| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #if V8_TARGET_ARCH_IA32 |
| |
| #include "src/base/bits.h" |
| #include "src/base/division-by-constant.h" |
| #include "src/base/utils/random-number-generator.h" |
| #include "src/codegen/callable.h" |
| #include "src/codegen/code-factory.h" |
| #include "src/codegen/external-reference-table.h" |
| #include "src/codegen/ia32/assembler-ia32-inl.h" |
| #include "src/codegen/macro-assembler.h" |
| #include "src/debug/debug.h" |
| #include "src/execution/frame-constants.h" |
| #include "src/execution/frames-inl.h" |
| #include "src/heap/memory-chunk.h" |
| #include "src/init/bootstrapper.h" |
| #include "src/logging/counters.h" |
| #include "src/runtime/runtime.h" |
| #include "src/snapshot/embedded/embedded-data.h" |
| #include "src/snapshot/snapshot.h" |
| |
| // Satisfy cpplint check, but don't include platform-specific header. It is |
| // included recursively via macro-assembler.h. |
| #if 0 |
| #include "src/codegen/ia32/macro-assembler-ia32.h" |
| #endif |
| |
| namespace v8 { |
| namespace internal { |
| |
| Operand StackArgumentsAccessor::GetArgumentOperand(int index) const { |
| DCHECK_GE(index, 0); |
| // arg[0] = esp + kPCOnStackSize; |
| // arg[i] = arg[0] + i * kSystemPointerSize; |
| return Operand(esp, kPCOnStackSize + index * kSystemPointerSize); |
| } |
| |
| // ------------------------------------------------------------------------- |
| // MacroAssembler implementation. |
| |
| void TurboAssembler::InitializeRootRegister() { |
| ExternalReference isolate_root = ExternalReference::isolate_root(isolate()); |
| Move(kRootRegister, Immediate(isolate_root)); |
| } |
| |
| void TurboAssembler::LoadRoot(Register destination, RootIndex index) { |
| if (root_array_available()) { |
| mov(destination, |
| Operand(kRootRegister, RootRegisterOffsetForRootIndex(index))); |
| return; |
| } |
| |
| if (RootsTable::IsImmortalImmovable(index)) { |
| Handle<Object> object = isolate()->root_handle(index); |
| if (object->IsSmi()) { |
| mov(destination, Immediate(Smi::cast(*object))); |
| return; |
| } else { |
| DCHECK(object->IsHeapObject()); |
| mov(destination, Handle<HeapObject>::cast(object)); |
| return; |
| } |
| } |
| |
| ExternalReference isolate_root = ExternalReference::isolate_root(isolate()); |
| lea(destination, |
| Operand(isolate_root.address(), RelocInfo::EXTERNAL_REFERENCE)); |
| mov(destination, Operand(destination, RootRegisterOffsetForRootIndex(index))); |
| } |
| |
| void TurboAssembler::CompareRoot(Register with, Register scratch, |
| RootIndex index) { |
| if (root_array_available()) { |
| CompareRoot(with, index); |
| } else { |
| ExternalReference isolate_root = ExternalReference::isolate_root(isolate()); |
| lea(scratch, |
| Operand(isolate_root.address(), RelocInfo::EXTERNAL_REFERENCE)); |
| cmp(with, Operand(scratch, RootRegisterOffsetForRootIndex(index))); |
| } |
| } |
| |
| void TurboAssembler::CompareRoot(Register with, RootIndex index) { |
| if (root_array_available()) { |
| cmp(with, Operand(kRootRegister, RootRegisterOffsetForRootIndex(index))); |
| return; |
| } |
| |
| DCHECK(RootsTable::IsImmortalImmovable(index)); |
| Handle<Object> object = isolate()->root_handle(index); |
| if (object->IsHeapObject()) { |
| cmp(with, Handle<HeapObject>::cast(object)); |
| } else { |
| cmp(with, Immediate(Smi::cast(*object))); |
| } |
| } |
| |
| void MacroAssembler::PushRoot(RootIndex index) { |
| if (root_array_available()) { |
| DCHECK(RootsTable::IsImmortalImmovable(index)); |
| push(Operand(kRootRegister, RootRegisterOffsetForRootIndex(index))); |
| return; |
| } |
| |
| // TODO(v8:6666): Add a scratch register or remove all uses. |
| DCHECK(RootsTable::IsImmortalImmovable(index)); |
| Handle<Object> object = isolate()->root_handle(index); |
| if (object->IsHeapObject()) { |
| Push(Handle<HeapObject>::cast(object)); |
| } else { |
| Push(Smi::cast(*object)); |
| } |
| } |
| |
| void MacroAssembler::JumpIfIsInRange(Register value, unsigned lower_limit, |
| unsigned higher_limit, Register scratch, |
| Label* on_in_range, |
| Label::Distance near_jump) { |
| if (lower_limit != 0) { |
| lea(scratch, Operand(value, 0u - lower_limit)); |
| cmp(scratch, Immediate(higher_limit - lower_limit)); |
| } else { |
| cmp(value, Immediate(higher_limit)); |
| } |
| j(below_equal, on_in_range, near_jump); |
| } |
| |
| void TurboAssembler::PushArray(Register array, Register size, Register scratch, |
| PushArrayOrder order) { |
| DCHECK(!AreAliased(array, size, scratch)); |
| Register counter = scratch; |
| Label loop, entry; |
| if (order == PushArrayOrder::kReverse) { |
| mov(counter, 0); |
| jmp(&entry); |
| bind(&loop); |
| Push(Operand(array, counter, times_system_pointer_size, 0)); |
| inc(counter); |
| bind(&entry); |
| cmp(counter, size); |
| j(less, &loop, Label::kNear); |
| } else { |
| mov(counter, size); |
| jmp(&entry); |
| bind(&loop); |
| Push(Operand(array, counter, times_system_pointer_size, 0)); |
| bind(&entry); |
| dec(counter); |
| j(greater_equal, &loop, Label::kNear); |
| } |
| } |
| |
| Operand TurboAssembler::ExternalReferenceAsOperand(ExternalReference reference, |
| Register scratch) { |
| // TODO(jgruber): Add support for enable_root_array_delta_access. |
| if (root_array_available() && options().isolate_independent_code) { |
| if (IsAddressableThroughRootRegister(isolate(), reference)) { |
| // Some external references can be efficiently loaded as an offset from |
| // kRootRegister. |
| intptr_t offset = |
| RootRegisterOffsetForExternalReference(isolate(), reference); |
| return Operand(kRootRegister, offset); |
| } else { |
| // Otherwise, do a memory load from the external reference table. |
| mov(scratch, Operand(kRootRegister, |
| RootRegisterOffsetForExternalReferenceTableEntry( |
| isolate(), reference))); |
| return Operand(scratch, 0); |
| } |
| } |
| Move(scratch, Immediate(reference)); |
| return Operand(scratch, 0); |
| } |
| |
| // TODO(v8:6666): If possible, refactor into a platform-independent function in |
| // TurboAssembler. |
| Operand TurboAssembler::ExternalReferenceAddressAsOperand( |
| ExternalReference reference) { |
| DCHECK(root_array_available()); |
| DCHECK(options().isolate_independent_code); |
| return Operand( |
| kRootRegister, |
| RootRegisterOffsetForExternalReferenceTableEntry(isolate(), reference)); |
| } |
| |
| // TODO(v8:6666): If possible, refactor into a platform-independent function in |
| // TurboAssembler. |
| Operand TurboAssembler::HeapObjectAsOperand(Handle<HeapObject> object) { |
| DCHECK(root_array_available()); |
| |
| int builtin_index; |
| RootIndex root_index; |
| if (isolate()->roots_table().IsRootHandle(object, &root_index)) { |
| return Operand(kRootRegister, RootRegisterOffsetForRootIndex(root_index)); |
| } else if (isolate()->builtins()->IsBuiltinHandle(object, &builtin_index)) { |
| return Operand(kRootRegister, |
| RootRegisterOffsetForBuiltinIndex(builtin_index)); |
| } else if (object.is_identical_to(code_object_) && |
| Builtins::IsBuiltinId(maybe_builtin_index_)) { |
| return Operand(kRootRegister, |
| RootRegisterOffsetForBuiltinIndex(maybe_builtin_index_)); |
| } else { |
| // Objects in the constants table need an additional indirection, which |
| // cannot be represented as a single Operand. |
| UNREACHABLE(); |
| } |
| } |
| |
| void TurboAssembler::LoadFromConstantsTable(Register destination, |
| int constant_index) { |
| DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kBuiltinsConstantsTable)); |
| LoadRoot(destination, RootIndex::kBuiltinsConstantsTable); |
| mov(destination, |
| FieldOperand(destination, FixedArray::OffsetOfElementAt(constant_index))); |
| } |
| |
| void TurboAssembler::LoadRootRegisterOffset(Register destination, |
| intptr_t offset) { |
| DCHECK(is_int32(offset)); |
| DCHECK(root_array_available()); |
| if (offset == 0) { |
| mov(destination, kRootRegister); |
| } else { |
| lea(destination, Operand(kRootRegister, static_cast<int32_t>(offset))); |
| } |
| } |
| |
| void TurboAssembler::LoadRootRelative(Register destination, int32_t offset) { |
| DCHECK(root_array_available()); |
| mov(destination, Operand(kRootRegister, offset)); |
| } |
| |
| void TurboAssembler::LoadAddress(Register destination, |
| ExternalReference source) { |
| // TODO(jgruber): Add support for enable_root_array_delta_access. |
| if (root_array_available() && options().isolate_independent_code) { |
| IndirectLoadExternalReference(destination, source); |
| return; |
| } |
| mov(destination, Immediate(source)); |
| } |
| |
| static constexpr Register saved_regs[] = {eax, ecx, edx}; |
| |
| static constexpr int kNumberOfSavedRegs = sizeof(saved_regs) / sizeof(Register); |
| |
| int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, |
| Register exclusion1, |
| Register exclusion2, |
| Register exclusion3) const { |
| int bytes = 0; |
| for (int i = 0; i < kNumberOfSavedRegs; i++) { |
| Register reg = saved_regs[i]; |
| if (reg != exclusion1 && reg != exclusion2 && reg != exclusion3) { |
| bytes += kSystemPointerSize; |
| } |
| } |
| |
| if (fp_mode == kSaveFPRegs) { |
| // Count all XMM registers except XMM0. |
| bytes += kDoubleSize * (XMMRegister::kNumRegisters - 1); |
| } |
| |
| return bytes; |
| } |
| |
| int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, |
| Register exclusion2, Register exclusion3) { |
| // We don't allow a GC during a store buffer overflow so there is no need to |
| // store the registers in any particular way, but we do have to store and |
| // restore them. |
| int bytes = 0; |
| for (int i = 0; i < kNumberOfSavedRegs; i++) { |
| Register reg = saved_regs[i]; |
| if (reg != exclusion1 && reg != exclusion2 && reg != exclusion3) { |
| push(reg); |
| bytes += kSystemPointerSize; |
| } |
| } |
| |
| if (fp_mode == kSaveFPRegs) { |
| // Save all XMM registers except XMM0. |
| int delta = kDoubleSize * (XMMRegister::kNumRegisters - 1); |
| AllocateStackSpace(delta); |
| for (int i = XMMRegister::kNumRegisters - 1; i > 0; i--) { |
| XMMRegister reg = XMMRegister::from_code(i); |
| movsd(Operand(esp, (i - 1) * kDoubleSize), reg); |
| } |
| bytes += delta; |
| } |
| |
| return bytes; |
| } |
| |
| int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, |
| Register exclusion2, Register exclusion3) { |
| int bytes = 0; |
| if (fp_mode == kSaveFPRegs) { |
| // Restore all XMM registers except XMM0. |
| int delta = kDoubleSize * (XMMRegister::kNumRegisters - 1); |
| for (int i = XMMRegister::kNumRegisters - 1; i > 0; i--) { |
| XMMRegister reg = XMMRegister::from_code(i); |
| movsd(reg, Operand(esp, (i - 1) * kDoubleSize)); |
| } |
| add(esp, Immediate(delta)); |
| bytes += delta; |
| } |
| |
| for (int i = kNumberOfSavedRegs - 1; i >= 0; i--) { |
| Register reg = saved_regs[i]; |
| if (reg != exclusion1 && reg != exclusion2 && reg != exclusion3) { |
| pop(reg); |
| bytes += kSystemPointerSize; |
| } |
| } |
| |
| return bytes; |
| } |
| |
| void MacroAssembler::RecordWriteField(Register object, int offset, |
| Register value, Register dst, |
| SaveFPRegsMode save_fp, |
| RememberedSetAction remembered_set_action, |
| SmiCheck smi_check) { |
| // First, check if a write barrier is even needed. The tests below |
| // catch stores of Smis. |
| Label done; |
| |
| // Skip barrier if writing a smi. |
| if (smi_check == INLINE_SMI_CHECK) { |
| JumpIfSmi(value, &done); |
| } |
| |
| // Although the object register is tagged, the offset is relative to the start |
| // of the object, so so offset must be a multiple of kTaggedSize. |
| DCHECK(IsAligned(offset, kTaggedSize)); |
| |
| lea(dst, FieldOperand(object, offset)); |
| if (emit_debug_code()) { |
| Label ok; |
| test_b(dst, Immediate(kTaggedSize - 1)); |
| j(zero, &ok, Label::kNear); |
| int3(); |
| bind(&ok); |
| } |
| |
| RecordWrite(object, dst, value, save_fp, remembered_set_action, |
| OMIT_SMI_CHECK); |
| |
| bind(&done); |
| |
| // Clobber clobbered input registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (emit_debug_code()) { |
| mov(value, Immediate(bit_cast<int32_t>(kZapValue))); |
| mov(dst, Immediate(bit_cast<int32_t>(kZapValue))); |
| } |
| } |
| |
| void TurboAssembler::SaveRegisters(RegList registers) { |
| DCHECK_GT(NumRegs(registers), 0); |
| for (int i = 0; i < Register::kNumRegisters; ++i) { |
| if ((registers >> i) & 1u) { |
| push(Register::from_code(i)); |
| } |
| } |
| } |
| |
| void TurboAssembler::RestoreRegisters(RegList registers) { |
| DCHECK_GT(NumRegs(registers), 0); |
| for (int i = Register::kNumRegisters - 1; i >= 0; --i) { |
| if ((registers >> i) & 1u) { |
| pop(Register::from_code(i)); |
| } |
| } |
| } |
| |
| void TurboAssembler::CallEphemeronKeyBarrier(Register object, Register address, |
| SaveFPRegsMode fp_mode) { |
| EphemeronKeyBarrierDescriptor descriptor; |
| RegList registers = descriptor.allocatable_registers(); |
| |
| SaveRegisters(registers); |
| |
| Register object_parameter( |
| descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kObject)); |
| Register slot_parameter(descriptor.GetRegisterParameter( |
| EphemeronKeyBarrierDescriptor::kSlotAddress)); |
| Register fp_mode_parameter( |
| descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kFPMode)); |
| |
| push(object); |
| push(address); |
| |
| pop(slot_parameter); |
| pop(object_parameter); |
| |
| Move(fp_mode_parameter, Smi::FromEnum(fp_mode)); |
| Call(isolate()->builtins()->builtin_handle(Builtins::kEphemeronKeyBarrier), |
| RelocInfo::CODE_TARGET); |
| |
| RestoreRegisters(registers); |
| } |
| |
| void TurboAssembler::CallRecordWriteStub( |
| Register object, Register address, |
| RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) { |
| CallRecordWriteStub( |
| object, address, remembered_set_action, fp_mode, |
| isolate()->builtins()->builtin_handle(Builtins::kRecordWrite), |
| kNullAddress); |
| } |
| |
| void TurboAssembler::CallRecordWriteStub( |
| Register object, Register address, |
| RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode, |
| Address wasm_target) { |
| CallRecordWriteStub(object, address, remembered_set_action, fp_mode, |
| Handle<Code>::null(), wasm_target); |
| } |
| |
| void TurboAssembler::CallRecordWriteStub( |
| Register object, Register address, |
| RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode, |
| Handle<Code> code_target, Address wasm_target) { |
| DCHECK_NE(code_target.is_null(), wasm_target == kNullAddress); |
| // TODO(albertnetymk): For now we ignore remembered_set_action and fp_mode, |
| // i.e. always emit remember set and save FP registers in RecordWriteStub. If |
| // large performance regression is observed, we should use these values to |
| // avoid unnecessary work. |
| |
| RecordWriteDescriptor descriptor; |
| RegList registers = descriptor.allocatable_registers(); |
| |
| SaveRegisters(registers); |
| |
| Register object_parameter( |
| descriptor.GetRegisterParameter(RecordWriteDescriptor::kObject)); |
| Register slot_parameter( |
| descriptor.GetRegisterParameter(RecordWriteDescriptor::kSlot)); |
| Register remembered_set_parameter( |
| descriptor.GetRegisterParameter(RecordWriteDescriptor::kRememberedSet)); |
| Register fp_mode_parameter( |
| descriptor.GetRegisterParameter(RecordWriteDescriptor::kFPMode)); |
| |
| push(object); |
| push(address); |
| |
| pop(slot_parameter); |
| pop(object_parameter); |
| |
| Move(remembered_set_parameter, Smi::FromEnum(remembered_set_action)); |
| Move(fp_mode_parameter, Smi::FromEnum(fp_mode)); |
| if (code_target.is_null()) { |
| // Use {wasm_call} for direct Wasm call within a module. |
| wasm_call(wasm_target, RelocInfo::WASM_STUB_CALL); |
| } else { |
| Call(code_target, RelocInfo::CODE_TARGET); |
| } |
| |
| RestoreRegisters(registers); |
| } |
| |
| void MacroAssembler::RecordWrite(Register object, Register address, |
| Register value, SaveFPRegsMode fp_mode, |
| RememberedSetAction remembered_set_action, |
| SmiCheck smi_check) { |
| DCHECK(object != value); |
| DCHECK(object != address); |
| DCHECK(value != address); |
| AssertNotSmi(object); |
| |
| if ((remembered_set_action == OMIT_REMEMBERED_SET && |
| !FLAG_incremental_marking) || |
| FLAG_disable_write_barriers) { |
| return; |
| } |
| |
| if (emit_debug_code()) { |
| Label ok; |
| cmp(value, Operand(address, 0)); |
| j(equal, &ok, Label::kNear); |
| int3(); |
| bind(&ok); |
| } |
| |
| // First, check if a write barrier is even needed. The tests below |
| // catch stores of Smis and stores into young gen. |
| Label done; |
| |
| if (smi_check == INLINE_SMI_CHECK) { |
| // Skip barrier if writing a smi. |
| JumpIfSmi(value, &done, Label::kNear); |
| } |
| |
| CheckPageFlag(value, |
| value, // Used as scratch. |
| MemoryChunk::kPointersToHereAreInterestingMask, zero, &done, |
| Label::kNear); |
| CheckPageFlag(object, |
| value, // Used as scratch. |
| MemoryChunk::kPointersFromHereAreInterestingMask, zero, &done, |
| Label::kNear); |
| |
| CallRecordWriteStub(object, address, remembered_set_action, fp_mode); |
| |
| bind(&done); |
| |
| // Clobber clobbered registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (emit_debug_code()) { |
| mov(address, Immediate(bit_cast<int32_t>(kZapValue))); |
| mov(value, Immediate(bit_cast<int32_t>(kZapValue))); |
| } |
| } |
| |
| void MacroAssembler::MaybeDropFrames() { |
| // Check whether we need to drop frames to restart a function on the stack. |
| Label dont_drop; |
| ExternalReference restart_fp = |
| ExternalReference::debug_restart_fp_address(isolate()); |
| mov(eax, ExternalReferenceAsOperand(restart_fp, eax)); |
| test(eax, eax); |
| j(zero, &dont_drop, Label::kNear); |
| |
| Jump(BUILTIN_CODE(isolate(), FrameDropperTrampoline), RelocInfo::CODE_TARGET); |
| bind(&dont_drop); |
| } |
| |
| void TurboAssembler::Cvtsi2ss(XMMRegister dst, Operand src) { |
| xorps(dst, dst); |
| cvtsi2ss(dst, src); |
| } |
| |
| void TurboAssembler::Cvtsi2sd(XMMRegister dst, Operand src) { |
| xorpd(dst, dst); |
| cvtsi2sd(dst, src); |
| } |
| |
| void TurboAssembler::Cvtui2ss(XMMRegister dst, Operand src, Register tmp) { |
| Label done; |
| Register src_reg = src.is_reg_only() ? src.reg() : tmp; |
| if (src_reg == tmp) mov(tmp, src); |
| cvtsi2ss(dst, src_reg); |
| test(src_reg, src_reg); |
| j(positive, &done, Label::kNear); |
| |
| // Compute {src/2 | (src&1)} (retain the LSB to avoid rounding errors). |
| if (src_reg != tmp) mov(tmp, src_reg); |
| shr(tmp, 1); |
| // The LSB is shifted into CF. If it is set, set the LSB in {tmp}. |
| Label msb_not_set; |
| j(not_carry, &msb_not_set, Label::kNear); |
| or_(tmp, Immediate(1)); |
| bind(&msb_not_set); |
| cvtsi2ss(dst, tmp); |
| addss(dst, dst); |
| bind(&done); |
| } |
| |
| void TurboAssembler::Cvttss2ui(Register dst, Operand src, XMMRegister tmp) { |
| Label done; |
| cvttss2si(dst, src); |
| test(dst, dst); |
| j(positive, &done); |
| Move(tmp, static_cast<float>(INT32_MIN)); |
| addss(tmp, src); |
| cvttss2si(dst, tmp); |
| or_(dst, Immediate(0x80000000)); |
| bind(&done); |
| } |
| |
| void TurboAssembler::Cvtui2sd(XMMRegister dst, Operand src, Register scratch) { |
| Label done; |
| cmp(src, Immediate(0)); |
| ExternalReference uint32_bias = ExternalReference::address_of_uint32_bias(); |
| Cvtsi2sd(dst, src); |
| j(not_sign, &done, Label::kNear); |
| addsd(dst, ExternalReferenceAsOperand(uint32_bias, scratch)); |
| bind(&done); |
| } |
| |
| void TurboAssembler::Cvttsd2ui(Register dst, Operand src, XMMRegister tmp) { |
| Move(tmp, -2147483648.0); |
| addsd(tmp, src); |
| cvttsd2si(dst, tmp); |
| add(dst, Immediate(0x80000000)); |
| } |
| |
| void TurboAssembler::Roundps(XMMRegister dst, XMMRegister src, |
| RoundingMode mode) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vroundps(dst, src, mode); |
| } else { |
| CpuFeatureScope scope(this, SSE4_1); |
| roundps(dst, src, mode); |
| } |
| } |
| |
| void TurboAssembler::Roundpd(XMMRegister dst, XMMRegister src, |
| RoundingMode mode) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vroundpd(dst, src, mode); |
| } else { |
| CpuFeatureScope scope(this, SSE4_1); |
| roundpd(dst, src, mode); |
| } |
| } |
| |
| void TurboAssembler::ShlPair(Register high, Register low, uint8_t shift) { |
| DCHECK_GE(63, shift); |
| if (shift >= 32) { |
| mov(high, low); |
| if (shift != 32) shl(high, shift - 32); |
| xor_(low, low); |
| } else { |
| shld(high, low, shift); |
| shl(low, shift); |
| } |
| } |
| |
| void TurboAssembler::ShlPair_cl(Register high, Register low) { |
| shld_cl(high, low); |
| shl_cl(low); |
| Label done; |
| test(ecx, Immediate(0x20)); |
| j(equal, &done, Label::kNear); |
| mov(high, low); |
| xor_(low, low); |
| bind(&done); |
| } |
| |
| void TurboAssembler::ShrPair(Register high, Register low, uint8_t shift) { |
| DCHECK_GE(63, shift); |
| if (shift >= 32) { |
| mov(low, high); |
| if (shift != 32) shr(low, shift - 32); |
| xor_(high, high); |
| } else { |
| shrd(low, high, shift); |
| shr(high, shift); |
| } |
| } |
| |
| void TurboAssembler::ShrPair_cl(Register high, Register low) { |
| shrd_cl(low, high); |
| shr_cl(high); |
| Label done; |
| test(ecx, Immediate(0x20)); |
| j(equal, &done, Label::kNear); |
| mov(low, high); |
| xor_(high, high); |
| bind(&done); |
| } |
| |
| void TurboAssembler::SarPair(Register high, Register low, uint8_t shift) { |
| DCHECK_GE(63, shift); |
| if (shift >= 32) { |
| mov(low, high); |
| if (shift != 32) sar(low, shift - 32); |
| sar(high, 31); |
| } else { |
| shrd(low, high, shift); |
| sar(high, shift); |
| } |
| } |
| |
| void TurboAssembler::SarPair_cl(Register high, Register low) { |
| shrd_cl(low, high); |
| sar_cl(high); |
| Label done; |
| test(ecx, Immediate(0x20)); |
| j(equal, &done, Label::kNear); |
| mov(low, high); |
| sar(high, 31); |
| bind(&done); |
| } |
| |
| void TurboAssembler::LoadMap(Register destination, Register object) { |
| mov(destination, FieldOperand(object, HeapObject::kMapOffset)); |
| } |
| |
| void MacroAssembler::CmpObjectType(Register heap_object, InstanceType type, |
| Register map) { |
| LoadMap(map, heap_object); |
| CmpInstanceType(map, type); |
| } |
| |
| void MacroAssembler::CmpInstanceType(Register map, InstanceType type) { |
| cmpw(FieldOperand(map, Map::kInstanceTypeOffset), Immediate(type)); |
| } |
| |
| void MacroAssembler::AssertSmi(Register object) { |
| if (emit_debug_code()) { |
| test(object, Immediate(kSmiTagMask)); |
| Check(equal, AbortReason::kOperandIsNotASmi); |
| } |
| } |
| |
| void MacroAssembler::AssertConstructor(Register object) { |
| if (emit_debug_code()) { |
| test(object, Immediate(kSmiTagMask)); |
| Check(not_equal, AbortReason::kOperandIsASmiAndNotAConstructor); |
| Push(object); |
| LoadMap(object, object); |
| test_b(FieldOperand(object, Map::kBitFieldOffset), |
| Immediate(Map::Bits1::IsConstructorBit::kMask)); |
| Pop(object); |
| Check(not_zero, AbortReason::kOperandIsNotAConstructor); |
| } |
| } |
| |
| void MacroAssembler::AssertFunction(Register object) { |
| if (emit_debug_code()) { |
| test(object, Immediate(kSmiTagMask)); |
| Check(not_equal, AbortReason::kOperandIsASmiAndNotAFunction); |
| Push(object); |
| CmpObjectType(object, JS_FUNCTION_TYPE, object); |
| Pop(object); |
| Check(equal, AbortReason::kOperandIsNotAFunction); |
| } |
| } |
| |
| void MacroAssembler::AssertBoundFunction(Register object) { |
| if (emit_debug_code()) { |
| test(object, Immediate(kSmiTagMask)); |
| Check(not_equal, AbortReason::kOperandIsASmiAndNotABoundFunction); |
| Push(object); |
| CmpObjectType(object, JS_BOUND_FUNCTION_TYPE, object); |
| Pop(object); |
| Check(equal, AbortReason::kOperandIsNotABoundFunction); |
| } |
| } |
| |
| void MacroAssembler::AssertGeneratorObject(Register object) { |
| if (!emit_debug_code()) return; |
| |
| test(object, Immediate(kSmiTagMask)); |
| Check(not_equal, AbortReason::kOperandIsASmiAndNotAGeneratorObject); |
| |
| { |
| Push(object); |
| Register map = object; |
| |
| LoadMap(map, object); |
| |
| Label do_check; |
| // Check if JSGeneratorObject |
| CmpInstanceType(map, JS_GENERATOR_OBJECT_TYPE); |
| j(equal, &do_check, Label::kNear); |
| |
| // Check if JSAsyncFunctionObject. |
| CmpInstanceType(map, JS_ASYNC_FUNCTION_OBJECT_TYPE); |
| j(equal, &do_check, Label::kNear); |
| |
| // Check if JSAsyncGeneratorObject |
| CmpInstanceType(map, JS_ASYNC_GENERATOR_OBJECT_TYPE); |
| |
| bind(&do_check); |
| Pop(object); |
| } |
| |
| Check(equal, AbortReason::kOperandIsNotAGeneratorObject); |
| } |
| |
| void MacroAssembler::AssertUndefinedOrAllocationSite(Register object, |
| Register scratch) { |
| if (emit_debug_code()) { |
| Label done_checking; |
| AssertNotSmi(object); |
| CompareRoot(object, scratch, RootIndex::kUndefinedValue); |
| j(equal, &done_checking); |
| LoadRoot(scratch, RootIndex::kAllocationSiteWithWeakNextMap); |
| cmp(FieldOperand(object, 0), scratch); |
| Assert(equal, AbortReason::kExpectedUndefinedOrCell); |
| bind(&done_checking); |
| } |
| } |
| |
| void MacroAssembler::AssertNotSmi(Register object) { |
| if (emit_debug_code()) { |
| test(object, Immediate(kSmiTagMask)); |
| Check(not_equal, AbortReason::kOperandIsASmi); |
| } |
| } |
| |
| void TurboAssembler::StubPrologue(StackFrame::Type type) { |
| push(ebp); // Caller's frame pointer. |
| mov(ebp, esp); |
| push(Immediate(StackFrame::TypeToMarker(type))); |
| } |
| |
| void TurboAssembler::Prologue() { |
| push(ebp); // Caller's frame pointer. |
| mov(ebp, esp); |
| push(kContextRegister); // Callee's context. |
| push(kJSFunctionRegister); // Callee's JS function. |
| push(kJavaScriptCallArgCountRegister); // Actual argument count. |
| } |
| |
| void TurboAssembler::EnterFrame(StackFrame::Type type) { |
| push(ebp); |
| mov(ebp, esp); |
| push(Immediate(StackFrame::TypeToMarker(type))); |
| } |
| |
| void TurboAssembler::LeaveFrame(StackFrame::Type type) { |
| if (emit_debug_code()) { |
| cmp(Operand(ebp, CommonFrameConstants::kContextOrFrameTypeOffset), |
| Immediate(StackFrame::TypeToMarker(type))); |
| Check(equal, AbortReason::kStackFrameTypesMustMatch); |
| } |
| leave(); |
| } |
| |
| #ifdef V8_OS_WIN |
| void TurboAssembler::AllocateStackSpace(Register bytes_scratch) { |
| // In windows, we cannot increment the stack size by more than one page |
| // (minimum page size is 4KB) without accessing at least one byte on the |
| // page. Check this: |
| // https://msdn.microsoft.com/en-us/library/aa227153(v=vs.60).aspx. |
| Label check_offset; |
| Label touch_next_page; |
| jmp(&check_offset); |
| bind(&touch_next_page); |
| sub(esp, Immediate(kStackPageSize)); |
| // Just to touch the page, before we increment further. |
| mov(Operand(esp, 0), Immediate(0)); |
| sub(bytes_scratch, Immediate(kStackPageSize)); |
| |
| bind(&check_offset); |
| cmp(bytes_scratch, kStackPageSize); |
| j(greater, &touch_next_page); |
| |
| sub(esp, bytes_scratch); |
| } |
| |
| void TurboAssembler::AllocateStackSpace(int bytes) { |
| while (bytes > kStackPageSize) { |
| sub(esp, Immediate(kStackPageSize)); |
| mov(Operand(esp, 0), Immediate(0)); |
| bytes -= kStackPageSize; |
| } |
| sub(esp, Immediate(bytes)); |
| } |
| #endif |
| |
| void MacroAssembler::EnterExitFramePrologue(StackFrame::Type frame_type, |
| Register scratch) { |
| DCHECK(frame_type == StackFrame::EXIT || |
| frame_type == StackFrame::BUILTIN_EXIT); |
| |
| // Set up the frame structure on the stack. |
| DCHECK_EQ(+2 * kSystemPointerSize, ExitFrameConstants::kCallerSPDisplacement); |
| DCHECK_EQ(+1 * kSystemPointerSize, ExitFrameConstants::kCallerPCOffset); |
| DCHECK_EQ(0 * kSystemPointerSize, ExitFrameConstants::kCallerFPOffset); |
| push(ebp); |
| mov(ebp, esp); |
| |
| // Reserve room for entry stack pointer. |
| push(Immediate(StackFrame::TypeToMarker(frame_type))); |
| DCHECK_EQ(-2 * kSystemPointerSize, ExitFrameConstants::kSPOffset); |
| push(Immediate(0)); // Saved entry sp, patched before call. |
| |
| STATIC_ASSERT(edx == kRuntimeCallFunctionRegister); |
| STATIC_ASSERT(esi == kContextRegister); |
| |
| // Save the frame pointer and the context in top. |
| ExternalReference c_entry_fp_address = |
| ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate()); |
| ExternalReference context_address = |
| ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()); |
| ExternalReference c_function_address = |
| ExternalReference::Create(IsolateAddressId::kCFunctionAddress, isolate()); |
| |
| DCHECK(!AreAliased(scratch, ebp, esi, edx)); |
| mov(ExternalReferenceAsOperand(c_entry_fp_address, scratch), ebp); |
| mov(ExternalReferenceAsOperand(context_address, scratch), esi); |
| mov(ExternalReferenceAsOperand(c_function_address, scratch), edx); |
| } |
| |
| void MacroAssembler::EnterExitFrameEpilogue(int argc, bool save_doubles) { |
| // Optionally save all XMM registers. |
| if (save_doubles) { |
| int space = |
| XMMRegister::kNumRegisters * kDoubleSize + argc * kSystemPointerSize; |
| AllocateStackSpace(space); |
| const int offset = -ExitFrameConstants::kFixedFrameSizeFromFp; |
| for (int i = 0; i < XMMRegister::kNumRegisters; i++) { |
| XMMRegister reg = XMMRegister::from_code(i); |
| movsd(Operand(ebp, offset - ((i + 1) * kDoubleSize)), reg); |
| } |
| } else { |
| AllocateStackSpace(argc * kSystemPointerSize); |
| } |
| |
| // Get the required frame alignment for the OS. |
| const int kFrameAlignment = base::OS::ActivationFrameAlignment(); |
| if (kFrameAlignment > 0) { |
| DCHECK(base::bits::IsPowerOfTwo(kFrameAlignment)); |
| and_(esp, -kFrameAlignment); |
| } |
| |
| // Patch the saved entry sp. |
| mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp); |
| } |
| |
| void MacroAssembler::EnterExitFrame(int argc, bool save_doubles, |
| StackFrame::Type frame_type) { |
| EnterExitFramePrologue(frame_type, edi); |
| |
| // Set up argc and argv in callee-saved registers. |
| int offset = StandardFrameConstants::kCallerSPOffset - kSystemPointerSize; |
| mov(edi, eax); |
| lea(esi, Operand(ebp, eax, times_system_pointer_size, offset)); |
| |
| // Reserve space for argc, argv and isolate. |
| EnterExitFrameEpilogue(argc, save_doubles); |
| } |
| |
| void MacroAssembler::EnterApiExitFrame(int argc, Register scratch) { |
| EnterExitFramePrologue(StackFrame::EXIT, scratch); |
| EnterExitFrameEpilogue(argc, false); |
| } |
| |
| void MacroAssembler::LeaveExitFrame(bool save_doubles, bool pop_arguments) { |
| // Optionally restore all XMM registers. |
| if (save_doubles) { |
| const int offset = -ExitFrameConstants::kFixedFrameSizeFromFp; |
| for (int i = 0; i < XMMRegister::kNumRegisters; i++) { |
| XMMRegister reg = XMMRegister::from_code(i); |
| movsd(reg, Operand(ebp, offset - ((i + 1) * kDoubleSize))); |
| } |
| } |
| |
| if (pop_arguments) { |
| // Get the return address from the stack and restore the frame pointer. |
| mov(ecx, Operand(ebp, 1 * kSystemPointerSize)); |
| mov(ebp, Operand(ebp, 0 * kSystemPointerSize)); |
| |
| // Pop the arguments and the receiver from the caller stack. |
| lea(esp, Operand(esi, 1 * kSystemPointerSize)); |
| |
| // Push the return address to get ready to return. |
| push(ecx); |
| } else { |
| // Otherwise just leave the exit frame. |
| leave(); |
| } |
| |
| LeaveExitFrameEpilogue(); |
| } |
| |
| void MacroAssembler::LeaveExitFrameEpilogue() { |
| // Clear the top frame. |
| ExternalReference c_entry_fp_address = |
| ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate()); |
| mov(ExternalReferenceAsOperand(c_entry_fp_address, esi), Immediate(0)); |
| |
| // Restore current context from top and clear it in debug mode. |
| ExternalReference context_address = |
| ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()); |
| mov(esi, ExternalReferenceAsOperand(context_address, esi)); |
| #ifdef DEBUG |
| push(eax); |
| mov(ExternalReferenceAsOperand(context_address, eax), |
| Immediate(Context::kInvalidContext)); |
| pop(eax); |
| #endif |
| } |
| |
| void MacroAssembler::LeaveApiExitFrame() { |
| mov(esp, ebp); |
| pop(ebp); |
| |
| LeaveExitFrameEpilogue(); |
| } |
| |
| void MacroAssembler::PushStackHandler(Register scratch) { |
| // Adjust this code if not the case. |
| STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kSystemPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| |
| push(Immediate(0)); // Padding. |
| |
| // Link the current handler as the next handler. |
| ExternalReference handler_address = |
| ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate()); |
| push(ExternalReferenceAsOperand(handler_address, scratch)); |
| |
| // Set this new handler as the current one. |
| mov(ExternalReferenceAsOperand(handler_address, scratch), esp); |
| } |
| |
| void MacroAssembler::PopStackHandler(Register scratch) { |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| ExternalReference handler_address = |
| ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate()); |
| pop(ExternalReferenceAsOperand(handler_address, scratch)); |
| add(esp, Immediate(StackHandlerConstants::kSize - kSystemPointerSize)); |
| } |
| |
| void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments, |
| SaveFPRegsMode save_doubles) { |
| // If the expected number of arguments of the runtime function is |
| // constant, we check that the actual number of arguments match the |
| // expectation. |
| CHECK(f->nargs < 0 || f->nargs == num_arguments); |
| |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| Move(kRuntimeCallArgCountRegister, Immediate(num_arguments)); |
| Move(kRuntimeCallFunctionRegister, Immediate(ExternalReference::Create(f))); |
| Handle<Code> code = |
| CodeFactory::CEntry(isolate(), f->result_size, save_doubles); |
| Call(code, RelocInfo::CODE_TARGET); |
| } |
| |
| void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) { |
| // ----------- S t a t e ------------- |
| // -- esp[0] : return address |
| // -- esp[8] : argument num_arguments - 1 |
| // ... |
| // -- esp[8 * num_arguments] : argument 0 (receiver) |
| // |
| // For runtime functions with variable arguments: |
| // -- eax : number of arguments |
| // ----------------------------------- |
| |
| const Runtime::Function* function = Runtime::FunctionForId(fid); |
| DCHECK_EQ(1, function->result_size); |
| if (function->nargs >= 0) { |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| Move(kRuntimeCallArgCountRegister, Immediate(function->nargs)); |
| } |
| JumpToExternalReference(ExternalReference::Create(fid)); |
| } |
| |
| void MacroAssembler::JumpToExternalReference(const ExternalReference& ext, |
| bool builtin_exit_frame) { |
| // Set the entry point and jump to the C entry runtime stub. |
| Move(kRuntimeCallFunctionRegister, Immediate(ext)); |
| Handle<Code> code = CodeFactory::CEntry(isolate(), 1, kDontSaveFPRegs, |
| kArgvOnStack, builtin_exit_frame); |
| Jump(code, RelocInfo::CODE_TARGET); |
| } |
| |
| void MacroAssembler::JumpToInstructionStream(Address entry) { |
| jmp(entry, RelocInfo::OFF_HEAP_TARGET); |
| } |
| |
| void TurboAssembler::PrepareForTailCall( |
| Register callee_args_count, Register caller_args_count, Register scratch0, |
| Register scratch1, int number_of_temp_values_after_return_address) { |
| DCHECK(!AreAliased(callee_args_count, caller_args_count, scratch0, scratch1)); |
| |
| // Calculate the destination address where we will put the return address |
| // after we drop current frame. |
| Register new_sp_reg = scratch0; |
| sub(caller_args_count, callee_args_count); |
| lea(new_sp_reg, Operand(ebp, caller_args_count, times_system_pointer_size, |
| StandardFrameConstants::kCallerPCOffset - |
| number_of_temp_values_after_return_address * |
| kSystemPointerSize)); |
| |
| if (FLAG_debug_code) { |
| cmp(esp, new_sp_reg); |
| Check(below, AbortReason::kStackAccessBelowStackPointer); |
| } |
| |
| // Copy return address from caller's frame to current frame's return address |
| // to avoid its trashing and let the following loop copy it to the right |
| // place. |
| Register tmp_reg = scratch1; |
| mov(tmp_reg, Operand(ebp, StandardFrameConstants::kCallerPCOffset)); |
| mov(Operand(esp, |
| number_of_temp_values_after_return_address * kSystemPointerSize), |
| tmp_reg); |
| |
| // Restore caller's frame pointer now as it could be overwritten by |
| // the copying loop. |
| mov(ebp, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
| |
| // +2 here is to copy both receiver and return address. |
| Register count_reg = caller_args_count; |
| lea(count_reg, Operand(callee_args_count, |
| 2 + number_of_temp_values_after_return_address)); |
| |
| // Now copy callee arguments to the caller frame going backwards to avoid |
| // callee arguments corruption (source and destination areas could overlap). |
| Label loop, entry; |
| jmp(&entry, Label::kNear); |
| bind(&loop); |
| dec(count_reg); |
| mov(tmp_reg, Operand(esp, count_reg, times_system_pointer_size, 0)); |
| mov(Operand(new_sp_reg, count_reg, times_system_pointer_size, 0), tmp_reg); |
| bind(&entry); |
| cmp(count_reg, Immediate(0)); |
| j(not_equal, &loop, Label::kNear); |
| |
| // Leave current frame. |
| mov(esp, new_sp_reg); |
| } |
| |
| void MacroAssembler::CompareStackLimit(Register with, StackLimitKind kind) { |
| DCHECK(root_array_available()); |
| Isolate* isolate = this->isolate(); |
| // Address through the root register. No load is needed. |
| ExternalReference limit = |
| kind == StackLimitKind::kRealStackLimit |
| ? ExternalReference::address_of_real_jslimit(isolate) |
| : ExternalReference::address_of_jslimit(isolate); |
| DCHECK(TurboAssembler::IsAddressableThroughRootRegister(isolate, limit)); |
| |
| intptr_t offset = |
| TurboAssembler::RootRegisterOffsetForExternalReference(isolate, limit); |
| cmp(with, Operand(kRootRegister, offset)); |
| } |
| |
| void MacroAssembler::StackOverflowCheck(Register num_args, Register scratch, |
| Label* stack_overflow, |
| bool include_receiver) { |
| DCHECK_NE(num_args, scratch); |
| // Check the stack for overflow. We are not trying to catch |
| // interruptions (e.g. debug break and preemption) here, so the "real stack |
| // limit" is checked. |
| ExternalReference real_stack_limit = |
| ExternalReference::address_of_real_jslimit(isolate()); |
| // Compute the space that is left as a negative number in scratch. If |
| // we already overflowed, this will be a positive number. |
| mov(scratch, ExternalReferenceAsOperand(real_stack_limit, scratch)); |
| sub(scratch, esp); |
| // TODO(victorgomes): Remove {include_receiver} and always require one extra |
| // word of the stack space. |
| lea(scratch, Operand(scratch, num_args, times_system_pointer_size, 0)); |
| if (include_receiver) { |
| add(scratch, Immediate(kSystemPointerSize)); |
| } |
| // See if we overflowed, i.e. scratch is positive. |
| cmp(scratch, Immediate(0)); |
| // TODO(victorgomes): Save some bytes in the builtins that use stack checks |
| // by jumping to a builtin that throws the exception. |
| j(greater, stack_overflow); // Signed comparison. |
| } |
| |
| void MacroAssembler::InvokePrologue(Register expected_parameter_count, |
| Register actual_parameter_count, |
| Label* done, InvokeFlag flag) { |
| if (expected_parameter_count != actual_parameter_count) { |
| DCHECK_EQ(actual_parameter_count, eax); |
| DCHECK_EQ(expected_parameter_count, ecx); |
| Label regular_invoke; |
| #ifdef V8_NO_ARGUMENTS_ADAPTOR |
| // If the expected parameter count is equal to the adaptor sentinel, no need |
| // to push undefined value as arguments. |
| cmp(expected_parameter_count, Immediate(kDontAdaptArgumentsSentinel)); |
| j(equal, ®ular_invoke, Label::kFar); |
| |
| // If overapplication or if the actual argument count is equal to the |
| // formal parameter count, no need to push extra undefined values. |
| sub(expected_parameter_count, actual_parameter_count); |
| j(less_equal, ®ular_invoke, Label::kFar); |
| |
| // We need to preserve edx, edi, esi and ebx. |
| movd(xmm0, edx); |
| movd(xmm1, edi); |
| movd(xmm2, esi); |
| movd(xmm3, ebx); |
| |
| Label stack_overflow; |
| StackOverflowCheck(expected_parameter_count, edx, &stack_overflow); |
| |
| Register scratch = esi; |
| |
| // Underapplication. Move the arguments already in the stack, including the |
| // receiver and the return address. |
| { |
| Label copy, check; |
| Register src = edx, dest = esp, num = edi, current = ebx; |
| mov(src, esp); |
| lea(scratch, |
| Operand(expected_parameter_count, times_system_pointer_size, 0)); |
| AllocateStackSpace(scratch); |
| // Extra words are the receiver and the return address (if a jump). |
| int extra_words = flag == CALL_FUNCTION ? 1 : 2; |
| lea(num, Operand(eax, extra_words)); // Number of words to copy. |
| Set(current, 0); |
| // Fall-through to the loop body because there are non-zero words to copy. |
| bind(©); |
| mov(scratch, Operand(src, current, times_system_pointer_size, 0)); |
| mov(Operand(dest, current, times_system_pointer_size, 0), scratch); |
| inc(current); |
| bind(&check); |
| cmp(current, num); |
| j(less, ©); |
| lea(edx, Operand(esp, num, times_system_pointer_size, 0)); |
| } |
| |
| // Fill remaining expected arguments with undefined values. |
| movd(ebx, xmm3); // Restore root. |
| LoadRoot(scratch, RootIndex::kUndefinedValue); |
| { |
| Label loop; |
| bind(&loop); |
| dec(expected_parameter_count); |
| mov(Operand(edx, expected_parameter_count, times_system_pointer_size, 0), |
| scratch); |
| j(greater, &loop, Label::kNear); |
| } |
| |
| // Restore remaining registers. |
| movd(esi, xmm2); |
| movd(edi, xmm1); |
| movd(edx, xmm0); |
| |
| jmp(®ular_invoke); |
| |
| bind(&stack_overflow); |
| { |
| FrameScope frame(this, |
| has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); |
| CallRuntime(Runtime::kThrowStackOverflow); |
| int3(); // This should be unreachable. |
| } |
| #else |
| cmp(expected_parameter_count, actual_parameter_count); |
| j(equal, ®ular_invoke); |
| Handle<Code> adaptor = BUILTIN_CODE(isolate(), ArgumentsAdaptorTrampoline); |
| if (flag == CALL_FUNCTION) { |
| Call(adaptor, RelocInfo::CODE_TARGET); |
| jmp(done, Label::kNear); |
| } else { |
| Jump(adaptor, RelocInfo::CODE_TARGET); |
| } |
| #endif |
| bind(®ular_invoke); |
| } |
| } |
| |
| void MacroAssembler::CallDebugOnFunctionCall(Register fun, Register new_target, |
| Register expected_parameter_count, |
| Register actual_parameter_count) { |
| FrameScope frame(this, has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); |
| SmiTag(expected_parameter_count); |
| Push(expected_parameter_count); |
| |
| SmiTag(actual_parameter_count); |
| Push(actual_parameter_count); |
| SmiUntag(actual_parameter_count); |
| |
| if (new_target.is_valid()) { |
| Push(new_target); |
| } |
| Push(fun); |
| Push(fun); |
| // Arguments are located 2 words below the base pointer. |
| Operand receiver_op = Operand(ebp, kSystemPointerSize * 2); |
| Push(receiver_op); |
| CallRuntime(Runtime::kDebugOnFunctionCall); |
| Pop(fun); |
| if (new_target.is_valid()) { |
| Pop(new_target); |
| } |
| Pop(actual_parameter_count); |
| SmiUntag(actual_parameter_count); |
| |
| Pop(expected_parameter_count); |
| SmiUntag(expected_parameter_count); |
| } |
| |
| void MacroAssembler::InvokeFunctionCode(Register function, Register new_target, |
| Register expected_parameter_count, |
| Register actual_parameter_count, |
| InvokeFlag flag) { |
| // You can't call a function without a valid frame. |
| DCHECK_IMPLIES(flag == CALL_FUNCTION, has_frame()); |
| DCHECK_EQ(function, edi); |
| DCHECK_IMPLIES(new_target.is_valid(), new_target == edx); |
| DCHECK(expected_parameter_count == ecx || expected_parameter_count == eax); |
| DCHECK_EQ(actual_parameter_count, eax); |
| |
| // On function call, call into the debugger if necessary. |
| Label debug_hook, continue_after_hook; |
| { |
| ExternalReference debug_hook_active = |
| ExternalReference::debug_hook_on_function_call_address(isolate()); |
| push(eax); |
| cmpb(ExternalReferenceAsOperand(debug_hook_active, eax), Immediate(0)); |
| pop(eax); |
| j(not_equal, &debug_hook); |
| } |
| bind(&continue_after_hook); |
| |
| // Clear the new.target register if not given. |
| if (!new_target.is_valid()) { |
| Move(edx, isolate()->factory()->undefined_value()); |
| } |
| |
| Label done; |
| InvokePrologue(expected_parameter_count, actual_parameter_count, &done, flag); |
| // We call indirectly through the code field in the function to |
| // allow recompilation to take effect without changing any of the |
| // call sites. |
| static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch"); |
| mov(ecx, FieldOperand(function, JSFunction::kCodeOffset)); |
| if (flag == CALL_FUNCTION) { |
| CallCodeObject(ecx); |
| } else { |
| DCHECK(flag == JUMP_FUNCTION); |
| JumpCodeObject(ecx); |
| } |
| jmp(&done, Label::kNear); |
| |
| // Deferred debug hook. |
| bind(&debug_hook); |
| CallDebugOnFunctionCall(function, new_target, expected_parameter_count, |
| actual_parameter_count); |
| jmp(&continue_after_hook); |
| |
| bind(&done); |
| } |
| |
| void MacroAssembler::InvokeFunction(Register fun, Register new_target, |
| Register actual_parameter_count, |
| InvokeFlag flag) { |
| // You can't call a function without a valid frame. |
| DCHECK(flag == JUMP_FUNCTION || has_frame()); |
| |
| DCHECK(fun == edi); |
| mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); |
| mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); |
| movzx_w(ecx, |
| FieldOperand(ecx, SharedFunctionInfo::kFormalParameterCountOffset)); |
| |
| InvokeFunctionCode(edi, new_target, ecx, actual_parameter_count, flag); |
| } |
| |
| void MacroAssembler::LoadGlobalProxy(Register dst) { |
| LoadNativeContextSlot(dst, Context::GLOBAL_PROXY_INDEX); |
| } |
| |
| void MacroAssembler::LoadNativeContextSlot(Register destination, int index) { |
| // Load the native context from the current context. |
| LoadMap(destination, esi); |
| mov(destination, |
| FieldOperand(destination, |
| Map::kConstructorOrBackPointerOrNativeContextOffset)); |
| // Load the function from the native context. |
| mov(destination, Operand(destination, Context::SlotOffset(index))); |
| } |
| |
| int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { |
| // The registers are pushed starting with the lowest encoding, |
| // which means that lowest encodings are furthest away from |
| // the stack pointer. |
| DCHECK(reg_code >= 0 && reg_code < kNumSafepointRegisters); |
| return kNumSafepointRegisters - reg_code - 1; |
| } |
| |
| void TurboAssembler::Ret() { ret(0); } |
| |
| void TurboAssembler::Ret(int bytes_dropped, Register scratch) { |
| if (is_uint16(bytes_dropped)) { |
| ret(bytes_dropped); |
| } else { |
| pop(scratch); |
| add(esp, Immediate(bytes_dropped)); |
| push(scratch); |
| ret(0); |
| } |
| } |
| |
| void TurboAssembler::Push(Immediate value) { |
| if (root_array_available() && options().isolate_independent_code) { |
| if (value.is_embedded_object()) { |
| Push(HeapObjectAsOperand(value.embedded_object())); |
| return; |
| } else if (value.is_external_reference()) { |
| Push(ExternalReferenceAddressAsOperand(value.external_reference())); |
| return; |
| } |
| } |
| push(value); |
| } |
| |
| void MacroAssembler::Drop(int stack_elements) { |
| if (stack_elements > 0) { |
| add(esp, Immediate(stack_elements * kSystemPointerSize)); |
| } |
| } |
| |
| void TurboAssembler::Move(Register dst, Register src) { |
| if (dst != src) { |
| mov(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Move(Register dst, const Immediate& src) { |
| if (!src.is_heap_object_request() && src.is_zero()) { |
| xor_(dst, dst); // Shorter than mov of 32-bit immediate 0. |
| } else if (src.is_external_reference()) { |
| LoadAddress(dst, src.external_reference()); |
| } else { |
| mov(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Move(Operand dst, const Immediate& src) { |
| // Since there's no scratch register available, take a detour through the |
| // stack. |
| if (root_array_available() && options().isolate_independent_code) { |
| if (src.is_embedded_object() || src.is_external_reference() || |
| src.is_heap_object_request()) { |
| Push(src); |
| pop(dst); |
| return; |
| } |
| } |
| |
| if (src.is_embedded_object()) { |
| mov(dst, src.embedded_object()); |
| } else { |
| mov(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Move(Register dst, Handle<HeapObject> src) { |
| if (root_array_available() && options().isolate_independent_code) { |
| IndirectLoadConstant(dst, src); |
| return; |
| } |
| mov(dst, src); |
| } |
| |
| void TurboAssembler::Move(XMMRegister dst, uint32_t src) { |
| if (src == 0) { |
| pxor(dst, dst); |
| } else { |
| unsigned cnt = base::bits::CountPopulation(src); |
| unsigned nlz = base::bits::CountLeadingZeros32(src); |
| unsigned ntz = base::bits::CountTrailingZeros32(src); |
| if (nlz + cnt + ntz == 32) { |
| pcmpeqd(dst, dst); |
| if (ntz == 0) { |
| psrld(dst, 32 - cnt); |
| } else { |
| pslld(dst, 32 - cnt); |
| if (nlz != 0) psrld(dst, nlz); |
| } |
| } else { |
| push(eax); |
| mov(eax, Immediate(src)); |
| movd(dst, Operand(eax)); |
| pop(eax); |
| } |
| } |
| } |
| |
| void TurboAssembler::Move(XMMRegister dst, uint64_t src) { |
| if (src == 0) { |
| pxor(dst, dst); |
| } else { |
| uint32_t lower = static_cast<uint32_t>(src); |
| uint32_t upper = static_cast<uint32_t>(src >> 32); |
| unsigned cnt = base::bits::CountPopulation(src); |
| unsigned nlz = base::bits::CountLeadingZeros64(src); |
| unsigned ntz = base::bits::CountTrailingZeros64(src); |
| if (nlz + cnt + ntz == 64) { |
| pcmpeqd(dst, dst); |
| if (ntz == 0) { |
| psrlq(dst, 64 - cnt); |
| } else { |
| psllq(dst, 64 - cnt); |
| if (nlz != 0) psrlq(dst, nlz); |
| } |
| } else if (lower == 0) { |
| Move(dst, upper); |
| psllq(dst, 32); |
| } else if (CpuFeatures::IsSupported(SSE4_1)) { |
| CpuFeatureScope scope(this, SSE4_1); |
| push(eax); |
| Move(eax, Immediate(lower)); |
| movd(dst, Operand(eax)); |
| if (upper != lower) { |
| Move(eax, Immediate(upper)); |
| } |
| pinsrd(dst, Operand(eax), 1); |
| pop(eax); |
| } else { |
| push(Immediate(upper)); |
| push(Immediate(lower)); |
| movsd(dst, Operand(esp, 0)); |
| add(esp, Immediate(kDoubleSize)); |
| } |
| } |
| } |
| |
| void TurboAssembler::Pshufhw(XMMRegister dst, Operand src, uint8_t shuffle) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpshufhw(dst, src, shuffle); |
| } else { |
| pshufhw(dst, src, shuffle); |
| } |
| } |
| |
| void TurboAssembler::Pshuflw(XMMRegister dst, Operand src, uint8_t shuffle) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpshuflw(dst, src, shuffle); |
| } else { |
| pshuflw(dst, src, shuffle); |
| } |
| } |
| |
| void TurboAssembler::Pshufd(XMMRegister dst, Operand src, uint8_t shuffle) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpshufd(dst, src, shuffle); |
| } else { |
| pshufd(dst, src, shuffle); |
| } |
| } |
| |
| void TurboAssembler::Psraw(XMMRegister dst, uint8_t shift) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpsraw(dst, dst, shift); |
| } else { |
| psraw(dst, shift); |
| } |
| } |
| |
| void TurboAssembler::Psrlw(XMMRegister dst, uint8_t shift) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpsrlw(dst, dst, shift); |
| } else { |
| psrlw(dst, shift); |
| } |
| } |
| |
| void TurboAssembler::Psrlq(XMMRegister dst, uint8_t shift) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpsrlq(dst, dst, shift); |
| } else { |
| psrlq(dst, shift); |
| } |
| } |
| |
| void TurboAssembler::Psignb(XMMRegister dst, Operand src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpsignb(dst, dst, src); |
| return; |
| } |
| if (CpuFeatures::IsSupported(SSSE3)) { |
| CpuFeatureScope sse_scope(this, SSSE3); |
| psignb(dst, src); |
| return; |
| } |
| FATAL("no AVX or SSE3 support"); |
| } |
| |
| void TurboAssembler::Psignw(XMMRegister dst, Operand src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpsignw(dst, dst, src); |
| return; |
| } |
| if (CpuFeatures::IsSupported(SSSE3)) { |
| CpuFeatureScope sse_scope(this, SSSE3); |
| psignw(dst, src); |
| return; |
| } |
| FATAL("no AVX or SSE3 support"); |
| } |
| |
| void TurboAssembler::Psignd(XMMRegister dst, Operand src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpsignd(dst, dst, src); |
| return; |
| } |
| if (CpuFeatures::IsSupported(SSSE3)) { |
| CpuFeatureScope sse_scope(this, SSSE3); |
| psignd(dst, src); |
| return; |
| } |
| FATAL("no AVX or SSE3 support"); |
| } |
| |
| void TurboAssembler::Pshufb(XMMRegister dst, XMMRegister src, Operand mask) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpshufb(dst, src, mask); |
| return; |
| } |
| if (CpuFeatures::IsSupported(SSSE3)) { |
| // Make sure these are different so that we won't overwrite mask. |
| DCHECK(!mask.is_reg(dst)); |
| CpuFeatureScope sse_scope(this, SSSE3); |
| if (dst != src) { |
| movapd(dst, src); |
| } |
| pshufb(dst, mask); |
| return; |
| } |
| FATAL("no AVX or SSE3 support"); |
| } |
| |
| void TurboAssembler::Pblendw(XMMRegister dst, Operand src, uint8_t imm8) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpblendw(dst, dst, src, imm8); |
| return; |
| } |
| if (CpuFeatures::IsSupported(SSE4_1)) { |
| CpuFeatureScope sse_scope(this, SSE4_1); |
| pblendw(dst, src, imm8); |
| return; |
| } |
| FATAL("no AVX or SSE4.1 support"); |
| } |
| |
| void TurboAssembler::Palignr(XMMRegister dst, Operand src, uint8_t imm8) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpalignr(dst, dst, src, imm8); |
| return; |
| } |
| if (CpuFeatures::IsSupported(SSSE3)) { |
| CpuFeatureScope sse_scope(this, SSSE3); |
| palignr(dst, src, imm8); |
| return; |
| } |
| FATAL("no AVX or SSE3 support"); |
| } |
| |
| void TurboAssembler::Pextrb(Register dst, XMMRegister src, uint8_t imm8) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpextrb(dst, src, imm8); |
| return; |
| } |
| if (CpuFeatures::IsSupported(SSE4_1)) { |
| CpuFeatureScope sse_scope(this, SSE4_1); |
| pextrb(dst, src, imm8); |
| return; |
| } |
| FATAL("no AVX or SSE4.1 support"); |
| } |
| |
| void TurboAssembler::Pextrw(Register dst, XMMRegister src, uint8_t imm8) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpextrw(dst, src, imm8); |
| return; |
| } |
| if (CpuFeatures::IsSupported(SSE4_1)) { |
| CpuFeatureScope sse_scope(this, SSE4_1); |
| pextrw(dst, src, imm8); |
| return; |
| } |
| FATAL("no AVX or SSE4.1 support"); |
| } |
| |
| void TurboAssembler::Pextrd(Register dst, XMMRegister src, uint8_t imm8) { |
| if (imm8 == 0) { |
| Movd(dst, src); |
| return; |
| } |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpextrd(dst, src, imm8); |
| return; |
| } |
| if (CpuFeatures::IsSupported(SSE4_1)) { |
| CpuFeatureScope sse_scope(this, SSE4_1); |
| pextrd(dst, src, imm8); |
| return; |
| } |
| // Without AVX or SSE, we can only have 64-bit values in xmm registers. |
| // We don't have an xmm scratch register, so move the data via the stack. This |
| // path is rarely required, so it's acceptable to be slow. |
| DCHECK_LT(imm8, 2); |
| AllocateStackSpace(kDoubleSize); |
| movsd(Operand(esp, 0), src); |
| mov(dst, Operand(esp, imm8 * kUInt32Size)); |
| add(esp, Immediate(kDoubleSize)); |
| } |
| |
| void TurboAssembler::Pinsrb(XMMRegister dst, Operand src, int8_t imm8) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpinsrb(dst, dst, src, imm8); |
| return; |
| } |
| if (CpuFeatures::IsSupported(SSE4_1)) { |
| CpuFeatureScope sse_scope(this, SSE4_1); |
| pinsrb(dst, src, imm8); |
| return; |
| } |
| FATAL("no AVX or SSE4.1 support"); |
| } |
| |
| void TurboAssembler::Pinsrd(XMMRegister dst, Operand src, uint8_t imm8) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpinsrd(dst, dst, src, imm8); |
| return; |
| } |
| if (CpuFeatures::IsSupported(SSE4_1)) { |
| CpuFeatureScope sse_scope(this, SSE4_1); |
| pinsrd(dst, src, imm8); |
| return; |
| } |
| // Without AVX or SSE, we can only have 64-bit values in xmm registers. |
| // We don't have an xmm scratch register, so move the data via the stack. This |
| // path is rarely required, so it's acceptable to be slow. |
| DCHECK_LT(imm8, 2); |
| AllocateStackSpace(kDoubleSize); |
| // Write original content of {dst} to the stack. |
| movsd(Operand(esp, 0), dst); |
| // Overwrite the portion specified in {imm8}. |
| if (src.is_reg_only()) { |
| mov(Operand(esp, imm8 * kUInt32Size), src.reg()); |
| } else { |
| movss(dst, src); |
| movss(Operand(esp, imm8 * kUInt32Size), dst); |
| } |
| // Load back the full value into {dst}. |
| movsd(dst, Operand(esp, 0)); |
| add(esp, Immediate(kDoubleSize)); |
| } |
| |
| void TurboAssembler::Pinsrw(XMMRegister dst, Operand src, int8_t imm8) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpinsrw(dst, dst, src, imm8); |
| return; |
| } else { |
| pinsrw(dst, src, imm8); |
| return; |
| } |
| } |
| |
| void TurboAssembler::Vbroadcastss(XMMRegister dst, Operand src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope avx_scope(this, AVX); |
| vbroadcastss(dst, src); |
| return; |
| } |
| movss(dst, src); |
| shufps(dst, dst, static_cast<byte>(0)); |
| } |
| |
| void TurboAssembler::Lzcnt(Register dst, Operand src) { |
| if (CpuFeatures::IsSupported(LZCNT)) { |
| CpuFeatureScope scope(this, LZCNT); |
| lzcnt(dst, src); |
| return; |
| } |
| Label not_zero_src; |
| bsr(dst, src); |
| j(not_zero, ¬_zero_src, Label::kNear); |
| mov(dst, 63); // 63^31 == 32 |
| bind(¬_zero_src); |
| xor_(dst, Immediate(31)); // for x in [0..31], 31^x == 31-x. |
| } |
| |
| void TurboAssembler::Tzcnt(Register dst, Operand src) { |
| if (CpuFeatures::IsSupported(BMI1)) { |
| CpuFeatureScope scope(this, BMI1); |
| tzcnt(dst, src); |
| return; |
| } |
| Label not_zero_src; |
| bsf(dst, src); |
| j(not_zero, ¬_zero_src, Label::kNear); |
| mov(dst, 32); // The result of tzcnt is 32 if src = 0. |
| bind(¬_zero_src); |
| } |
| |
| void TurboAssembler::Popcnt(Register dst, Operand src) { |
| if (CpuFeatures::IsSupported(POPCNT)) { |
| CpuFeatureScope scope(this, POPCNT); |
| popcnt(dst, src); |
| return; |
| } |
| FATAL("no POPCNT support"); |
| } |
| |
| void MacroAssembler::LoadWeakValue(Register in_out, Label* target_if_cleared) { |
| cmp(in_out, Immediate(kClearedWeakHeapObjectLower32)); |
| j(equal, target_if_cleared); |
| |
| and_(in_out, Immediate(~kWeakHeapObjectMask)); |
| } |
| |
| void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, |
| Register scratch) { |
| DCHECK_GT(value, 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| Operand operand = |
| ExternalReferenceAsOperand(ExternalReference::Create(counter), scratch); |
| if (value == 1) { |
| inc(operand); |
| } else { |
| add(operand, Immediate(value)); |
| } |
| } |
| } |
| |
| void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, |
| Register scratch) { |
| DCHECK_GT(value, 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| Operand operand = |
| ExternalReferenceAsOperand(ExternalReference::Create(counter), scratch); |
| if (value == 1) { |
| dec(operand); |
| } else { |
| sub(operand, Immediate(value)); |
| } |
| } |
| } |
| |
| void TurboAssembler::Assert(Condition cc, AbortReason reason) { |
| if (emit_debug_code()) Check(cc, reason); |
| } |
| |
| void TurboAssembler::AssertUnreachable(AbortReason reason) { |
| if (emit_debug_code()) Abort(reason); |
| } |
| |
| void TurboAssembler::Check(Condition cc, AbortReason reason) { |
| Label L; |
| j(cc, &L); |
| Abort(reason); |
| // will not return here |
| bind(&L); |
| } |
| |
| void TurboAssembler::CheckStackAlignment() { |
| int frame_alignment = base::OS::ActivationFrameAlignment(); |
| int frame_alignment_mask = frame_alignment - 1; |
| if (frame_alignment > kSystemPointerSize) { |
| DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); |
| Label alignment_as_expected; |
| test(esp, Immediate(frame_alignment_mask)); |
| j(zero, &alignment_as_expected); |
| // Abort if stack is not aligned. |
| int3(); |
| bind(&alignment_as_expected); |
| } |
| } |
| |
| void TurboAssembler::Abort(AbortReason reason) { |
| #ifdef DEBUG |
| const char* msg = GetAbortReason(reason); |
| RecordComment("Abort message: "); |
| RecordComment(msg); |
| #endif |
| |
| // Avoid emitting call to builtin if requested. |
| if (trap_on_abort()) { |
| int3(); |
| return; |
| } |
| |
| if (should_abort_hard()) { |
| // We don't care if we constructed a frame. Just pretend we did. |
| FrameScope assume_frame(this, StackFrame::NONE); |
| PrepareCallCFunction(1, eax); |
| mov(Operand(esp, 0), Immediate(static_cast<int>(reason))); |
| CallCFunction(ExternalReference::abort_with_reason(), 1); |
| return; |
| } |
| |
| Move(edx, Smi::FromInt(static_cast<int>(reason))); |
| |
| // Disable stub call restrictions to always allow calls to abort. |
| if (!has_frame()) { |
| // We don't actually want to generate a pile of code for this, so just |
| // claim there is a stack frame, without generating one. |
| FrameScope scope(this, StackFrame::NONE); |
| Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); |
| } else { |
| Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); |
| } |
| // will not return here |
| int3(); |
| } |
| |
| void TurboAssembler::PrepareCallCFunction(int num_arguments, Register scratch) { |
| int frame_alignment = base::OS::ActivationFrameAlignment(); |
| if (frame_alignment != 0) { |
| // Make stack end at alignment and make room for num_arguments words |
| // and the original value of esp. |
| mov(scratch, esp); |
| AllocateStackSpace((num_arguments + 1) * kSystemPointerSize); |
| DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); |
| and_(esp, -frame_alignment); |
| mov(Operand(esp, num_arguments * kSystemPointerSize), scratch); |
| } else { |
| AllocateStackSpace(num_arguments * kSystemPointerSize); |
| } |
| } |
| |
| void TurboAssembler::CallCFunction(ExternalReference function, |
| int num_arguments) { |
| // Trashing eax is ok as it will be the return value. |
| Move(eax, Immediate(function)); |
| CallCFunction(eax, num_arguments); |
| } |
| |
| void TurboAssembler::CallCFunction(Register function, int num_arguments) { |
| DCHECK_LE(num_arguments, kMaxCParameters); |
| DCHECK(has_frame()); |
| // Check stack alignment. |
| if (emit_debug_code()) { |
| CheckStackAlignment(); |
| } |
| |
| // Save the frame pointer and PC so that the stack layout remains iterable, |
| // even without an ExitFrame which normally exists between JS and C frames. |
| // Find two caller-saved scratch registers. |
| Register pc_scratch = eax; |
| Register scratch = ecx; |
| if (function == eax) pc_scratch = edx; |
| if (function == ecx) scratch = edx; |
| PushPC(); |
| pop(pc_scratch); |
| |
| // See x64 code for reasoning about how to address the isolate data fields. |
| DCHECK_IMPLIES(!root_array_available(), isolate() != nullptr); |
| mov(root_array_available() |
| ? Operand(kRootRegister, IsolateData::fast_c_call_caller_pc_offset()) |
| : ExternalReferenceAsOperand( |
| ExternalReference::fast_c_call_caller_pc_address(isolate()), |
| scratch), |
| pc_scratch); |
| mov(root_array_available() |
| ? Operand(kRootRegister, IsolateData::fast_c_call_caller_fp_offset()) |
| : ExternalReferenceAsOperand( |
| ExternalReference::fast_c_call_caller_fp_address(isolate()), |
| scratch), |
| ebp); |
| |
| call(function); |
| |
| // We don't unset the PC; the FP is the source of truth. |
| mov(root_array_available() |
| ? Operand(kRootRegister, IsolateData::fast_c_call_caller_fp_offset()) |
| : ExternalReferenceAsOperand( |
| ExternalReference::fast_c_call_caller_fp_address(isolate()), |
| scratch), |
| Immediate(0)); |
| |
| if (base::OS::ActivationFrameAlignment() != 0) { |
| mov(esp, Operand(esp, num_arguments * kSystemPointerSize)); |
| } else { |
| add(esp, Immediate(num_arguments * kSystemPointerSize)); |
| } |
| } |
| |
| void TurboAssembler::PushPC() { |
| // Push the current PC onto the stack as "return address" via calling |
| // the next instruction. |
| Label get_pc; |
| call(&get_pc); |
| bind(&get_pc); |
| } |
| |
| void TurboAssembler::Call(Handle<Code> code_object, RelocInfo::Mode rmode) { |
| DCHECK_IMPLIES(options().isolate_independent_code, |
| Builtins::IsIsolateIndependentBuiltin(*code_object)); |
| if (options().inline_offheap_trampolines) { |
| int builtin_index = Builtins::kNoBuiltinId; |
| if (isolate()->builtins()->IsBuiltinHandle(code_object, &builtin_index)) { |
| // Inline the trampoline. |
| CallBuiltin(builtin_index); |
| return; |
| } |
| } |
| DCHECK(RelocInfo::IsCodeTarget(rmode)); |
| call(code_object, rmode); |
| } |
| |
| void TurboAssembler::LoadEntryFromBuiltinIndex(Register builtin_index) { |
| STATIC_ASSERT(kSystemPointerSize == 4); |
| STATIC_ASSERT(kSmiShiftSize == 0); |
| STATIC_ASSERT(kSmiTagSize == 1); |
| STATIC_ASSERT(kSmiTag == 0); |
| |
| // The builtin_index register contains the builtin index as a Smi. |
| // Untagging is folded into the indexing operand below (we use |
| // times_half_system_pointer_size instead of times_system_pointer_size since |
| // smis are already shifted by one). |
| mov(builtin_index, |
| Operand(kRootRegister, builtin_index, times_half_system_pointer_size, |
| IsolateData::builtin_entry_table_offset())); |
| } |
| |
| void TurboAssembler::CallBuiltinByIndex(Register builtin_index) { |
| LoadEntryFromBuiltinIndex(builtin_index); |
| call(builtin_index); |
| } |
| |
| void TurboAssembler::CallBuiltin(int builtin_index) { |
| DCHECK(Builtins::IsBuiltinId(builtin_index)); |
| RecordCommentForOffHeapTrampoline(builtin_index); |
| CHECK_NE(builtin_index, Builtins::kNoBuiltinId); |
| EmbeddedData d = EmbeddedData::FromBlob(); |
| Address entry = d.InstructionStartOfBuiltin(builtin_index); |
| call(entry, RelocInfo::OFF_HEAP_TARGET); |
| } |
| |
| void TurboAssembler::LoadCodeObjectEntry(Register destination, |
| Register code_object) { |
| // Code objects are called differently depending on whether we are generating |
| // builtin code (which will later be embedded into the binary) or compiling |
| // user JS code at runtime. |
| // * Builtin code runs in --jitless mode and thus must not call into on-heap |
| // Code targets. Instead, we dispatch through the builtins entry table. |
| // * Codegen at runtime does not have this restriction and we can use the |
| // shorter, branchless instruction sequence. The assumption here is that |
| // targets are usually generated code and not builtin Code objects. |
| |
| if (options().isolate_independent_code) { |
| DCHECK(root_array_available()); |
| Label if_code_is_off_heap, out; |
| |
| // Check whether the Code object is an off-heap trampoline. If so, call its |
| // (off-heap) entry point directly without going through the (on-heap) |
| // trampoline. Otherwise, just call the Code object as always. |
| test(FieldOperand(code_object, Code::kFlagsOffset), |
| Immediate(Code::IsOffHeapTrampoline::kMask)); |
| j(not_equal, &if_code_is_off_heap); |
| |
| // Not an off-heap trampoline, the entry point is at |
| // Code::raw_instruction_start(). |
| Move(destination, code_object); |
| add(destination, Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| jmp(&out); |
| |
| // An off-heap trampoline, the entry point is loaded from the builtin entry |
| // table. |
| bind(&if_code_is_off_heap); |
| mov(destination, FieldOperand(code_object, Code::kBuiltinIndexOffset)); |
| mov(destination, |
| Operand(kRootRegister, destination, times_system_pointer_size, |
| IsolateData::builtin_entry_table_offset())); |
| |
| bind(&out); |
| } else { |
| Move(destination, code_object); |
| add(destination, Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| } |
| } |
| |
| void TurboAssembler::CallCodeObject(Register code_object) { |
| LoadCodeObjectEntry(code_object, code_object); |
| call(code_object); |
| } |
| |
| void TurboAssembler::JumpCodeObject(Register code_object) { |
| LoadCodeObjectEntry(code_object, code_object); |
| jmp(code_object); |
| } |
| |
| void TurboAssembler::Jump(const ExternalReference& reference) { |
| DCHECK(root_array_available()); |
| jmp(Operand(kRootRegister, RootRegisterOffsetForExternalReferenceTableEntry( |
| isolate(), reference))); |
| } |
| |
| void TurboAssembler::Jump(Handle<Code> code_object, RelocInfo::Mode rmode) { |
| DCHECK_IMPLIES(options().isolate_independent_code, |
| Builtins::IsIsolateIndependentBuiltin(*code_object)); |
| if (options().inline_offheap_trampolines) { |
| int builtin_index = Builtins::kNoBuiltinId; |
| if (isolate()->builtins()->IsBuiltinHandle(code_object, &builtin_index)) { |
| // Inline the trampoline. |
| RecordCommentForOffHeapTrampoline(builtin_index); |
| CHECK_NE(builtin_index, Builtins::kNoBuiltinId); |
| EmbeddedData d = EmbeddedData::FromBlob(); |
| Address entry = d.InstructionStartOfBuiltin(builtin_index); |
| jmp(entry, RelocInfo::OFF_HEAP_TARGET); |
| return; |
| } |
| } |
| DCHECK(RelocInfo::IsCodeTarget(rmode)); |
| jmp(code_object, rmode); |
| } |
| |
| void TurboAssembler::RetpolineCall(Register reg) { |
| Label setup_return, setup_target, inner_indirect_branch, capture_spec; |
| |
| jmp(&setup_return); // Jump past the entire retpoline below. |
| |
| bind(&inner_indirect_branch); |
| call(&setup_target); |
| |
| bind(&capture_spec); |
| pause(); |
| jmp(&capture_spec); |
| |
| bind(&setup_target); |
| mov(Operand(esp, 0), reg); |
| ret(0); |
| |
| bind(&setup_return); |
| call(&inner_indirect_branch); // Callee will return after this instruction. |
| } |
| |
| void TurboAssembler::RetpolineCall(Address destination, RelocInfo::Mode rmode) { |
| Label setup_return, setup_target, inner_indirect_branch, capture_spec; |
| |
| jmp(&setup_return); // Jump past the entire retpoline below. |
| |
| bind(&inner_indirect_branch); |
| call(&setup_target); |
| |
| bind(&capture_spec); |
| pause(); |
| jmp(&capture_spec); |
| |
| bind(&setup_target); |
| mov(Operand(esp, 0), destination, rmode); |
| ret(0); |
| |
| bind(&setup_return); |
| call(&inner_indirect_branch); // Callee will return after this instruction. |
| } |
| |
| void TurboAssembler::RetpolineJump(Register reg) { |
| Label setup_target, capture_spec; |
| |
| call(&setup_target); |
| |
| bind(&capture_spec); |
| pause(); |
| jmp(&capture_spec); |
| |
| bind(&setup_target); |
| mov(Operand(esp, 0), reg); |
| ret(0); |
| } |
| |
| void TurboAssembler::CheckPageFlag(Register object, Register scratch, int mask, |
| Condition cc, Label* condition_met, |
| Label::Distance condition_met_distance) { |
| DCHECK(cc == zero || cc == not_zero); |
| if (scratch == object) { |
| and_(scratch, Immediate(~kPageAlignmentMask)); |
| } else { |
| mov(scratch, Immediate(~kPageAlignmentMask)); |
| and_(scratch, object); |
| } |
| if (mask < (1 << kBitsPerByte)) { |
| test_b(Operand(scratch, BasicMemoryChunk::kFlagsOffset), Immediate(mask)); |
| } else { |
| test(Operand(scratch, BasicMemoryChunk::kFlagsOffset), Immediate(mask)); |
| } |
| j(cc, condition_met, condition_met_distance); |
| } |
| |
| void TurboAssembler::ComputeCodeStartAddress(Register dst) { |
| // In order to get the address of the current instruction, we first need |
| // to use a call and then use a pop, thus pushing the return address to |
| // the stack and then popping it into the register. |
| Label current; |
| call(¤t); |
| int pc = pc_offset(); |
| bind(¤t); |
| pop(dst); |
| if (pc != 0) { |
| sub(dst, Immediate(pc)); |
| } |
| } |
| |
| void TurboAssembler::CallForDeoptimization(Builtins::Name target, int, |
| Label* exit, DeoptimizeKind kind, |
| Label*) { |
| CallBuiltin(target); |
| DCHECK_EQ(SizeOfCodeGeneratedSince(exit), |
| (kind == DeoptimizeKind::kLazy) |
| ? Deoptimizer::kLazyDeoptExitSize |
| : Deoptimizer::kNonLazyDeoptExitSize); |
| USE(exit, kind); |
| } |
| |
| void TurboAssembler::Trap() { int3(); } |
| void TurboAssembler::DebugBreak() { int3(); } |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_TARGET_ARCH_IA32 |