| //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for statements. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTDiagnostic.h" |
| #include "clang/AST/ASTLambda.h" |
| #include "clang/AST/CharUnits.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/EvaluatedExprVisitor.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/RecursiveASTVisitor.h" |
| #include "clang/AST/StmtCXX.h" |
| #include "clang/AST/StmtObjC.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/AST/TypeOrdering.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Sema/Initialization.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallVector.h" |
| |
| using namespace clang; |
| using namespace sema; |
| |
| StmtResult Sema::ActOnExprStmt(ExprResult FE) { |
| if (FE.isInvalid()) |
| return StmtError(); |
| |
| FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), |
| /*DiscardedValue*/ true); |
| if (FE.isInvalid()) |
| return StmtError(); |
| |
| // C99 6.8.3p2: The expression in an expression statement is evaluated as a |
| // void expression for its side effects. Conversion to void allows any |
| // operand, even incomplete types. |
| |
| // Same thing in for stmt first clause (when expr) and third clause. |
| return StmtResult(FE.getAs<Stmt>()); |
| } |
| |
| |
| StmtResult Sema::ActOnExprStmtError() { |
| DiscardCleanupsInEvaluationContext(); |
| return StmtError(); |
| } |
| |
| StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc, |
| bool HasLeadingEmptyMacro) { |
| return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro); |
| } |
| |
| StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| DeclGroupRef DG = dg.get(); |
| |
| // If we have an invalid decl, just return an error. |
| if (DG.isNull()) return StmtError(); |
| |
| return new (Context) DeclStmt(DG, StartLoc, EndLoc); |
| } |
| |
| void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) { |
| DeclGroupRef DG = dg.get(); |
| |
| // If we don't have a declaration, or we have an invalid declaration, |
| // just return. |
| if (DG.isNull() || !DG.isSingleDecl()) |
| return; |
| |
| Decl *decl = DG.getSingleDecl(); |
| if (!decl || decl->isInvalidDecl()) |
| return; |
| |
| // Only variable declarations are permitted. |
| VarDecl *var = dyn_cast<VarDecl>(decl); |
| if (!var) { |
| Diag(decl->getLocation(), diag::err_non_variable_decl_in_for); |
| decl->setInvalidDecl(); |
| return; |
| } |
| |
| // foreach variables are never actually initialized in the way that |
| // the parser came up with. |
| var->setInit(nullptr); |
| |
| // In ARC, we don't need to retain the iteration variable of a fast |
| // enumeration loop. Rather than actually trying to catch that |
| // during declaration processing, we remove the consequences here. |
| if (getLangOpts().ObjCAutoRefCount) { |
| QualType type = var->getType(); |
| |
| // Only do this if we inferred the lifetime. Inferred lifetime |
| // will show up as a local qualifier because explicit lifetime |
| // should have shown up as an AttributedType instead. |
| if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) { |
| // Add 'const' and mark the variable as pseudo-strong. |
| var->setType(type.withConst()); |
| var->setARCPseudoStrong(true); |
| } |
| } |
| } |
| |
| /// Diagnose unused comparisons, both builtin and overloaded operators. |
| /// For '==' and '!=', suggest fixits for '=' or '|='. |
| /// |
| /// Adding a cast to void (or other expression wrappers) will prevent the |
| /// warning from firing. |
| static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) { |
| SourceLocation Loc; |
| bool CanAssign; |
| enum { Equality, Inequality, Relational, ThreeWay } Kind; |
| |
| if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) { |
| if (!Op->isComparisonOp()) |
| return false; |
| |
| if (Op->getOpcode() == BO_EQ) |
| Kind = Equality; |
| else if (Op->getOpcode() == BO_NE) |
| Kind = Inequality; |
| else if (Op->getOpcode() == BO_Cmp) |
| Kind = ThreeWay; |
| else { |
| assert(Op->isRelationalOp()); |
| Kind = Relational; |
| } |
| Loc = Op->getOperatorLoc(); |
| CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue(); |
| } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) { |
| switch (Op->getOperator()) { |
| case OO_EqualEqual: |
| Kind = Equality; |
| break; |
| case OO_ExclaimEqual: |
| Kind = Inequality; |
| break; |
| case OO_Less: |
| case OO_Greater: |
| case OO_GreaterEqual: |
| case OO_LessEqual: |
| Kind = Relational; |
| break; |
| case OO_Spaceship: |
| Kind = ThreeWay; |
| break; |
| default: |
| return false; |
| } |
| |
| Loc = Op->getOperatorLoc(); |
| CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue(); |
| } else { |
| // Not a typo-prone comparison. |
| return false; |
| } |
| |
| // Suppress warnings when the operator, suspicious as it may be, comes from |
| // a macro expansion. |
| if (S.SourceMgr.isMacroBodyExpansion(Loc)) |
| return false; |
| |
| S.Diag(Loc, diag::warn_unused_comparison) |
| << (unsigned)Kind << E->getSourceRange(); |
| |
| // If the LHS is a plausible entity to assign to, provide a fixit hint to |
| // correct common typos. |
| if (CanAssign) { |
| if (Kind == Inequality) |
| S.Diag(Loc, diag::note_inequality_comparison_to_or_assign) |
| << FixItHint::CreateReplacement(Loc, "|="); |
| else if (Kind == Equality) |
| S.Diag(Loc, diag::note_equality_comparison_to_assign) |
| << FixItHint::CreateReplacement(Loc, "="); |
| } |
| |
| return true; |
| } |
| |
| void Sema::DiagnoseUnusedExprResult(const Stmt *S) { |
| if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S)) |
| return DiagnoseUnusedExprResult(Label->getSubStmt()); |
| |
| const Expr *E = dyn_cast_or_null<Expr>(S); |
| if (!E) |
| return; |
| |
| // If we are in an unevaluated expression context, then there can be no unused |
| // results because the results aren't expected to be used in the first place. |
| if (isUnevaluatedContext()) |
| return; |
| |
| SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc(); |
| // In most cases, we don't want to warn if the expression is written in a |
| // macro body, or if the macro comes from a system header. If the offending |
| // expression is a call to a function with the warn_unused_result attribute, |
| // we warn no matter the location. Because of the order in which the various |
| // checks need to happen, we factor out the macro-related test here. |
| bool ShouldSuppress = |
| SourceMgr.isMacroBodyExpansion(ExprLoc) || |
| SourceMgr.isInSystemMacro(ExprLoc); |
| |
| const Expr *WarnExpr; |
| SourceLocation Loc; |
| SourceRange R1, R2; |
| if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context)) |
| return; |
| |
| // If this is a GNU statement expression expanded from a macro, it is probably |
| // unused because it is a function-like macro that can be used as either an |
| // expression or statement. Don't warn, because it is almost certainly a |
| // false positive. |
| if (isa<StmtExpr>(E) && Loc.isMacroID()) |
| return; |
| |
| // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers. |
| // That macro is frequently used to suppress "unused parameter" warnings, |
| // but its implementation makes clang's -Wunused-value fire. Prevent this. |
| if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) { |
| SourceLocation SpellLoc = Loc; |
| if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER")) |
| return; |
| } |
| |
| // Okay, we have an unused result. Depending on what the base expression is, |
| // we might want to make a more specific diagnostic. Check for one of these |
| // cases now. |
| unsigned DiagID = diag::warn_unused_expr; |
| if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E)) |
| E = Temps->getSubExpr(); |
| if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E)) |
| E = TempExpr->getSubExpr(); |
| |
| if (DiagnoseUnusedComparison(*this, E)) |
| return; |
| |
| E = WarnExpr; |
| if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { |
| if (E->getType()->isVoidType()) |
| return; |
| |
| // If the callee has attribute pure, const, or warn_unused_result, warn with |
| // a more specific message to make it clear what is happening. If the call |
| // is written in a macro body, only warn if it has the warn_unused_result |
| // attribute. |
| if (const Decl *FD = CE->getCalleeDecl()) { |
| if (const Attr *A = isa<FunctionDecl>(FD) |
| ? cast<FunctionDecl>(FD)->getUnusedResultAttr() |
| : FD->getAttr<WarnUnusedResultAttr>()) { |
| Diag(Loc, diag::warn_unused_result) << A << R1 << R2; |
| return; |
| } |
| if (ShouldSuppress) |
| return; |
| if (FD->hasAttr<PureAttr>()) { |
| Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure"; |
| return; |
| } |
| if (FD->hasAttr<ConstAttr>()) { |
| Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const"; |
| return; |
| } |
| } |
| } else if (ShouldSuppress) |
| return; |
| |
| if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) { |
| if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) { |
| Diag(Loc, diag::err_arc_unused_init_message) << R1; |
| return; |
| } |
| const ObjCMethodDecl *MD = ME->getMethodDecl(); |
| if (MD) { |
| if (const auto *A = MD->getAttr<WarnUnusedResultAttr>()) { |
| Diag(Loc, diag::warn_unused_result) << A << R1 << R2; |
| return; |
| } |
| } |
| } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) { |
| const Expr *Source = POE->getSyntacticForm(); |
| if (isa<ObjCSubscriptRefExpr>(Source)) |
| DiagID = diag::warn_unused_container_subscript_expr; |
| else |
| DiagID = diag::warn_unused_property_expr; |
| } else if (const CXXFunctionalCastExpr *FC |
| = dyn_cast<CXXFunctionalCastExpr>(E)) { |
| const Expr *E = FC->getSubExpr(); |
| if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E)) |
| E = TE->getSubExpr(); |
| if (isa<CXXTemporaryObjectExpr>(E)) |
| return; |
| if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E)) |
| if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl()) |
| if (!RD->getAttr<WarnUnusedAttr>()) |
| return; |
| } |
| // Diagnose "(void*) blah" as a typo for "(void) blah". |
| else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) { |
| TypeSourceInfo *TI = CE->getTypeInfoAsWritten(); |
| QualType T = TI->getType(); |
| |
| // We really do want to use the non-canonical type here. |
| if (T == Context.VoidPtrTy) { |
| PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>(); |
| |
| Diag(Loc, diag::warn_unused_voidptr) |
| << FixItHint::CreateRemoval(TL.getStarLoc()); |
| return; |
| } |
| } |
| |
| if (E->isGLValue() && E->getType().isVolatileQualified()) { |
| Diag(Loc, diag::warn_unused_volatile) << R1 << R2; |
| return; |
| } |
| |
| DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2); |
| } |
| |
| void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) { |
| PushCompoundScope(IsStmtExpr); |
| } |
| |
| void Sema::ActOnFinishOfCompoundStmt() { |
| PopCompoundScope(); |
| } |
| |
| sema::CompoundScopeInfo &Sema::getCurCompoundScope() const { |
| return getCurFunction()->CompoundScopes.back(); |
| } |
| |
| StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R, |
| ArrayRef<Stmt *> Elts, bool isStmtExpr) { |
| const unsigned NumElts = Elts.size(); |
| |
| // If we're in C89 mode, check that we don't have any decls after stmts. If |
| // so, emit an extension diagnostic. |
| if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) { |
| // Note that __extension__ can be around a decl. |
| unsigned i = 0; |
| // Skip over all declarations. |
| for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i) |
| /*empty*/; |
| |
| // We found the end of the list or a statement. Scan for another declstmt. |
| for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i) |
| /*empty*/; |
| |
| if (i != NumElts) { |
| Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin(); |
| Diag(D->getLocation(), diag::ext_mixed_decls_code); |
| } |
| } |
| // Warn about unused expressions in statements. |
| for (unsigned i = 0; i != NumElts; ++i) { |
| // Ignore statements that are last in a statement expression. |
| if (isStmtExpr && i == NumElts - 1) |
| continue; |
| |
| DiagnoseUnusedExprResult(Elts[i]); |
| } |
| |
| // Check for suspicious empty body (null statement) in `for' and `while' |
| // statements. Don't do anything for template instantiations, this just adds |
| // noise. |
| if (NumElts != 0 && !CurrentInstantiationScope && |
| getCurCompoundScope().HasEmptyLoopBodies) { |
| for (unsigned i = 0; i != NumElts - 1; ++i) |
| DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]); |
| } |
| |
| return CompoundStmt::Create(Context, Elts, L, R); |
| } |
| |
| ExprResult |
| Sema::ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val) { |
| if (!Val.get()) |
| return Val; |
| |
| if (DiagnoseUnexpandedParameterPack(Val.get())) |
| return ExprError(); |
| |
| // If we're not inside a switch, let the 'case' statement handling diagnose |
| // this. Just clean up after the expression as best we can. |
| if (!getCurFunction()->SwitchStack.empty()) { |
| Expr *CondExpr = |
| getCurFunction()->SwitchStack.back().getPointer()->getCond(); |
| if (!CondExpr) |
| return ExprError(); |
| QualType CondType = CondExpr->getType(); |
| |
| auto CheckAndFinish = [&](Expr *E) { |
| if (CondType->isDependentType() || E->isTypeDependent()) |
| return ExprResult(E); |
| |
| if (getLangOpts().CPlusPlus11) { |
| // C++11 [stmt.switch]p2: the constant-expression shall be a converted |
| // constant expression of the promoted type of the switch condition. |
| llvm::APSInt TempVal; |
| return CheckConvertedConstantExpression(E, CondType, TempVal, |
| CCEK_CaseValue); |
| } |
| |
| ExprResult ER = E; |
| if (!E->isValueDependent()) |
| ER = VerifyIntegerConstantExpression(E); |
| if (!ER.isInvalid()) |
| ER = DefaultLvalueConversion(ER.get()); |
| if (!ER.isInvalid()) |
| ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast); |
| return ER; |
| }; |
| |
| ExprResult Converted = CorrectDelayedTyposInExpr(Val, CheckAndFinish); |
| if (Converted.get() == Val.get()) |
| Converted = CheckAndFinish(Val.get()); |
| if (Converted.isInvalid()) |
| return ExprError(); |
| Val = Converted; |
| } |
| |
| return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false, |
| getLangOpts().CPlusPlus11); |
| } |
| |
| StmtResult |
| Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHSVal, |
| SourceLocation DotDotDotLoc, ExprResult RHSVal, |
| SourceLocation ColonLoc) { |
| assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value"); |
| assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset() |
| : RHSVal.isInvalid() || RHSVal.get()) && |
| "missing RHS value"); |
| |
| if (getCurFunction()->SwitchStack.empty()) { |
| Diag(CaseLoc, diag::err_case_not_in_switch); |
| return StmtError(); |
| } |
| |
| if (LHSVal.isInvalid() || RHSVal.isInvalid()) { |
| getCurFunction()->SwitchStack.back().setInt(true); |
| return StmtError(); |
| } |
| |
| CaseStmt *CS = new (Context) |
| CaseStmt(LHSVal.get(), RHSVal.get(), CaseLoc, DotDotDotLoc, ColonLoc); |
| getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS); |
| return CS; |
| } |
| |
| /// ActOnCaseStmtBody - This installs a statement as the body of a case. |
| void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) { |
| DiagnoseUnusedExprResult(SubStmt); |
| |
| CaseStmt *CS = static_cast<CaseStmt*>(caseStmt); |
| CS->setSubStmt(SubStmt); |
| } |
| |
| StmtResult |
| Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, |
| Stmt *SubStmt, Scope *CurScope) { |
| DiagnoseUnusedExprResult(SubStmt); |
| |
| if (getCurFunction()->SwitchStack.empty()) { |
| Diag(DefaultLoc, diag::err_default_not_in_switch); |
| return SubStmt; |
| } |
| |
| DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt); |
| getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS); |
| return DS; |
| } |
| |
| StmtResult |
| Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl, |
| SourceLocation ColonLoc, Stmt *SubStmt) { |
| // If the label was multiply defined, reject it now. |
| if (TheDecl->getStmt()) { |
| Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName(); |
| Diag(TheDecl->getLocation(), diag::note_previous_definition); |
| return SubStmt; |
| } |
| |
| // Otherwise, things are good. Fill in the declaration and return it. |
| LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt); |
| TheDecl->setStmt(LS); |
| if (!TheDecl->isGnuLocal()) { |
| TheDecl->setLocStart(IdentLoc); |
| if (!TheDecl->isMSAsmLabel()) { |
| // Don't update the location of MS ASM labels. These will result in |
| // a diagnostic, and changing the location here will mess that up. |
| TheDecl->setLocation(IdentLoc); |
| } |
| } |
| return LS; |
| } |
| |
| StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc, |
| ArrayRef<const Attr*> Attrs, |
| Stmt *SubStmt) { |
| // Fill in the declaration and return it. |
| AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt); |
| return LS; |
| } |
| |
| namespace { |
| class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> { |
| typedef EvaluatedExprVisitor<CommaVisitor> Inherited; |
| Sema &SemaRef; |
| public: |
| CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {} |
| void VisitBinaryOperator(BinaryOperator *E) { |
| if (E->getOpcode() == BO_Comma) |
| SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc()); |
| EvaluatedExprVisitor<CommaVisitor>::VisitBinaryOperator(E); |
| } |
| }; |
| } |
| |
| StmtResult |
| Sema::ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr, Stmt *InitStmt, |
| ConditionResult Cond, |
| Stmt *thenStmt, SourceLocation ElseLoc, |
| Stmt *elseStmt) { |
| if (Cond.isInvalid()) |
| Cond = ConditionResult( |
| *this, nullptr, |
| MakeFullExpr(new (Context) OpaqueValueExpr(SourceLocation(), |
| Context.BoolTy, VK_RValue), |
| IfLoc), |
| false); |
| |
| Expr *CondExpr = Cond.get().second; |
| if (!Diags.isIgnored(diag::warn_comma_operator, |
| CondExpr->getExprLoc())) |
| CommaVisitor(*this).Visit(CondExpr); |
| |
| if (!elseStmt) |
| DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), thenStmt, |
| diag::warn_empty_if_body); |
| |
| return BuildIfStmt(IfLoc, IsConstexpr, InitStmt, Cond, thenStmt, ElseLoc, |
| elseStmt); |
| } |
| |
| StmtResult Sema::BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr, |
| Stmt *InitStmt, ConditionResult Cond, |
| Stmt *thenStmt, SourceLocation ElseLoc, |
| Stmt *elseStmt) { |
| if (Cond.isInvalid()) |
| return StmtError(); |
| |
| if (IsConstexpr || isa<ObjCAvailabilityCheckExpr>(Cond.get().second)) |
| setFunctionHasBranchProtectedScope(); |
| |
| DiagnoseUnusedExprResult(thenStmt); |
| DiagnoseUnusedExprResult(elseStmt); |
| |
| return new (Context) |
| IfStmt(Context, IfLoc, IsConstexpr, InitStmt, Cond.get().first, |
| Cond.get().second, thenStmt, ElseLoc, elseStmt); |
| } |
| |
| namespace { |
| struct CaseCompareFunctor { |
| bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, |
| const llvm::APSInt &RHS) { |
| return LHS.first < RHS; |
| } |
| bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, |
| const std::pair<llvm::APSInt, CaseStmt*> &RHS) { |
| return LHS.first < RHS.first; |
| } |
| bool operator()(const llvm::APSInt &LHS, |
| const std::pair<llvm::APSInt, CaseStmt*> &RHS) { |
| return LHS < RHS.first; |
| } |
| }; |
| } |
| |
| /// CmpCaseVals - Comparison predicate for sorting case values. |
| /// |
| static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs, |
| const std::pair<llvm::APSInt, CaseStmt*>& rhs) { |
| if (lhs.first < rhs.first) |
| return true; |
| |
| if (lhs.first == rhs.first && |
| lhs.second->getCaseLoc().getRawEncoding() |
| < rhs.second->getCaseLoc().getRawEncoding()) |
| return true; |
| return false; |
| } |
| |
| /// CmpEnumVals - Comparison predicate for sorting enumeration values. |
| /// |
| static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs, |
| const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs) |
| { |
| return lhs.first < rhs.first; |
| } |
| |
| /// EqEnumVals - Comparison preficate for uniqing enumeration values. |
| /// |
| static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs, |
| const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs) |
| { |
| return lhs.first == rhs.first; |
| } |
| |
| /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of |
| /// potentially integral-promoted expression @p expr. |
| static QualType GetTypeBeforeIntegralPromotion(const Expr *&E) { |
| if (const auto *CleanUps = dyn_cast<ExprWithCleanups>(E)) |
| E = CleanUps->getSubExpr(); |
| while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) { |
| if (ImpCast->getCastKind() != CK_IntegralCast) break; |
| E = ImpCast->getSubExpr(); |
| } |
| return E->getType(); |
| } |
| |
| ExprResult Sema::CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond) { |
| class SwitchConvertDiagnoser : public ICEConvertDiagnoser { |
| Expr *Cond; |
| |
| public: |
| SwitchConvertDiagnoser(Expr *Cond) |
| : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true), |
| Cond(Cond) {} |
| |
| SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, |
| QualType T) override { |
| return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T; |
| } |
| |
| SemaDiagnosticBuilder diagnoseIncomplete( |
| Sema &S, SourceLocation Loc, QualType T) override { |
| return S.Diag(Loc, diag::err_switch_incomplete_class_type) |
| << T << Cond->getSourceRange(); |
| } |
| |
| SemaDiagnosticBuilder diagnoseExplicitConv( |
| Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { |
| return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy; |
| } |
| |
| SemaDiagnosticBuilder noteExplicitConv( |
| Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { |
| return S.Diag(Conv->getLocation(), diag::note_switch_conversion) |
| << ConvTy->isEnumeralType() << ConvTy; |
| } |
| |
| SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, |
| QualType T) override { |
| return S.Diag(Loc, diag::err_switch_multiple_conversions) << T; |
| } |
| |
| SemaDiagnosticBuilder noteAmbiguous( |
| Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { |
| return S.Diag(Conv->getLocation(), diag::note_switch_conversion) |
| << ConvTy->isEnumeralType() << ConvTy; |
| } |
| |
| SemaDiagnosticBuilder diagnoseConversion( |
| Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { |
| llvm_unreachable("conversion functions are permitted"); |
| } |
| } SwitchDiagnoser(Cond); |
| |
| ExprResult CondResult = |
| PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser); |
| if (CondResult.isInvalid()) |
| return ExprError(); |
| |
| // FIXME: PerformContextualImplicitConversion doesn't always tell us if it |
| // failed and produced a diagnostic. |
| Cond = CondResult.get(); |
| if (!Cond->isTypeDependent() && |
| !Cond->getType()->isIntegralOrEnumerationType()) |
| return ExprError(); |
| |
| // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr. |
| return UsualUnaryConversions(Cond); |
| } |
| |
| StmtResult Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, |
| Stmt *InitStmt, ConditionResult Cond) { |
| Expr *CondExpr = Cond.get().second; |
| assert((Cond.isInvalid() || CondExpr) && "switch with no condition"); |
| |
| if (CondExpr && !CondExpr->isTypeDependent()) { |
| // We have already converted the expression to an integral or enumeration |
| // type, when we parsed the switch condition. If we don't have an |
| // appropriate type now, enter the switch scope but remember that it's |
| // invalid. |
| assert(CondExpr->getType()->isIntegralOrEnumerationType() && |
| "invalid condition type"); |
| if (CondExpr->isKnownToHaveBooleanValue()) { |
| // switch(bool_expr) {...} is often a programmer error, e.g. |
| // switch(n && mask) { ... } // Doh - should be "n & mask". |
| // One can always use an if statement instead of switch(bool_expr). |
| Diag(SwitchLoc, diag::warn_bool_switch_condition) |
| << CondExpr->getSourceRange(); |
| } |
| } |
| |
| setFunctionHasBranchIntoScope(); |
| |
| SwitchStmt *SS = new (Context) |
| SwitchStmt(Context, InitStmt, Cond.get().first, CondExpr); |
| getCurFunction()->SwitchStack.push_back( |
| FunctionScopeInfo::SwitchInfo(SS, false)); |
| return SS; |
| } |
| |
| static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) { |
| Val = Val.extOrTrunc(BitWidth); |
| Val.setIsSigned(IsSigned); |
| } |
| |
| /// Check the specified case value is in range for the given unpromoted switch |
| /// type. |
| static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val, |
| unsigned UnpromotedWidth, bool UnpromotedSign) { |
| // In C++11 onwards, this is checked by the language rules. |
| if (S.getLangOpts().CPlusPlus11) |
| return; |
| |
| // If the case value was signed and negative and the switch expression is |
| // unsigned, don't bother to warn: this is implementation-defined behavior. |
| // FIXME: Introduce a second, default-ignored warning for this case? |
| if (UnpromotedWidth < Val.getBitWidth()) { |
| llvm::APSInt ConvVal(Val); |
| AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign); |
| AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned()); |
| // FIXME: Use different diagnostics for overflow in conversion to promoted |
| // type versus "switch expression cannot have this value". Use proper |
| // IntRange checking rather than just looking at the unpromoted type here. |
| if (ConvVal != Val) |
| S.Diag(Loc, diag::warn_case_value_overflow) << Val.toString(10) |
| << ConvVal.toString(10); |
| } |
| } |
| |
| typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy; |
| |
| /// Returns true if we should emit a diagnostic about this case expression not |
| /// being a part of the enum used in the switch controlling expression. |
| static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S, |
| const EnumDecl *ED, |
| const Expr *CaseExpr, |
| EnumValsTy::iterator &EI, |
| EnumValsTy::iterator &EIEnd, |
| const llvm::APSInt &Val) { |
| if (!ED->isClosed()) |
| return false; |
| |
| if (const DeclRefExpr *DRE = |
| dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) { |
| if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { |
| QualType VarType = VD->getType(); |
| QualType EnumType = S.Context.getTypeDeclType(ED); |
| if (VD->hasGlobalStorage() && VarType.isConstQualified() && |
| S.Context.hasSameUnqualifiedType(EnumType, VarType)) |
| return false; |
| } |
| } |
| |
| if (ED->hasAttr<FlagEnumAttr>()) |
| return !S.IsValueInFlagEnum(ED, Val, false); |
| |
| while (EI != EIEnd && EI->first < Val) |
| EI++; |
| |
| if (EI != EIEnd && EI->first == Val) |
| return false; |
| |
| return true; |
| } |
| |
| static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond, |
| const Expr *Case) { |
| QualType CondType = Cond->getType(); |
| QualType CaseType = Case->getType(); |
| |
| const EnumType *CondEnumType = CondType->getAs<EnumType>(); |
| const EnumType *CaseEnumType = CaseType->getAs<EnumType>(); |
| if (!CondEnumType || !CaseEnumType) |
| return; |
| |
| // Ignore anonymous enums. |
| if (!CondEnumType->getDecl()->getIdentifier() && |
| !CondEnumType->getDecl()->getTypedefNameForAnonDecl()) |
| return; |
| if (!CaseEnumType->getDecl()->getIdentifier() && |
| !CaseEnumType->getDecl()->getTypedefNameForAnonDecl()) |
| return; |
| |
| if (S.Context.hasSameUnqualifiedType(CondType, CaseType)) |
| return; |
| |
| S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch) |
| << CondType << CaseType << Cond->getSourceRange() |
| << Case->getSourceRange(); |
| } |
| |
| StmtResult |
| Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch, |
| Stmt *BodyStmt) { |
| SwitchStmt *SS = cast<SwitchStmt>(Switch); |
| bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt(); |
| assert(SS == getCurFunction()->SwitchStack.back().getPointer() && |
| "switch stack missing push/pop!"); |
| |
| getCurFunction()->SwitchStack.pop_back(); |
| |
| if (!BodyStmt) return StmtError(); |
| SS->setBody(BodyStmt, SwitchLoc); |
| |
| Expr *CondExpr = SS->getCond(); |
| if (!CondExpr) return StmtError(); |
| |
| QualType CondType = CondExpr->getType(); |
| |
| // C++ 6.4.2.p2: |
| // Integral promotions are performed (on the switch condition). |
| // |
| // A case value unrepresentable by the original switch condition |
| // type (before the promotion) doesn't make sense, even when it can |
| // be represented by the promoted type. Therefore we need to find |
| // the pre-promotion type of the switch condition. |
| const Expr *CondExprBeforePromotion = CondExpr; |
| QualType CondTypeBeforePromotion = |
| GetTypeBeforeIntegralPromotion(CondExprBeforePromotion); |
| |
| // Get the bitwidth of the switched-on value after promotions. We must |
| // convert the integer case values to this width before comparison. |
| bool HasDependentValue |
| = CondExpr->isTypeDependent() || CondExpr->isValueDependent(); |
| unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType); |
| bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType(); |
| |
| // Get the width and signedness that the condition might actually have, for |
| // warning purposes. |
| // FIXME: Grab an IntRange for the condition rather than using the unpromoted |
| // type. |
| unsigned CondWidthBeforePromotion |
| = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion); |
| bool CondIsSignedBeforePromotion |
| = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType(); |
| |
| // Accumulate all of the case values in a vector so that we can sort them |
| // and detect duplicates. This vector contains the APInt for the case after |
| // it has been converted to the condition type. |
| typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy; |
| CaseValsTy CaseVals; |
| |
| // Keep track of any GNU case ranges we see. The APSInt is the low value. |
| typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy; |
| CaseRangesTy CaseRanges; |
| |
| DefaultStmt *TheDefaultStmt = nullptr; |
| |
| bool CaseListIsErroneous = false; |
| |
| for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue; |
| SC = SC->getNextSwitchCase()) { |
| |
| if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) { |
| if (TheDefaultStmt) { |
| Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined); |
| Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev); |
| |
| // FIXME: Remove the default statement from the switch block so that |
| // we'll return a valid AST. This requires recursing down the AST and |
| // finding it, not something we are set up to do right now. For now, |
| // just lop the entire switch stmt out of the AST. |
| CaseListIsErroneous = true; |
| } |
| TheDefaultStmt = DS; |
| |
| } else { |
| CaseStmt *CS = cast<CaseStmt>(SC); |
| |
| Expr *Lo = CS->getLHS(); |
| |
| if (Lo->isValueDependent()) { |
| HasDependentValue = true; |
| break; |
| } |
| |
| // We already verified that the expression has a constant value; |
| // get that value (prior to conversions). |
| const Expr *LoBeforePromotion = Lo; |
| GetTypeBeforeIntegralPromotion(LoBeforePromotion); |
| llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context); |
| |
| // Check the unconverted value is within the range of possible values of |
| // the switch expression. |
| checkCaseValue(*this, Lo->getLocStart(), LoVal, |
| CondWidthBeforePromotion, CondIsSignedBeforePromotion); |
| |
| // FIXME: This duplicates the check performed for warn_not_in_enum below. |
| checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion, |
| LoBeforePromotion); |
| |
| // Convert the value to the same width/sign as the condition. |
| AdjustAPSInt(LoVal, CondWidth, CondIsSigned); |
| |
| // If this is a case range, remember it in CaseRanges, otherwise CaseVals. |
| if (CS->getRHS()) { |
| if (CS->getRHS()->isValueDependent()) { |
| HasDependentValue = true; |
| break; |
| } |
| CaseRanges.push_back(std::make_pair(LoVal, CS)); |
| } else |
| CaseVals.push_back(std::make_pair(LoVal, CS)); |
| } |
| } |
| |
| if (!HasDependentValue) { |
| // If we don't have a default statement, check whether the |
| // condition is constant. |
| llvm::APSInt ConstantCondValue; |
| bool HasConstantCond = false; |
| if (!HasDependentValue && !TheDefaultStmt) { |
| HasConstantCond = CondExpr->EvaluateAsInt(ConstantCondValue, Context, |
| Expr::SE_AllowSideEffects); |
| assert(!HasConstantCond || |
| (ConstantCondValue.getBitWidth() == CondWidth && |
| ConstantCondValue.isSigned() == CondIsSigned)); |
| } |
| bool ShouldCheckConstantCond = HasConstantCond; |
| |
| // Sort all the scalar case values so we can easily detect duplicates. |
| std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals); |
| |
| if (!CaseVals.empty()) { |
| for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) { |
| if (ShouldCheckConstantCond && |
| CaseVals[i].first == ConstantCondValue) |
| ShouldCheckConstantCond = false; |
| |
| if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) { |
| // If we have a duplicate, report it. |
| // First, determine if either case value has a name |
| StringRef PrevString, CurrString; |
| Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts(); |
| Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts(); |
| if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) { |
| PrevString = DeclRef->getDecl()->getName(); |
| } |
| if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) { |
| CurrString = DeclRef->getDecl()->getName(); |
| } |
| SmallString<16> CaseValStr; |
| CaseVals[i-1].first.toString(CaseValStr); |
| |
| if (PrevString == CurrString) |
| Diag(CaseVals[i].second->getLHS()->getLocStart(), |
| diag::err_duplicate_case) << |
| (PrevString.empty() ? StringRef(CaseValStr) : PrevString); |
| else |
| Diag(CaseVals[i].second->getLHS()->getLocStart(), |
| diag::err_duplicate_case_differing_expr) << |
| (PrevString.empty() ? StringRef(CaseValStr) : PrevString) << |
| (CurrString.empty() ? StringRef(CaseValStr) : CurrString) << |
| CaseValStr; |
| |
| Diag(CaseVals[i-1].second->getLHS()->getLocStart(), |
| diag::note_duplicate_case_prev); |
| // FIXME: We really want to remove the bogus case stmt from the |
| // substmt, but we have no way to do this right now. |
| CaseListIsErroneous = true; |
| } |
| } |
| } |
| |
| // Detect duplicate case ranges, which usually don't exist at all in |
| // the first place. |
| if (!CaseRanges.empty()) { |
| // Sort all the case ranges by their low value so we can easily detect |
| // overlaps between ranges. |
| std::stable_sort(CaseRanges.begin(), CaseRanges.end()); |
| |
| // Scan the ranges, computing the high values and removing empty ranges. |
| std::vector<llvm::APSInt> HiVals; |
| for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { |
| llvm::APSInt &LoVal = CaseRanges[i].first; |
| CaseStmt *CR = CaseRanges[i].second; |
| Expr *Hi = CR->getRHS(); |
| |
| const Expr *HiBeforePromotion = Hi; |
| GetTypeBeforeIntegralPromotion(HiBeforePromotion); |
| llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context); |
| |
| // Check the unconverted value is within the range of possible values of |
| // the switch expression. |
| checkCaseValue(*this, Hi->getLocStart(), HiVal, |
| CondWidthBeforePromotion, CondIsSignedBeforePromotion); |
| |
| // Convert the value to the same width/sign as the condition. |
| AdjustAPSInt(HiVal, CondWidth, CondIsSigned); |
| |
| // If the low value is bigger than the high value, the case is empty. |
| if (LoVal > HiVal) { |
| Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range) |
| << SourceRange(CR->getLHS()->getLocStart(), |
| Hi->getLocEnd()); |
| CaseRanges.erase(CaseRanges.begin()+i); |
| --i; |
| --e; |
| continue; |
| } |
| |
| if (ShouldCheckConstantCond && |
| LoVal <= ConstantCondValue && |
| ConstantCondValue <= HiVal) |
| ShouldCheckConstantCond = false; |
| |
| HiVals.push_back(HiVal); |
| } |
| |
| // Rescan the ranges, looking for overlap with singleton values and other |
| // ranges. Since the range list is sorted, we only need to compare case |
| // ranges with their neighbors. |
| for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { |
| llvm::APSInt &CRLo = CaseRanges[i].first; |
| llvm::APSInt &CRHi = HiVals[i]; |
| CaseStmt *CR = CaseRanges[i].second; |
| |
| // Check to see whether the case range overlaps with any |
| // singleton cases. |
| CaseStmt *OverlapStmt = nullptr; |
| llvm::APSInt OverlapVal(32); |
| |
| // Find the smallest value >= the lower bound. If I is in the |
| // case range, then we have overlap. |
| CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(), |
| CaseVals.end(), CRLo, |
| CaseCompareFunctor()); |
| if (I != CaseVals.end() && I->first < CRHi) { |
| OverlapVal = I->first; // Found overlap with scalar. |
| OverlapStmt = I->second; |
| } |
| |
| // Find the smallest value bigger than the upper bound. |
| I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor()); |
| if (I != CaseVals.begin() && (I-1)->first >= CRLo) { |
| OverlapVal = (I-1)->first; // Found overlap with scalar. |
| OverlapStmt = (I-1)->second; |
| } |
| |
| // Check to see if this case stmt overlaps with the subsequent |
| // case range. |
| if (i && CRLo <= HiVals[i-1]) { |
| OverlapVal = HiVals[i-1]; // Found overlap with range. |
| OverlapStmt = CaseRanges[i-1].second; |
| } |
| |
| if (OverlapStmt) { |
| // If we have a duplicate, report it. |
| Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case) |
| << OverlapVal.toString(10); |
| Diag(OverlapStmt->getLHS()->getLocStart(), |
| diag::note_duplicate_case_prev); |
| // FIXME: We really want to remove the bogus case stmt from the |
| // substmt, but we have no way to do this right now. |
| CaseListIsErroneous = true; |
| } |
| } |
| } |
| |
| // Complain if we have a constant condition and we didn't find a match. |
| if (!CaseListIsErroneous && !CaseListIsIncomplete && |
| ShouldCheckConstantCond) { |
| // TODO: it would be nice if we printed enums as enums, chars as |
| // chars, etc. |
| Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition) |
| << ConstantCondValue.toString(10) |
| << CondExpr->getSourceRange(); |
| } |
| |
| // Check to see if switch is over an Enum and handles all of its |
| // values. We only issue a warning if there is not 'default:', but |
| // we still do the analysis to preserve this information in the AST |
| // (which can be used by flow-based analyes). |
| // |
| const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>(); |
| |
| // If switch has default case, then ignore it. |
| if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond && |
| ET && ET->getDecl()->isCompleteDefinition()) { |
| const EnumDecl *ED = ET->getDecl(); |
| EnumValsTy EnumVals; |
| |
| // Gather all enum values, set their type and sort them, |
| // allowing easier comparison with CaseVals. |
| for (auto *EDI : ED->enumerators()) { |
| llvm::APSInt Val = EDI->getInitVal(); |
| AdjustAPSInt(Val, CondWidth, CondIsSigned); |
| EnumVals.push_back(std::make_pair(Val, EDI)); |
| } |
| std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals); |
| auto EI = EnumVals.begin(), EIEnd = |
| std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals); |
| |
| // See which case values aren't in enum. |
| for (CaseValsTy::const_iterator CI = CaseVals.begin(); |
| CI != CaseVals.end(); CI++) { |
| Expr *CaseExpr = CI->second->getLHS(); |
| if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd, |
| CI->first)) |
| Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum) |
| << CondTypeBeforePromotion; |
| } |
| |
| // See which of case ranges aren't in enum |
| EI = EnumVals.begin(); |
| for (CaseRangesTy::const_iterator RI = CaseRanges.begin(); |
| RI != CaseRanges.end(); RI++) { |
| Expr *CaseExpr = RI->second->getLHS(); |
| if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd, |
| RI->first)) |
| Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum) |
| << CondTypeBeforePromotion; |
| |
| llvm::APSInt Hi = |
| RI->second->getRHS()->EvaluateKnownConstInt(Context); |
| AdjustAPSInt(Hi, CondWidth, CondIsSigned); |
| |
| CaseExpr = RI->second->getRHS(); |
| if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd, |
| Hi)) |
| Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum) |
| << CondTypeBeforePromotion; |
| } |
| |
| // Check which enum vals aren't in switch |
| auto CI = CaseVals.begin(); |
| auto RI = CaseRanges.begin(); |
| bool hasCasesNotInSwitch = false; |
| |
| SmallVector<DeclarationName,8> UnhandledNames; |
| |
| for (EI = EnumVals.begin(); EI != EIEnd; EI++){ |
| // Drop unneeded case values |
| while (CI != CaseVals.end() && CI->first < EI->first) |
| CI++; |
| |
| if (CI != CaseVals.end() && CI->first == EI->first) |
| continue; |
| |
| // Drop unneeded case ranges |
| for (; RI != CaseRanges.end(); RI++) { |
| llvm::APSInt Hi = |
| RI->second->getRHS()->EvaluateKnownConstInt(Context); |
| AdjustAPSInt(Hi, CondWidth, CondIsSigned); |
| if (EI->first <= Hi) |
| break; |
| } |
| |
| if (RI == CaseRanges.end() || EI->first < RI->first) { |
| hasCasesNotInSwitch = true; |
| UnhandledNames.push_back(EI->second->getDeclName()); |
| } |
| } |
| |
| if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag()) |
| Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default); |
| |
| // Produce a nice diagnostic if multiple values aren't handled. |
| if (!UnhandledNames.empty()) { |
| DiagnosticBuilder DB = Diag(CondExpr->getExprLoc(), |
| TheDefaultStmt ? diag::warn_def_missing_case |
| : diag::warn_missing_case) |
| << (int)UnhandledNames.size(); |
| |
| for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3); |
| I != E; ++I) |
| DB << UnhandledNames[I]; |
| } |
| |
| if (!hasCasesNotInSwitch) |
| SS->setAllEnumCasesCovered(); |
| } |
| } |
| |
| if (BodyStmt) |
| DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt, |
| diag::warn_empty_switch_body); |
| |
| // FIXME: If the case list was broken is some way, we don't have a good system |
| // to patch it up. Instead, just return the whole substmt as broken. |
| if (CaseListIsErroneous) |
| return StmtError(); |
| |
| return SS; |
| } |
| |
| void |
| Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType, |
| Expr *SrcExpr) { |
| if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc())) |
| return; |
| |
| if (const EnumType *ET = DstType->getAs<EnumType>()) |
| if (!Context.hasSameUnqualifiedType(SrcType, DstType) && |
| SrcType->isIntegerType()) { |
| if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() && |
| SrcExpr->isIntegerConstantExpr(Context)) { |
| // Get the bitwidth of the enum value before promotions. |
| unsigned DstWidth = Context.getIntWidth(DstType); |
| bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType(); |
| |
| llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context); |
| AdjustAPSInt(RhsVal, DstWidth, DstIsSigned); |
| const EnumDecl *ED = ET->getDecl(); |
| |
| if (!ED->isClosed()) |
| return; |
| |
| if (ED->hasAttr<FlagEnumAttr>()) { |
| if (!IsValueInFlagEnum(ED, RhsVal, true)) |
| Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment) |
| << DstType.getUnqualifiedType(); |
| } else { |
| typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64> |
| EnumValsTy; |
| EnumValsTy EnumVals; |
| |
| // Gather all enum values, set their type and sort them, |
| // allowing easier comparison with rhs constant. |
| for (auto *EDI : ED->enumerators()) { |
| llvm::APSInt Val = EDI->getInitVal(); |
| AdjustAPSInt(Val, DstWidth, DstIsSigned); |
| EnumVals.push_back(std::make_pair(Val, EDI)); |
| } |
| if (EnumVals.empty()) |
| return; |
| std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals); |
| EnumValsTy::iterator EIend = |
| std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals); |
| |
| // See which values aren't in the enum. |
| EnumValsTy::const_iterator EI = EnumVals.begin(); |
| while (EI != EIend && EI->first < RhsVal) |
| EI++; |
| if (EI == EIend || EI->first != RhsVal) { |
| Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment) |
| << DstType.getUnqualifiedType(); |
| } |
| } |
| } |
| } |
| } |
| |
| StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc, ConditionResult Cond, |
| Stmt *Body) { |
| if (Cond.isInvalid()) |
| return StmtError(); |
| |
| auto CondVal = Cond.get(); |
| CheckBreakContinueBinding(CondVal.second); |
| |
| if (CondVal.second && |
| !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc())) |
| CommaVisitor(*this).Visit(CondVal.second); |
| |
| DiagnoseUnusedExprResult(Body); |
| |
| if (isa<NullStmt>(Body)) |
| getCurCompoundScope().setHasEmptyLoopBodies(); |
| |
| return new (Context) |
| WhileStmt(Context, CondVal.first, CondVal.second, Body, WhileLoc); |
| } |
| |
| StmtResult |
| Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body, |
| SourceLocation WhileLoc, SourceLocation CondLParen, |
| Expr *Cond, SourceLocation CondRParen) { |
| assert(Cond && "ActOnDoStmt(): missing expression"); |
| |
| CheckBreakContinueBinding(Cond); |
| ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond); |
| if (CondResult.isInvalid()) |
| return StmtError(); |
| Cond = CondResult.get(); |
| |
| CondResult = ActOnFinishFullExpr(Cond, DoLoc); |
| if (CondResult.isInvalid()) |
| return StmtError(); |
| Cond = CondResult.get(); |
| |
| DiagnoseUnusedExprResult(Body); |
| |
| return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen); |
| } |
| |
| namespace { |
| // Use SetVector since the diagnostic cares about the ordering of the Decl's. |
| using DeclSetVector = |
| llvm::SetVector<VarDecl *, llvm::SmallVector<VarDecl *, 8>, |
| llvm::SmallPtrSet<VarDecl *, 8>>; |
| |
| // This visitor will traverse a conditional statement and store all |
| // the evaluated decls into a vector. Simple is set to true if none |
| // of the excluded constructs are used. |
| class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> { |
| DeclSetVector &Decls; |
| SmallVectorImpl<SourceRange> &Ranges; |
| bool Simple; |
| public: |
| typedef EvaluatedExprVisitor<DeclExtractor> Inherited; |
| |
| DeclExtractor(Sema &S, DeclSetVector &Decls, |
| SmallVectorImpl<SourceRange> &Ranges) : |
| Inherited(S.Context), |
| Decls(Decls), |
| Ranges(Ranges), |
| Simple(true) {} |
| |
| bool isSimple() { return Simple; } |
| |
| // Replaces the method in EvaluatedExprVisitor. |
| void VisitMemberExpr(MemberExpr* E) { |
| Simple = false; |
| } |
| |
| // Any Stmt not whitelisted will cause the condition to be marked complex. |
| void VisitStmt(Stmt *S) { |
| Simple = false; |
| } |
| |
| void VisitBinaryOperator(BinaryOperator *E) { |
| Visit(E->getLHS()); |
| Visit(E->getRHS()); |
| } |
| |
| void VisitCastExpr(CastExpr *E) { |
| Visit(E->getSubExpr()); |
| } |
| |
| void VisitUnaryOperator(UnaryOperator *E) { |
| // Skip checking conditionals with derefernces. |
| if (E->getOpcode() == UO_Deref) |
| Simple = false; |
| else |
| Visit(E->getSubExpr()); |
| } |
| |
| void VisitConditionalOperator(ConditionalOperator *E) { |
| Visit(E->getCond()); |
| Visit(E->getTrueExpr()); |
| Visit(E->getFalseExpr()); |
| } |
| |
| void VisitParenExpr(ParenExpr *E) { |
| Visit(E->getSubExpr()); |
| } |
| |
| void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) { |
| Visit(E->getOpaqueValue()->getSourceExpr()); |
| Visit(E->getFalseExpr()); |
| } |
| |
| void VisitIntegerLiteral(IntegerLiteral *E) { } |
| void VisitFloatingLiteral(FloatingLiteral *E) { } |
| void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { } |
| void VisitCharacterLiteral(CharacterLiteral *E) { } |
| void VisitGNUNullExpr(GNUNullExpr *E) { } |
| void VisitImaginaryLiteral(ImaginaryLiteral *E) { } |
| |
| void VisitDeclRefExpr(DeclRefExpr *E) { |
| VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()); |
| if (!VD) return; |
| |
| Ranges.push_back(E->getSourceRange()); |
| |
| Decls.insert(VD); |
| } |
| |
| }; // end class DeclExtractor |
| |
| // DeclMatcher checks to see if the decls are used in a non-evaluated |
| // context. |
| class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> { |
| DeclSetVector &Decls; |
| bool FoundDecl; |
| |
| public: |
| typedef EvaluatedExprVisitor<DeclMatcher> Inherited; |
| |
| DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) : |
| Inherited(S.Context), Decls(Decls), FoundDecl(false) { |
| if (!Statement) return; |
| |
| Visit(Statement); |
| } |
| |
| void VisitReturnStmt(ReturnStmt *S) { |
| FoundDecl = true; |
| } |
| |
| void VisitBreakStmt(BreakStmt *S) { |
| FoundDecl = true; |
| } |
| |
| void VisitGotoStmt(GotoStmt *S) { |
| FoundDecl = true; |
| } |
| |
| void VisitCastExpr(CastExpr *E) { |
| if (E->getCastKind() == CK_LValueToRValue) |
| CheckLValueToRValueCast(E->getSubExpr()); |
| else |
| Visit(E->getSubExpr()); |
| } |
| |
| void CheckLValueToRValueCast(Expr *E) { |
| E = E->IgnoreParenImpCasts(); |
| |
| if (isa<DeclRefExpr>(E)) { |
| return; |
| } |
| |
| if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { |
| Visit(CO->getCond()); |
| CheckLValueToRValueCast(CO->getTrueExpr()); |
| CheckLValueToRValueCast(CO->getFalseExpr()); |
| return; |
| } |
| |
| if (BinaryConditionalOperator *BCO = |
| dyn_cast<BinaryConditionalOperator>(E)) { |
| CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr()); |
| CheckLValueToRValueCast(BCO->getFalseExpr()); |
| return; |
| } |
| |
| Visit(E); |
| } |
| |
| void VisitDeclRefExpr(DeclRefExpr *E) { |
| if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) |
| if (Decls.count(VD)) |
| FoundDecl = true; |
| } |
| |
| void VisitPseudoObjectExpr(PseudoObjectExpr *POE) { |
| // Only need to visit the semantics for POE. |
| // SyntaticForm doesn't really use the Decal. |
| for (auto *S : POE->semantics()) { |
| if (auto *OVE = dyn_cast<OpaqueValueExpr>(S)) |
| // Look past the OVE into the expression it binds. |
| Visit(OVE->getSourceExpr()); |
| else |
| Visit(S); |
| } |
| } |
| |
| bool FoundDeclInUse() { return FoundDecl; } |
| |
| }; // end class DeclMatcher |
| |
| void CheckForLoopConditionalStatement(Sema &S, Expr *Second, |
| Expr *Third, Stmt *Body) { |
| // Condition is empty |
| if (!Second) return; |
| |
| if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body, |
| Second->getLocStart())) |
| return; |
| |
| PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body); |
| DeclSetVector Decls; |
| SmallVector<SourceRange, 10> Ranges; |
| DeclExtractor DE(S, Decls, Ranges); |
| DE.Visit(Second); |
| |
| // Don't analyze complex conditionals. |
| if (!DE.isSimple()) return; |
| |
| // No decls found. |
| if (Decls.size() == 0) return; |
| |
| // Don't warn on volatile, static, or global variables. |
| for (auto *VD : Decls) |
| if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage()) |
| return; |
| |
| if (DeclMatcher(S, Decls, Second).FoundDeclInUse() || |
| DeclMatcher(S, Decls, Third).FoundDeclInUse() || |
| DeclMatcher(S, Decls, Body).FoundDeclInUse()) |
| return; |
| |
| // Load decl names into diagnostic. |
| if (Decls.size() > 4) { |
| PDiag << 0; |
| } else { |
| PDiag << (unsigned)Decls.size(); |
| for (auto *VD : Decls) |
| PDiag << VD->getDeclName(); |
| } |
| |
| for (auto Range : Ranges) |
| PDiag << Range; |
| |
| S.Diag(Ranges.begin()->getBegin(), PDiag); |
| } |
| |
| // If Statement is an incemement or decrement, return true and sets the |
| // variables Increment and DRE. |
| bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment, |
| DeclRefExpr *&DRE) { |
| if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement)) |
| if (!Cleanups->cleanupsHaveSideEffects()) |
| Statement = Cleanups->getSubExpr(); |
| |
| if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) { |
| switch (UO->getOpcode()) { |
| default: return false; |
| case UO_PostInc: |
| case UO_PreInc: |
| Increment = true; |
| break; |
| case UO_PostDec: |
| case UO_PreDec: |
| Increment = false; |
| break; |
| } |
| DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr()); |
| return DRE; |
| } |
| |
| if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) { |
| FunctionDecl *FD = Call->getDirectCallee(); |
| if (!FD || !FD->isOverloadedOperator()) return false; |
| switch (FD->getOverloadedOperator()) { |
| default: return false; |
| case OO_PlusPlus: |
| Increment = true; |
| break; |
| case OO_MinusMinus: |
| Increment = false; |
| break; |
| } |
| DRE = dyn_cast<DeclRefExpr>(Call->getArg(0)); |
| return DRE; |
| } |
| |
| return false; |
| } |
| |
| // A visitor to determine if a continue or break statement is a |
| // subexpression. |
| class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> { |
| SourceLocation BreakLoc; |
| SourceLocation ContinueLoc; |
| bool InSwitch = false; |
| |
| public: |
| BreakContinueFinder(Sema &S, const Stmt* Body) : |
| Inherited(S.Context) { |
| Visit(Body); |
| } |
| |
| typedef ConstEvaluatedExprVisitor<BreakContinueFinder> Inherited; |
| |
| void VisitContinueStmt(const ContinueStmt* E) { |
| ContinueLoc = E->getContinueLoc(); |
| } |
| |
| void VisitBreakStmt(const BreakStmt* E) { |
| if (!InSwitch) |
| BreakLoc = E->getBreakLoc(); |
| } |
| |
| void VisitSwitchStmt(const SwitchStmt* S) { |
| if (const Stmt *Init = S->getInit()) |
| Visit(Init); |
| if (const Stmt *CondVar = S->getConditionVariableDeclStmt()) |
| Visit(CondVar); |
| if (const Stmt *Cond = S->getCond()) |
| Visit(Cond); |
| |
| // Don't return break statements from the body of a switch. |
| InSwitch = true; |
| if (const Stmt *Body = S->getBody()) |
| Visit(Body); |
| InSwitch = false; |
| } |
| |
| void VisitForStmt(const ForStmt *S) { |
| // Only visit the init statement of a for loop; the body |
| // has a different break/continue scope. |
| if (const Stmt *Init = S->getInit()) |
| Visit(Init); |
| } |
| |
| void VisitWhileStmt(const WhileStmt *) { |
| // Do nothing; the children of a while loop have a different |
| // break/continue scope. |
| } |
| |
| void VisitDoStmt(const DoStmt *) { |
| // Do nothing; the children of a while loop have a different |
| // break/continue scope. |
| } |
| |
| void VisitCXXForRangeStmt(const CXXForRangeStmt *S) { |
| // Only visit the initialization of a for loop; the body |
| // has a different break/continue scope. |
| if (const Stmt *Range = S->getRangeStmt()) |
| Visit(Range); |
| if (const Stmt *Begin = S->getBeginStmt()) |
| Visit(Begin); |
| if (const Stmt *End = S->getEndStmt()) |
| Visit(End); |
| } |
| |
| void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) { |
| // Only visit the initialization of a for loop; the body |
| // has a different break/continue scope. |
| if (const Stmt *Element = S->getElement()) |
| Visit(Element); |
| if (const Stmt *Collection = S->getCollection()) |
| Visit(Collection); |
| } |
| |
| bool ContinueFound() { return ContinueLoc.isValid(); } |
| bool BreakFound() { return BreakLoc.isValid(); } |
| SourceLocation GetContinueLoc() { return ContinueLoc; } |
| SourceLocation GetBreakLoc() { return BreakLoc; } |
| |
| }; // end class BreakContinueFinder |
| |
| // Emit a warning when a loop increment/decrement appears twice per loop |
| // iteration. The conditions which trigger this warning are: |
| // 1) The last statement in the loop body and the third expression in the |
| // for loop are both increment or both decrement of the same variable |
| // 2) No continue statements in the loop body. |
| void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) { |
| // Return when there is nothing to check. |
| if (!Body || !Third) return; |
| |
| if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration, |
| Third->getLocStart())) |
| return; |
| |
| // Get the last statement from the loop body. |
| CompoundStmt *CS = dyn_cast<CompoundStmt>(Body); |
| if (!CS || CS->body_empty()) return; |
| Stmt *LastStmt = CS->body_back(); |
| if (!LastStmt) return; |
| |
| bool LoopIncrement, LastIncrement; |
| DeclRefExpr *LoopDRE, *LastDRE; |
| |
| if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return; |
| if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return; |
| |
| // Check that the two statements are both increments or both decrements |
| // on the same variable. |
| if (LoopIncrement != LastIncrement || |
| LoopDRE->getDecl() != LastDRE->getDecl()) return; |
| |
| if (BreakContinueFinder(S, Body).ContinueFound()) return; |
| |
| S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration) |
| << LastDRE->getDecl() << LastIncrement; |
| S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here) |
| << LoopIncrement; |
| } |
| |
| } // end namespace |
| |
| |
| void Sema::CheckBreakContinueBinding(Expr *E) { |
| if (!E || getLangOpts().CPlusPlus) |
| return; |
| BreakContinueFinder BCFinder(*this, E); |
| Scope *BreakParent = CurScope->getBreakParent(); |
| if (BCFinder.BreakFound() && BreakParent) { |
| if (BreakParent->getFlags() & Scope::SwitchScope) { |
| Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch); |
| } else { |
| Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner) |
| << "break"; |
| } |
| } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) { |
| Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner) |
| << "continue"; |
| } |
| } |
| |
| StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, |
| Stmt *First, ConditionResult Second, |
| FullExprArg third, SourceLocation RParenLoc, |
| Stmt *Body) { |
| if (Second.isInvalid()) |
| return StmtError(); |
| |
| if (!getLangOpts().CPlusPlus) { |
| if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) { |
| // C99 6.8.5p3: The declaration part of a 'for' statement shall only |
| // declare identifiers for objects having storage class 'auto' or |
| // 'register'. |
| for (auto *DI : DS->decls()) { |
| VarDecl *VD = dyn_cast<VarDecl>(DI); |
| if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage()) |
| VD = nullptr; |
| if (!VD) { |
| Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for); |
| DI->setInvalidDecl(); |
| } |
| } |
| } |
| } |
| |
| CheckBreakContinueBinding(Second.get().second); |
| CheckBreakContinueBinding(third.get()); |
| |
| if (!Second.get().first) |
| CheckForLoopConditionalStatement(*this, Second.get().second, third.get(), |
| Body); |
| CheckForRedundantIteration(*this, third.get(), Body); |
| |
| if (Second.get().second && |
| !Diags.isIgnored(diag::warn_comma_operator, |
| Second.get().second->getExprLoc())) |
| CommaVisitor(*this).Visit(Second.get().second); |
| |
| Expr *Third = third.release().getAs<Expr>(); |
| |
| DiagnoseUnusedExprResult(First); |
| DiagnoseUnusedExprResult(Third); |
| DiagnoseUnusedExprResult(Body); |
| |
| if (isa<NullStmt>(Body)) |
| getCurCompoundScope().setHasEmptyLoopBodies(); |
| |
| return new (Context) |
| ForStmt(Context, First, Second.get().second, Second.get().first, Third, |
| Body, ForLoc, LParenLoc, RParenLoc); |
| } |
| |
| /// In an Objective C collection iteration statement: |
| /// for (x in y) |
| /// x can be an arbitrary l-value expression. Bind it up as a |
| /// full-expression. |
| StmtResult Sema::ActOnForEachLValueExpr(Expr *E) { |
| // Reduce placeholder expressions here. Note that this rejects the |
| // use of pseudo-object l-values in this position. |
| ExprResult result = CheckPlaceholderExpr(E); |
| if (result.isInvalid()) return StmtError(); |
| E = result.get(); |
| |
| ExprResult FullExpr = ActOnFinishFullExpr(E); |
| if (FullExpr.isInvalid()) |
| return StmtError(); |
| return StmtResult(static_cast<Stmt*>(FullExpr.get())); |
| } |
| |
| ExprResult |
| Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) { |
| if (!collection) |
| return ExprError(); |
| |
| ExprResult result = CorrectDelayedTyposInExpr(collection); |
| if (!result.isUsable()) |
| return ExprError(); |
| collection = result.get(); |
| |
| // Bail out early if we've got a type-dependent expression. |
| if (collection->isTypeDependent()) return collection; |
| |
| // Perform normal l-value conversion. |
| result = DefaultFunctionArrayLvalueConversion(collection); |
| if (result.isInvalid()) |
| return ExprError(); |
| collection = result.get(); |
| |
| // The operand needs to have object-pointer type. |
| // TODO: should we do a contextual conversion? |
| const ObjCObjectPointerType *pointerType = |
| collection->getType()->getAs<ObjCObjectPointerType>(); |
| if (!pointerType) |
| return Diag(forLoc, diag::err_collection_expr_type) |
| << collection->getType() << collection->getSourceRange(); |
| |
| // Check that the operand provides |
| // - countByEnumeratingWithState:objects:count: |
| const ObjCObjectType *objectType = pointerType->getObjectType(); |
| ObjCInterfaceDecl *iface = objectType->getInterface(); |
| |
| // If we have a forward-declared type, we can't do this check. |
| // Under ARC, it is an error not to have a forward-declared class. |
| if (iface && |
| (getLangOpts().ObjCAutoRefCount |
| ? RequireCompleteType(forLoc, QualType(objectType, 0), |
| diag::err_arc_collection_forward, collection) |
| : !isCompleteType(forLoc, QualType(objectType, 0)))) { |
| // Otherwise, if we have any useful type information, check that |
| // the type declares the appropriate method. |
| } else if (iface || !objectType->qual_empty()) { |
| IdentifierInfo *selectorIdents[] = { |
| &Context.Idents.get("countByEnumeratingWithState"), |
| &Context.Idents.get("objects"), |
| &Context.Idents.get("count") |
| }; |
| Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]); |
| |
| ObjCMethodDecl *method = nullptr; |
| |
| // If there's an interface, look in both the public and private APIs. |
| if (iface) { |
| method = iface->lookupInstanceMethod(selector); |
| if (!method) method = iface->lookupPrivateMethod(selector); |
| } |
| |
| // Also check protocol qualifiers. |
| if (!method) |
| method = LookupMethodInQualifiedType(selector, pointerType, |
| /*instance*/ true); |
| |
| // If we didn't find it anywhere, give up. |
| if (!method) { |
| Diag(forLoc, diag::warn_collection_expr_type) |
| << collection->getType() << selector << collection->getSourceRange(); |
| } |
| |
| // TODO: check for an incompatible signature? |
| } |
| |
| // Wrap up any cleanups in the expression. |
| return collection; |
| } |
| |
| StmtResult |
| Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc, |
| Stmt *First, Expr *collection, |
| SourceLocation RParenLoc) { |
| setFunctionHasBranchProtectedScope(); |
| |
| ExprResult CollectionExprResult = |
| CheckObjCForCollectionOperand(ForLoc, collection); |
| |
| if (First) { |
| QualType FirstType; |
| if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) { |
| if (!DS->isSingleDecl()) |
| return StmtError(Diag((*DS->decl_begin())->getLocation(), |
| diag::err_toomany_element_decls)); |
| |
| VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl()); |
| if (!D || D->isInvalidDecl()) |
| return StmtError(); |
| |
| FirstType = D->getType(); |
| // C99 6.8.5p3: The declaration part of a 'for' statement shall only |
| // declare identifiers for objects having storage class 'auto' or |
| // 'register'. |
| if (!D->hasLocalStorage()) |
| return StmtError(Diag(D->getLocation(), |
| diag::err_non_local_variable_decl_in_for)); |
| |
| // If the type contained 'auto', deduce the 'auto' to 'id'. |
| if (FirstType->getContainedAutoType()) { |
| OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(), |
| VK_RValue); |
| Expr *DeducedInit = &OpaqueId; |
| if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) == |
| DAR_Failed) |
| DiagnoseAutoDeductionFailure(D, DeducedInit); |
| if (FirstType.isNull()) { |
| D->setInvalidDecl(); |
| return StmtError(); |
| } |
| |
| D->setType(FirstType); |
| |
| if (!inTemplateInstantiation()) { |
| SourceLocation Loc = |
| D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(); |
| Diag(Loc, diag::warn_auto_var_is_id) |
| << D->getDeclName(); |
| } |
| } |
| |
| } else { |
| Expr *FirstE = cast<Expr>(First); |
| if (!FirstE->isTypeDependent() && !FirstE->isLValue()) |
| return StmtError(Diag(First->getLocStart(), |
| diag::err_selector_element_not_lvalue) |
| << First->getSourceRange()); |
| |
| FirstType = static_cast<Expr*>(First)->getType(); |
| if (FirstType.isConstQualified()) |
| Diag(ForLoc, diag::err_selector_element_const_type) |
| << FirstType << First->getSourceRange(); |
| } |
| if (!FirstType->isDependentType() && |
| !FirstType->isObjCObjectPointerType() && |
| !FirstType->isBlockPointerType()) |
| return StmtError(Diag(ForLoc, diag::err_selector_element_type) |
| << FirstType << First->getSourceRange()); |
| } |
| |
| if (CollectionExprResult.isInvalid()) |
| return StmtError(); |
| |
| CollectionExprResult = ActOnFinishFullExpr(CollectionExprResult.get()); |
| if (CollectionExprResult.isInvalid()) |
| return StmtError(); |
| |
| return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(), |
| nullptr, ForLoc, RParenLoc); |
| } |
| |
| /// Finish building a variable declaration for a for-range statement. |
| /// \return true if an error occurs. |
| static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init, |
| SourceLocation Loc, int DiagID) { |
| if (Decl->getType()->isUndeducedType()) { |
| ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init); |
| if (!Res.isUsable()) { |
| Decl->setInvalidDecl(); |
| return true; |
| } |
| Init = Res.get(); |
| } |
| |
| // Deduce the type for the iterator variable now rather than leaving it to |
| // AddInitializerToDecl, so we can produce a more suitable diagnostic. |
| QualType InitType; |
| if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) || |
| SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) == |
| Sema::DAR_Failed) |
| SemaRef.Diag(Loc, DiagID) << Init->getType(); |
| if (InitType.isNull()) { |
| Decl->setInvalidDecl(); |
| return true; |
| } |
| Decl->setType(InitType); |
| |
| // In ARC, infer lifetime. |
| // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if |
| // we're doing the equivalent of fast iteration. |
| if (SemaRef.getLangOpts().ObjCAutoRefCount && |
| SemaRef.inferObjCARCLifetime(Decl)) |
| Decl->setInvalidDecl(); |
| |
| SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false); |
| SemaRef.FinalizeDeclaration(Decl); |
| SemaRef.CurContext->addHiddenDecl(Decl); |
| return false; |
| } |
| |
| namespace { |
| // An enum to represent whether something is dealing with a call to begin() |
| // or a call to end() in a range-based for loop. |
| enum BeginEndFunction { |
| BEF_begin, |
| BEF_end |
| }; |
| |
| /// Produce a note indicating which begin/end function was implicitly called |
| /// by a C++11 for-range statement. This is often not obvious from the code, |
| /// nor from the diagnostics produced when analysing the implicit expressions |
| /// required in a for-range statement. |
| void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E, |
| BeginEndFunction BEF) { |
| CallExpr *CE = dyn_cast<CallExpr>(E); |
| if (!CE) |
| return; |
| FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); |
| if (!D) |
| return; |
| SourceLocation Loc = D->getLocation(); |
| |
| std::string Description; |
| bool IsTemplate = false; |
| if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) { |
| Description = SemaRef.getTemplateArgumentBindingsText( |
| FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs()); |
| IsTemplate = true; |
| } |
| |
| SemaRef.Diag(Loc, diag::note_for_range_begin_end) |
| << BEF << IsTemplate << Description << E->getType(); |
| } |
| |
| /// Build a variable declaration for a for-range statement. |
| VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc, |
| QualType Type, StringRef Name) { |
| DeclContext *DC = SemaRef.CurContext; |
| IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name); |
| TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc); |
| VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type, |
| TInfo, SC_None); |
| Decl->setImplicit(); |
| return Decl; |
| } |
| |
| } |
| |
| static bool ObjCEnumerationCollection(Expr *Collection) { |
| return !Collection->isTypeDependent() |
| && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr; |
| } |
| |
| /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement. |
| /// |
| /// C++11 [stmt.ranged]: |
| /// A range-based for statement is equivalent to |
| /// |
| /// { |
| /// auto && __range = range-init; |
| /// for ( auto __begin = begin-expr, |
| /// __end = end-expr; |
| /// __begin != __end; |
| /// ++__begin ) { |
| /// for-range-declaration = *__begin; |
| /// statement |
| /// } |
| /// } |
| /// |
| /// The body of the loop is not available yet, since it cannot be analysed until |
| /// we have determined the type of the for-range-declaration. |
| StmtResult Sema::ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc, |
| SourceLocation CoawaitLoc, Stmt *First, |
| SourceLocation ColonLoc, Expr *Range, |
| SourceLocation RParenLoc, |
| BuildForRangeKind Kind) { |
| if (!First) |
| return StmtError(); |
| |
| if (Range && ObjCEnumerationCollection(Range)) |
| return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc); |
| |
| DeclStmt *DS = dyn_cast<DeclStmt>(First); |
| assert(DS && "first part of for range not a decl stmt"); |
| |
| if (!DS->isSingleDecl()) { |
| Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range); |
| return StmtError(); |
| } |
| |
| Decl *LoopVar = DS->getSingleDecl(); |
| if (LoopVar->isInvalidDecl() || !Range || |
| DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) { |
| LoopVar->setInvalidDecl(); |
| return StmtError(); |
| } |
| |
| // Build the coroutine state immediately and not later during template |
| // instantiation |
| if (!CoawaitLoc.isInvalid()) { |
| if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await")) |
| return StmtError(); |
| } |
| |
| // Build auto && __range = range-init |
| // Divide by 2, since the variables are in the inner scope (loop body). |
| const auto DepthStr = std::to_string(S->getDepth() / 2); |
| SourceLocation RangeLoc = Range->getLocStart(); |
| VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc, |
| Context.getAutoRRefDeductType(), |
| std::string("__range") + DepthStr); |
| if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc, |
| diag::err_for_range_deduction_failure)) { |
| LoopVar->setInvalidDecl(); |
| return StmtError(); |
| } |
| |
| // Claim the type doesn't contain auto: we've already done the checking. |
| DeclGroupPtrTy RangeGroup = |
| BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1)); |
| StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc); |
| if (RangeDecl.isInvalid()) { |
| LoopVar->setInvalidDecl(); |
| return StmtError(); |
| } |
| |
| return BuildCXXForRangeStmt(ForLoc, CoawaitLoc, ColonLoc, RangeDecl.get(), |
| /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr, |
| /*Cond=*/nullptr, /*Inc=*/nullptr, |
| DS, RParenLoc, Kind); |
| } |
| |
| /// Create the initialization, compare, and increment steps for |
| /// the range-based for loop expression. |
| /// This function does not handle array-based for loops, |
| /// which are created in Sema::BuildCXXForRangeStmt. |
| /// |
| /// \returns a ForRangeStatus indicating success or what kind of error occurred. |
| /// BeginExpr and EndExpr are set and FRS_Success is returned on success; |
| /// CandidateSet and BEF are set and some non-success value is returned on |
| /// failure. |
| static Sema::ForRangeStatus |
| BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange, |
| QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar, |
| SourceLocation ColonLoc, SourceLocation CoawaitLoc, |
| OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr, |
| ExprResult *EndExpr, BeginEndFunction *BEF) { |
| DeclarationNameInfo BeginNameInfo( |
| &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc); |
| DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"), |
| ColonLoc); |
| |
| LookupResult BeginMemberLookup(SemaRef, BeginNameInfo, |
| Sema::LookupMemberName); |
| LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName); |
| |
| if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) { |
| // - if _RangeT is a class type, the unqualified-ids begin and end are |
| // looked up in the scope of class _RangeT as if by class member access |
| // lookup (3.4.5), and if either (or both) finds at least one |
| // declaration, begin-expr and end-expr are __range.begin() and |
| // __range.end(), respectively; |
| SemaRef.LookupQualifiedName(BeginMemberLookup, D); |
| SemaRef.LookupQualifiedName(EndMemberLookup, D); |
| |
| if (BeginMemberLookup.empty() != EndMemberLookup.empty()) { |
| SourceLocation RangeLoc = BeginVar->getLocation(); |
| *BEF = BeginMemberLookup.empty() ? BEF_end : BEF_begin; |
| |
| SemaRef.Diag(RangeLoc, diag::err_for_range_member_begin_end_mismatch) |
| << RangeLoc << BeginRange->getType() << *BEF; |
| return Sema::FRS_DiagnosticIssued; |
| } |
| } else { |
| // - otherwise, begin-expr and end-expr are begin(__range) and |
| // end(__range), respectively, where begin and end are looked up with |
| // argument-dependent lookup (3.4.2). For the purposes of this name |
| // lookup, namespace std is an associated namespace. |
| |
| } |
| |
| *BEF = BEF_begin; |
| Sema::ForRangeStatus RangeStatus = |
| SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo, |
| BeginMemberLookup, CandidateSet, |
| BeginRange, BeginExpr); |
| |
| if (RangeStatus != Sema::FRS_Success) { |
| if (RangeStatus == Sema::FRS_DiagnosticIssued) |
| SemaRef.Diag(BeginRange->getLocStart(), diag::note_in_for_range) |
| << ColonLoc << BEF_begin << BeginRange->getType(); |
| return RangeStatus; |
| } |
| if (!CoawaitLoc.isInvalid()) { |
| // FIXME: getCurScope() should not be used during template instantiation. |
| // We should pick up the set of unqualified lookup results for operator |
| // co_await during the initial parse. |
| *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc, |
| BeginExpr->get()); |
| if (BeginExpr->isInvalid()) |
| return Sema::FRS_DiagnosticIssued; |
| } |
| if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc, |
| diag::err_for_range_iter_deduction_failure)) { |
| NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF); |
| return Sema::FRS_DiagnosticIssued; |
| } |
| |
| *BEF = BEF_end; |
| RangeStatus = |
| SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo, |
| EndMemberLookup, CandidateSet, |
| EndRange, EndExpr); |
| if (RangeStatus != Sema::FRS_Success) { |
| if (RangeStatus == Sema::FRS_DiagnosticIssued) |
| SemaRef.Diag(EndRange->getLocStart(), diag::note_in_for_range) |
| << ColonLoc << BEF_end << EndRange->getType(); |
| return RangeStatus; |
| } |
| if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc, |
| diag::err_for_range_iter_deduction_failure)) { |
| NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF); |
| return Sema::FRS_DiagnosticIssued; |
| } |
| return Sema::FRS_Success; |
| } |
| |
| /// Speculatively attempt to dereference an invalid range expression. |
| /// If the attempt fails, this function will return a valid, null StmtResult |
| /// and emit no diagnostics. |
| static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S, |
| SourceLocation ForLoc, |
| SourceLocation CoawaitLoc, |
| Stmt *LoopVarDecl, |
| SourceLocation ColonLoc, |
| Expr *Range, |
| SourceLocation RangeLoc, |
| SourceLocation RParenLoc) { |
| // Determine whether we can rebuild the for-range statement with a |
| // dereferenced range expression. |
| ExprResult AdjustedRange; |
| { |
| Sema::SFINAETrap Trap(SemaRef); |
| |
| AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range); |
| if (AdjustedRange.isInvalid()) |
| return StmtResult(); |
| |
| StmtResult SR = SemaRef.ActOnCXXForRangeStmt( |
| S, ForLoc, CoawaitLoc, LoopVarDecl, ColonLoc, AdjustedRange.get(), |
| RParenLoc, Sema::BFRK_Check); |
| if (SR.isInvalid()) |
| return StmtResult(); |
| } |
| |
| // The attempt to dereference worked well enough that it could produce a valid |
| // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in |
| // case there are any other (non-fatal) problems with it. |
| SemaRef.Diag(RangeLoc, diag::err_for_range_dereference) |
| << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*"); |
| return SemaRef.ActOnCXXForRangeStmt(S, ForLoc, CoawaitLoc, LoopVarDecl, |
| ColonLoc, AdjustedRange.get(), RParenLoc, |
| Sema::BFRK_Rebuild); |
| } |
| |
| namespace { |
| /// RAII object to automatically invalidate a declaration if an error occurs. |
| struct InvalidateOnErrorScope { |
| InvalidateOnErrorScope(Sema &SemaRef, Decl *D, bool Enabled) |
| : Trap(SemaRef.Diags), D(D), Enabled(Enabled) {} |
| ~InvalidateOnErrorScope() { |
| if (Enabled && Trap.hasErrorOccurred()) |
| D->setInvalidDecl(); |
| } |
| |
| DiagnosticErrorTrap Trap; |
| Decl *D; |
| bool Enabled; |
| }; |
| } |
| |
| /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement. |
| StmtResult |
| Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation CoawaitLoc, |
| SourceLocation ColonLoc, Stmt *RangeDecl, |
| Stmt *Begin, Stmt *End, Expr *Cond, |
| Expr *Inc, Stmt *LoopVarDecl, |
| SourceLocation RParenLoc, BuildForRangeKind Kind) { |
| // FIXME: This should not be used during template instantiation. We should |
| // pick up the set of unqualified lookup results for the != and + operators |
| // in the initial parse. |
| // |
| // Testcase (accepts-invalid): |
| // template<typename T> void f() { for (auto x : T()) {} } |
| // namespace N { struct X { X begin(); X end(); int operator*(); }; } |
| // bool operator!=(N::X, N::X); void operator++(N::X); |
| // void g() { f<N::X>(); } |
| Scope *S = getCurScope(); |
| |
| DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl); |
| VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl()); |
| QualType RangeVarType = RangeVar->getType(); |
| |
| DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl); |
| VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl()); |
| |
| // If we hit any errors, mark the loop variable as invalid if its type |
| // contains 'auto'. |
| InvalidateOnErrorScope Invalidate(*this, LoopVar, |
| LoopVar->getType()->isUndeducedType()); |
| |
| StmtResult BeginDeclStmt = Begin; |
| StmtResult EndDeclStmt = End; |
| ExprResult NotEqExpr = Cond, IncrExpr = Inc; |
| |
| if (RangeVarType->isDependentType()) { |
| // The range is implicitly used as a placeholder when it is dependent. |
| RangeVar->markUsed(Context); |
| |
| // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill |
| // them in properly when we instantiate the loop. |
| if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) { |
| if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar)) |
| for (auto *Binding : DD->bindings()) |
| Binding->setType(Context.DependentTy); |
| LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy)); |
| } |
| } else if (!BeginDeclStmt.get()) { |
| SourceLocation RangeLoc = RangeVar->getLocation(); |
| |
| const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType(); |
| |
| ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType, |
| VK_LValue, ColonLoc); |
| if (BeginRangeRef.isInvalid()) |
| return StmtError(); |
| |
| ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType, |
| VK_LValue, ColonLoc); |
| if (EndRangeRef.isInvalid()) |
| return StmtError(); |
| |
| QualType AutoType = Context.getAutoDeductType(); |
| Expr *Range = RangeVar->getInit(); |
| if (!Range) |
| return StmtError(); |
| QualType RangeType = Range->getType(); |
| |
| if (RequireCompleteType(RangeLoc, RangeType, |
| diag::err_for_range_incomplete_type)) |
| return StmtError(); |
| |
| // Build auto __begin = begin-expr, __end = end-expr. |
| // Divide by 2, since the variables are in the inner scope (loop body). |
| const auto DepthStr = std::to_string(S->getDepth() / 2); |
| VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType, |
| std::string("__begin") + DepthStr); |
| VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType, |
| std::string("__end") + DepthStr); |
| |
| // Build begin-expr and end-expr and attach to __begin and __end variables. |
| ExprResult BeginExpr, EndExpr; |
| if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) { |
| // - if _RangeT is an array type, begin-expr and end-expr are __range and |
| // __range + __bound, respectively, where __bound is the array bound. If |
| // _RangeT is an array of unknown size or an array of incomplete type, |
| // the program is ill-formed; |
| |
| // begin-expr is __range. |
| BeginExpr = BeginRangeRef; |
| if (!CoawaitLoc.isInvalid()) { |
| BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get()); |
| if (BeginExpr.isInvalid()) |
| return StmtError(); |
| } |
| if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc, |
| diag::err_for_range_iter_deduction_failure)) { |
| NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); |
| return StmtError(); |
| } |
| |
| // Find the array bound. |
| ExprResult BoundExpr; |
| if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT)) |
| BoundExpr = IntegerLiteral::Create( |
| Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc); |
| else if (const VariableArrayType *VAT = |
| dyn_cast<VariableArrayType>(UnqAT)) { |
| // For a variably modified type we can't just use the expression within |
| // the array bounds, since we don't want that to be re-evaluated here. |
| // Rather, we need to determine what it was when the array was first |
| // created - so we resort to using sizeof(vla)/sizeof(element). |
| // For e.g. |
| // void f(int b) { |
| // int vla[b]; |
| // b = -1; <-- This should not affect the num of iterations below |
| // for (int &c : vla) { .. } |
| // } |
| |
| // FIXME: This results in codegen generating IR that recalculates the |
| // run-time number of elements (as opposed to just using the IR Value |
| // that corresponds to the run-time value of each bound that was |
| // generated when the array was created.) If this proves too embarrassing |
| // even for unoptimized IR, consider passing a magic-value/cookie to |
| // codegen that then knows to simply use that initial llvm::Value (that |
| // corresponds to the bound at time of array creation) within |
| // getelementptr. But be prepared to pay the price of increasing a |
| // customized form of coupling between the two components - which could |
| // be hard to maintain as the codebase evolves. |
| |
| ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr( |
| EndVar->getLocation(), UETT_SizeOf, |
| /*isType=*/true, |
| CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo( |
| VAT->desugar(), RangeLoc)) |
| .getAsOpaquePtr(), |
| EndVar->getSourceRange()); |
| if (SizeOfVLAExprR.isInvalid()) |
| return StmtError(); |
| |
| ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr( |
| EndVar->getLocation(), UETT_SizeOf, |
| /*isType=*/true, |
| CreateParsedType(VAT->desugar(), |
| Context.getTrivialTypeSourceInfo( |
| VAT->getElementType(), RangeLoc)) |
| .getAsOpaquePtr(), |
| EndVar->getSourceRange()); |
| if (SizeOfEachElementExprR.isInvalid()) |
| return StmtError(); |
| |
| BoundExpr = |
| ActOnBinOp(S, EndVar->getLocation(), tok::slash, |
| SizeOfVLAExprR.get(), SizeOfEachElementExprR.get()); |
| if (BoundExpr.isInvalid()) |
| return StmtError(); |
| |
| } else { |
| // Can't be a DependentSizedArrayType or an IncompleteArrayType since |
| // UnqAT is not incomplete and Range is not type-dependent. |
| llvm_unreachable("Unexpected array type in for-range"); |
| } |
| |
| // end-expr is __range + __bound. |
| EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(), |
| BoundExpr.get()); |
| if (EndExpr.isInvalid()) |
| return StmtError(); |
| if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc, |
| diag::err_for_range_iter_deduction_failure)) { |
| NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); |
| return StmtError(); |
| } |
| } else { |
| OverloadCandidateSet CandidateSet(RangeLoc, |
| OverloadCandidateSet::CSK_Normal); |
| BeginEndFunction BEFFailure; |
| ForRangeStatus RangeStatus = BuildNonArrayForRange( |
| *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar, |
| EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr, |
| &BEFFailure); |
| |
| if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction && |
| BEFFailure == BEF_begin) { |
| // If the range is being built from an array parameter, emit a |
| // a diagnostic that it is being treated as a pointer. |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) { |
| if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { |
| QualType ArrayTy = PVD->getOriginalType(); |
| QualType PointerTy = PVD->getType(); |
| if (PointerTy->isPointerType() && ArrayTy->isArrayType()) { |
| Diag(Range->getLocStart(), diag::err_range_on_array_parameter) |
| << RangeLoc << PVD << ArrayTy << PointerTy; |
| Diag(PVD->getLocation(), diag::note_declared_at); |
| return StmtError(); |
| } |
| } |
| } |
| |
| // If building the range failed, try dereferencing the range expression |
| // unless a diagnostic was issued or the end function is problematic. |
| StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc, |
| CoawaitLoc, |
| LoopVarDecl, ColonLoc, |
| Range, RangeLoc, |
| RParenLoc); |
| if (SR.isInvalid() || SR.isUsable()) |
| return SR; |
| } |
| |
| // Otherwise, emit diagnostics if we haven't already. |
| if (RangeStatus == FRS_NoViableFunction) { |
| Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get(); |
| Diag(Range->getLocStart(), diag::err_for_range_invalid) |
| << RangeLoc << Range->getType() << BEFFailure; |
| CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Range); |
| } |
| // Return an error if no fix was discovered. |
| if (RangeStatus != FRS_Success) |
| return StmtError(); |
| } |
| |
| assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() && |
| "invalid range expression in for loop"); |
| |
| // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same. |
| // C++1z removes this restriction. |
| QualType BeginType = BeginVar->getType(), EndType = EndVar->getType(); |
| if (!Context.hasSameType(BeginType, EndType)) { |
| Diag(RangeLoc, getLangOpts().CPlusPlus17 |
| ? diag::warn_for_range_begin_end_types_differ |
| : diag::ext_for_range_begin_end_types_differ) |
| << BeginType << EndType; |
| NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); |
| NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); |
| } |
| |
| BeginDeclStmt = |
| ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc); |
| EndDeclStmt = |
| ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc); |
| |
| const QualType BeginRefNonRefType = BeginType.getNonReferenceType(); |
| ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, |
| VK_LValue, ColonLoc); |
| if (BeginRef.isInvalid()) |
| return StmtError(); |
| |
| ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(), |
| VK_LValue, ColonLoc); |
| if (EndRef.isInvalid()) |
| return StmtError(); |
| |
| // Build and check __begin != __end expression. |
| NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal, |
| BeginRef.get(), EndRef.get()); |
| if (!NotEqExpr.isInvalid()) |
| NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get()); |
| if (!NotEqExpr.isInvalid()) |
| NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get()); |
| if (NotEqExpr.isInvalid()) { |
| Diag(RangeLoc, diag::note_for_range_invalid_iterator) |
| << RangeLoc << 0 << BeginRangeRef.get()->getType(); |
| NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); |
| if (!Context.hasSameType(BeginType, EndType)) |
| NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); |
| return StmtError(); |
| } |
| |
| // Build and check ++__begin expression. |
| BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, |
| VK_LValue, ColonLoc); |
| if (BeginRef.isInvalid()) |
| return StmtError(); |
| |
| IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get()); |
| if (!IncrExpr.isInvalid() && CoawaitLoc.isValid()) |
| // FIXME: getCurScope() should not be used during template instantiation. |
| // We should pick up the set of unqualified lookup results for operator |
| // co_await during the initial parse. |
| IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get()); |
| if (!IncrExpr.isInvalid()) |
| IncrExpr = ActOnFinishFullExpr(IncrExpr.get()); |
| if (IncrExpr.isInvalid()) { |
| Diag(RangeLoc, diag::note_for_range_invalid_iterator) |
| << RangeLoc << 2 << BeginRangeRef.get()->getType() ; |
| NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); |
| return StmtError(); |
| } |
| |
| // Build and check *__begin expression. |
| BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, |
| VK_LValue, ColonLoc); |
| if (BeginRef.isInvalid()) |
| return StmtError(); |
| |
| ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get()); |
| if (DerefExpr.isInvalid()) { |
| Diag(RangeLoc, diag::note_for_range_invalid_iterator) |
| << RangeLoc << 1 << BeginRangeRef.get()->getType(); |
| NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); |
| return StmtError(); |
| } |
| |
| // Attach *__begin as initializer for VD. Don't touch it if we're just |
| // trying to determine whether this would be a valid range. |
| if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) { |
| AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false); |
| if (LoopVar->isInvalidDecl()) |
| NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); |
| } |
| } |
| |
| // Don't bother to actually allocate the result if we're just trying to |
| // determine whether it would be valid. |
| if (Kind == BFRK_Check) |
| return StmtResult(); |
| |
| return new (Context) CXXForRangeStmt( |
| RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()), |
| cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(), |
| IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc, |
| ColonLoc, RParenLoc); |
| } |
| |
| /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach |
| /// statement. |
| StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) { |
| if (!S || !B) |
| return StmtError(); |
| ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S); |
| |
| ForStmt->setBody(B); |
| return S; |
| } |
| |
| // Warn when the loop variable is a const reference that creates a copy. |
| // Suggest using the non-reference type for copies. If a copy can be prevented |
| // suggest the const reference type that would do so. |
| // For instance, given "for (const &Foo : Range)", suggest |
| // "for (const Foo : Range)" to denote a copy is made for the loop. If |
| // possible, also suggest "for (const &Bar : Range)" if this type prevents |
| // the copy altogether. |
| static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef, |
| const VarDecl *VD, |
| QualType RangeInitType) { |
| const Expr *InitExpr = VD->getInit(); |
| if (!InitExpr) |
| return; |
| |
| QualType VariableType = VD->getType(); |
| |
| if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr)) |
| if (!Cleanups->cleanupsHaveSideEffects()) |
| InitExpr = Cleanups->getSubExpr(); |
| |
| const MaterializeTemporaryExpr *MTE = |
| dyn_cast<MaterializeTemporaryExpr>(InitExpr); |
| |
| // No copy made. |
| if (!MTE) |
| return; |
| |
| const Expr *E = MTE->GetTemporaryExpr()->IgnoreImpCasts(); |
| |
| // Searching for either UnaryOperator for dereference of a pointer or |
| // CXXOperatorCallExpr for handling iterators. |
| while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) { |
| if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) { |
| E = CCE->getArg(0); |
| } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) { |
| const MemberExpr *ME = cast<MemberExpr>(Call->getCallee()); |
| E = ME->getBase(); |
| } else { |
| const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E); |
| E = MTE->GetTemporaryExpr(); |
| } |
| E = E->IgnoreImpCasts(); |
| } |
| |
| bool ReturnsReference = false; |
| if (isa<UnaryOperator>(E)) { |
| ReturnsReference = true; |
| } else { |
| const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E); |
| const FunctionDecl *FD = Call->getDirectCallee(); |
| QualType ReturnType = FD->getReturnType(); |
| ReturnsReference = ReturnType->isReferenceType(); |
| } |
| |
| if (ReturnsReference) { |
| // Loop variable creates a temporary. Suggest either to go with |
| // non-reference loop variable to indicate a copy is made, or |
| // the correct time to bind a const reference. |
| SemaRef.Diag(VD->getLocation(), diag::warn_for_range_const_reference_copy) |
| << VD << VariableType << E->getType(); |
| QualType NonReferenceType = VariableType.getNonReferenceType(); |
| NonReferenceType.removeLocalConst(); |
| QualType NewReferenceType = |
| SemaRef.Context.getLValueReferenceType(E->getType().withConst()); |
| SemaRef.Diag(VD->getLocStart(), diag::note_use_type_or_non_reference) |
| << NonReferenceType << NewReferenceType << VD->getSourceRange(); |
| } else { |
| // The range always returns a copy, so a temporary is always created. |
| // Suggest removing the reference from the loop variable. |
| SemaRef.Diag(VD->getLocation(), diag::warn_for_range_variable_always_copy) |
| << VD << RangeInitType; |
| QualType NonReferenceType = VariableType.getNonReferenceType(); |
| NonReferenceType.removeLocalConst(); |
| SemaRef.Diag(VD->getLocStart(), diag::note_use_non_reference_type) |
| << NonReferenceType << VD->getSourceRange(); |
| } |
| } |
| |
| // Warns when the loop variable can be changed to a reference type to |
| // prevent a copy. For instance, if given "for (const Foo x : Range)" suggest |
| // "for (const Foo &x : Range)" if this form does not make a copy. |
| static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef, |
| const VarDecl *VD) { |
| const Expr *InitExpr = VD->getInit(); |
| if (!InitExpr) |
| return; |
| |
| QualType VariableType = VD->getType(); |
| |
| if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) { |
| if (!CE->getConstructor()->isCopyConstructor()) |
| return; |
| } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) { |
| if (CE->getCastKind() != CK_LValueToRValue) |
| return; |
| } else { |
| return; |
| } |
| |
| // TODO: Determine a maximum size that a POD type can be before a diagnostic |
| // should be emitted. Also, only ignore POD types with trivial copy |
| // constructors. |
| if (VariableType.isPODType(SemaRef.Context)) |
| return; |
| |
| // Suggest changing from a const variable to a const reference variable |
| // if doing so will prevent a copy. |
| SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy) |
| << VD << VariableType << InitExpr->getType(); |
| SemaRef.Diag(VD->getLocStart(), diag::note_use_reference_type) |
| << SemaRef.Context.getLValueReferenceType(VariableType) |
| << VD->getSourceRange(); |
| } |
| |
| /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them. |
| /// 1) for (const foo &x : foos) where foos only returns a copy. Suggest |
| /// using "const foo x" to show that a copy is made |
| /// 2) for (const bar &x : foos) where bar is a temporary initialized by bar. |
| /// Suggest either "const bar x" to keep the copying or "const foo& x" to |
| /// prevent the copy. |
| /// 3) for (const foo x : foos) where x is constructed from a reference foo. |
| /// Suggest "const foo &x" to prevent the copy. |
| static void DiagnoseForRangeVariableCopies(Sema &SemaRef, |
| const CXXForRangeStmt *ForStmt) { |
| if (SemaRef.Diags.isIgnored(diag::warn_for_range_const_reference_copy, |
| ForStmt->getLocStart()) && |
| SemaRef.Diags.isIgnored(diag::warn_for_range_variable_always_copy, |
| ForStmt->getLocStart()) && |
| SemaRef.Diags.isIgnored(diag::warn_for_range_copy, |
| ForStmt->getLocStart())) { |
| return; |
| } |
| |
| const VarDecl *VD = ForStmt->getLoopVariable(); |
| if (!VD) |
| return; |
| |
| QualType VariableType = VD->getType(); |
| |
| if (VariableType->isIncompleteType()) |
| return; |
| |
| const Expr *InitExpr = VD->getInit(); |
| if (!InitExpr) |
| return; |
| |
| if (VariableType->isReferenceType()) { |
| DiagnoseForRangeReferenceVariableCopies(SemaRef, VD, |
| ForStmt->getRangeInit()->getType()); |
| } else if (VariableType.isConstQualified()) { |
| DiagnoseForRangeConstVariableCopies(SemaRef, VD); |
| } |
| } |
| |
| /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement. |
| /// This is a separate step from ActOnCXXForRangeStmt because analysis of the |
| /// body cannot be performed until after the type of the range variable is |
| /// determined. |
| StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) { |
| if (!S || !B) |
| return StmtError(); |
| |
| if (isa<ObjCForCollectionStmt>(S)) |
| return FinishObjCForCollectionStmt(S, B); |
| |
| CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S); |
| ForStmt->setBody(B); |
| |
| DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B, |
| diag::warn_empty_range_based_for_body); |
| |
| DiagnoseForRangeVariableCopies(*this, ForStmt); |
| |
| return S; |
| } |
| |
| StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc, |
| SourceLocation LabelLoc, |
| LabelDecl *TheDecl) { |
| setFunctionHasBranchIntoScope(); |
| TheDecl->markUsed(Context); |
| return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc); |
| } |
| |
| StmtResult |
| Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, |
| Expr *E) { |
| // Convert operand to void* |
| if (!E->isTypeDependent()) { |
| QualType ETy = E->getType(); |
| QualType DestTy = Context.getPointerType(Context.VoidTy.withConst()); |
| ExprResult ExprRes = E; |
| AssignConvertType ConvTy = |
| CheckSingleAssignmentConstraints(DestTy, ExprRes); |
| if (ExprRes.isInvalid()) |
| return StmtError(); |
| E = ExprRes.get(); |
| if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing)) |
| return StmtError(); |
| } |
| |
| ExprResult ExprRes = ActOnFinishFullExpr(E); |
| if (ExprRes.isInvalid()) |
| return StmtError(); |
| E = ExprRes.get(); |
| |
| setFunctionHasIndirectGoto(); |
| |
| return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E); |
| } |
| |
| static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc, |
| const Scope &DestScope) { |
| if (!S.CurrentSEHFinally.empty() && |
| DestScope.Contains(*S.CurrentSEHFinally.back())) { |
| S.Diag(Loc, diag::warn_jump_out_of_seh_finally); |
| } |
| } |
| |
| StmtResult |
| Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) { |
| Scope *S = CurScope->getContinueParent(); |
| if (!S) { |
| // C99 6.8.6.2p1: A break shall appear only in or as a loop body. |
| return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop)); |
| } |
| CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S); |
| |
| return new (Context) ContinueStmt(ContinueLoc); |
| } |
| |
| StmtResult |
| Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) { |
| Scope *S = CurScope->getBreakParent(); |
| if (!S) { |
| // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body. |
| return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch)); |
| } |
| if (S->isOpenMPLoopScope()) |
| return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt) |
| << "break"); |
| CheckJumpOutOfSEHFinally(*this, BreakLoc, *S); |
| |
| return new (Context) BreakStmt(BreakLoc); |
| } |
| |
| /// Determine whether the given expression is a candidate for |
| /// copy elision in either a return statement or a throw expression. |
| /// |
| /// \param ReturnType If we're determining the copy elision candidate for |
| /// a return statement, this is the return type of the function. If we're |
| /// determining the copy elision candidate for a throw expression, this will |
| /// be a NULL type. |
| /// |
| /// \param E The expression being returned from the function or block, or |
| /// being thrown. |
| /// |
| /// \param CESK Whether we allow function parameters or |
| /// id-expressions that could be moved out of the function to be considered NRVO |
| /// candidates. C++ prohibits these for NRVO itself, but we re-use this logic to |
| /// determine whether we should try to move as part of a return or throw (which |
| /// does allow function parameters). |
| /// |
| /// \returns The NRVO candidate variable, if the return statement may use the |
| /// NRVO, or NULL if there is no such candidate. |
| VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType, Expr *E, |
| CopyElisionSemanticsKind CESK) { |
| // - in a return statement in a function [where] ... |
| // ... the expression is the name of a non-volatile automatic object ... |
| DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens()); |
| if (!DR || DR->refersToEnclosingVariableOrCapture()) |
| return nullptr; |
| VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl()); |
| if (!VD) |
| return nullptr; |
| |
| if (isCopyElisionCandidate(ReturnType, VD, CESK)) |
| return VD; |
| return nullptr; |
| } |
| |
| bool Sema::isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD, |
| CopyElisionSemanticsKind CESK) { |
| QualType VDType = VD->getType(); |
| // - in a return statement in a function with ... |
| // ... a class return type ... |
| if (!ReturnType.isNull() && !ReturnType->isDependentType()) { |
| if (!ReturnType->isRecordType()) |
| return false; |
| // ... the same cv-unqualified type as the function return type ... |
| // When considering moving this expression out, allow dissimilar types. |
| if (!(CESK & CES_AllowDifferentTypes) && !VDType->isDependentType() && |
| !Context.hasSameUnqualifiedType(ReturnType, VDType)) |
| return false; |
| } |
| |
| // ...object (other than a function or catch-clause parameter)... |
| if (VD->getKind() != Decl::Var && |
| !((CESK & CES_AllowParameters) && VD->getKind() == Decl::ParmVar)) |
| return false; |
| if (!(CESK & CES_AllowExceptionVariables) && VD->isExceptionVariable()) |
| return false; |
| |
| // ...automatic... |
| if (!VD->hasLocalStorage()) return false; |
| |
| // Return false if VD is a __block variable. We don't want to implicitly move |
| // out of a __block variable during a return because we cannot assume the |
| // variable will no longer be used. |
| if (VD->hasAttr<BlocksAttr>()) return false; |
| |
| if (CESK & CES_AllowDifferentTypes) |
| return true; |
| |
| // ...non-volatile... |
| if (VD->getType().isVolatileQualified()) return false; |
| |
| // Variables with higher required alignment than their type's ABI |
| // alignment cannot use NRVO. |
| if (!VD->getType()->isDependentType() && VD->hasAttr<AlignedAttr>() && |
| Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType())) |
| return false; |
| |
| return true; |
| } |
| |
| /// Try to perform the initialization of a potentially-movable value, |
| /// which is the operand to a return or throw statement. |
| /// |
| /// This routine implements C++14 [class.copy]p32, which attempts to treat |
| /// returned lvalues as rvalues in certain cases (to prefer move construction), |
| /// then falls back to treating them as lvalues if that failed. |
| /// |
| /// \param ConvertingConstructorsOnly If true, follow [class.copy]p32 and reject |
| /// resolutions that find non-constructors, such as derived-to-base conversions |
| /// or `operator T()&&` member functions. If false, do consider such |
| /// conversion sequences. |
| /// |
| /// \param Res We will fill this in if move-initialization was possible. |
| /// If move-initialization is not possible, such that we must fall back to |
| /// treating the operand as an lvalue, we will leave Res in its original |
| /// invalid state. |
| static void TryMoveInitialization(Sema& S, |
| const InitializedEntity &Entity, |
| const VarDecl *NRVOCandidate, |
| QualType ResultType, |
| Expr *&Value, |
| bool ConvertingConstructorsOnly, |
| ExprResult &Res) { |
| ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(), |
| CK_NoOp, Value, VK_XValue); |
| |
| Expr *InitExpr = &AsRvalue; |
| |
| InitializationKind Kind = InitializationKind::CreateCopy( |
| Value->getLocStart(), Value->getLocStart()); |
| |
| InitializationSequence Seq(S, Entity, Kind, InitExpr); |
| |
| if (!Seq) |
| return; |
| |
| for (const InitializationSequence::Step &Step : Seq.steps()) { |
| if (Step.Kind != InitializationSequence::SK_ConstructorInitialization && |
| Step.Kind != InitializationSequence::SK_UserConversion) |
| continue; |
| |
| FunctionDecl *FD = Step.Function.Function; |
| if (ConvertingConstructorsOnly) { |
| if (isa<CXXConstructorDecl>(FD)) { |
| // C++14 [class.copy]p32: |
| // [...] If the first overload resolution fails or was not performed, |
| // or if the type of the first parameter of the selected constructor |
| // is not an rvalue reference to the object's type (possibly |
| // cv-qualified), overload resolution is performed again, considering |
| // the object as an lvalue. |
| const RValueReferenceType *RRefType = |
| FD->getParamDecl(0)->getType()->getAs<RValueReferenceType>(); |
| if (!RRefType) |
| break; |
| if (!S.Context.hasSameUnqualifiedType(RRefType->getPointeeType(), |
| NRVOCandidate->getType())) |
| break; |
| } else { |
| continue; |
| } |
| } else { |
| if (isa<CXXConstructorDecl>(FD)) { |
| // Check that overload resolution selected a constructor taking an |
| // rvalue reference. If it selected an lvalue reference, then we |
| // didn't need to cast this thing to an rvalue in the first place. |
| if (!isa<RValueReferenceType>(FD->getParamDecl(0)->getType())) |
| break; |
| } else if (isa<CXXMethodDecl>(FD)) { |
| // Check that overload resolution selected a conversion operator |
| // taking an rvalue reference. |
| if (cast<CXXMethodDecl>(FD)->getRefQualifier() != RQ_RValue) |
| break; |
| } else { |
| continue; |
| } |
| } |
| |
| // Promote "AsRvalue" to the heap, since we now need this |
| // expression node to persist. |
| Value = ImplicitCastExpr::Create(S.Context, Value->getType(), CK_NoOp, |
| Value, nullptr, VK_XValue); |
| |
| // Complete type-checking the initialization of the return type |
| // using the constructor we found. |
| Res = Seq.Perform(S, Entity, Kind, Value); |
| } |
| } |
| |
| /// Perform the initialization of a potentially-movable value, which |
| /// is the result of return value. |
| /// |
| /// This routine implements C++14 [class.copy]p32, which attempts to treat |
| /// returned lvalues as rvalues in certain cases (to prefer move construction), |
| /// then falls back to treating them as lvalues if that failed. |
| ExprResult |
| Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity, |
| const VarDecl *NRVOCandidate, |
| QualType ResultType, |
| Expr *Value, |
| bool AllowNRVO) { |
| // C++14 [class.copy]p32: |
| // When the criteria for elision of a copy/move operation are met, but not for |
| // an exception-declaration, and the object to be copied is designated by an |
| // lvalue, or when the expression in a return statement is a (possibly |
| // parenthesized) id-expression that names an object with automatic storage |
| // duration declared in the body or parameter-declaration-clause of the |
| // innermost enclosing function or lambda-expression, overload resolution to |
| // select the constructor for the copy is first performed as if the object |
| // were designated by an rvalue. |
| ExprResult Res = ExprError(); |
| |
| if (AllowNRVO) { |
| bool AffectedByCWG1579 = false; |
| |
| if (!NRVOCandidate) { |
| NRVOCandidate = getCopyElisionCandidate(ResultType, Value, CES_Default); |
| if (NRVOCandidate && |
| !getDiagnostics().isIgnored(diag::warn_return_std_move_in_cxx11, |
| Value->getExprLoc())) { |
| const VarDecl *NRVOCandidateInCXX11 = |
| getCopyElisionCandidate(ResultType, Value, CES_FormerDefault); |
| AffectedByCWG1579 = (!NRVOCandidateInCXX11); |
| } |
| } |
| |
| if (NRVOCandidate) { |
| TryMoveInitialization(*this, Entity, NRVOCandidate, ResultType, Value, |
| true, Res); |
| } |
| |
| if (!Res.isInvalid() && AffectedByCWG1579) { |
| QualType QT = NRVOCandidate->getType(); |
| if (QT.getNonReferenceType() |
| .getUnqualifiedType() |
| .isTriviallyCopyableType(Context)) { |
| // Adding 'std::move' around a trivially copyable variable is probably |
| // pointless. Don't suggest it. |
| } else { |
| // Common cases for this are returning unique_ptr<Derived> from a |
| // function of return type unique_ptr<Base>, or returning T from a |
| // function of return type Expected<T>. This is totally fine in a |
| // post-CWG1579 world, but was not fine before. |
| assert(!ResultType.isNull()); |
| SmallString<32> Str; |
| Str += "std::move("; |
| Str += NRVOCandidate->getDeclName().getAsString(); |
| Str += ")"; |
| Diag(Value->getExprLoc(), diag::warn_return_std_move_in_cxx11) |
| << Value->getSourceRange() |
| << NRVOCandidate->getDeclName() << ResultType << QT; |
| Diag(Value->getExprLoc(), diag::note_add_std_move_in_cxx11) |
| << FixItHint::CreateReplacement(Value->getSourceRange(), Str); |
| } |
| } else if (Res.isInvalid() && |
| !getDiagnostics().isIgnored(diag::warn_return_std_move, |
| Value->getExprLoc())) { |
| const VarDecl *FakeNRVOCandidate = |
| getCopyElisionCandidate(QualType(), Value, CES_AsIfByStdMove); |
| if (FakeNRVOCandidate) { |
| QualType QT = FakeNRVOCandidate->getType(); |
| if (QT->isLValueReferenceType()) { |
| // Adding 'std::move' around an lvalue reference variable's name is |
| // dangerous. Don't suggest it. |
| } else if (QT.getNonReferenceType() |
| .getUnqualifiedType() |
| .isTriviallyCopyableType(Context)) { |
| // Adding 'std::move' around a trivially copyable variable is probably |
| // pointless. Don't suggest it. |
| } else { |
| ExprResult FakeRes = ExprError(); |
| Expr *FakeValue = Value; |
| TryMoveInitialization(*this, Entity, FakeNRVOCandidate, ResultType, |
| FakeValue, false, FakeRes); |
| if (!FakeRes.isInvalid()) { |
| bool IsThrow = |
| (Entity.getKind() == InitializedEntity::EK_Exception); |
| SmallString<32> Str; |
| Str += "std::move("; |
| Str += FakeNRVOCandidate->getDeclName().getAsString(); |
| Str += ")"; |
| Diag(Value->getExprLoc(), diag::warn_return_std_move) |
| << Value->getSourceRange() |
| << FakeNRVOCandidate->getDeclName() << IsThrow; |
| Diag(Value->getExprLoc(), diag::note_add_std_move) |
| << FixItHint::CreateReplacement(Value->getSourceRange(), Str); |
| } |
| } |
| } |
| } |
| } |
| |
| // Either we didn't meet the criteria for treating an lvalue as an rvalue, |
| // above, or overload resolution failed. Either way, we need to try |
| // (again) now with the return value expression as written. |
| if (Res.isInvalid()) |
| Res = PerformCopyInitialization(Entity, SourceLocation(), Value); |
| |
| return Res; |
| } |
| |
| /// Determine whether the declared return type of the specified function |
| /// contains 'auto'. |
| static bool hasDeducedReturnType(FunctionDecl *FD) { |
| const FunctionProtoType *FPT = |
| FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>(); |
| return FPT->getReturnType()->isUndeducedType(); |
| } |
| |
| /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements |
| /// for capturing scopes. |
| /// |
| StmtResult |
| Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) { |
| // If this is the first return we've seen, infer the return type. |
| // [expr.prim.lambda]p4 in C++11; block literals follow the same rules. |
| CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction()); |
| QualType FnRetType = CurCap->ReturnType; |
| LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap); |
| bool HasDeducedReturnType = |
| CurLambda && hasDeducedReturnType(CurLambda->CallOperator); |
| |
| if (ExprEvalContexts.back().Context == |
| ExpressionEvaluationContext::DiscardedStatement && |
| (HasDeducedReturnType || CurCap->HasImplicitReturnType)) { |
| if (RetValExp) { |
| ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc); |
| if (ER.isInvalid()) |
| return StmtError(); |
| RetValExp = ER.get(); |
| } |
| return new (Context) ReturnStmt(ReturnLoc, RetValExp, nullptr); |
| } |
| |
| if (HasDeducedReturnType) { |
| // In C++1y, the return type may involve 'auto'. |
| // FIXME: Blocks might have a return type of 'auto' explicitly specified. |
| FunctionDecl *FD = CurLambda->CallOperator; |
| if (CurCap->ReturnType.isNull()) |
| CurCap->ReturnType = FD->getReturnType(); |
| |
| AutoType *AT = CurCap->ReturnType->getContainedAutoType(); |
| assert(AT && "lost auto type from lambda return type"); |
| if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) { |
| FD->setInvalidDecl(); |
| return StmtError(); |
| } |
| CurCap->ReturnType = FnRetType = FD->getReturnType(); |
| } else if (CurCap->HasImplicitReturnType) { |
| // For blocks/lambdas with implicit return types, we check each return |
| // statement individually, and deduce the common return type when the block |
| // or lambda is completed. |
| // FIXME: Fold this into the 'auto' codepath above. |
| if (RetValExp && !isa<InitListExpr>(RetValExp)) { |
| ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp); |
| if (Result.isInvalid()) |
| return StmtError(); |
| RetValExp = Result.get(); |
| |
| // DR1048: even prior to C++14, we should use the 'auto' deduction rules |
| // when deducing a return type for a lambda-expression (or by extension |
| // for a block). These rules differ from the stated C++11 rules only in |
| // that they remove top-level cv-qualifiers. |
| if (!CurContext->isDependentContext()) |
| FnRetType = RetValExp->getType().getUnqualifiedType(); |
| else |
| FnRetType = CurCap->ReturnType = Context.DependentTy; |
| } else { |
| if (RetValExp) { |
| // C++11 [expr.lambda.prim]p4 bans inferring the result from an |
| // initializer list, because it is not an expression (even |
| // though we represent it as one). We still deduce 'void'. |
| Diag(ReturnLoc, diag::err_lambda_return_init_list) |
| << RetValExp->getSourceRange(); |
| } |
| |
| FnRetType = Context.VoidTy; |
| } |
| |
| // Although we'll properly infer the type of the block once it's completed, |
| // make sure we provide a return type now for better error recovery. |
| if (CurCap->ReturnType.isNull()) |
| CurCap->ReturnType = FnRetType; |
| } |
| assert(!FnRetType.isNull()); |
| |
| if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) { |
| if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) { |
| Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr); |
| return StmtError(); |
| } |
| } else if (CapturedRegionScopeInfo *CurRegion = |
| dyn_cast<CapturedRegionScopeInfo>(CurCap)) { |
| Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName(); |
| return StmtError(); |
| } else { |
| assert(CurLambda && "unknown kind of captured scope"); |
| if (CurLambda->CallOperator->getType()->getAs<FunctionType>() |
| ->getNoReturnAttr()) { |
| Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr); |
| return StmtError(); |
| } |
| } |
| |
| // Otherwise, verify that this result type matches the previous one. We are |
| // pickier with blocks than for normal functions because we don't have GCC |
| // compatibility to worry about here. |
| const VarDecl *NRVOCandidate = nullptr; |
| if (FnRetType->isDependentType()) { |
| // Delay processing for now. TODO: there are lots of dependent |
| // types we can conclusively prove aren't void. |
| } else if (FnRetType->isVoidType()) { |
| if (RetValExp && !isa<InitListExpr>(RetValExp) && |
| !(getLangOpts().CPlusPlus && |
| (RetValExp->isTypeDependent() || |
| RetValExp->getType()->isVoidType()))) { |
| if (!getLangOpts().CPlusPlus && |
| RetValExp->getType()->isVoidType()) |
| Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2; |
| else { |
| Diag(ReturnLoc, diag::err_return_block_has_expr); |
| RetValExp = nullptr; |
| } |
| } |
| } else if (!RetValExp) { |
| return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr)); |
| } else if (!RetValExp->isTypeDependent()) { |
| // we have a non-void block with an expression, continue checking |
| |
| // C99 6.8.6.4p3(136): The return statement is not an assignment. The |
| // overlap restriction of subclause 6.5.16.1 does not apply to the case of |
| // function return. |
| |
| // In C++ the return statement is handled via a copy initialization. |
| // the C version of which boils down to CheckSingleAssignmentConstraints. |
| NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict); |
| InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc, |
| FnRetType, |
| NRVOCandidate != nullptr); |
| ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate, |
| FnRetType, RetValExp); |
| if (Res.isInvalid()) { |
| // FIXME: Cleanup temporaries here, anyway? |
| return StmtError(); |
| } |
| RetValExp = Res.get(); |
| CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc); |
| } else { |
| NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict); |
| } |
| |
| if (RetValExp) { |
| ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc); |
| if (ER.isInvalid()) |
| return StmtError(); |
| RetValExp = ER.get(); |
| } |
| ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, |
| NRVOCandidate); |
| |
| // If we need to check for the named return value optimization, |
| // or if we need to infer the return type, |
| // save the return statement in our scope for later processing. |
| if (CurCap->HasImplicitReturnType || NRVOCandidate) |
| FunctionScopes.back()->Returns.push_back(Result); |
| |
| if (FunctionScopes.back()->FirstReturnLoc.isInvalid()) |
| FunctionScopes.back()->FirstReturnLoc = ReturnLoc; |
| |
| return Result; |
| } |
| |
| namespace { |
| /// Marks all typedefs in all local classes in a type referenced. |
| /// |
| /// In a function like |
| /// auto f() { |
| /// struct S { typedef int a; }; |
| /// return S(); |
| /// } |
| /// |
| /// the local type escapes and could be referenced in some TUs but not in |
| /// others. Pretend that all local typedefs are always referenced, to not warn |
| /// on this. This isn't necessary if f has internal linkage, or the typedef |
| /// is private. |
| class LocalTypedefNameReferencer |
| : public RecursiveASTVisitor<LocalTypedefNameReferencer> { |
| public: |
| LocalTypedefNameReferencer(Sema &S) : S(S) {} |
| bool VisitRecordType(const RecordType *RT); |
| private: |
| Sema &S; |
| }; |
| bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) { |
| auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl()); |
| if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() || |
| R->isDependentType()) |
| return true; |
| for (auto *TmpD : R->decls()) |
| if (auto *T = dyn_cast<TypedefNameDecl>(TmpD)) |
| if (T->getAccess() != AS_private || R->hasFriends()) |
| S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false); |
| return true; |
| } |
| } |
| |
| TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const { |
| TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens(); |
| while (auto ATL = TL.getAs<AttributedTypeLoc>()) |
| TL = ATL.getModifiedLoc().IgnoreParens(); |
| return TL.castAs<FunctionProtoTypeLoc>().getReturnLoc(); |
| } |
| |
| /// Deduce the return type for a function from a returned expression, per |
| /// C++1y [dcl.spec.auto]p6. |
| bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD, |
| SourceLocation ReturnLoc, |
| Expr *&RetExpr, |
| AutoType *AT) { |
| // If this is the conversion function for a lambda, we choose to deduce it |
| // type from the corresponding call operator, not from the synthesized return |
| // statement within it. See Sema::DeduceReturnType. |
| if (isLambdaConversionOperator(FD)) |
| return false; |
| |
| TypeLoc OrigResultType = getReturnTypeLoc(FD); |
| QualType Deduced; |
| |
| if (RetExpr && isa<InitListExpr>(RetExpr)) { |
| // If the deduction is for a return statement and the initializer is |
| // a braced-init-list, the program is ill-formed. |
| Diag(RetExpr->getExprLoc(), |
| getCurLambda() ? diag::err_lambda_return_init_list |
| : diag::err_auto_fn_return_init_list) |
| << RetExpr->getSourceRange(); |
| return true; |
| } |
| |
| if (FD->isDependentContext()) { |
| // C++1y [dcl.spec.auto]p12: |
| // Return type deduction [...] occurs when the definition is |
| // instantiated even if the function body contains a return |
| // statement with a non-type-dependent operand. |
| assert(AT->isDeduced() && "should have deduced to dependent type"); |
| return false; |
| } |
| |
| if (RetExpr) { |
| // Otherwise, [...] deduce a value for U using the rules of template |
| // argument deduction. |
| DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced); |
| |
| if (DAR == DAR_Failed && !FD->isInvalidDecl()) |
| Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure) |
| << OrigResultType.getType() << RetExpr->getType(); |
| |
| if (DAR != DAR_Succeeded) |
| return true; |
| |
| // If a local type is part of the returned type, mark its fields as |
| // referenced. |
| LocalTypedefNameReferencer Referencer(*this); |
| Referencer.TraverseType(RetExpr->getType()); |
| } else { |
| // In the case of a return with no operand, the initializer is considered |
| // to be void(). |
| // |
| // Deduction here can only succeed if the return type is exactly 'cv auto' |
| // or 'decltype(auto)', so just check for that case directly. |
| if (!OrigResultType.getType()->getAs<AutoType>()) { |
| Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto) |
| << OrigResultType.getType(); |
| return true; |
| } |
| // We always deduce U = void in this case. |
| Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy); |
| if (Deduced.isNull()) |
| return true; |
| } |
| |
| // If a function with a declared return type that contains a placeholder type |
| // has multiple return statements, the return type is deduced for each return |
| // statement. [...] if the type deduced is not the same in each deduction, |
| // the program is ill-formed. |
| QualType DeducedT = AT->getDeducedType(); |
| if (!DeducedT.isNull() && !FD->isInvalidDecl()) { |
| AutoType *NewAT = Deduced->getContainedAutoType(); |
| // It is possible that NewAT->getDeducedType() is null. When that happens, |
| // we should not crash, instead we ignore this deduction. |
| if (NewAT->getDeducedType().isNull()) |
| return false; |
| |
| CanQualType OldDeducedType = Context.getCanonicalFunctionResultType( |
| DeducedT); |
| CanQualType NewDeducedType = Context.getCanonicalFunctionResultType( |
| NewAT->getDeducedType()); |
| if (!FD->isDependentContext() && OldDeducedType != NewDeducedType) { |
| const LambdaScopeInfo *LambdaSI = getCurLambda(); |
| if (LambdaSI && LambdaSI->HasImplicitReturnType) { |
| Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible) |
| << NewAT->getDeducedType() << DeducedT |
| << true /*IsLambda*/; |
| } else { |
| Diag(ReturnLoc, diag::err_auto_fn_different_deductions) |
| << (AT->isDecltypeAuto() ? 1 : 0) |
| << NewAT->getDeducedType() << DeducedT; |
| } |
| return true; |
| } |
| } else if (!FD->isInvalidDecl()) { |
| // Update all declarations of the function to have the deduced return type. |
| Context.adjustDeducedFunctionResultType(FD, Deduced); |
| } |
| |
| return false; |
| } |
| |
| StmtResult |
| Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, |
| Scope *CurScope) { |
| StmtResult R = BuildReturnStmt(ReturnLoc, RetValExp); |
| if (R.isInvalid() || ExprEvalContexts.back().Context == |
| ExpressionEvaluationContext::DiscardedStatement) |
| return R; |
| |
| if (VarDecl *VD = |
| const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) { |
| CurScope->addNRVOCandidate(VD); |
| } else { |
| CurScope->setNoNRVO(); |
| } |
| |
| CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent()); |
| |
| return R; |
| } |
| |
| StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) { |
| // Check for unexpanded parameter packs. |
| if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp)) |
| return StmtError(); |
| |
| if (isa<CapturingScopeInfo>(getCurFunction())) |
| return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp); |
| |
| QualType FnRetType; |
| QualType RelatedRetType; |
| const AttrVec *Attrs = nullptr; |
| bool isObjCMethod = false; |
| |
| if (const FunctionDecl *FD = getCurFunctionDecl()) { |
| FnRetType = FD->getReturnType(); |
| if (FD->hasAttrs()) |
| Attrs = &FD->getAttrs(); |
| if (FD->isNoReturn()) |
| Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr) |
| << FD->getDeclName(); |
| if (FD->isMain() && RetValExp) |
| if (isa<CXXBoolLiteralExpr>(RetValExp)) |
| Diag(ReturnLoc, diag::warn_main_returns_bool_literal) |
| << RetValExp->getSourceRange(); |
| } else if (ObjCMethodDecl *MD = getCurMethodDecl()) { |
| FnRetType = MD->getReturnType(); |
| isObjCMethod = true; |
| if (MD->hasAttrs()) |
| Attrs = &MD->getAttrs(); |
| if (MD->hasRelatedResultType() && MD->getClassInterface()) { |
| // In the implementation of a method with a related return type, the |
| // type used to type-check the validity of return statements within the |
| // method body is a pointer to the type of the class being implemented. |
| RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface()); |
| RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType); |
| } |
| } else // If we don't have a function/method context, bail. |
| return StmtError(); |
| |
| // C++1z: discarded return statements are not considered when deducing a |
| // return type. |
| if (ExprEvalContexts.back().Context == |
| ExpressionEvaluationContext::DiscardedStatement && |
| FnRetType->getContainedAutoType()) { |
| if (RetValExp) { |
| ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc); |
| if (ER.isInvalid()) |
| return StmtError(); |
| RetValExp = ER.get(); |
| } |
| return new (Context) ReturnStmt(ReturnLoc, RetValExp, nullptr); |
| } |
| |
| // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing |
| // deduction. |
| if (getLangOpts().CPlusPlus14) { |
| if (AutoType *AT = FnRetType->getContainedAutoType()) { |
| FunctionDecl *FD = cast<FunctionDecl>(CurContext); |
| if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) { |
| FD->setInvalidDecl(); |
| return StmtError(); |
| } else { |
| FnRetType = FD->getReturnType(); |
| } |
| } |
| } |
| |
| bool HasDependentReturnType = FnRetType->isDependentType(); |
| |
| ReturnStmt *Result = nullptr; |
| if (FnRetType->isVoidType()) { |
| if (RetValExp) { |
| if (isa<InitListExpr>(RetValExp)) { |
| // We simply never allow init lists as the return value of void |
| // functions. This is compatible because this was never allowed before, |
| // so there's no legacy code to deal with. |
| NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); |
| int FunctionKind = 0; |
| if (isa<ObjCMethodDecl>(CurDecl)) |
| FunctionKind = 1; |
| else if (isa<CXXConstructorDecl>(CurDecl)) |
| FunctionKind = 2; |
| else if (isa<CXXDestructorDecl>(CurDecl)) |
| FunctionKind = 3; |
| |
| Diag(ReturnLoc, diag::err_return_init_list) |
| << CurDecl->getDeclName() << FunctionKind |
| << RetValExp->getSourceRange(); |
| |
| // Drop the expression. |
| RetValExp = nullptr; |
| } else if (!RetValExp->isTypeDependent()) { |
| // C99 6.8.6.4p1 (ext_ since GCC warns) |
| unsigned D = diag::ext_return_has_expr; |
| if (RetValExp->getType()->isVoidType()) { |
| NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); |
| if (isa<CXXConstructorDecl>(CurDecl) || |
| isa<CXXDestructorDecl>(CurDecl)) |
| D = diag::err_ctor_dtor_returns_void; |
| else |
| D = diag::ext_return_has_void_expr; |
| } |
| else { |
| ExprResult Result = RetValExp; |
| Result = IgnoredValueConversions(Result.get()); |
| if (Result.isInvalid()) |
| return StmtError(); |
| RetValExp = Result.get(); |
| RetValExp = ImpCastExprToType(RetValExp, |
| Context.VoidTy, CK_ToVoid).get(); |
| } |
| // return of void in constructor/destructor is illegal in C++. |
| if (D == diag::err_ctor_dtor_returns_void) { |
| NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); |
| Diag(ReturnLoc, D) |
| << CurDecl->getDeclName() << isa<CXXDestructorDecl>(CurDecl) |
| << RetValExp->getSourceRange(); |
| } |
| // return (some void expression); is legal in C++. |
| else if (D != diag::ext_return_has_void_expr || |
| !getLangOpts().CPlusPlus) { |
| NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); |
| |
| int FunctionKind = 0; |
| if (isa<ObjCMethodDecl>(CurDecl)) |
| FunctionKind = 1; |
| else if (isa<CXXConstructorDecl>(CurDecl)) |
| FunctionKind = 2; |
| else if (isa<CXXDestructorDecl>(CurDecl)) |
| FunctionKind = 3; |
| |
| Diag(ReturnLoc, D) |
| << CurDecl->getDeclName() << FunctionKind |
| << RetValExp->getSourceRange(); |
| } |
| } |
| |
| if (RetValExp) { |
| ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc); |
| if (ER.isInvalid()) |
| return StmtError(); |
| RetValExp = ER.get(); |
| } |
| } |
| |
| Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, nullptr); |
| } else if (!RetValExp && !HasDependentReturnType) { |
| FunctionDecl *FD = getCurFunctionDecl(); |
| |
| unsigned DiagID; |
| if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) { |
| // C++11 [stmt.return]p2 |
| DiagID = diag::err_constexpr_return_missing_expr; |
| FD->setInvalidDecl(); |
| } else if (getLangOpts().C99) { |
| // C99 6.8.6.4p1 (ext_ since GCC warns) |
| DiagID = diag::ext_return_missing_expr; |
| } else { |
| // C90 6.6.6.4p4 |
| DiagID = diag::warn_return_missing_expr; |
| } |
| |
| if (FD) |
| Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/; |
| else |
| Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/; |
| |
| Result = new (Context) ReturnStmt(ReturnLoc); |
| } else { |
| assert(RetValExp || HasDependentReturnType); |
| const VarDecl *NRVOCandidate = nullptr; |
| |
| QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType; |
| |
| // C99 6.8.6.4p3(136): The return statement is not an assignment. The |
| // overlap restriction of subclause 6.5.16.1 does not apply to the case of |
| // function return. |
| |
| // In C++ the return statement is handled via a copy initialization, |
| // the C version of which boils down to CheckSingleAssignmentConstraints. |
| if (RetValExp) |
| NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict); |
| if (!HasDependentReturnType && !RetValExp->isTypeDependent()) { |
| // we have a non-void function with an expression, continue checking |
| InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc, |
| RetType, |
| NRVOCandidate != nullptr); |
| ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate, |
| RetType, RetValExp); |
| if (Res.isInvalid()) { |
| // FIXME: Clean up temporaries here anyway? |
| return StmtError(); |
| } |
| RetValExp = Res.getAs<Expr>(); |
| |
| // If we have a related result type, we need to implicitly |
| // convert back to the formal result type. We can't pretend to |
| // initialize the result again --- we might end double-retaining |
| // --- so instead we initialize a notional temporary. |
| if (!RelatedRetType.isNull()) { |
| Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(), |
| FnRetType); |
| Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp); |
| if (Res.isInvalid()) { |
| // FIXME: Clean up temporaries here anyway? |
| return StmtError(); |
| } |
| RetValExp = Res.getAs<Expr>(); |
| } |
| |
| CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs, |
| getCurFunctionDecl()); |
| } |
| |
| if (RetValExp) { |
| ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc); |
| if (ER.isInvalid()) |
| return StmtError(); |
| RetValExp = ER.get(); |
| } |
| Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate); |
| } |
| |
| // If we need to check for the named return value optimization, save the |
| // return statement in our scope for later processing. |
| if (Result->getNRVOCandidate()) |
| FunctionScopes.back()->Returns.push_back(Result); |
| |
| if (FunctionScopes.back()->FirstReturnLoc.isInvalid()) |
| FunctionScopes.back()->FirstReturnLoc = ReturnLoc; |
| |
| return Result; |
| } |
| |
| StmtResult |
| Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc, |
| SourceLocation RParen, Decl *Parm, |
| Stmt *Body) { |
| VarDecl *Var = cast_or_null<VarDecl>(Parm); |
| if (Var && Var->isInvalidDecl()) |
| return StmtError(); |
| |
| return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body); |
| } |
| |
| StmtResult |
| Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) { |
| return new (Context) ObjCAtFinallyStmt(AtLoc, Body); |
| } |
| |
| StmtResult |
| Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try, |
| MultiStmtArg CatchStmts, Stmt *Finally) { |
| if (!getLangOpts().ObjCExceptions) |
| Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try"; |
| |
| setFunctionHasBranchProtectedScope(); |
| unsigned NumCatchStmts = CatchStmts.size(); |
| return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(), |
| NumCatchStmts, Finally); |
| } |
| |
| StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) { |
| if (Throw) { |
| ExprResult Result = DefaultLvalueConversion(Throw); |
| if (Result.isInvalid()) |
| return StmtError(); |
| |
| Result = ActOnFinishFullExpr(Result.get()); |
| if (Result.isInvalid()) |
| return StmtError(); |
| Throw = Result.get(); |
| |
| QualType ThrowType = Throw->getType(); |
| // Make sure the expression type is an ObjC pointer or "void *". |
| if (!ThrowType->isDependentType() && |
| !ThrowType->isObjCObjectPointerType()) { |
| const PointerType *PT = ThrowType->getAs<PointerType>(); |
| if (!PT || !PT->getPointeeType()->isVoidType()) |
| return StmtError(Diag(AtLoc, diag::err_objc_throw_expects_object) |
| << Throw->getType() << Throw->getSourceRange()); |
| } |
| } |
| |
| return new (Context) ObjCAtThrowStmt(AtLoc, Throw); |
| } |
| |
| StmtResult |
| Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw, |
| Scope *CurScope) { |
| if (!getLangOpts().ObjCExceptions) |
| Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw"; |
| |
| if (!Throw) { |
| // @throw without an expression designates a rethrow (which must occur |
| // in the context of an @catch clause). |
| Scope *AtCatchParent = CurScope; |
| while (AtCatchParent && !AtCatchParent->isAtCatchScope()) |
| AtCatchParent = AtCatchParent->getParent(); |
| if (!AtCatchParent) |
| return StmtError(Diag(AtLoc, diag::err_rethrow_used_outside_catch)); |
| } |
| return BuildObjCAtThrowStmt(AtLoc, Throw); |
| } |
| |
| ExprResult |
| Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) { |
| ExprResult result = DefaultLvalueConversion(operand); |
| if (result.isInvalid()) |
| return ExprError(); |
| operand = result.get(); |
| |
| // Make sure the expression type is an ObjC pointer or "void *". |
| QualType type = operand->getType(); |
| if (!type->isDependentType() && |
| !type->isObjCObjectPointerType()) { |
| const PointerType *pointerType = type->getAs<PointerType>(); |
| if (!pointerType || !pointerType->getPointeeType()->isVoidType()) { |
| if (getLangOpts().CPlusPlus) { |
| if (RequireCompleteType(atLoc, type, |
| diag::err_incomplete_receiver_type)) |
| return Diag(atLoc, diag::err_objc_synchronized_expects_object) |
| << type << operand->getSourceRange(); |
| |
| ExprResult result = PerformContextuallyConvertToObjCPointer(operand); |
| if (result.isInvalid()) |
| return ExprError(); |
| if (!result.isUsable()) |
| return Diag(atLoc, diag::err_objc_synchronized_expects_object) |
| << type << operand->getSourceRange(); |
| |
| operand = result.get(); |
| } else { |
| return Diag(atLoc, diag::err_objc_synchronized_expects_object) |
| << type << operand->getSourceRange(); |
| } |
| } |
| } |
| |
| // The operand to @synchronized is a full-expression. |
| return ActOnFinishFullExpr(operand); |
| } |
| |
| StmtResult |
| Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr, |
| Stmt *SyncBody) { |
| // We can't jump into or indirect-jump out of a @synchronized block. |
| setFunctionHasBranchProtectedScope(); |
| return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody); |
| } |
| |
| /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block |
| /// and creates a proper catch handler from them. |
| StmtResult |
| Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl, |
| Stmt *HandlerBlock) { |
| // There's nothing to test that ActOnExceptionDecl didn't already test. |
| return new (Context) |
| CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock); |
| } |
| |
| StmtResult |
| Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) { |
| setFunctionHasBranchProtectedScope(); |
| return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body); |
| } |
| |
| namespace { |
| class CatchHandlerType { |
| QualType QT; |
| unsigned IsPointer : 1; |
| |
| // This is a special constructor to be used only with DenseMapInfo's |
| // getEmptyKey() and getTombstoneKey() functions. |
| friend struct llvm::DenseMapInfo<CatchHandlerType>; |
| enum Unique { ForDenseMap }; |
| CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {} |
| |
| public: |
| /// Used when creating a CatchHandlerType from a handler type; will determine |
| /// whether the type is a pointer or reference and will strip off the top |
| /// level pointer and cv-qualifiers. |
| CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) { |
| if (QT->isPointerType()) |
| IsPointer = true; |
| |
| if (IsPointer || QT->isReferenceType()) |
| QT = QT->getPointeeType(); |
| QT = QT.getUnqualifiedType(); |
| } |
| |
| /// Used when creating a CatchHandlerType from a base class type; pretends the |
| /// type passed in had the pointer qualifier, does not need to get an |
| /// unqualified type. |
| CatchHandlerType(QualType QT, bool IsPointer) |
| : QT(QT), IsPointer(IsPointer) {} |
| |
| QualType underlying() const { return QT; } |
| bool isPointer() const { return IsPointer; } |
| |
| friend bool operator==(const CatchHandlerType &LHS, |
| const CatchHandlerType &RHS) { |
| // If the pointer qualification does not match, we can return early. |
| if (LHS.IsPointer != RHS.IsPointer) |
| return false; |
| // Otherwise, check the underlying type without cv-qualifiers. |
| return LHS.QT == RHS.QT; |
| } |
| }; |
| } // namespace |
| |
| namespace llvm { |
| template <> struct DenseMapInfo<CatchHandlerType> { |
| static CatchHandlerType getEmptyKey() { |
| return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(), |
| CatchHandlerType::ForDenseMap); |
| } |
| |
| static CatchHandlerType getTombstoneKey() { |
| return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(), |
| CatchHandlerType::ForDenseMap); |
| } |
| |
| static unsigned getHashValue(const CatchHandlerType &Base) { |
| return DenseMapInfo<QualType>::getHashValue(Base.underlying()); |
| } |
| |
| static bool isEqual(const CatchHandlerType &LHS, |
| const CatchHandlerType &RHS) { |
| return LHS == RHS; |
| } |
| }; |
| } |
| |
| namespace { |
| class CatchTypePublicBases { |
| ASTContext &Ctx; |
| const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck; |
| const bool CheckAgainstPointer; |
| |
| CXXCatchStmt *FoundHandler; |
| CanQualType FoundHandlerType; |
| |
| public: |
| CatchTypePublicBases( |
| ASTContext &Ctx, |
| const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C) |
| : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C), |
| FoundHandler(nullptr) {} |
| |
| CXXCatchStmt *getFoundHandler() const { return FoundHandler; } |
| CanQualType getFoundHandlerType() const { return FoundHandlerType; } |
| |
| bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) { |
| if (S->getAccessSpecifier() == AccessSpecifier::AS_public) { |
| CatchHandlerType Check(S->getType(), CheckAgainstPointer); |
| const auto &M = TypesToCheck; |
| auto I = M.find(Check); |
| if (I != M.end()) { |
| FoundHandler = I->second; |
| FoundHandlerType = Ctx.getCanonicalType(S->getType()); |
| return true; |
| } |
| } |
| return false; |
| } |
| }; |
| } |
| |
| /// ActOnCXXTryBlock - Takes a try compound-statement and a number of |
| /// handlers and creates a try statement from them. |
| StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock, |
| ArrayRef<Stmt *> Handlers) { |
| // Don't report an error if 'try' is used in system headers. |
| if (!getLangOpts().CXXExceptions && |
| !getSourceManager().isInSystemHeader(TryLoc) && |
| (!getLangOpts().OpenMPIsDevice || |
| !getLangOpts().OpenMPHostCXXExceptions || |
| isInOpenMPTargetExecutionDirective() || |
| isInOpenMPDeclareTargetContext())) |
| Diag(TryLoc, diag::err_exceptions_disabled) << "try"; |
| |
| // Exceptions aren't allowed in CUDA device code. |
| if (getLangOpts().CUDA) |
| CUDADiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions) |
| << "try" << CurrentCUDATarget(); |
| |
| if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) |
| Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try"; |
| |
| sema::FunctionScopeInfo *FSI = getCurFunction(); |
| |
| // C++ try is incompatible with SEH __try. |
| if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) { |
| Diag(TryLoc, diag::err_mixing_cxx_try_seh_try); |
| Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'"; |
| } |
| |
| const unsigned NumHandlers = Handlers.size(); |
| assert(!Handlers.empty() && |
| "The parser shouldn't call this if there are no handlers."); |
| |
| llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes; |
| for (unsigned i = 0; i < NumHandlers; ++i) { |
| CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]); |
| |
| // Diagnose when the handler is a catch-all handler, but it isn't the last |
| // handler for the try block. [except.handle]p5. Also, skip exception |
| // declarations that are invalid, since we can't usefully report on them. |
| if (!H->getExceptionDecl()) { |
| if (i < NumHandlers - 1) |
| return StmtError(Diag(H->getLocStart(), diag::err_early_catch_all)); |
| continue; |
| } else if (H->getExceptionDecl()->isInvalidDecl()) |
| continue; |
| |
| // Walk the type hierarchy to diagnose when this type has already been |
| // handled (duplication), or cannot be handled (derivation inversion). We |
| // ignore top-level cv-qualifiers, per [except.handle]p3 |
| CatchHandlerType HandlerCHT = |
| (QualType)Context.getCanonicalType(H->getCaughtType()); |
| |
| // We can ignore whether the type is a reference or a pointer; we need the |
| // underlying declaration type in order to get at the underlying record |
| // decl, if there is one. |
| QualType Underlying = HandlerCHT.underlying(); |
| if (auto *RD = Underlying->getAsCXXRecordDecl()) { |
| if (!RD->hasDefinition()) |
| continue; |
| // Check that none of the public, unambiguous base classes are in the |
| // map ([except.handle]p1). Give the base classes the same pointer |
| // qualification as the original type we are basing off of. This allows |
| // comparison against the handler type using the same top-level pointer |
| // as the original type. |
| CXXBasePaths Paths; |
| Paths.setOrigin(RD); |
| CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer()); |
| if (RD->lookupInBases(CTPB, Paths)) { |
| const CXXCatchStmt *Problem = CTPB.getFoundHandler(); |
| if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) { |
| Diag(H->getExceptionDecl()->getTypeSpecStartLoc(), |
| diag::warn_exception_caught_by_earlier_handler) |
| << H->getCaughtType(); |
| Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(), |
| diag::note_previous_exception_handler) |
| << Problem->getCaughtType(); |
| } |
| } |
| } |
| |
| // Add the type the list of ones we have handled; diagnose if we've already |
| // handled it. |
| auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H)); |
| if (!R.second) { |
| const CXXCatchStmt *Problem = R.first->second; |
| Diag(H->getExceptionDecl()->getTypeSpecStartLoc(), |
| diag::warn_exception_caught_by_earlier_handler) |
| << H->getCaughtType(); |
| Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(), |
| diag::note_previous_exception_handler) |
| << Problem->getCaughtType(); |
| } |
| } |
| |
| FSI->setHasCXXTry(TryLoc); |
| |
| return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers); |
| } |
| |
| StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc, |
| Stmt *TryBlock, Stmt *Handler) { |
| assert(TryBlock && Handler); |
| |
| sema::FunctionScopeInfo *FSI = getCurFunction(); |
| |
| // SEH __try is incompatible with C++ try. Borland appears to support this, |
| // however. |
| if (!getLangOpts().Borland) { |
| if (FSI->FirstCXXTryLoc.isValid()) { |
| Diag(TryLoc, diag::err_mixing_cxx_try_seh_try); |
| Diag(FSI->FirstCXXTryLoc, diag::note_conflicting_try_here) << "'try'"; |
| } |
| } |
| |
| FSI->setHasSEHTry(TryLoc); |
| |
| // Reject __try in Obj-C methods, blocks, and captured decls, since we don't |
| // track if they use SEH. |
| DeclContext *DC = CurContext; |
| while (DC && !DC->isFunctionOrMethod()) |
| DC = DC->getParent(); |
| FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC); |
| if (FD) |
| FD->setUsesSEHTry(true); |
| else |
| Diag(TryLoc, diag::err_seh_try_outside_functions); |
| |
| // Reject __try on unsupported targets. |
| if (!Context.getTargetInfo().isSEHTrySupported()) |
| Diag(TryLoc, diag::err_seh_try_unsupported); |
| |
| return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler); |
| } |
| |
| StmtResult |
| Sema::ActOnSEHExceptBlock(SourceLocation Loc, |
| Expr *FilterExpr, |
| Stmt *Block) { |
| assert(FilterExpr && Block); |
| |
| if(!FilterExpr->getType()->isIntegerType()) { |
| return StmtError(Diag(FilterExpr->getExprLoc(), |
| diag::err_filter_expression_integral) |
| << FilterExpr->getType()); |
| } |
| |
| return SEHExceptStmt::Create(Context,Loc,FilterExpr,Block); |
| } |
| |
| void Sema::ActOnStartSEHFinallyBlock() { |
| CurrentSEHFinally.push_back(CurScope); |
| } |
| |
| void Sema::ActOnAbortSEHFinallyBlock() { |
| CurrentSEHFinally.pop_back(); |
| } |
| |
| StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) { |
| assert(Block); |
| CurrentSEHFinally.pop_back(); |
| return SEHFinallyStmt::Create(Context, Loc, Block); |
| } |
| |
| StmtResult |
| Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) { |
| Scope *SEHTryParent = CurScope; |
| while (SEHTryParent && !SEHTryParent->isSEHTryScope()) |
| SEHTryParent = SEHTryParent->getParent(); |
| if (!SEHTryParent) |
| return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try)); |
| CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent); |
| |
| return new (Context) SEHLeaveStmt(Loc); |
| } |
| |
| StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc, |
| bool IsIfExists, |
| NestedNameSpecifierLoc QualifierLoc, |
| DeclarationNameInfo NameInfo, |
| Stmt *Nested) |
| { |
| return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists, |
| QualifierLoc, NameInfo, |
| cast<CompoundStmt>(Nested)); |
| } |
| |
| |
| StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc, |
| bool IsIfExists, |
| CXXScopeSpec &SS, |
| UnqualifiedId &Name, |
| Stmt *Nested) { |
| return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists, |
| SS.getWithLocInContext(Context), |
| GetNameFromUnqualifiedId(Name), |
| Nested); |
| } |
| |
| RecordDecl* |
| Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc, |
| unsigned NumParams) { |
| DeclContext *DC = CurContext; |
| while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext())) |
| DC = DC->getParent(); |
| |
| RecordDecl *RD = nullptr; |
| if (getLangOpts().CPlusPlus) |
| RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, |
| /*Id=*/nullptr); |
| else |
| RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr); |
| |
| RD->setCapturedRecord(); |
| DC->addDecl(RD); |
| RD->setImplicit(); |
| RD->startDefinition(); |
| |
| assert(NumParams > 0 && "CapturedStmt requires context parameter"); |
| CD = CapturedDecl::Create(Context, CurContext, NumParams); |
| DC->addDecl(CD); |
| return RD; |
| } |
| |
| static void |
| buildCapturedStmtCaptureList(SmallVectorImpl<CapturedStmt::Capture> &Captures, |
| SmallVectorImpl<Expr *> &CaptureInits, |
| ArrayRef<sema::Capture> Candidates) { |
| for (const sema::Capture &Cap : Candidates) { |
| if (Cap.isThisCapture()) { |
| Captures.push_back(CapturedStmt::Capture(Cap.getLocation(), |
| CapturedStmt::VCK_This)); |
| CaptureInits.push_back(Cap.getInitExpr()); |
| continue; |
| } else if (Cap.isVLATypeCapture()) { |
| Captures.push_back( |
| CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType)); |
| CaptureInits.push_back(nullptr); |
| continue; |
| } |
| |
| Captures.push_back(CapturedStmt::Capture(Cap.getLocation(), |
| Cap.isReferenceCapture() |
| ? CapturedStmt::VCK_ByRef |
| : CapturedStmt::VCK_ByCopy, |
| Cap.getVariable())); |
| CaptureInits.push_back(Cap.getInitExpr()); |
| } |
| } |
| |
| void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, |
| CapturedRegionKind Kind, |
| unsigned NumParams) { |
| CapturedDecl *CD = nullptr; |
| RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams); |
| |
| // Build the context parameter |
| DeclContext *DC = CapturedDecl::castToDeclContext(CD); |
| IdentifierInfo *ParamName = &Context.Idents.get("__context"); |
| QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)); |
| auto *Param = |
| ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType, |
| ImplicitParamDecl::CapturedContext); |
| DC->addDecl(Param); |
| |
| CD->setContextParam(0, Param); |
| |
| // Enter the capturing scope for this captured region. |
| PushCapturedRegionScope(CurScope, CD, RD, Kind); |
| |
| if (CurScope) |
| PushDeclContext(CurScope, CD); |
| else |
| CurContext = CD; |
| |
| PushExpressionEvaluationContext( |
| ExpressionEvaluationContext::PotentiallyEvaluated); |
| } |
| |
| void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, |
| CapturedRegionKind Kind, |
| ArrayRef<CapturedParamNameType> Params) { |
| CapturedDecl *CD = nullptr; |
| RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size()); |
| |
| // Build the context parameter |
| DeclContext *DC = CapturedDecl::castToDeclContext(CD); |
| bool ContextIsFound = false; |
| unsigned ParamNum = 0; |
| for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(), |
| E = Params.end(); |
| I != E; ++I, ++ParamNum) { |
| if (I->second.isNull()) { |
| assert(!ContextIsFound && |
| "null type has been found already for '__context' parameter"); |
| IdentifierInfo *ParamName = &Context.Idents.get("__context"); |
| QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)) |
| .withConst() |
| .withRestrict(); |
| auto *Param = |
| ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType, |
| ImplicitParamDecl::CapturedContext); |
| DC->addDecl(Param); |
| CD->setContextParam(ParamNum, Param); |
| ContextIsFound = true; |
| } else { |
| IdentifierInfo *ParamName = &Context.Idents.get(I->first); |
| auto *Param = |
| ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second, |
| ImplicitParamDecl::CapturedContext); |
| DC->addDecl(Param); |
| CD->setParam(ParamNum, Param); |
| } |
| } |
| assert(ContextIsFound && "no null type for '__context' parameter"); |
| if (!ContextIsFound) { |
| // Add __context implicitly if it is not specified. |
| IdentifierInfo *ParamName = &Context.Idents.get("__context"); |
| QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)); |
| auto *Param = |
| ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType, |
| ImplicitParamDecl::CapturedContext); |
| DC->addDecl(Param); |
| CD->setContextParam(ParamNum, Param); |
| } |
| // Enter the capturing scope for this captured region. |
| PushCapturedRegionScope(CurScope, CD, RD, Kind); |
| |
| if (CurScope) |
| PushDeclContext(CurScope, CD); |
| else |
| CurContext = CD; |
| |
| PushExpressionEvaluationContext( |
| ExpressionEvaluationContext::PotentiallyEvaluated); |
| } |
| |
| void Sema::ActOnCapturedRegionError() { |
| DiscardCleanupsInEvaluationContext(); |
| PopExpressionEvaluationContext(); |
| |
| CapturedRegionScopeInfo *RSI = getCurCapturedRegion(); |
| RecordDecl *Record = RSI->TheRecordDecl; |
| Record->setInvalidDecl(); |
| |
| SmallVector<Decl*, 4> Fields(Record->fields()); |
| ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields, |
| SourceLocation(), SourceLocation(), ParsedAttributesView()); |
| |
| PopDeclContext(); |
| PopFunctionScopeInfo(); |
| } |
| |
| StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) { |
| CapturedRegionScopeInfo *RSI = getCurCapturedRegion(); |
| |
| SmallVector<CapturedStmt::Capture, 4> Captures; |
| SmallVector<Expr *, 4> CaptureInits; |
| buildCapturedStmtCaptureList(Captures, CaptureInits, RSI->Captures); |
| |
| CapturedDecl *CD = RSI->TheCapturedDecl; |
| RecordDecl *RD = RSI->TheRecordDecl; |
| |
| CapturedStmt *Res = CapturedStmt::Create( |
| getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind), |
| Captures, CaptureInits, CD, RD); |
| |
| CD->setBody(Res->getCapturedStmt()); |
| RD->completeDefinition(); |
| |
| DiscardCleanupsInEvaluationContext(); |
| PopExpressionEvaluationContext(); |
| |
| PopDeclContext(); |
| PopFunctionScopeInfo(); |
| |
| return Res; |
| } |