost, 1)) { |
| return -1; |
| } |
| } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col, |
| &frame_mv[NEWMV][ref_frame], rate_mv, |
| best_rdc->rdcost, 0)) { |
| return -1; |
| } |
| } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col, |
| &frame_mv[NEWMV][ref_frame], rate_mv, |
| best_rdc->rdcost, 0)) { |
| return -1; |
| } |
| } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col, |
| &frame_mv[NEWMV][ref_frame], rate_mv, |
| best_rdc->rdcost, 0)) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static INLINE void init_best_pickmode(BEST_PICKMODE *bp) { |
| bp->best_mode = ZEROMV; |
| bp->best_ref_frame = LAST_FRAME; |
| bp->best_tx_size = TX_SIZES; |
| bp->best_intra_tx_size = TX_SIZES; |
| bp->best_pred_filter = EIGHTTAP; |
| bp->best_mode_skip_txfm = SKIP_TXFM_NONE; |
| bp->best_second_ref_frame = NONE; |
| bp->best_pred = NULL; |
| } |
| |
| void vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x, TileDataEnc *tile_data, |
| int mi_row, int mi_col, RD_COST *rd_cost, |
| BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { |
| VP9_COMMON *const cm = &cpi->common; |
| SPEED_FEATURES *const sf = &cpi->sf; |
| SVC *const svc = &cpi->svc; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mi = xd->mi[0]; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| |
| BEST_PICKMODE best_pickmode; |
| |
| MV_REFERENCE_FRAME ref_frame; |
| MV_REFERENCE_FRAME usable_ref_frame, second_ref_frame; |
| int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES]; |
| uint8_t mode_checked[MB_MODE_COUNT][MAX_REF_FRAMES]; |
| struct buf_2d yv12_mb[4][MAX_MB_PLANE]; |
| static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, |
| VP9_ALT_FLAG }; |
| RD_COST this_rdc, best_rdc; |
| // var_y and sse_y are saved to be used in skipping checking |
| unsigned int var_y = UINT_MAX; |
| unsigned int sse_y = UINT_MAX; |
| const int intra_cost_penalty = |
| vp9_get_intra_cost_penalty(cpi, bsize, cm->base_qindex, cm->y_dc_delta_q); |
| int64_t inter_mode_thresh = |
| RDCOST(x->rdmult, x->rddiv, intra_cost_penalty, 0); |
| const int *const rd_threshes = cpi->rd.threshes[mi->segment_id][bsize]; |
| const int sb_row = mi_row >> MI_BLOCK_SIZE_LOG2; |
| int thresh_freq_fact_idx = (sb_row * BLOCK_SIZES + bsize) * MAX_MODES; |
| const int *const rd_thresh_freq_fact = |
| (cpi->sf.adaptive_rd_thresh_row_mt) |
| ? &(tile_data->row_base_thresh_freq_fact[thresh_freq_fact_idx]) |
| : tile_data->thresh_freq_fact[bsize]; |
| #if CONFIG_VP9_TEMPORAL_DENOISING |
| const int denoise_recheck_zeromv = 1; |
| #endif |
| INTERP_FILTER filter_ref; |
| int pred_filter_search = cm->interp_filter == SWITCHABLE; |
| int const_motion[MAX_REF_FRAMES] = { 0 }; |
| const int bh = num_4x4_blocks_high_lookup[bsize] << 2; |
| const int bw = num_4x4_blocks_wide_lookup[bsize] << 2; |
| // For speed 6, the result of interp filter is reused later in actual encoding |
| // process. |
| // tmp[3] points to dst buffer, and the other 3 point to allocated buffers. |
| PRED_BUFFER tmp[4]; |
| DECLARE_ALIGNED(16, uint8_t, pred_buf[3 * 64 * 64] VPX_UNINITIALIZED); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| DECLARE_ALIGNED(16, uint16_t, pred_buf_16[3 * 64 * 64] VPX_UNINITIALIZED); |
| #endif |
| struct buf_2d orig_dst = pd->dst; |
| PRED_BUFFER *this_mode_pred = NULL; |
| const int pixels_in_block = bh * bw; |
| int reuse_inter_pred = cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready; |
| int ref_frame_skip_mask = 0; |
| int idx; |
| int best_pred_sad = INT_MAX; |
| int best_early_term = 0; |
| int ref_frame_cost[MAX_REF_FRAMES]; |
| int svc_force_zero_mode[3] = { 0 }; |
| int perform_intra_pred = 1; |
| int use_golden_nonzeromv = 1; |
| int force_skip_low_temp_var = 0; |
| int skip_ref_find_pred[4] = { 0 }; |
| unsigned int sse_zeromv_normalized = UINT_MAX; |
| unsigned int best_sse_sofar = UINT_MAX; |
| int gf_temporal_ref = 0; |
| int force_test_gf_zeromv = 0; |
| #if CONFIG_VP9_TEMPORAL_DENOISING |
| VP9_PICKMODE_CTX_DEN ctx_den; |
| int64_t zero_last_cost_orig = INT64_MAX; |
| int denoise_svc_pickmode = 1; |
| #endif |
| INTERP_FILTER filter_gf_svc = EIGHTTAP; |
| MV_REFERENCE_FRAME inter_layer_ref = GOLDEN_FRAME; |
| const struct segmentation *const seg = &cm->seg; |
| int comp_modes = 0; |
| int num_inter_modes = (cpi->use_svc) ? RT_INTER_MODES_SVC : RT_INTER_MODES; |
| int flag_svc_subpel = 0; |
| int svc_mv_col = 0; |
| int svc_mv_row = 0; |
| int no_scaling = 0; |
| int large_block = 0; |
| int use_model_yrd_large = 0; |
| unsigned int thresh_svc_skip_golden = 500; |
| unsigned int thresh_skip_golden = 500; |
| int force_smooth_filter = cpi->sf.force_smooth_interpol; |
| int scene_change_detected = |
| cpi->rc.high_source_sad || |
| (cpi->use_svc && cpi->svc.high_source_sad_superframe); |
| |
| init_best_pickmode(&best_pickmode); |
| |
| x->encode_breakout = seg->enabled |
| ? cpi->segment_encode_breakout[mi->segment_id] |
| : cpi->encode_breakout; |
| |
| x->source_variance = UINT_MAX; |
| if (cpi->sf.default_interp_filter == BILINEAR) { |
| best_pickmode.best_pred_filter = BILINEAR; |
| filter_gf_svc = BILINEAR; |
| } |
| if (cpi->use_svc && svc->spatial_layer_id > 0) { |
| int layer = |
| LAYER_IDS_TO_IDX(svc->spatial_layer_id - 1, svc->temporal_layer_id, |
| svc->number_temporal_layers); |
| LAYER_CONTEXT *const lc = &svc->layer_context[layer]; |
| if (lc->scaling_factor_num == lc->scaling_factor_den) no_scaling = 1; |
| } |
| if (svc->spatial_layer_id > 0 && |
| (svc->high_source_sad_superframe || no_scaling)) |
| thresh_svc_skip_golden = 0; |
| // Lower the skip threshold if lower spatial layer is better quality relative |
| // to current layer. |
| else if (svc->spatial_layer_id > 0 && cm->base_qindex > 150 && |
| cm->base_qindex > svc->lower_layer_qindex + 15) |
| thresh_svc_skip_golden = 100; |
| // Increase skip threshold if lower spatial layer is lower quality relative |
| // to current layer. |
| else if (svc->spatial_layer_id > 0 && cm->base_qindex < 140 && |
| cm->base_qindex < svc->lower_layer_qindex - 20) |
| thresh_svc_skip_golden = 1000; |
| |
| if (!cpi->use_svc || |
| (svc->use_gf_temporal_ref_current_layer && |
| !svc->layer_context[svc->temporal_layer_id].is_key_frame)) { |
| struct scale_factors *const sf_last = &cm->frame_refs[LAST_FRAME - 1].sf; |
| struct scale_factors *const sf_golden = |
| &cm->frame_refs[GOLDEN_FRAME - 1].sf; |
| gf_temporal_ref = 1; |
| // For temporal long term prediction, check that the golden reference |
| // is same scale as last reference, otherwise disable. |
| if ((sf_last->x_scale_fp != sf_golden->x_scale_fp) || |
| (sf_last->y_scale_fp != sf_golden->y_scale_fp)) { |
| gf_temporal_ref = 0; |
| } else { |
| if (cpi->rc.avg_frame_low_motion > 70) |
| thresh_svc_skip_golden = 500; |
| else |
| thresh_svc_skip_golden = 0; |
| } |
| } |
| |
| init_ref_frame_cost(cm, xd, ref_frame_cost); |
| memset(&mode_checked[0][0], 0, MB_MODE_COUNT * MAX_REF_FRAMES); |
| |
| if (reuse_inter_pred) { |
| int i; |
| for (i = 0; i < 3; i++) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) |
| tmp[i].data = CONVERT_TO_BYTEPTR(&pred_buf_16[pixels_in_block * i]); |
| else |
| tmp[i].data = &pred_buf[pixels_in_block * i]; |
| #else |
| tmp[i].data = &pred_buf[pixels_in_block * i]; |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| tmp[i].stride = bw; |
| tmp[i].in_use = 0; |
| } |
| tmp[3].data = pd->dst.buf; |
| tmp[3].stride = pd->dst.stride; |
| tmp[3].in_use = 0; |
| } |
| |
| x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH; |
| x->skip = 0; |
| |
| if (cpi->sf.cb_pred_filter_search) { |
| const int bsl = mi_width_log2_lookup[bsize]; |
| pred_filter_search = cm->interp_filter == SWITCHABLE |
| ? (((mi_row + mi_col) >> bsl) + |
| get_chessboard_index(cm->current_video_frame)) & |
| 0x1 |
| : 0; |
| } |
| // Instead of using vp9_get_pred_context_switchable_interp(xd) to assign |
| // filter_ref, we use a less strict condition on assigning filter_ref. |
| // This is to reduce the probabily of entering the flow of not assigning |
| // filter_ref and then skip filter search. |
| filter_ref = cm->interp_filter; |
| if (cpi->sf.default_interp_filter != BILINEAR) { |
| if (xd->above_mi && is_inter_block(xd->above_mi)) |
| filter_ref = xd->above_mi->interp_filter; |
| else if (xd->left_mi && is_inter_block(xd->left_mi)) |
| filter_ref = xd->left_mi->interp_filter; |
| } |
| |
| // initialize mode decisions |
| vp9_rd_cost_reset(&best_rdc); |
| vp9_rd_cost_reset(rd_cost); |
| mi->sb_type = bsize; |
| mi->ref_frame[0] = NONE; |
| mi->ref_frame[1] = NONE; |
| |
| mi->tx_size = |
| VPXMIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[cm->tx_mode]); |
| |
| if (sf->short_circuit_flat_blocks || sf->limit_newmv_early_exit) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| x->source_variance = vp9_high_get_sby_perpixel_variance( |
| cpi, &x->plane[0].src, bsize, xd->bd); |
| else |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| x->source_variance = |
| vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); |
| |
| if (cpi->oxcf.content == VP9E_CONTENT_SCREEN && |
| cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && mi->segment_id > 0 && |
| x->zero_temp_sad_source && x->source_variance == 0) { |
| mi->segment_id = 0; |
| vp9_init_plane_quantizers(cpi, x); |
| } |
| } |
| |
| #if CONFIG_VP9_TEMPORAL_DENOISING |
| if (cpi->oxcf.noise_sensitivity > 0) { |
| if (cpi->use_svc) denoise_svc_pickmode = vp9_denoise_svc_non_key(cpi); |
| if (cpi->denoiser.denoising_level > kDenLowLow && denoise_svc_pickmode) |
| vp9_denoiser_reset_frame_stats(ctx); |
| } |
| #endif |
| |
| if (cpi->rc.frames_since_golden == 0 && gf_temporal_ref && |
| !cpi->rc.alt_ref_gf_group && !cpi->rc.last_frame_is_src_altref) { |
| usable_ref_frame = LAST_FRAME; |
| } else { |
| usable_ref_frame = GOLDEN_FRAME; |
| } |
| |
| if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR) { |
| if (cpi->rc.alt_ref_gf_group || cpi->rc.is_src_frame_alt_ref) |
| usable_ref_frame = ALTREF_FRAME; |
| |
| if (cpi->rc.is_src_frame_alt_ref) { |
| skip_ref_find_pred[LAST_FRAME] = 1; |
| skip_ref_find_pred[GOLDEN_FRAME] = 1; |
| } |
| if (!cm->show_frame) { |
| if (cpi->rc.frames_since_key == 1) { |
| usable_ref_frame = LAST_FRAME; |
| skip_ref_find_pred[GOLDEN_FRAME] = 1; |
| skip_ref_find_pred[ALTREF_FRAME] = 1; |
| } |
| } |
| } |
| |
| // For svc mode, on spatial_layer_id > 0: if the reference has different scale |
| // constrain the inter mode to only test zero motion. |
| if (cpi->use_svc && svc->force_zero_mode_spatial_ref && |
| svc->spatial_layer_id > 0 && !gf_temporal_ref) { |
| if (cpi->ref_frame_flags & flag_list[LAST_FRAME]) { |
| struct scale_factors *const sf = &cm->frame_refs[LAST_FRAME - 1].sf; |
| if (vp9_is_scaled(sf)) { |
| svc_force_zero_mode[LAST_FRAME - 1] = 1; |
| inter_layer_ref = LAST_FRAME; |
| } |
| } |
| if (cpi->ref_frame_flags & flag_list[GOLDEN_FRAME]) { |
| struct scale_factors *const sf = &cm->frame_refs[GOLDEN_FRAME - 1].sf; |
| if (vp9_is_scaled(sf)) { |
| svc_force_zero_mode[GOLDEN_FRAME - 1] = 1; |
| inter_layer_ref = GOLDEN_FRAME; |
| } |
| } |
| } |
| |
| if (cpi->sf.short_circuit_low_temp_var) { |
| force_skip_low_temp_var = |
| get_force_skip_low_temp_var(&x->variance_low[0], mi_row, mi_col, bsize); |
| // If force_skip_low_temp_var is set, and for short circuit mode = 1 and 3, |
| // skip golden reference. |
| if ((cpi->sf.short_circuit_low_temp_var == 1 || |
| cpi->sf.short_circuit_low_temp_var == 3) && |
| force_skip_low_temp_var) { |
| usable_ref_frame = LAST_FRAME; |
| } |
| } |
| |
| if (sf->disable_golden_ref && (x->content_state_sb != kVeryHighSad || |
| cpi->rc.avg_frame_low_motion < 60)) |
| usable_ref_frame = LAST_FRAME; |
| |
| if (!((cpi->ref_frame_flags & flag_list[GOLDEN_FRAME]) && |
| !svc_force_zero_mode[GOLDEN_FRAME - 1] && !force_skip_low_temp_var)) |
| use_golden_nonzeromv = 0; |
| |
| if (cpi->oxcf.speed >= 8 && !cpi->use_svc && |
| ((cpi->rc.frames_since_golden + 1) < x->last_sb_high_content || |
| x->last_sb_high_content > 40 || cpi->rc.frames_since_golden > 120)) |
| usable_ref_frame = LAST_FRAME; |
| |
| // Compound prediction modes: (0,0) on LAST/GOLDEN and ARF. |
| if (cm->reference_mode == REFERENCE_MODE_SELECT && |
| cpi->sf.use_compound_nonrd_pickmode && usable_ref_frame == ALTREF_FRAME) |
| comp_modes = 2; |
| |
| // If the segment reference frame feature is enabled and it's set to GOLDEN |
| // reference, then make sure we don't skip checking GOLDEN, this is to |
| // prevent possibility of not picking any mode. |
| if (segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME) && |
| get_segdata(seg, mi->segment_id, SEG_LVL_REF_FRAME) == GOLDEN_FRAME) { |
| usable_ref_frame = GOLDEN_FRAME; |
| skip_ref_find_pred[GOLDEN_FRAME] = 0; |
| thresh_svc_skip_golden = 0; |
| } |
| |
| for (ref_frame = LAST_FRAME; ref_frame <= usable_ref_frame; ++ref_frame) { |
| // Skip find_predictor if the reference frame is not in the |
| // ref_frame_flags (i.e., not used as a reference for this frame). |
| skip_ref_find_pred[ref_frame] = |
| !(cpi->ref_frame_flags & flag_list[ref_frame]); |
| if (!skip_ref_find_pred[ref_frame]) { |
| find_predictors(cpi, x, ref_frame, frame_mv, const_motion, |
| &ref_frame_skip_mask, flag_list, tile_data, mi_row, |
| mi_col, yv12_mb, bsize, force_skip_low_temp_var, |
| comp_modes > 0); |
| } |
| } |
| |
| if (cpi->use_svc || cpi->oxcf.speed <= 7 || bsize < BLOCK_32X32) |
| x->sb_use_mv_part = 0; |
| |
| // Set the flag_svc_subpel to 1 for SVC if the lower spatial layer used |
| // an averaging filter for downsampling (phase = 8). If so, we will test |
| // a nonzero motion mode on the spatial reference. |
| // The nonzero motion is half pixel shifted to left and top (-4, -4). |
| if (cpi->use_svc && svc->spatial_layer_id > 0 && |
| svc_force_zero_mode[inter_layer_ref - 1] && |
| svc->downsample_filter_phase[svc->spatial_layer_id - 1] == 8 && |
| !gf_temporal_ref) { |
| svc_mv_col = -4; |
| svc_mv_row = -4; |
| flag_svc_subpel = 1; |
| } |
| |
| // For SVC with quality layers, when QP of lower layer is lower |
| // than current layer: force check of GF-ZEROMV before early exit |
| // due to skip flag. |
| if (svc->spatial_layer_id > 0 && no_scaling && |
| (cpi->ref_frame_flags & flag_list[GOLDEN_FRAME]) && |
| cm->base_qindex > svc->lower_layer_qindex + 10) |
| force_test_gf_zeromv = 1; |
| |
| // For low motion content use x->sb_is_skin in addition to VeryHighSad |
| // for setting large_block. |
| large_block = (x->content_state_sb == kVeryHighSad || |
| (x->sb_is_skin && cpi->rc.avg_frame_low_motion > 70) || |
| cpi->oxcf.speed < 7) |
| ? bsize > BLOCK_32X32 |
| : bsize >= BLOCK_32X32; |
| use_model_yrd_large = |
| cpi->oxcf.rc_mode == VPX_CBR && large_block && |
| !cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) && |
| cm->base_qindex; |
| |
| for (idx = 0; idx < num_inter_modes + comp_modes; ++idx) { |
| int rate_mv = 0; |
| int mode_rd_thresh; |
| int mode_index; |
| int i; |
| int64_t this_sse; |
| int is_skippable; |
| int this_early_term = 0; |
| int rd_computed = 0; |
| int flag_preduv_computed[2] = { 0 }; |
| int inter_mv_mode = 0; |
| int skip_this_mv = 0; |
| int comp_pred = 0; |
| int force_mv_inter_layer = 0; |
| PREDICTION_MODE this_mode; |
| second_ref_frame = NONE; |
| |
| if (idx < num_inter_modes) { |
| this_mode = ref_mode_set[idx].pred_mode; |
| ref_frame = ref_mode_set[idx].ref_frame; |
| |
| if (cpi->use_svc) { |
| this_mode = ref_mode_set_svc[idx].pred_mode; |
| ref_frame = ref_mode_set_svc[idx].ref_frame; |
| } |
| } else { |
| // Add (0,0) compound modes. |
| this_mode = ZEROMV; |
| ref_frame = LAST_FRAME; |
| if (idx == num_inter_modes + comp_modes - 1) ref_frame = GOLDEN_FRAME; |
| second_ref_frame = ALTREF_FRAME; |
| comp_pred = 1; |
| } |
| |
| if (ref_frame > usable_ref_frame) continue; |
| if (skip_ref_find_pred[ref_frame]) continue; |
| |
| if (svc->previous_frame_is_intra_only) { |
| if (ref_frame != LAST_FRAME || frame_mv[this_mode][ref_frame].as_int != 0) |
| continue; |
| } |
| |
| // If the segment reference frame feature is enabled then do nothing if the |
| // current ref frame is not allowed. |
| if (segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME) && |
| get_segdata(seg, mi->segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) |
| continue; |
| |
| if (flag_svc_subpel && ref_frame == inter_layer_ref) { |
| force_mv_inter_layer = 1; |
| // Only test mode if NEARESTMV/NEARMV is (svc_mv_col, svc_mv_row), |
| // otherwise set NEWMV to (svc_mv_col, svc_mv_row). |
| if (this_mode == NEWMV) { |
| frame_mv[this_mode][ref_frame].as_mv.col = svc_mv_col; |
| frame_mv[this_mode][ref_frame].as_mv.row = svc_mv_row; |
| } else if (frame_mv[this_mode][ref_frame].as_mv.col != svc_mv_col || |
| frame_mv[this_mode][ref_frame].as_mv.row != svc_mv_row) { |
| continue; |
| } |
| } |
| |
| if (comp_pred) { |
| if (!cpi->allow_comp_inter_inter) continue; |
| // Skip compound inter modes if ARF is not available. |
| if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) continue; |
| // Do not allow compound prediction if the segment level reference frame |
| // feature is in use as in this case there can only be one reference. |
| if (segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME)) continue; |
| } |
| |
| // For CBR mode: skip the golden reference search if sse of zeromv_last is |
| // below threshold. |
| if (ref_frame == GOLDEN_FRAME && cpi->oxcf.rc_mode == VPX_CBR && |
| ((cpi->use_svc && sse_zeromv_normalized < thresh_svc_skip_golden) || |
| (!cpi->use_svc && sse_zeromv_normalized < thresh_skip_golden))) |
| continue; |
| |
| if (!(cpi->ref_frame_flags & flag_list[ref_frame])) continue; |
| |
| // For screen content. If zero_temp_sad source is computed: skip |
| // non-zero motion check for stationary blocks. If the superblock is |
| // non-stationary then for flat blocks skip the zero last check (keep golden |
| // as it may be inter-layer reference). Otherwise (if zero_temp_sad_source |
| // is not computed) skip non-zero motion check for flat blocks. |
| // TODO(marpan): Compute zero_temp_sad_source per coding block. |
| if (cpi->oxcf.content == VP9E_CONTENT_SCREEN) { |
| if (cpi->compute_source_sad_onepass && cpi->sf.use_source_sad) { |
| if ((frame_mv[this_mode][ref_frame].as_int != 0 && |
| x->zero_temp_sad_source) || |
| (frame_mv[this_mode][ref_frame].as_int == 0 && |
| x->source_variance == 0 && ref_frame == LAST_FRAME && |
| !x->zero_temp_sad_source)) |
| continue; |
| } else if (frame_mv[this_mode][ref_frame].as_int != 0 && |
| x->source_variance == 0) { |
| continue; |
| } |
| } |
| |
| if (!(cpi->sf.inter_mode_mask[bsize] & (1 << this_mode))) continue; |
| |
| if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR) { |
| if (cpi->rc.is_src_frame_alt_ref && |
| (ref_frame != ALTREF_FRAME || |
| frame_mv[this_mode][ref_frame].as_int != 0)) |
| continue; |
| |
| if (!cm->show_frame && ref_frame == ALTREF_FRAME && |
| frame_mv[this_mode][ref_frame].as_int != 0) |
| continue; |
| |
| if (cpi->rc.alt_ref_gf_group && cm->show_frame && |
| cpi->rc.frames_since_golden > (cpi->rc.baseline_gf_interval >> 1) && |
| ref_frame == GOLDEN_FRAME && |
| frame_mv[this_mode][ref_frame].as_int != 0) |
| continue; |
| |
| if (cpi->rc.alt_ref_gf_group && cm->show_frame && |
| cpi->rc.frames_since_golden > 0 && |
| cpi->rc.frames_since_golden < (cpi->rc.baseline_gf_interval >> 1) && |
| ref_frame == ALTREF_FRAME && |
| frame_mv[this_mode][ref_frame].as_int != 0) |
| continue; |
| } |
| |
| if (const_motion[ref_frame] && this_mode == NEARMV) continue; |
| |
| // Skip non-zeromv mode search for golden frame if force_skip_low_temp_var |
| // is set. If nearestmv for golden frame is 0, zeromv mode will be skipped |
| // later. |
| if (!force_mv_inter_layer && force_skip_low_temp_var && |
| ref_frame == GOLDEN_FRAME && |
| frame_mv[this_mode][ref_frame].as_int != 0) { |
| continue; |
| } |
| |
| if (x->content_state_sb != kVeryHighSad && |
| (cpi->sf.short_circuit_low_temp_var >= 2 || |
| (cpi->sf.short_circuit_low_temp_var == 1 && bsize == BLOCK_64X64)) && |
| force_skip_low_temp_var && ref_frame == LAST_FRAME && |
| this_mode == NEWMV) { |
| continue; |
| } |
| |
| if (cpi->use_svc) { |
| if (!force_mv_inter_layer && svc_force_zero_mode[ref_frame - 1] && |
| frame_mv[this_mode][ref_frame].as_int != 0) |
| continue; |
| } |
| |
| // Disable this drop out case if the ref frame segment level feature is |
| // enabled for this segment. This is to prevent the possibility that we end |
| // up unable to pick any mode. |
| if (!segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME)) { |
| if (sf->reference_masking && |
| !(frame_mv[this_mode][ref_frame].as_int == 0 && |
| ref_frame == LAST_FRAME)) { |
| if (usable_ref_frame < ALTREF_FRAME) { |
| if (!force_skip_low_temp_var && usable_ref_frame > LAST_FRAME) { |
| i = (ref_frame == LAST_FRAME) ? GOLDEN_FRAME : LAST_FRAME; |
| if ((cpi->ref_frame_flags & flag_list[i])) |
| if (x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[i] << 1)) |
| ref_frame_skip_mask |= (1 << ref_frame); |
| } |
| } else if (!cpi->rc.is_src_frame_alt_ref && |
| !(frame_mv[this_mode][ref_frame].as_int == 0 && |
| ref_frame == ALTREF_FRAME)) { |
| int ref1 = (ref_frame == GOLDEN_FRAME) ? LAST_FRAME : GOLDEN_FRAME; |
| int ref2 = (ref_frame == ALTREF_FRAME) ? LAST_FRAME : ALTREF_FRAME; |
| if (((cpi->ref_frame_flags & flag_list[ref1]) && |
| (x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[ref1] << 1))) || |
| ((cpi->ref_frame_flags & flag_list[ref2]) && |
| (x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[ref2] << 1)))) |
| ref_frame_skip_mask |= (1 << ref_frame); |
| } |
| } |
| if (ref_frame_skip_mask & (1 << ref_frame)) continue; |
| } |
| |
| // Select prediction reference frames. |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; |
| if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i]; |
| } |
| |
| mi->ref_frame[0] = ref_frame; |
| mi->ref_frame[1] = second_ref_frame; |
| set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); |
| |
| mode_index = mode_idx[ref_frame][INTER_OFFSET(this_mode)]; |
| mode_rd_thresh = best_pickmode.best_mode_skip_txfm |
| ? rd_threshes[mode_index] << 1 |
| : rd_threshes[mode_index]; |
| |
| // Increase mode_rd_thresh value for GOLDEN_FRAME for improved encoding |
| // speed with little/no subjective quality loss. |
| if (cpi->sf.bias_golden && ref_frame == GOLDEN_FRAME && |
| cpi->rc.frames_since_golden > 4) |
| mode_rd_thresh = mode_rd_thresh << 3; |
| |
| if ((cpi->sf.adaptive_rd_thresh_row_mt && |
| rd_less_than_thresh_row_mt(best_rdc.rdcost, mode_rd_thresh, |
| &rd_thresh_freq_fact[mode_index])) || |
| (!cpi->sf.adaptive_rd_thresh_row_mt && |
| rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh, |
| &rd_thresh_freq_fact[mode_index]))) |
| if (frame_mv[this_mode][ref_frame].as_int != 0) continue; |
| |
| if (this_mode == NEWMV && !force_mv_inter_layer) { |
| if (search_new_mv(cpi, x, frame_mv, ref_frame, gf_temporal_ref, bsize, |
| mi_row, mi_col, best_pred_sad, &rate_mv, best_sse_sofar, |
| &best_rdc)) |
| continue; |
| } |
| |
| // TODO(jianj): Skipping the testing of (duplicate) non-zero motion vector |
| // causes some regression, leave it for duplicate zero-mv for now, until |
| // regression issue is resolved. |
| for (inter_mv_mode = NEARESTMV; inter_mv_mode <= NEWMV; inter_mv_mode++) { |
| if (inter_mv_mode == this_mode || comp_pred) continue; |
| if (mode_checked[inter_mv_mode][ref_frame] && |
| frame_mv[this_mode][ref_frame].as_int == |
| frame_mv[inter_mv_mode][ref_frame].as_int && |
| frame_mv[inter_mv_mode][ref_frame].as_int == 0) { |
| skip_this_mv = 1; |
| break; |
| } |
| } |
| |
| if (skip_this_mv) continue; |
| |
| // If use_golden_nonzeromv is false, NEWMV mode is skipped for golden, no |
| // need to compute best_pred_sad which is only used to skip golden NEWMV. |
| if (use_golden_nonzeromv && this_mode == NEWMV && ref_frame == LAST_FRAME && |
| frame_mv[NEWMV][LAST_FRAME].as_int != INVALID_MV) { |
| const int pre_stride = xd->plane[0].pre[0].stride; |
| const uint8_t *const pre_buf = |
| xd->plane[0].pre[0].buf + |
| (frame_mv[NEWMV][LAST_FRAME].as_mv.row >> 3) * pre_stride + |
| (frame_mv[NEWMV][LAST_FRAME].as_mv.col >> 3); |
| best_pred_sad = cpi->fn_ptr[bsize].sdf( |
| x->plane[0].src.buf, x->plane[0].src.stride, pre_buf, pre_stride); |
| x->pred_mv_sad[LAST_FRAME] = best_pred_sad; |
| } |
| |
| if (this_mode != NEARESTMV && !comp_pred && |
| frame_mv[this_mode][ref_frame].as_int == |
| frame_mv[NEARESTMV][ref_frame].as_int) |
| continue; |
| |
| mi->mode = this_mode; |
| mi->mv[0].as_int = frame_mv[this_mode][ref_frame].as_int; |
| mi->mv[1].as_int = 0; |
| |
| // Search for the best prediction filter type, when the resulting |
| // motion vector is at sub-pixel accuracy level for luma component, i.e., |
| // the last three bits are all zeros. |
| if (reuse_inter_pred) { |
| if (!this_mode_pred) { |
| this_mode_pred = &tmp[3]; |
| } else { |
| this_mode_pred = &tmp[get_pred_buffer(tmp, 3)]; |
| pd->dst.buf = this_mode_pred->data; |
| pd->dst.stride = bw; |
| } |
| } |
| |
| if ((this_mode == NEWMV || filter_ref == SWITCHABLE) && |
| pred_filter_search && |
| (ref_frame == LAST_FRAME || |
| (ref_frame == GOLDEN_FRAME && !force_mv_inter_layer && |
| (cpi->use_svc || cpi->oxcf.rc_mode == VPX_VBR))) && |
| (((mi->mv[0].as_mv.row | mi->mv[0].as_mv.col) & 0x07) != 0)) { |
| rd_computed = 1; |
| search_filter_ref(cpi, x, &this_rdc, mi_row, mi_col, tmp, bsize, |
| reuse_inter_pred, &this_mode_pred, &var_y, &sse_y, |
| force_smooth_filter, &this_early_term, |
| flag_preduv_computed, use_model_yrd_large); |
| } else { |
| mi->interp_filter = (filter_ref == SWITCHABLE) ? EIGHTTAP : filter_ref; |
| |
| if (cpi->use_svc && ref_frame == GOLDEN_FRAME && |
| svc_force_zero_mode[ref_frame - 1]) |
| mi->interp_filter = filter_gf_svc; |
| |
| vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); |
| |
| // For large partition blocks, extra testing is done. |
| if (use_model_yrd_large) { |
| rd_computed = 1; |
| model_rd_for_sb_y_large(cpi, bsize, x, xd, &this_rdc.rate, |
| &this_rdc.dist, &var_y, &sse_y, mi_row, mi_col, |
| &this_early_term, flag_preduv_computed); |
| } else { |
| rd_computed = 1; |
| model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist, |
| &var_y, &sse_y, 0); |
| } |
| // Save normalized sse (between current and last frame) for (0, 0) motion. |
| if (ref_frame == LAST_FRAME && |
| frame_mv[this_mode][ref_frame].as_int == 0) { |
| sse_zeromv_normalized = |
| sse_y >> (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); |
| } |
| if (sse_y < best_sse_sofar) best_sse_sofar = sse_y; |
| } |
| |
| if (!this_early_term) { |
| this_sse = (int64_t)sse_y; |
| block_yrd(cpi, x, &this_rdc, &is_skippable, &this_sse, bsize, |
| VPXMIN(mi->tx_size, TX_16X16), rd_computed, 0); |
| x->skip_txfm[0] = is_skippable; |
| if (is_skippable) { |
| this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1); |
| } else { |
| if (RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist) < |
| RDCOST(x->rdmult, x->rddiv, 0, this_sse)) { |
| this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0); |
| } else { |
| this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1); |
| this_rdc.dist = this_sse; |
| x->skip_txfm[0] = SKIP_TXFM_AC_DC; |
| } |
| } |
| |
| if (cm->interp_filter == SWITCHABLE) { |
| if ((mi->mv[0].as_mv.row | mi->mv[0].as_mv.col) & 0x07) |
| this_rdc.rate += vp9_get_switchable_rate(cpi, xd); |
| } |
| } else { |
| if (cm->interp_filter == SWITCHABLE) { |
| if ((mi->mv[0].as_mv.row | mi->mv[0].as_mv.col) & 0x07) |
| this_rdc.rate += vp9_get_switchable_rate(cpi, xd); |
| } |
| this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1); |
| } |
| |
| if (!this_early_term && |
| (x->color_sensitivity[0] || x->color_sensitivity[1])) { |
| RD_COST rdc_uv; |
| const BLOCK_SIZE uv_bsize = get_plane_block_size(bsize, &xd->plane[1]); |
| if (x->color_sensitivity[0] && !flag_preduv_computed[0]) { |
| vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, 1); |
| flag_preduv_computed[0] = 1; |
| } |
| if (x->color_sensitivity[1] && !flag_preduv_computed[1]) { |
| vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, 2); |
| flag_preduv_computed[1] = 1; |
| } |
| model_rd_for_sb_uv(cpi, uv_bsize, x, xd, &rdc_uv, &var_y, &sse_y, 1, 2); |
| this_rdc.rate += rdc_uv.rate; |
| this_rdc.dist += rdc_uv.dist; |
| } |
| |
| this_rdc.rate += rate_mv; |
| this_rdc.rate += cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]] |
| [INTER_OFFSET(this_mode)]; |
| // TODO(marpan): Add costing for compound mode. |
| this_rdc.rate += ref_frame_cost[ref_frame]; |
| this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist); |
| |
| // Bias against NEWMV that is very different from its neighbors, and bias |
| // to small motion-lastref for noisy input. |
| if (cpi->oxcf.rc_mode == VPX_CBR && cpi->oxcf.speed >= 5 && |
| cpi->oxcf.content != VP9E_CONTENT_SCREEN) { |
| vp9_NEWMV_diff_bias(&cpi->noise_estimate, xd, this_mode, &this_rdc, bsize, |
| frame_mv[this_mode][ref_frame].as_mv.row, |
| frame_mv[this_mode][ref_frame].as_mv.col, |
| ref_frame == LAST_FRAME, x->lowvar_highsumdiff, |
| x->sb_is_skin); |
| } |
| |
| // Skipping checking: test to see if this block can be reconstructed by |
| // prediction only. |
| if (cpi->allow_encode_breakout && !xd->lossless && !scene_change_detected && |
| !svc->high_num_blocks_with_motion) { |
| encode_breakout_test(cpi, x, bsize, mi_row, mi_col, ref_frame, this_mode, |
| var_y, sse_y, yv12_mb, &this_rdc.rate, |
| &this_rdc.dist, flag_preduv_computed); |
| if (x->skip) { |
| this_rdc.rate += rate_mv; |
| this_rdc.rdcost = |
| RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist); |
| } |
| } |
| |
| // On spatially flat blocks for screne content: bias against zero-last |
| // if the sse_y is non-zero. Only on scene change or high motion frames. |
| if (cpi->oxcf.content == VP9E_CONTENT_SCREEN && |
| (scene_change_detected || svc->high_num_blocks_with_motion) && |
| ref_frame == LAST_FRAME && frame_mv[this_mode][ref_frame].as_int == 0 && |
| svc->spatial_layer_id == 0 && x->source_variance == 0 && sse_y > 0) { |
| this_rdc.rdcost = this_rdc.rdcost << 2; |
| |