| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #if V8_TARGET_ARCH_X64 |
| |
| #include "src/base/bits.h" |
| #include "src/base/division-by-constant.h" |
| #include "src/base/utils/random-number-generator.h" |
| #include "src/codegen/callable.h" |
| #include "src/codegen/code-factory.h" |
| #include "src/codegen/external-reference-table.h" |
| #include "src/codegen/macro-assembler.h" |
| #include "src/codegen/register-configuration.h" |
| #include "src/codegen/string-constants.h" |
| #include "src/codegen/x64/assembler-x64.h" |
| #include "src/common/external-pointer.h" |
| #include "src/common/globals.h" |
| #include "src/debug/debug.h" |
| #include "src/execution/frames-inl.h" |
| #include "src/heap/memory-chunk.h" |
| #include "src/init/bootstrapper.h" |
| #include "src/logging/counters.h" |
| #include "src/objects/objects-inl.h" |
| #include "src/objects/smi.h" |
| #include "src/snapshot/embedded/embedded-data.h" |
| #include "src/snapshot/snapshot.h" |
| |
| // Satisfy cpplint check, but don't include platform-specific header. It is |
| // included recursively via macro-assembler.h. |
| #if 0 |
| #include "src/codegen/x64/macro-assembler-x64.h" |
| #endif |
| |
| namespace v8 { |
| namespace internal { |
| |
| Operand StackArgumentsAccessor::GetArgumentOperand(int index) const { |
| DCHECK_GE(index, 0); |
| // arg[0] = rsp + kPCOnStackSize; |
| // arg[i] = arg[0] + i * kSystemPointerSize; |
| return Operand(rsp, kPCOnStackSize + index * kSystemPointerSize); |
| } |
| |
| void MacroAssembler::Load(Register destination, ExternalReference source) { |
| if (root_array_available_ && options().enable_root_array_delta_access) { |
| intptr_t delta = RootRegisterOffsetForExternalReference(isolate(), source); |
| if (is_int32(delta)) { |
| movq(destination, Operand(kRootRegister, static_cast<int32_t>(delta))); |
| return; |
| } |
| } |
| // Safe code. |
| if (destination == rax && !options().isolate_independent_code) { |
| load_rax(source); |
| } else { |
| movq(destination, ExternalReferenceAsOperand(source)); |
| } |
| } |
| |
| void MacroAssembler::Store(ExternalReference destination, Register source) { |
| if (root_array_available_ && options().enable_root_array_delta_access) { |
| intptr_t delta = |
| RootRegisterOffsetForExternalReference(isolate(), destination); |
| if (is_int32(delta)) { |
| movq(Operand(kRootRegister, static_cast<int32_t>(delta)), source); |
| return; |
| } |
| } |
| // Safe code. |
| if (source == rax && !options().isolate_independent_code) { |
| store_rax(destination); |
| } else { |
| movq(ExternalReferenceAsOperand(destination), source); |
| } |
| } |
| |
| void TurboAssembler::LoadFromConstantsTable(Register destination, |
| int constant_index) { |
| DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kBuiltinsConstantsTable)); |
| LoadRoot(destination, RootIndex::kBuiltinsConstantsTable); |
| LoadTaggedPointerField( |
| destination, |
| FieldOperand(destination, FixedArray::OffsetOfElementAt(constant_index))); |
| } |
| |
| void TurboAssembler::LoadRootRegisterOffset(Register destination, |
| intptr_t offset) { |
| DCHECK(is_int32(offset)); |
| if (offset == 0) { |
| Move(destination, kRootRegister); |
| } else { |
| leaq(destination, Operand(kRootRegister, static_cast<int32_t>(offset))); |
| } |
| } |
| |
| void TurboAssembler::LoadRootRelative(Register destination, int32_t offset) { |
| movq(destination, Operand(kRootRegister, offset)); |
| } |
| |
| void TurboAssembler::LoadAddress(Register destination, |
| ExternalReference source) { |
| if (root_array_available_ && options().enable_root_array_delta_access) { |
| intptr_t delta = RootRegisterOffsetForExternalReference(isolate(), source); |
| if (is_int32(delta)) { |
| leaq(destination, Operand(kRootRegister, static_cast<int32_t>(delta))); |
| return; |
| } |
| } |
| // Safe code. |
| // TODO(jgruber,v8:8887): Also consider a root-relative load when generating |
| // non-isolate-independent code. In many cases it might be cheaper than |
| // embedding the relocatable value. |
| if (root_array_available_ && options().isolate_independent_code) { |
| IndirectLoadExternalReference(destination, source); |
| return; |
| } |
| Move(destination, source); |
| } |
| |
| Operand TurboAssembler::ExternalReferenceAsOperand(ExternalReference reference, |
| Register scratch) { |
| if (root_array_available_ && options().enable_root_array_delta_access) { |
| int64_t delta = |
| RootRegisterOffsetForExternalReference(isolate(), reference); |
| if (is_int32(delta)) { |
| return Operand(kRootRegister, static_cast<int32_t>(delta)); |
| } |
| } |
| if (root_array_available_ && options().isolate_independent_code) { |
| if (IsAddressableThroughRootRegister(isolate(), reference)) { |
| // Some external references can be efficiently loaded as an offset from |
| // kRootRegister. |
| intptr_t offset = |
| RootRegisterOffsetForExternalReference(isolate(), reference); |
| CHECK(is_int32(offset)); |
| return Operand(kRootRegister, static_cast<int32_t>(offset)); |
| } else { |
| // Otherwise, do a memory load from the external reference table. |
| movq(scratch, Operand(kRootRegister, |
| RootRegisterOffsetForExternalReferenceTableEntry( |
| isolate(), reference))); |
| return Operand(scratch, 0); |
| } |
| } |
| Move(scratch, reference); |
| return Operand(scratch, 0); |
| } |
| |
| void MacroAssembler::PushAddress(ExternalReference source) { |
| LoadAddress(kScratchRegister, source); |
| Push(kScratchRegister); |
| } |
| |
| void TurboAssembler::LoadRoot(Register destination, RootIndex index) { |
| DCHECK(root_array_available_); |
| movq(destination, |
| Operand(kRootRegister, RootRegisterOffsetForRootIndex(index))); |
| } |
| |
| void MacroAssembler::PushRoot(RootIndex index) { |
| DCHECK(root_array_available_); |
| Push(Operand(kRootRegister, RootRegisterOffsetForRootIndex(index))); |
| } |
| |
| void TurboAssembler::CompareRoot(Register with, RootIndex index) { |
| DCHECK(root_array_available_); |
| if (base::IsInRange(index, RootIndex::kFirstStrongOrReadOnlyRoot, |
| RootIndex::kLastStrongOrReadOnlyRoot)) { |
| cmp_tagged(with, |
| Operand(kRootRegister, RootRegisterOffsetForRootIndex(index))); |
| } else { |
| // Some smi roots contain system pointer size values like stack limits. |
| cmpq(with, Operand(kRootRegister, RootRegisterOffsetForRootIndex(index))); |
| } |
| } |
| |
| void TurboAssembler::CompareRoot(Operand with, RootIndex index) { |
| DCHECK(root_array_available_); |
| DCHECK(!with.AddressUsesRegister(kScratchRegister)); |
| LoadRoot(kScratchRegister, index); |
| if (base::IsInRange(index, RootIndex::kFirstStrongOrReadOnlyRoot, |
| RootIndex::kLastStrongOrReadOnlyRoot)) { |
| cmp_tagged(with, kScratchRegister); |
| } else { |
| // Some smi roots contain system pointer size values like stack limits. |
| cmpq(with, kScratchRegister); |
| } |
| } |
| |
| void TurboAssembler::LoadMap(Register destination, Register object) { |
| LoadTaggedPointerField(destination, |
| FieldOperand(object, HeapObject::kMapOffset)); |
| } |
| |
| void TurboAssembler::LoadTaggedPointerField(Register destination, |
| Operand field_operand) { |
| if (COMPRESS_POINTERS_BOOL) { |
| DecompressTaggedPointer(destination, field_operand); |
| } else { |
| mov_tagged(destination, field_operand); |
| } |
| } |
| |
| void TurboAssembler::LoadAnyTaggedField(Register destination, |
| Operand field_operand) { |
| if (COMPRESS_POINTERS_BOOL) { |
| DecompressAnyTagged(destination, field_operand); |
| } else { |
| mov_tagged(destination, field_operand); |
| } |
| } |
| |
| void TurboAssembler::PushTaggedPointerField(Operand field_operand, |
| Register scratch) { |
| if (COMPRESS_POINTERS_BOOL) { |
| DCHECK(!field_operand.AddressUsesRegister(scratch)); |
| DecompressTaggedPointer(scratch, field_operand); |
| Push(scratch); |
| } else { |
| Push(field_operand); |
| } |
| } |
| |
| void TurboAssembler::PushTaggedAnyField(Operand field_operand, |
| Register scratch) { |
| if (COMPRESS_POINTERS_BOOL) { |
| DCHECK(!field_operand.AddressUsesRegister(scratch)); |
| DecompressAnyTagged(scratch, field_operand); |
| Push(scratch); |
| } else { |
| Push(field_operand); |
| } |
| } |
| |
| void TurboAssembler::SmiUntagField(Register dst, Operand src) { |
| SmiUntag(dst, src); |
| } |
| |
| void TurboAssembler::StoreTaggedField(Operand dst_field_operand, |
| Immediate value) { |
| if (COMPRESS_POINTERS_BOOL) { |
| movl(dst_field_operand, value); |
| } else { |
| movq(dst_field_operand, value); |
| } |
| } |
| |
| void TurboAssembler::StoreTaggedField(Operand dst_field_operand, |
| Register value) { |
| if (COMPRESS_POINTERS_BOOL) { |
| movl(dst_field_operand, value); |
| } else { |
| movq(dst_field_operand, value); |
| } |
| } |
| |
| void TurboAssembler::DecompressTaggedSigned(Register destination, |
| Operand field_operand) { |
| RecordComment("[ DecompressTaggedSigned"); |
| movl(destination, field_operand); |
| RecordComment("]"); |
| } |
| |
| void TurboAssembler::DecompressTaggedPointer(Register destination, |
| Operand field_operand) { |
| RecordComment("[ DecompressTaggedPointer"); |
| movl(destination, field_operand); |
| addq(destination, kRootRegister); |
| RecordComment("]"); |
| } |
| |
| void TurboAssembler::DecompressTaggedPointer(Register destination, |
| Register source) { |
| RecordComment("[ DecompressTaggedPointer"); |
| movl(destination, source); |
| addq(destination, kRootRegister); |
| RecordComment("]"); |
| } |
| |
| void TurboAssembler::DecompressAnyTagged(Register destination, |
| Operand field_operand) { |
| RecordComment("[ DecompressAnyTagged"); |
| movl(destination, field_operand); |
| addq(destination, kRootRegister); |
| RecordComment("]"); |
| } |
| |
| void MacroAssembler::RecordWriteField(Register object, int offset, |
| Register value, Register dst, |
| SaveFPRegsMode save_fp, |
| RememberedSetAction remembered_set_action, |
| SmiCheck smi_check) { |
| // First, check if a write barrier is even needed. The tests below |
| // catch stores of Smis. |
| Label done; |
| |
| // Skip barrier if writing a smi. |
| if (smi_check == INLINE_SMI_CHECK) { |
| JumpIfSmi(value, &done); |
| } |
| |
| // Although the object register is tagged, the offset is relative to the start |
| // of the object, so the offset must be a multiple of kTaggedSize. |
| DCHECK(IsAligned(offset, kTaggedSize)); |
| |
| leaq(dst, FieldOperand(object, offset)); |
| if (emit_debug_code()) { |
| Label ok; |
| testb(dst, Immediate(kTaggedSize - 1)); |
| j(zero, &ok, Label::kNear); |
| int3(); |
| bind(&ok); |
| } |
| |
| RecordWrite(object, dst, value, save_fp, remembered_set_action, |
| OMIT_SMI_CHECK); |
| |
| bind(&done); |
| |
| // Clobber clobbered input registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (emit_debug_code()) { |
| Move(value, kZapValue, RelocInfo::NONE); |
| Move(dst, kZapValue, RelocInfo::NONE); |
| } |
| } |
| |
| void TurboAssembler::SaveRegisters(RegList registers) { |
| DCHECK_GT(NumRegs(registers), 0); |
| for (int i = 0; i < Register::kNumRegisters; ++i) { |
| if ((registers >> i) & 1u) { |
| pushq(Register::from_code(i)); |
| } |
| } |
| } |
| |
| void TurboAssembler::LoadExternalPointerField(Register destination, |
| Operand field_operand, |
| ExternalPointerTag tag) { |
| #ifdef V8_HEAP_SANDBOX |
| LoadAddress(kScratchRegister, |
| ExternalReference::external_pointer_table_address(isolate())); |
| movq(kScratchRegister, |
| Operand(kScratchRegister, Internals::kExternalPointerTableBufferOffset)); |
| movl(destination, field_operand); |
| movq(destination, Operand(kScratchRegister, destination, times_8, 0)); |
| if (tag != 0) { |
| movq(kScratchRegister, Immediate64(tag)); |
| xorq(destination, kScratchRegister); |
| } |
| #else |
| movq(destination, field_operand); |
| #endif // V8_HEAP_SANDBOX |
| } |
| |
| void TurboAssembler::RestoreRegisters(RegList registers) { |
| DCHECK_GT(NumRegs(registers), 0); |
| for (int i = Register::kNumRegisters - 1; i >= 0; --i) { |
| if ((registers >> i) & 1u) { |
| popq(Register::from_code(i)); |
| } |
| } |
| } |
| |
| void TurboAssembler::CallEphemeronKeyBarrier(Register object, Register address, |
| SaveFPRegsMode fp_mode) { |
| EphemeronKeyBarrierDescriptor descriptor; |
| RegList registers = descriptor.allocatable_registers(); |
| |
| SaveRegisters(registers); |
| |
| Register object_parameter( |
| descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kObject)); |
| Register slot_parameter(descriptor.GetRegisterParameter( |
| EphemeronKeyBarrierDescriptor::kSlotAddress)); |
| Register fp_mode_parameter( |
| descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kFPMode)); |
| |
| MovePair(slot_parameter, address, object_parameter, object); |
| Smi smi_fm = Smi::FromEnum(fp_mode); |
| Move(fp_mode_parameter, smi_fm); |
| Call(isolate()->builtins()->builtin_handle(Builtins::kEphemeronKeyBarrier), |
| RelocInfo::CODE_TARGET); |
| |
| RestoreRegisters(registers); |
| } |
| |
| void TurboAssembler::CallRecordWriteStub( |
| Register object, Register address, |
| RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) { |
| CallRecordWriteStub( |
| object, address, remembered_set_action, fp_mode, |
| isolate()->builtins()->builtin_handle(Builtins::kRecordWrite), |
| kNullAddress); |
| } |
| |
| void TurboAssembler::CallRecordWriteStub( |
| Register object, Register address, |
| RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode, |
| Address wasm_target) { |
| CallRecordWriteStub(object, address, remembered_set_action, fp_mode, |
| Handle<Code>::null(), wasm_target); |
| } |
| |
| void TurboAssembler::CallRecordWriteStub( |
| Register object, Register address, |
| RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode, |
| Handle<Code> code_target, Address wasm_target) { |
| DCHECK_NE(code_target.is_null(), wasm_target == kNullAddress); |
| |
| RecordWriteDescriptor descriptor; |
| RegList registers = descriptor.allocatable_registers(); |
| |
| SaveRegisters(registers); |
| |
| Register object_parameter( |
| descriptor.GetRegisterParameter(RecordWriteDescriptor::kObject)); |
| Register slot_parameter( |
| descriptor.GetRegisterParameter(RecordWriteDescriptor::kSlot)); |
| Register remembered_set_parameter( |
| descriptor.GetRegisterParameter(RecordWriteDescriptor::kRememberedSet)); |
| Register fp_mode_parameter( |
| descriptor.GetRegisterParameter(RecordWriteDescriptor::kFPMode)); |
| |
| // Prepare argument registers for calling RecordWrite |
| // slot_parameter <= address |
| // object_parameter <= object |
| MovePair(slot_parameter, address, object_parameter, object); |
| |
| Smi smi_rsa = Smi::FromEnum(remembered_set_action); |
| Smi smi_fm = Smi::FromEnum(fp_mode); |
| Move(remembered_set_parameter, smi_rsa); |
| if (smi_rsa != smi_fm) { |
| Move(fp_mode_parameter, smi_fm); |
| } else { |
| movq(fp_mode_parameter, remembered_set_parameter); |
| } |
| if (code_target.is_null()) { |
| // Use {near_call} for direct Wasm call within a module. |
| near_call(wasm_target, RelocInfo::WASM_STUB_CALL); |
| } else { |
| Call(code_target, RelocInfo::CODE_TARGET); |
| } |
| |
| RestoreRegisters(registers); |
| } |
| |
| void MacroAssembler::RecordWrite(Register object, Register address, |
| Register value, SaveFPRegsMode fp_mode, |
| RememberedSetAction remembered_set_action, |
| SmiCheck smi_check) { |
| DCHECK(object != value); |
| DCHECK(object != address); |
| DCHECK(value != address); |
| AssertNotSmi(object); |
| |
| if ((remembered_set_action == OMIT_REMEMBERED_SET && |
| !FLAG_incremental_marking) || |
| FLAG_disable_write_barriers) { |
| return; |
| } |
| |
| if (emit_debug_code()) { |
| Label ok; |
| cmp_tagged(value, Operand(address, 0)); |
| j(equal, &ok, Label::kNear); |
| int3(); |
| bind(&ok); |
| } |
| |
| // First, check if a write barrier is even needed. The tests below |
| // catch stores of smis and stores into the young generation. |
| Label done; |
| |
| if (smi_check == INLINE_SMI_CHECK) { |
| // Skip barrier if writing a smi. |
| JumpIfSmi(value, &done); |
| } |
| |
| CheckPageFlag(value, |
| value, // Used as scratch. |
| MemoryChunk::kPointersToHereAreInterestingMask, zero, &done, |
| Label::kNear); |
| |
| CheckPageFlag(object, |
| value, // Used as scratch. |
| MemoryChunk::kPointersFromHereAreInterestingMask, zero, &done, |
| Label::kNear); |
| |
| CallRecordWriteStub(object, address, remembered_set_action, fp_mode); |
| |
| bind(&done); |
| |
| // Clobber clobbered registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (emit_debug_code()) { |
| Move(address, kZapValue, RelocInfo::NONE); |
| Move(value, kZapValue, RelocInfo::NONE); |
| } |
| } |
| |
| void TurboAssembler::Assert(Condition cc, AbortReason reason) { |
| if (emit_debug_code()) Check(cc, reason); |
| } |
| |
| void TurboAssembler::AssertUnreachable(AbortReason reason) { |
| if (emit_debug_code()) Abort(reason); |
| } |
| |
| void TurboAssembler::Check(Condition cc, AbortReason reason) { |
| Label L; |
| j(cc, &L, Label::kNear); |
| Abort(reason); |
| // Control will not return here. |
| bind(&L); |
| } |
| |
| void TurboAssembler::CheckStackAlignment() { |
| int frame_alignment = base::OS::ActivationFrameAlignment(); |
| int frame_alignment_mask = frame_alignment - 1; |
| if (frame_alignment > kSystemPointerSize) { |
| DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); |
| Label alignment_as_expected; |
| testq(rsp, Immediate(frame_alignment_mask)); |
| j(zero, &alignment_as_expected, Label::kNear); |
| // Abort if stack is not aligned. |
| int3(); |
| bind(&alignment_as_expected); |
| } |
| } |
| |
| void TurboAssembler::Abort(AbortReason reason) { |
| #ifdef DEBUG |
| const char* msg = GetAbortReason(reason); |
| RecordComment("Abort message: "); |
| RecordComment(msg); |
| #endif |
| |
| // Avoid emitting call to builtin if requested. |
| if (trap_on_abort()) { |
| int3(); |
| return; |
| } |
| |
| if (should_abort_hard()) { |
| // We don't care if we constructed a frame. Just pretend we did. |
| FrameScope assume_frame(this, StackFrame::NONE); |
| movl(arg_reg_1, Immediate(static_cast<int>(reason))); |
| PrepareCallCFunction(1); |
| LoadAddress(rax, ExternalReference::abort_with_reason()); |
| call(rax); |
| return; |
| } |
| |
| Move(rdx, Smi::FromInt(static_cast<int>(reason))); |
| |
| if (!has_frame()) { |
| // We don't actually want to generate a pile of code for this, so just |
| // claim there is a stack frame, without generating one. |
| FrameScope scope(this, StackFrame::NONE); |
| Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); |
| } else { |
| Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); |
| } |
| // Control will not return here. |
| int3(); |
| } |
| |
| void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments, |
| SaveFPRegsMode save_doubles) { |
| // If the expected number of arguments of the runtime function is |
| // constant, we check that the actual number of arguments match the |
| // expectation. |
| CHECK(f->nargs < 0 || f->nargs == num_arguments); |
| |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| Set(rax, num_arguments); |
| LoadAddress(rbx, ExternalReference::Create(f)); |
| Handle<Code> code = |
| CodeFactory::CEntry(isolate(), f->result_size, save_doubles); |
| Call(code, RelocInfo::CODE_TARGET); |
| } |
| |
| void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) { |
| // ----------- S t a t e ------------- |
| // -- rsp[0] : return address |
| // -- rsp[8] : argument num_arguments - 1 |
| // ... |
| // -- rsp[8 * num_arguments] : argument 0 (receiver) |
| // |
| // For runtime functions with variable arguments: |
| // -- rax : number of arguments |
| // ----------------------------------- |
| |
| const Runtime::Function* function = Runtime::FunctionForId(fid); |
| DCHECK_EQ(1, function->result_size); |
| if (function->nargs >= 0) { |
| Set(rax, function->nargs); |
| } |
| JumpToExternalReference(ExternalReference::Create(fid)); |
| } |
| |
| void MacroAssembler::JumpToExternalReference(const ExternalReference& ext, |
| bool builtin_exit_frame) { |
| // Set the entry point and jump to the C entry runtime stub. |
| LoadAddress(rbx, ext); |
| Handle<Code> code = CodeFactory::CEntry(isolate(), 1, kDontSaveFPRegs, |
| kArgvOnStack, builtin_exit_frame); |
| Jump(code, RelocInfo::CODE_TARGET); |
| } |
| |
| static constexpr Register saved_regs[] = {rax, rcx, rdx, rbx, rbp, rsi, |
| rdi, r8, r9, r10, r11}; |
| |
| static constexpr int kNumberOfSavedRegs = sizeof(saved_regs) / sizeof(Register); |
| |
| int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, |
| Register exclusion1, |
| Register exclusion2, |
| Register exclusion3) const { |
| int bytes = 0; |
| for (int i = 0; i < kNumberOfSavedRegs; i++) { |
| Register reg = saved_regs[i]; |
| if (reg != exclusion1 && reg != exclusion2 && reg != exclusion3) { |
| bytes += kSystemPointerSize; |
| } |
| } |
| |
| // R12 to r15 are callee save on all platforms. |
| if (fp_mode == kSaveFPRegs) { |
| bytes += kDoubleSize * XMMRegister::kNumRegisters; |
| } |
| |
| return bytes; |
| } |
| |
| int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, |
| Register exclusion2, Register exclusion3) { |
| // We don't allow a GC during a store buffer overflow so there is no need to |
| // store the registers in any particular way, but we do have to store and |
| // restore them. |
| int bytes = 0; |
| for (int i = 0; i < kNumberOfSavedRegs; i++) { |
| Register reg = saved_regs[i]; |
| if (reg != exclusion1 && reg != exclusion2 && reg != exclusion3) { |
| pushq(reg); |
| bytes += kSystemPointerSize; |
| } |
| } |
| |
| // R12 to r15 are callee save on all platforms. |
| if (fp_mode == kSaveFPRegs) { |
| int delta = kDoubleSize * XMMRegister::kNumRegisters; |
| AllocateStackSpace(delta); |
| for (int i = 0; i < XMMRegister::kNumRegisters; i++) { |
| XMMRegister reg = XMMRegister::from_code(i); |
| Movsd(Operand(rsp, i * kDoubleSize), reg); |
| } |
| bytes += delta; |
| } |
| |
| return bytes; |
| } |
| |
| int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, |
| Register exclusion2, Register exclusion3) { |
| int bytes = 0; |
| if (fp_mode == kSaveFPRegs) { |
| for (int i = 0; i < XMMRegister::kNumRegisters; i++) { |
| XMMRegister reg = XMMRegister::from_code(i); |
| Movsd(reg, Operand(rsp, i * kDoubleSize)); |
| } |
| int delta = kDoubleSize * XMMRegister::kNumRegisters; |
| addq(rsp, Immediate(kDoubleSize * XMMRegister::kNumRegisters)); |
| bytes += delta; |
| } |
| |
| for (int i = kNumberOfSavedRegs - 1; i >= 0; i--) { |
| Register reg = saved_regs[i]; |
| if (reg != exclusion1 && reg != exclusion2 && reg != exclusion3) { |
| popq(reg); |
| bytes += kSystemPointerSize; |
| } |
| } |
| |
| return bytes; |
| } |
| |
| void TurboAssembler::Cvtss2sd(XMMRegister dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvtss2sd(dst, src, src); |
| } else { |
| cvtss2sd(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvtss2sd(XMMRegister dst, Operand src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvtss2sd(dst, dst, src); |
| } else { |
| cvtss2sd(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvtsd2ss(XMMRegister dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvtsd2ss(dst, src, src); |
| } else { |
| cvtsd2ss(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvtsd2ss(XMMRegister dst, Operand src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvtsd2ss(dst, dst, src); |
| } else { |
| cvtsd2ss(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvtlsi2sd(XMMRegister dst, Register src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvtlsi2sd(dst, kScratchDoubleReg, src); |
| } else { |
| xorpd(dst, dst); |
| cvtlsi2sd(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvtlsi2sd(XMMRegister dst, Operand src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvtlsi2sd(dst, kScratchDoubleReg, src); |
| } else { |
| xorpd(dst, dst); |
| cvtlsi2sd(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvtlsi2ss(XMMRegister dst, Register src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvtlsi2ss(dst, kScratchDoubleReg, src); |
| } else { |
| xorps(dst, dst); |
| cvtlsi2ss(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvtlsi2ss(XMMRegister dst, Operand src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvtlsi2ss(dst, kScratchDoubleReg, src); |
| } else { |
| xorps(dst, dst); |
| cvtlsi2ss(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvtqsi2ss(XMMRegister dst, Register src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvtqsi2ss(dst, kScratchDoubleReg, src); |
| } else { |
| xorps(dst, dst); |
| cvtqsi2ss(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvtqsi2ss(XMMRegister dst, Operand src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvtqsi2ss(dst, kScratchDoubleReg, src); |
| } else { |
| xorps(dst, dst); |
| cvtqsi2ss(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvtqsi2sd(XMMRegister dst, Register src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvtqsi2sd(dst, kScratchDoubleReg, src); |
| } else { |
| xorpd(dst, dst); |
| cvtqsi2sd(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvtqsi2sd(XMMRegister dst, Operand src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvtqsi2sd(dst, kScratchDoubleReg, src); |
| } else { |
| xorpd(dst, dst); |
| cvtqsi2sd(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvtlui2ss(XMMRegister dst, Register src) { |
| // Zero-extend the 32 bit value to 64 bit. |
| movl(kScratchRegister, src); |
| Cvtqsi2ss(dst, kScratchRegister); |
| } |
| |
| void TurboAssembler::Cvtlui2ss(XMMRegister dst, Operand src) { |
| // Zero-extend the 32 bit value to 64 bit. |
| movl(kScratchRegister, src); |
| Cvtqsi2ss(dst, kScratchRegister); |
| } |
| |
| void TurboAssembler::Cvtlui2sd(XMMRegister dst, Register src) { |
| // Zero-extend the 32 bit value to 64 bit. |
| movl(kScratchRegister, src); |
| Cvtqsi2sd(dst, kScratchRegister); |
| } |
| |
| void TurboAssembler::Cvtlui2sd(XMMRegister dst, Operand src) { |
| // Zero-extend the 32 bit value to 64 bit. |
| movl(kScratchRegister, src); |
| Cvtqsi2sd(dst, kScratchRegister); |
| } |
| |
| void TurboAssembler::Cvtqui2ss(XMMRegister dst, Register src) { |
| Label done; |
| Cvtqsi2ss(dst, src); |
| testq(src, src); |
| j(positive, &done, Label::kNear); |
| |
| // Compute {src/2 | (src&1)} (retain the LSB to avoid rounding errors). |
| if (src != kScratchRegister) movq(kScratchRegister, src); |
| shrq(kScratchRegister, Immediate(1)); |
| // The LSB is shifted into CF. If it is set, set the LSB in {tmp}. |
| Label msb_not_set; |
| j(not_carry, &msb_not_set, Label::kNear); |
| orq(kScratchRegister, Immediate(1)); |
| bind(&msb_not_set); |
| Cvtqsi2ss(dst, kScratchRegister); |
| Addss(dst, dst); |
| bind(&done); |
| } |
| |
| void TurboAssembler::Cvtqui2ss(XMMRegister dst, Operand src) { |
| movq(kScratchRegister, src); |
| Cvtqui2ss(dst, kScratchRegister); |
| } |
| |
| void TurboAssembler::Cvtqui2sd(XMMRegister dst, Register src) { |
| Label done; |
| Cvtqsi2sd(dst, src); |
| testq(src, src); |
| j(positive, &done, Label::kNear); |
| |
| // Compute {src/2 | (src&1)} (retain the LSB to avoid rounding errors). |
| if (src != kScratchRegister) movq(kScratchRegister, src); |
| shrq(kScratchRegister, Immediate(1)); |
| // The LSB is shifted into CF. If it is set, set the LSB in {tmp}. |
| Label msb_not_set; |
| j(not_carry, &msb_not_set, Label::kNear); |
| orq(kScratchRegister, Immediate(1)); |
| bind(&msb_not_set); |
| Cvtqsi2sd(dst, kScratchRegister); |
| Addsd(dst, dst); |
| bind(&done); |
| } |
| |
| void TurboAssembler::Cvtqui2sd(XMMRegister dst, Operand src) { |
| movq(kScratchRegister, src); |
| Cvtqui2sd(dst, kScratchRegister); |
| } |
| |
| void TurboAssembler::Cvttss2si(Register dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvttss2si(dst, src); |
| } else { |
| cvttss2si(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvttss2si(Register dst, Operand src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvttss2si(dst, src); |
| } else { |
| cvttss2si(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvttsd2si(Register dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvttsd2si(dst, src); |
| } else { |
| cvttsd2si(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvttsd2si(Register dst, Operand src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvttsd2si(dst, src); |
| } else { |
| cvttsd2si(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvttss2siq(Register dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvttss2siq(dst, src); |
| } else { |
| cvttss2siq(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvttss2siq(Register dst, Operand src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvttss2siq(dst, src); |
| } else { |
| cvttss2siq(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvttsd2siq(Register dst, XMMRegister src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvttsd2siq(dst, src); |
| } else { |
| cvttsd2siq(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Cvttsd2siq(Register dst, Operand src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vcvttsd2siq(dst, src); |
| } else { |
| cvttsd2siq(dst, src); |
| } |
| } |
| |
| namespace { |
| template <typename OperandOrXMMRegister, bool is_double> |
| void ConvertFloatToUint64(TurboAssembler* tasm, Register dst, |
| OperandOrXMMRegister src, Label* fail) { |
| Label success; |
| // There does not exist a native float-to-uint instruction, so we have to use |
| // a float-to-int, and postprocess the result. |
| if (is_double) { |
| tasm->Cvttsd2siq(dst, src); |
| } else { |
| tasm->Cvttss2siq(dst, src); |
| } |
| // If the result of the conversion is positive, we are already done. |
| tasm->testq(dst, dst); |
| tasm->j(positive, &success); |
| // The result of the first conversion was negative, which means that the |
| // input value was not within the positive int64 range. We subtract 2^63 |
| // and convert it again to see if it is within the uint64 range. |
| if (is_double) { |
| tasm->Move(kScratchDoubleReg, -9223372036854775808.0); |
| tasm->Addsd(kScratchDoubleReg, src); |
| tasm->Cvttsd2siq(dst, kScratchDoubleReg); |
| } else { |
| tasm->Move(kScratchDoubleReg, -9223372036854775808.0f); |
| tasm->Addss(kScratchDoubleReg, src); |
| tasm->Cvttss2siq(dst, kScratchDoubleReg); |
| } |
| tasm->testq(dst, dst); |
| // The only possible negative value here is 0x80000000000000000, which is |
| // used on x64 to indicate an integer overflow. |
| tasm->j(negative, fail ? fail : &success); |
| // The input value is within uint64 range and the second conversion worked |
| // successfully, but we still have to undo the subtraction we did |
| // earlier. |
| tasm->Set(kScratchRegister, 0x8000000000000000); |
| tasm->orq(dst, kScratchRegister); |
| tasm->bind(&success); |
| } |
| } // namespace |
| |
| void TurboAssembler::Cvttsd2uiq(Register dst, Operand src, Label* fail) { |
| ConvertFloatToUint64<Operand, true>(this, dst, src, fail); |
| } |
| |
| void TurboAssembler::Cvttsd2uiq(Register dst, XMMRegister src, Label* fail) { |
| ConvertFloatToUint64<XMMRegister, true>(this, dst, src, fail); |
| } |
| |
| void TurboAssembler::Cvttss2uiq(Register dst, Operand src, Label* fail) { |
| ConvertFloatToUint64<Operand, false>(this, dst, src, fail); |
| } |
| |
| void TurboAssembler::Cvttss2uiq(Register dst, XMMRegister src, Label* fail) { |
| ConvertFloatToUint64<XMMRegister, false>(this, dst, src, fail); |
| } |
| |
| void TurboAssembler::Set(Register dst, int64_t x) { |
| if (x == 0) { |
| xorl(dst, dst); |
| } else if (is_uint32(x)) { |
| movl(dst, Immediate(static_cast<uint32_t>(x))); |
| } else if (is_int32(x)) { |
| movq(dst, Immediate(static_cast<int32_t>(x))); |
| } else { |
| movq(dst, x); |
| } |
| } |
| |
| void TurboAssembler::Set(Operand dst, intptr_t x) { |
| if (is_int32(x)) { |
| movq(dst, Immediate(static_cast<int32_t>(x))); |
| } else { |
| Set(kScratchRegister, x); |
| movq(dst, kScratchRegister); |
| } |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // Smi tagging, untagging and tag detection. |
| |
| Register TurboAssembler::GetSmiConstant(Smi source) { |
| STATIC_ASSERT(kSmiTag == 0); |
| int value = source.value(); |
| if (value == 0) { |
| xorl(kScratchRegister, kScratchRegister); |
| return kScratchRegister; |
| } |
| if (SmiValuesAre32Bits()) { |
| Move(kScratchRegister, source); |
| } else { |
| movl(kScratchRegister, Immediate(source)); |
| } |
| return kScratchRegister; |
| } |
| |
| void TurboAssembler::Move(Register dst, Smi source) { |
| STATIC_ASSERT(kSmiTag == 0); |
| int value = source.value(); |
| if (value == 0) { |
| xorl(dst, dst); |
| } else { |
| Move(dst, source.ptr(), RelocInfo::NONE); |
| } |
| } |
| |
| void TurboAssembler::Move(Register dst, ExternalReference ext) { |
| // TODO(jgruber,v8:8887): Also consider a root-relative load when generating |
| // non-isolate-independent code. In many cases it might be cheaper than |
| // embedding the relocatable value. |
| if (root_array_available_ && options().isolate_independent_code) { |
| IndirectLoadExternalReference(dst, ext); |
| return; |
| } |
| movq(dst, Immediate64(ext.address(), RelocInfo::EXTERNAL_REFERENCE)); |
| } |
| |
| void MacroAssembler::Cmp(Register dst, int32_t src) { |
| if (src == 0) { |
| testl(dst, dst); |
| } else { |
| cmpl(dst, Immediate(src)); |
| } |
| } |
| |
| void MacroAssembler::SmiTag(Register reg) { |
| STATIC_ASSERT(kSmiTag == 0); |
| DCHECK(SmiValuesAre32Bits() || SmiValuesAre31Bits()); |
| if (COMPRESS_POINTERS_BOOL) { |
| shll(reg, Immediate(kSmiShift)); |
| } else { |
| shlq(reg, Immediate(kSmiShift)); |
| } |
| } |
| |
| void MacroAssembler::SmiTag(Register dst, Register src) { |
| DCHECK(dst != src); |
| if (COMPRESS_POINTERS_BOOL) { |
| movl(dst, src); |
| } else { |
| movq(dst, src); |
| } |
| SmiTag(dst); |
| } |
| |
| void TurboAssembler::SmiUntag(Register reg) { |
| STATIC_ASSERT(kSmiTag == 0); |
| DCHECK(SmiValuesAre32Bits() || SmiValuesAre31Bits()); |
| // TODO(v8:7703): Is there a way to avoid this sign extension when pointer |
| // compression is enabled? |
| if (COMPRESS_POINTERS_BOOL) { |
| movsxlq(reg, reg); |
| } |
| sarq(reg, Immediate(kSmiShift)); |
| } |
| |
| void TurboAssembler::SmiUntag(Register dst, Register src) { |
| DCHECK(dst != src); |
| if (COMPRESS_POINTERS_BOOL) { |
| movsxlq(dst, src); |
| } else { |
| movq(dst, src); |
| } |
| // TODO(v8:7703): Call SmiUntag(reg) if we can find a way to avoid the extra |
| // mov when pointer compression is enabled. |
| STATIC_ASSERT(kSmiTag == 0); |
| DCHECK(SmiValuesAre32Bits() || SmiValuesAre31Bits()); |
| sarq(dst, Immediate(kSmiShift)); |
| } |
| |
| void TurboAssembler::SmiUntag(Register dst, Operand src) { |
| if (SmiValuesAre32Bits()) { |
| movl(dst, Operand(src, kSmiShift / kBitsPerByte)); |
| // Sign extend to 64-bit. |
| movsxlq(dst, dst); |
| } else { |
| DCHECK(SmiValuesAre31Bits()); |
| if (COMPRESS_POINTERS_BOOL) { |
| movsxlq(dst, src); |
| } else { |
| movq(dst, src); |
| } |
| sarq(dst, Immediate(kSmiShift)); |
| } |
| } |
| |
| void MacroAssembler::SmiCompare(Register smi1, Register smi2) { |
| AssertSmi(smi1); |
| AssertSmi(smi2); |
| cmp_tagged(smi1, smi2); |
| } |
| |
| void MacroAssembler::SmiCompare(Register dst, Smi src) { |
| AssertSmi(dst); |
| Cmp(dst, src); |
| } |
| |
| void MacroAssembler::Cmp(Register dst, Smi src) { |
| if (src.value() == 0) { |
| test_tagged(dst, dst); |
| } else { |
| DCHECK_NE(dst, kScratchRegister); |
| Register constant_reg = GetSmiConstant(src); |
| cmp_tagged(dst, constant_reg); |
| } |
| } |
| |
| void MacroAssembler::SmiCompare(Register dst, Operand src) { |
| AssertSmi(dst); |
| AssertSmi(src); |
| cmp_tagged(dst, src); |
| } |
| |
| void MacroAssembler::SmiCompare(Operand dst, Register src) { |
| AssertSmi(dst); |
| AssertSmi(src); |
| cmp_tagged(dst, src); |
| } |
| |
| void MacroAssembler::SmiCompare(Operand dst, Smi src) { |
| AssertSmi(dst); |
| if (SmiValuesAre32Bits()) { |
| cmpl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(src.value())); |
| } else { |
| DCHECK(SmiValuesAre31Bits()); |
| cmpl(dst, Immediate(src)); |
| } |
| } |
| |
| void MacroAssembler::Cmp(Operand dst, Smi src) { |
| // The Operand cannot use the smi register. |
| Register smi_reg = GetSmiConstant(src); |
| DCHECK(!dst.AddressUsesRegister(smi_reg)); |
| cmp_tagged(dst, smi_reg); |
| } |
| |
| Condition TurboAssembler::CheckSmi(Register src) { |
| STATIC_ASSERT(kSmiTag == 0); |
| testb(src, Immediate(kSmiTagMask)); |
| return zero; |
| } |
| |
| Condition TurboAssembler::CheckSmi(Operand src) { |
| STATIC_ASSERT(kSmiTag == 0); |
| testb(src, Immediate(kSmiTagMask)); |
| return zero; |
| } |
| |
| void TurboAssembler::JumpIfSmi(Register src, Label* on_smi, |
| Label::Distance near_jump) { |
| Condition smi = CheckSmi(src); |
| j(smi, on_smi, near_jump); |
| } |
| |
| void MacroAssembler::JumpIfNotSmi(Register src, Label* on_not_smi, |
| Label::Distance near_jump) { |
| Condition smi = CheckSmi(src); |
| j(NegateCondition(smi), on_not_smi, near_jump); |
| } |
| |
| void MacroAssembler::JumpIfNotSmi(Operand src, Label* on_not_smi, |
| Label::Distance near_jump) { |
| Condition smi = CheckSmi(src); |
| j(NegateCondition(smi), on_not_smi, near_jump); |
| } |
| |
| void MacroAssembler::SmiAddConstant(Operand dst, Smi constant) { |
| if (constant.value() != 0) { |
| if (SmiValuesAre32Bits()) { |
| addl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(constant.value())); |
| } else { |
| DCHECK(SmiValuesAre31Bits()); |
| if (kTaggedSize == kInt64Size) { |
| // Sign-extend value after addition |
| movl(kScratchRegister, dst); |
| addl(kScratchRegister, Immediate(constant)); |
| movsxlq(kScratchRegister, kScratchRegister); |
| movq(dst, kScratchRegister); |
| } else { |
| DCHECK_EQ(kTaggedSize, kInt32Size); |
| addl(dst, Immediate(constant)); |
| } |
| } |
| } |
| } |
| |
| SmiIndex MacroAssembler::SmiToIndex(Register dst, Register src, int shift) { |
| if (SmiValuesAre32Bits()) { |
| DCHECK(is_uint6(shift)); |
| // There is a possible optimization if shift is in the range 60-63, but that |
| // will (and must) never happen. |
| if (dst != src) { |
| movq(dst, src); |
| } |
| if (shift < kSmiShift) { |
| sarq(dst, Immediate(kSmiShift - shift)); |
| } else { |
| shlq(dst, Immediate(shift - kSmiShift)); |
| } |
| return SmiIndex(dst, times_1); |
| } else { |
| DCHECK(SmiValuesAre31Bits()); |
| // We have to sign extend the index register to 64-bit as the SMI might |
| // be negative. |
| movsxlq(dst, src); |
| if (shift < kSmiShift) { |
| sarq(dst, Immediate(kSmiShift - shift)); |
| } else if (shift != kSmiShift) { |
| if (shift - kSmiShift <= static_cast<int>(times_8)) { |
| return SmiIndex(dst, static_cast<ScaleFactor>(shift - kSmiShift)); |
| } |
| shlq(dst, Immediate(shift - kSmiShift)); |
| } |
| return SmiIndex(dst, times_1); |
| } |
| } |
| |
| void TurboAssembler::Push(Smi source) { |
| intptr_t smi = static_cast<intptr_t>(source.ptr()); |
| if (is_int32(smi)) { |
| Push(Immediate(static_cast<int32_t>(smi))); |
| return; |
| } |
| int first_byte_set = base::bits::CountTrailingZeros64(smi) / 8; |
| int last_byte_set = (63 - base::bits::CountLeadingZeros64(smi)) / 8; |
| if (first_byte_set == last_byte_set) { |
| // This sequence has only 7 bytes, compared to the 12 bytes below. |
| Push(Immediate(0)); |
| movb(Operand(rsp, first_byte_set), |
| Immediate(static_cast<int8_t>(smi >> (8 * first_byte_set)))); |
| return; |
| } |
| Register constant = GetSmiConstant(source); |
| Push(constant); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| void TurboAssembler::Move(Register dst, Register src) { |
| if (dst != src) { |
| movq(dst, src); |
| } |
| } |
| |
| void TurboAssembler::MovePair(Register dst0, Register src0, Register dst1, |
| Register src1) { |
| if (dst0 != src1) { |
| // Normal case: Writing to dst0 does not destroy src1. |
| Move(dst0, src0); |
| Move(dst1, src1); |
| } else if (dst1 != src0) { |
| // Only dst0 and src1 are the same register, |
| // but writing to dst1 does not destroy src0. |
| Move(dst1, src1); |
| Move(dst0, src0); |
| } else { |
| // dst0 == src1, and dst1 == src0, a swap is required: |
| // dst0 \/ src0 |
| // dst1 /\ src1 |
| xchgq(dst0, dst1); |
| } |
| } |
| |
| void TurboAssembler::MoveNumber(Register dst, double value) { |
| int32_t smi; |
| if (DoubleToSmiInteger(value, &smi)) { |
| Move(dst, Smi::FromInt(smi)); |
| } else { |
| movq_heap_number(dst, value); |
| } |
| } |
| |
| void TurboAssembler::Move(XMMRegister dst, uint32_t src) { |
| if (src == 0) { |
| Xorps(dst, dst); |
| } else { |
| unsigned nlz = base::bits::CountLeadingZeros(src); |
| unsigned ntz = base::bits::CountTrailingZeros(src); |
| unsigned pop = base::bits::CountPopulation(src); |
| DCHECK_NE(0u, pop); |
| if (pop + ntz + nlz == 32) { |
| Pcmpeqd(dst, dst); |
| if (ntz) Pslld(dst, static_cast<byte>(ntz + nlz)); |
| if (nlz) Psrld(dst, static_cast<byte>(nlz)); |
| } else { |
| movl(kScratchRegister, Immediate(src)); |
| Movd(dst, kScratchRegister); |
| } |
| } |
| } |
| |
| void TurboAssembler::Move(XMMRegister dst, uint64_t src) { |
| if (src == 0) { |
| Xorpd(dst, dst); |
| } else { |
| unsigned nlz = base::bits::CountLeadingZeros(src); |
| unsigned ntz = base::bits::CountTrailingZeros(src); |
| unsigned pop = base::bits::CountPopulation(src); |
| DCHECK_NE(0u, pop); |
| if (pop + ntz + nlz == 64) { |
| Pcmpeqd(dst, dst); |
| if (ntz) Psllq(dst, static_cast<byte>(ntz + nlz)); |
| if (nlz) Psrlq(dst, static_cast<byte>(nlz)); |
| } else { |
| uint32_t lower = static_cast<uint32_t>(src); |
| uint32_t upper = static_cast<uint32_t>(src >> 32); |
| if (upper == 0) { |
| Move(dst, lower); |
| } else { |
| movq(kScratchRegister, src); |
| Movq(dst, kScratchRegister); |
| } |
| } |
| } |
| } |
| |
| void TurboAssembler::Move(XMMRegister dst, uint64_t high, uint64_t low) { |
| Move(dst, low); |
| movq(kScratchRegister, high); |
| Pinsrq(dst, kScratchRegister, uint8_t{1}); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| void MacroAssembler::Absps(XMMRegister dst) { |
| Andps(dst, ExternalReferenceAsOperand( |
| ExternalReference::address_of_float_abs_constant())); |
| } |
| |
| void MacroAssembler::Negps(XMMRegister dst) { |
| Xorps(dst, ExternalReferenceAsOperand( |
| ExternalReference::address_of_float_neg_constant())); |
| } |
| |
| void MacroAssembler::Abspd(XMMRegister dst) { |
| Andps(dst, ExternalReferenceAsOperand( |
| ExternalReference::address_of_double_abs_constant())); |
| } |
| |
| void MacroAssembler::Negpd(XMMRegister dst) { |
| Xorps(dst, ExternalReferenceAsOperand( |
| ExternalReference::address_of_double_neg_constant())); |
| } |
| |
| void MacroAssembler::Cmp(Register dst, Handle<Object> source) { |
| if (source->IsSmi()) { |
| Cmp(dst, Smi::cast(*source)); |
| } else { |
| Move(kScratchRegister, Handle<HeapObject>::cast(source)); |
| cmp_tagged(dst, kScratchRegister); |
| } |
| } |
| |
| void MacroAssembler::Cmp(Operand dst, Handle<Object> source) { |
| if (source->IsSmi()) { |
| Cmp(dst, Smi::cast(*source)); |
| } else { |
| Move(kScratchRegister, Handle<HeapObject>::cast(source)); |
| cmp_tagged(dst, kScratchRegister); |
| } |
| } |
| |
| void MacroAssembler::JumpIfIsInRange(Register value, unsigned lower_limit, |
| unsigned higher_limit, Label* on_in_range, |
| Label::Distance near_jump) { |
| if (lower_limit != 0) { |
| leal(kScratchRegister, Operand(value, 0u - lower_limit)); |
| cmpl(kScratchRegister, Immediate(higher_limit - lower_limit)); |
| } else { |
| cmpl(value, Immediate(higher_limit)); |
| } |
| j(below_equal, on_in_range, near_jump); |
| } |
| |
| void TurboAssembler::Push(Handle<HeapObject> source) { |
| Move(kScratchRegister, source); |
| Push(kScratchRegister); |
| } |
| |
| void TurboAssembler::PushArray(Register array, Register size, Register scratch, |
| PushArrayOrder order) { |
| DCHECK(!AreAliased(array, size, scratch)); |
| Register counter = scratch; |
| Label loop, entry; |
| if (order == PushArrayOrder::kReverse) { |
| Set(counter, 0); |
| jmp(&entry); |
| bind(&loop); |
| Push(Operand(array, counter, times_system_pointer_size, 0)); |
| incq(counter); |
| bind(&entry); |
| cmpq(counter, size); |
| j(less, &loop, Label::kNear); |
| } else { |
| movq(counter, size); |
| jmp(&entry); |
| bind(&loop); |
| Push(Operand(array, counter, times_system_pointer_size, 0)); |
| bind(&entry); |
| decq(counter); |
| j(greater_equal, &loop, Label::kNear); |
| } |
| } |
| |
| void TurboAssembler::Move(Register result, Handle<HeapObject> object, |
| RelocInfo::Mode rmode) { |
| // TODO(jgruber,v8:8887): Also consider a root-relative load when generating |
| // non-isolate-independent code. In many cases it might be cheaper than |
| // embedding the relocatable value. |
| if (root_array_available_ && options().isolate_independent_code) { |
| // TODO(v8:9706): Fix-it! This load will always uncompress the value |
| // even when we are loading a compressed embedded object. |
| IndirectLoadConstant(result, object); |
| } else if (RelocInfo::IsCompressedEmbeddedObject(rmode)) { |
| EmbeddedObjectIndex index = AddEmbeddedObject(object); |
| DCHECK(is_uint32(index)); |
| movl(result, Immediate(static_cast<int>(index), rmode)); |
| } else { |
| DCHECK(RelocInfo::IsFullEmbeddedObject(rmode)); |
| movq(result, Immediate64(object.address(), rmode)); |
| } |
| } |
| |
| void TurboAssembler::Move(Operand dst, Handle<HeapObject> object, |
| RelocInfo::Mode rmode) { |
| Move(kScratchRegister, object, rmode); |
| movq(dst, kScratchRegister); |
| } |
| |
| void TurboAssembler::MoveStringConstant(Register result, |
| const StringConstantBase* string, |
| RelocInfo::Mode rmode) { |
| movq_string(result, string); |
| } |
| |
| void MacroAssembler::Drop(int stack_elements) { |
| if (stack_elements > 0) { |
| addq(rsp, Immediate(stack_elements * kSystemPointerSize)); |
| } |
| } |
| |
| void MacroAssembler::DropUnderReturnAddress(int stack_elements, |
| Register scratch) { |
| DCHECK_GT(stack_elements, 0); |
| if (stack_elements == 1) { |
| popq(MemOperand(rsp, 0)); |
| return; |
| } |
| |
| PopReturnAddressTo(scratch); |
| Drop(stack_elements); |
| PushReturnAddressFrom(scratch); |
| } |
| |
| void TurboAssembler::Push(Register src) { pushq(src); } |
| |
| void TurboAssembler::Push(Operand src) { pushq(src); } |
| |
| void MacroAssembler::PushQuad(Operand src) { pushq(src); } |
| |
| void TurboAssembler::Push(Immediate value) { pushq(value); } |
| |
| void MacroAssembler::PushImm32(int32_t imm32) { pushq_imm32(imm32); } |
| |
| void MacroAssembler::Pop(Register dst) { popq(dst); } |
| |
| void MacroAssembler::Pop(Operand dst) { popq(dst); } |
| |
| void MacroAssembler::PopQuad(Operand dst) { popq(dst); } |
| |
| void TurboAssembler::Jump(const ExternalReference& reference) { |
| DCHECK(root_array_available()); |
| jmp(Operand(kRootRegister, RootRegisterOffsetForExternalReferenceTableEntry( |
| isolate(), reference))); |
| } |
| |
| void TurboAssembler::Jump(Operand op) { jmp(op); } |
| |
| void TurboAssembler::Jump(Address destination, RelocInfo::Mode rmode) { |
| Move(kScratchRegister, destination, rmode); |
| jmp(kScratchRegister); |
| } |
| |
| void TurboAssembler::Jump(Handle<Code> code_object, RelocInfo::Mode rmode, |
| Condition cc) { |
| DCHECK_IMPLIES(options().isolate_independent_code, |
| Builtins::IsIsolateIndependentBuiltin(*code_object)); |
| if (options().inline_offheap_trampolines) { |
| int builtin_index = Builtins::kNoBuiltinId; |
| if (isolate()->builtins()->IsBuiltinHandle(code_object, &builtin_index)) { |
| Label skip; |
| if (cc != always) { |
| if (cc == never) return; |
| j(NegateCondition(cc), &skip, Label::kNear); |
| } |
| // Inline the trampoline. |
| RecordCommentForOffHeapTrampoline(builtin_index); |
| CHECK_NE(builtin_index, Builtins::kNoBuiltinId); |
| EmbeddedData d = EmbeddedData::FromBlob(); |
| Address entry = d.InstructionStartOfBuiltin(builtin_index); |
| Move(kScratchRegister, entry, RelocInfo::OFF_HEAP_TARGET); |
| jmp(kScratchRegister); |
| bind(&skip); |
| return; |
| } |
| } |
| j(cc, code_object, rmode); |
| } |
| |
| void MacroAssembler::JumpToInstructionStream(Address entry) { |
| Move(kOffHeapTrampolineRegister, entry, RelocInfo::OFF_HEAP_TARGET); |
| jmp(kOffHeapTrampolineRegister); |
| } |
| |
| void TurboAssembler::Call(ExternalReference ext) { |
| LoadAddress(kScratchRegister, ext); |
| call(kScratchRegister); |
| } |
| |
| void TurboAssembler::Call(Operand op) { |
| if (!CpuFeatures::IsSupported(ATOM)) { |
| call(op); |
| } else { |
| movq(kScratchRegister, op); |
| call(kScratchRegister); |
| } |
| } |
| |
| void TurboAssembler::Call(Address destination, RelocInfo::Mode rmode) { |
| Move(kScratchRegister, destination, rmode); |
| call(kScratchRegister); |
| } |
| |
| void TurboAssembler::Call(Handle<Code> code_object, RelocInfo::Mode rmode) { |
| DCHECK_IMPLIES(options().isolate_independent_code, |
| Builtins::IsIsolateIndependentBuiltin(*code_object)); |
| if (options().inline_offheap_trampolines) { |
| int builtin_index = Builtins::kNoBuiltinId; |
| if (isolate()->builtins()->IsBuiltinHandle(code_object, &builtin_index)) { |
| // Inline the trampoline. |
| CallBuiltin(builtin_index); |
| return; |
| } |
| } |
| DCHECK(RelocInfo::IsCodeTarget(rmode)); |
| call(code_object, rmode); |
| } |
| |
| Operand TurboAssembler::EntryFromBuiltinIndexAsOperand( |
| Builtins::Name builtin_index) { |
| DCHECK(root_array_available()); |
| return Operand(kRootRegister, |
| IsolateData::builtin_entry_slot_offset(builtin_index)); |
| } |
| |
| Operand TurboAssembler::EntryFromBuiltinIndexAsOperand(Register builtin_index) { |
| if (SmiValuesAre32Bits()) { |
| // The builtin_index register contains the builtin index as a Smi. |
| SmiUntag(builtin_index); |
| return Operand(kRootRegister, builtin_index, times_system_pointer_size, |
| IsolateData::builtin_entry_table_offset()); |
| } else { |
| DCHECK(SmiValuesAre31Bits()); |
| |
| // The builtin_index register contains the builtin index as a Smi. |
| // Untagging is folded into the indexing operand below (we use |
| // times_half_system_pointer_size since smis are already shifted by one). |
| return Operand(kRootRegister, builtin_index, times_half_system_pointer_size, |
| IsolateData::builtin_entry_table_offset()); |
| } |
| } |
| |
| void TurboAssembler::CallBuiltinByIndex(Register builtin_index) { |
| Call(EntryFromBuiltinIndexAsOperand(builtin_index)); |
| } |
| |
| void TurboAssembler::CallBuiltin(int builtin_index) { |
| DCHECK(Builtins::IsBuiltinId(builtin_index)); |
| RecordCommentForOffHeapTrampoline(builtin_index); |
| CHECK_NE(builtin_index, Builtins::kNoBuiltinId); |
| EmbeddedData d = EmbeddedData::FromBlob(); |
| Address entry = d.InstructionStartOfBuiltin(builtin_index); |
| Move(kScratchRegister, entry, RelocInfo::OFF_HEAP_TARGET); |
| call(kScratchRegister); |
| } |
| |
| void TurboAssembler::LoadCodeObjectEntry(Register destination, |
| Register code_object) { |
| // Code objects are called differently depending on whether we are generating |
| // builtin code (which will later be embedded into the binary) or compiling |
| // user JS code at runtime. |
| // * Builtin code runs in --jitless mode and thus must not call into on-heap |
| // Code targets. Instead, we dispatch through the builtins entry table. |
| // * Codegen at runtime does not have this restriction and we can use the |
| // shorter, branchless instruction sequence. The assumption here is that |
| // targets are usually generated code and not builtin Code objects. |
| |
| if (options().isolate_independent_code) { |
| DCHECK(root_array_available()); |
| Label if_code_is_off_heap, out; |
| |
| // Check whether the Code object is an off-heap trampoline. If so, call its |
| // (off-heap) entry point directly without going through the (on-heap) |
| // trampoline. Otherwise, just call the Code object as always. |
| testl(FieldOperand(code_object, Code::kFlagsOffset), |
| Immediate(Code::IsOffHeapTrampoline::kMask)); |
| j(not_equal, &if_code_is_off_heap); |
| |
| // Not an off-heap trampoline, the entry point is at |
| // Code::raw_instruction_start(). |
| Move(destination, code_object); |
| addq(destination, Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| jmp(&out); |
| |
| // An off-heap trampoline, the entry point is loaded from the builtin entry |
| // table. |
| bind(&if_code_is_off_heap); |
| movl(destination, FieldOperand(code_object, Code::kBuiltinIndexOffset)); |
| movq(destination, |
| Operand(kRootRegister, destination, times_system_pointer_size, |
| IsolateData::builtin_entry_table_offset())); |
| |
| bind(&out); |
| } else { |
| Move(destination, code_object); |
| addq(destination, Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| } |
| } |
| |
| void TurboAssembler::CallCodeObject(Register code_object) { |
| LoadCodeObjectEntry(code_object, code_object); |
| call(code_object); |
| } |
| |
| void TurboAssembler::JumpCodeObject(Register code_object) { |
| LoadCodeObjectEntry(code_object, code_object); |
| jmp(code_object); |
| } |
| |
| void TurboAssembler::RetpolineCall(Register reg) { |
| Label setup_return, setup_target, inner_indirect_branch, capture_spec; |
| |
| jmp(&setup_return); // Jump past the entire retpoline below. |
| |
| bind(&inner_indirect_branch); |
| call(&setup_target); |
| |
| bind(&capture_spec); |
| pause(); |
| jmp(&capture_spec); |
| |
| bind(&setup_target); |
| movq(Operand(rsp, 0), reg); |
| ret(0); |
| |
| bind(&setup_return); |
| call(&inner_indirect_branch); // Callee will return after this instruction. |
| } |
| |
| void TurboAssembler::RetpolineCall(Address destination, RelocInfo::Mode rmode) { |
| Move(kScratchRegister, destination, rmode); |
| RetpolineCall(kScratchRegister); |
| } |
| |
| void TurboAssembler::RetpolineJump(Register reg) { |
| Label setup_target, capture_spec; |
| |
| call(&setup_target); |
| |
| bind(&capture_spec); |
| pause(); |
| jmp(&capture_spec); |
| |
| bind(&setup_target); |
| movq(Operand(rsp, 0), reg); |
| ret(0); |
| } |
| |
| void TurboAssembler::Shufps(XMMRegister dst, XMMRegister src, byte imm8) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope avx_scope(this, AVX); |
| vshufps(dst, src, src, imm8); |
| } else { |
| if (dst != src) { |
| movss(dst, src); |
| } |
| shufps(dst, src, static_cast<byte>(0)); |
| } |
| } |
| |
| void TurboAssembler::Pextrd(Register dst, XMMRegister src, uint8_t imm8) { |
| if (imm8 == 0) { |
| Movd(dst, src); |
| return; |
| } |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpextrd(dst, src, imm8); |
| return; |
| } else if (CpuFeatures::IsSupported(SSE4_1)) { |
| CpuFeatureScope sse_scope(this, SSE4_1); |
| pextrd(dst, src, imm8); |
| return; |
| } |
| DCHECK_EQ(1, imm8); |
| movq(dst, src); |
| shrq(dst, Immediate(32)); |
| } |
| |
| namespace { |
| |
| template <typename Src> |
| using AvxFn = void (Assembler::*)(XMMRegister, XMMRegister, Src, uint8_t); |
| template <typename Src> |
| using NoAvxFn = void (Assembler::*)(XMMRegister, Src, uint8_t); |
| |
| template <typename Src> |
| void PinsrHelper(Assembler* assm, AvxFn<Src> avx, NoAvxFn<Src> noavx, |
| XMMRegister dst, XMMRegister src1, Src src2, uint8_t imm8, |
| base::Optional<CpuFeature> feature = base::nullopt) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(assm, AVX); |
| (assm->*avx)(dst, src1, src2, imm8); |
| return; |
| } |
| |
| if (dst != src1) { |
| assm->movdqu(dst, src1); |
| } |
| if (feature.has_value()) { |
| DCHECK(CpuFeatures::IsSupported(*feature)); |
| CpuFeatureScope scope(assm, *feature); |
| (assm->*noavx)(dst, src2, imm8); |
| } else { |
| (assm->*noavx)(dst, src2, imm8); |
| } |
| } |
| } // namespace |
| |
| void TurboAssembler::Pinsrb(XMMRegister dst, XMMRegister src1, Register src2, |
| uint8_t imm8) { |
| PinsrHelper(this, &Assembler::vpinsrb, &Assembler::pinsrb, dst, src1, src2, |
| imm8, base::Optional<CpuFeature>(SSE4_1)); |
| } |
| |
| void TurboAssembler::Pinsrb(XMMRegister dst, XMMRegister src1, Operand src2, |
| uint8_t imm8) { |
| PinsrHelper(this, &Assembler::vpinsrb, &Assembler::pinsrb, dst, src1, src2, |
| imm8, base::Optional<CpuFeature>(SSE4_1)); |
| } |
| |
| void TurboAssembler::Pinsrw(XMMRegister dst, XMMRegister src1, Register src2, |
| uint8_t imm8) { |
| PinsrHelper(this, &Assembler::vpinsrw, &Assembler::pinsrw, dst, src1, src2, |
| imm8); |
| } |
| |
| void TurboAssembler::Pinsrw(XMMRegister dst, XMMRegister src1, Operand src2, |
| uint8_t imm8) { |
| PinsrHelper(this, &Assembler::vpinsrw, &Assembler::pinsrw, dst, src1, src2, |
| imm8); |
| } |
| |
| void TurboAssembler::Pinsrd(XMMRegister dst, XMMRegister src1, Register src2, |
| uint8_t imm8) { |
| // Need a fall back when SSE4_1 is unavailable. Pinsrb and Pinsrq are used |
| // only by Wasm SIMD, which requires SSE4_1 already. |
| if (CpuFeatures::IsSupported(SSE4_1)) { |
| PinsrHelper(this, &Assembler::vpinsrd, &Assembler::pinsrd, dst, src1, src2, |
| imm8, base::Optional<CpuFeature>(SSE4_1)); |
| return; |
| } |
| |
| Movd(kScratchDoubleReg, src2); |
| if (imm8 == 1) { |
| punpckldq(dst, kScratchDoubleReg); |
| } else { |
| DCHECK_EQ(0, imm8); |
| Movss(dst, kScratchDoubleReg); |
| } |
| } |
| |
| void TurboAssembler::Pinsrd(XMMRegister dst, XMMRegister src1, Operand src2, |
| uint8_t imm8) { |
| // Need a fall back when SSE4_1 is unavailable. Pinsrb and Pinsrq are used |
| // only by Wasm SIMD, which requires SSE4_1 already. |
| if (CpuFeatures::IsSupported(SSE4_1)) { |
| PinsrHelper(this, &Assembler::vpinsrd, &Assembler::pinsrd, dst, src1, src2, |
| imm8, base::Optional<CpuFeature>(SSE4_1)); |
| return; |
| } |
| |
| Movd(kScratchDoubleReg, src2); |
| if (imm8 == 1) { |
| punpckldq(dst, kScratchDoubleReg); |
| } else { |
| DCHECK_EQ(0, imm8); |
| Movss(dst, kScratchDoubleReg); |
| } |
| } |
| |
| void TurboAssembler::Pinsrd(XMMRegister dst, Register src2, uint8_t imm8) { |
| Pinsrd(dst, dst, src2, imm8); |
| } |
| |
| void TurboAssembler::Pinsrd(XMMRegister dst, Operand src2, uint8_t imm8) { |
| Pinsrd(dst, dst, src2, imm8); |
| } |
| |
| void TurboAssembler::Pinsrq(XMMRegister dst, XMMRegister src1, Register src2, |
| uint8_t imm8) { |
| PinsrHelper(this, &Assembler::vpinsrq, &Assembler::pinsrq, dst, src1, src2, |
| imm8, base::Optional<CpuFeature>(SSE4_1)); |
| } |
| |
| void TurboAssembler::Pinsrq(XMMRegister dst, XMMRegister src1, Operand src2, |
| uint8_t imm8) { |
| PinsrHelper(this, &Assembler::vpinsrq, &Assembler::pinsrq, dst, src1, src2, |
| imm8, base::Optional<CpuFeature>(SSE4_1)); |
| } |
| |
| void TurboAssembler::Psllq(XMMRegister dst, byte imm8) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpsllq(dst, dst, imm8); |
| } else { |
| DCHECK(!IsEnabled(AVX)); |
| psllq(dst, imm8); |
| } |
| } |
| |
| void TurboAssembler::Psrlq(XMMRegister dst, byte imm8) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpsrlq(dst, dst, imm8); |
| } else { |
| DCHECK(!IsEnabled(AVX)); |
| psrlq(dst, imm8); |
| } |
| } |
| |
| void TurboAssembler::Pslld(XMMRegister dst, byte imm8) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpslld(dst, dst, imm8); |
| } else { |
| DCHECK(!IsEnabled(AVX)); |
| pslld(dst, imm8); |
| } |
| } |
| |
| void TurboAssembler::Pblendvb(XMMRegister dst, XMMRegister src1, |
| XMMRegister src2, XMMRegister mask) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope avx_scope(this, AVX); |
| vpblendvb(dst, src1, src2, mask); |
| } else { |
| DCHECK_EQ(dst, src1); |
| DCHECK_EQ(xmm0, mask); |
| pblendvb(dst, src2); |
| } |
| } |
| |
| void TurboAssembler::Blendvps(XMMRegister dst, XMMRegister src1, |
| XMMRegister src2, XMMRegister mask) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope avx_scope(this, AVX); |
| vblendvps(dst, src1, src2, mask); |
| } else { |
| DCHECK_EQ(dst, src1); |
| DCHECK_EQ(xmm0, mask); |
| blendvps(dst, src2); |
| } |
| } |
| |
| void TurboAssembler::Blendvpd(XMMRegister dst, XMMRegister src1, |
| XMMRegister src2, XMMRegister mask) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope avx_scope(this, AVX); |
| vblendvpd(dst, src1, src2, mask); |
| } else { |
| DCHECK_EQ(dst, src1); |
| DCHECK_EQ(xmm0, mask); |
| blendvpd(dst, src2); |
| } |
| } |
| |
| void TurboAssembler::Pshufb(XMMRegister dst, XMMRegister src, |
| XMMRegister mask) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope avx_scope(this, AVX); |
| vpshufb(dst, src, mask); |
| } else { |
| // Make sure these are different so that we won't overwrite mask. |
| DCHECK_NE(dst, mask); |
| if (dst != src) { |
| movapd(dst, src); |
| } |
| CpuFeatureScope sse_scope(this, SSSE3); |
| pshufb(dst, mask); |
| } |
| } |
| |
| void TurboAssembler::Psrld(XMMRegister dst, byte imm8) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpsrld(dst, dst, imm8); |
| } else { |
| DCHECK(!IsEnabled(AVX)); |
| psrld(dst, imm8); |
| } |
| } |
| |
| void TurboAssembler::Lzcntl(Register dst, Register src) { |
| if (CpuFeatures::IsSupported(LZCNT)) { |
| CpuFeatureScope scope(this, LZCNT); |
| lzcntl(dst, src); |
| return; |
| } |
| Label not_zero_src; |
| bsrl(dst, src); |
| j(not_zero, ¬_zero_src, Label::kNear); |
| movl(dst, Immediate(63)); // 63^31 == 32 |
| bind(¬_zero_src); |
| xorl(dst, Immediate(31)); // for x in [0..31], 31^x == 31 - x |
| } |
| |
| void TurboAssembler::Lzcntl(Register dst, Operand src) { |
| if (CpuFeatures::IsSupported(LZCNT)) { |
| CpuFeatureScope scope(this, LZCNT); |
| lzcntl(dst, src); |
| return; |
| } |
| Label not_zero_src; |
| bsrl(dst, src); |
| j(not_zero, ¬_zero_src, Label::kNear); |
| movl(dst, Immediate(63)); // 63^31 == 32 |
| bind(¬_zero_src); |
| xorl(dst, Immediate(31)); // for x in [0..31], 31^x == 31 - x |
| } |
| |
| void TurboAssembler::Lzcntq(Register dst, Register src) { |
| if (CpuFeatures::IsSupported(LZCNT)) { |
| CpuFeatureScope scope(this, LZCNT); |
| lzcntq(dst, src); |
| return; |
| } |
| Label not_zero_src; |
| bsrq(dst, src); |
| j(not_zero, ¬_zero_src, Label::kNear); |
| movl(dst, Immediate(127)); // 127^63 == 64 |
| bind(¬_zero_src); |
| xorl(dst, Immediate(63)); // for x in [0..63], 63^x == 63 - x |
| } |
| |
| void TurboAssembler::Lzcntq(Register dst, Operand src) { |
| if (CpuFeatures::IsSupported(LZCNT)) { |
| CpuFeatureScope scope(this, LZCNT); |
| lzcntq(dst, src); |
| return; |
| } |
| Label not_zero_src; |
| bsrq(dst, src); |
| j(not_zero, ¬_zero_src, Label::kNear); |
| movl(dst, Immediate(127)); // 127^63 == 64 |
| bind(¬_zero_src); |
| xorl(dst, Immediate(63)); // for x in [0..63], 63^x == 63 - x |
| } |
| |
| void TurboAssembler::Tzcntq(Register dst, Register src) { |
| if (CpuFeatures::IsSupported(BMI1)) { |
| CpuFeatureScope scope(this, BMI1); |
| tzcntq(dst, src); |
| return; |
| } |
| Label not_zero_src; |
| bsfq(dst, src); |
| j(not_zero, ¬_zero_src, Label::kNear); |
| // Define the result of tzcnt(0) separately, because bsf(0) is undefined. |
| movl(dst, Immediate(64)); |
| bind(¬_zero_src); |
| } |
| |
| void TurboAssembler::Tzcntq(Register dst, Operand src) { |
| if (CpuFeatures::IsSupported(BMI1)) { |
| CpuFeatureScope scope(this, BMI1); |
| tzcntq(dst, src); |
| return; |
| } |
| Label not_zero_src; |
| bsfq(dst, src); |
| j(not_zero, ¬_zero_src, Label::kNear); |
| // Define the result of tzcnt(0) separately, because bsf(0) is undefined. |
| movl(dst, Immediate(64)); |
| bind(¬_zero_src); |
| } |
| |
| void TurboAssembler::Tzcntl(Register dst, Register src) { |
| if (CpuFeatures::IsSupported(BMI1)) { |
| CpuFeatureScope scope(this, BMI1); |
| tzcntl(dst, src); |
| return; |
| } |
| Label not_zero_src; |
| bsfl(dst, src); |
| j(not_zero, ¬_zero_src, Label::kNear); |
| movl(dst, Immediate(32)); // The result of tzcnt is 32 if src = 0. |
| bind(¬_zero_src); |
| } |
| |
| void TurboAssembler::Tzcntl(Register dst, Operand src) { |
| if (CpuFeatures::IsSupported(BMI1)) { |
| CpuFeatureScope scope(this, BMI1); |
| tzcntl(dst, src); |
| return; |
| } |
| Label not_zero_src; |
| bsfl(dst, src); |
| j(not_zero, ¬_zero_src, Label::kNear); |
| movl(dst, Immediate(32)); // The result of tzcnt is 32 if src = 0. |
| bind(¬_zero_src); |
| } |
| |
| void TurboAssembler::Popcntl(Register dst, Register src) { |
| if (CpuFeatures::IsSupported(POPCNT)) { |
| CpuFeatureScope scope(this, POPCNT); |
| popcntl(dst, src); |
| return; |
| } |
| UNREACHABLE(); |
| } |
| |
| void TurboAssembler::Popcntl(Register dst, Operand src) { |
| if (CpuFeatures::IsSupported(POPCNT)) { |
| CpuFeatureScope scope(this, POPCNT); |
| popcntl(dst, src); |
| return; |
| } |
| UNREACHABLE(); |
| } |
| |
| void TurboAssembler::Popcntq(Register dst, Register src) { |
| if (CpuFeatures::IsSupported(POPCNT)) { |
| CpuFeatureScope scope(this, POPCNT); |
| popcntq(dst, src); |
| return; |
| } |
| UNREACHABLE(); |
| } |
| |
| void TurboAssembler::Popcntq(Register dst, Operand src) { |
| if (CpuFeatures::IsSupported(POPCNT)) { |
| CpuFeatureScope scope(this, POPCNT); |
| popcntq(dst, src); |
| return; |
| } |
| UNREACHABLE(); |
| } |
| |
| // Order general registers are pushed by Pushad: |
| // rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r14, r15. |
| const int |
| MacroAssembler::kSafepointPushRegisterIndices[Register::kNumRegisters] = { |
| 0, 1, 2, 3, -1, -1, 4, 5, 6, 7, -1, 8, 9, -1, 10, 11}; |
| |
| void MacroAssembler::PushStackHandler() { |
| // Adjust this code if not the case. |
| STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kSystemPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| |
| Push(Immediate(0)); // Padding. |
| |
| // Link the current handler as the next handler. |
| ExternalReference handler_address = |
| ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate()); |
| Push(ExternalReferenceAsOperand(handler_address)); |
| |
| // Set this new handler as the current one. |
| movq(ExternalReferenceAsOperand(handler_address), rsp); |
| } |
| |
| void MacroAssembler::PopStackHandler() { |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| ExternalReference handler_address = |
| ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate()); |
| Pop(ExternalReferenceAsOperand(handler_address)); |
| addq(rsp, Immediate(StackHandlerConstants::kSize - kSystemPointerSize)); |
| } |
| |
| void TurboAssembler::Ret() { ret(0); } |
| |
| void TurboAssembler::Ret(int bytes_dropped, Register scratch) { |
| if (is_uint16(bytes_dropped)) { |
| ret(bytes_dropped); |
| } else { |
| PopReturnAddressTo(scratch); |
| addq(rsp, Immediate(bytes_dropped)); |
| PushReturnAddressFrom(scratch); |
| ret(0); |
| } |
| } |
| |
| void MacroAssembler::CmpObjectType(Register heap_object, InstanceType type, |
| Register map) { |
| LoadMap(map, heap_object); |
| CmpInstanceType(map, type); |
| } |
| |
| void MacroAssembler::CmpInstanceType(Register map, InstanceType type) { |
| cmpw(FieldOperand(map, Map::kInstanceTypeOffset), Immediate(type)); |
| } |
| |
| void MacroAssembler::AssertNotSmi(Register object) { |
| if (emit_debug_code()) { |
| Condition is_smi = CheckSmi(object); |
| Check(NegateCondition(is_smi), AbortReason::kOperandIsASmi); |
| } |
| } |
| |
| void MacroAssembler::AssertSmi(Register object) { |
| if (emit_debug_code()) { |
| Condition is_smi = CheckSmi(object); |
| Check(is_smi, AbortReason::kOperandIsNotASmi); |
| } |
| } |
| |
| void MacroAssembler::AssertSmi(Operand object) { |
| if (emit_debug_code()) { |
| Condition is_smi = CheckSmi(object); |
| Check(is_smi, AbortReason::kOperandIsNotASmi); |
| } |
| } |
| |
| void TurboAssembler::AssertZeroExtended(Register int32_register) { |
| if (emit_debug_code()) { |
| DCHECK_NE(int32_register, kScratchRegister); |
| movq(kScratchRegister, int64_t{0x0000000100000000}); |
| cmpq(kScratchRegister, int32_register); |
| Check(above, AbortReason::k32BitValueInRegisterIsNotZeroExtended); |
| } |
| } |
| |
| void MacroAssembler::AssertConstructor(Register object) { |
| if (emit_debug_code()) { |
| testb(object, Immediate(kSmiTagMask)); |
| Check(not_equal, AbortReason::kOperandIsASmiAndNotAConstructor); |
| Push(object); |
| LoadMap(object, object); |
| testb(FieldOperand(object, Map::kBitFieldOffset), |
| Immediate(Map::Bits1::IsConstructorBit::kMask)); |
| Pop(object); |
| Check(not_zero, AbortReason::kOperandIsNotAConstructor); |
| } |
| } |
| |
| void MacroAssembler::AssertFunction(Register object) { |
| if (emit_debug_code()) { |
| testb(object, Immediate(kSmiTagMask)); |
| Check(not_equal, AbortReason::kOperandIsASmiAndNotAFunction); |
| Push(object); |
| CmpObjectType(object, JS_FUNCTION_TYPE, object); |
| Pop(object); |
| Check(equal, AbortReason::kOperandIsNotAFunction); |
| } |
| } |
| |
| void MacroAssembler::AssertBoundFunction(Register object) { |
| if (emit_debug_code()) { |
| testb(object, Immediate(kSmiTagMask)); |
| Check(not_equal, AbortReason::kOperandIsASmiAndNotABoundFunction); |
| Push(object); |
| CmpObjectType(object, JS_BOUND_FUNCTION_TYPE, object); |
| Pop(object); |
| Check(equal, AbortReason::kOperandIsNotABoundFunction); |
| } |
| } |
| |
| void MacroAssembler::AssertGeneratorObject(Register object) { |
| if (!emit_debug_code()) return; |
| testb(object, Immediate(kSmiTagMask)); |
| Check(not_equal, AbortReason::kOperandIsASmiAndNotAGeneratorObject); |
| |
| // Load map |
| Register map = object; |
| Push(object); |
| LoadMap(map, object); |
| |
| Label do_check; |
| // Check if JSGeneratorObject |
| CmpInstanceType(map, JS_GENERATOR_OBJECT_TYPE); |
| j(equal, &do_check); |
| |
| // Check if JSAsyncFunctionObject |
| CmpInstanceType(map, JS_ASYNC_FUNCTION_OBJECT_TYPE); |
| j(equal, &do_check); |
| |
| // Check if JSAsyncGeneratorObject |
| CmpInstanceType(map, JS_ASYNC_GENERATOR_OBJECT_TYPE); |
| |
| bind(&do_check); |
| // Restore generator object to register and perform assertion |
| Pop(object); |
| Check(equal, AbortReason::kOperandIsNotAGeneratorObject); |
| } |
| |
| void MacroAssembler::AssertUndefinedOrAllocationSite(Register object) { |
| if (emit_debug_code()) { |
| Label done_checking; |
| AssertNotSmi(object); |
| Cmp(object, isolate()->factory()->undefined_value()); |
| j(equal, &done_checking); |
| Cmp(FieldOperand(object, 0), isolate()->factory()->allocation_site_map()); |
| Assert(equal, AbortReason::kExpectedUndefinedOrCell); |
| bind(&done_checking); |
| } |
| } |
| |
| void MacroAssembler::LoadWeakValue(Register in_out, Label* target_if_cleared) { |
| cmpl(in_out, Immediate(kClearedWeakHeapObjectLower32)); |
| j(equal, target_if_cleared); |
| |
| andq(in_out, Immediate(~static_cast<int32_t>(kWeakHeapObjectMask))); |
| } |
| |
| void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) { |
| DCHECK_GT(value, 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| Operand counter_operand = |
| ExternalReferenceAsOperand(ExternalReference::Create(counter)); |
| // This operation has to be exactly 32-bit wide in case the external |
| // reference table redirects the counter to a uint32_t dummy_stats_counter_ |
| // field. |
| if (value == 1) { |
| incl(counter_operand); |
| } else { |
| addl(counter_operand, Immediate(value)); |
| } |
| } |
| } |
| |
| void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) { |
| DCHECK_GT(value, 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| Operand counter_operand = |
| ExternalReferenceAsOperand(ExternalReference::Create(counter)); |
| // This operation has to be exactly 32-bit wide in case the external |
| // reference table redirects the counter to a uint32_t dummy_stats_counter_ |
| // field. |
| if (value == 1) { |
| decl(counter_operand); |
| } else { |
| subl(counter_operand, Immediate(value)); |
| } |
| } |
| } |
| |
| void MacroAssembler::MaybeDropFrames() { |
| // Check whether we need to drop frames to restart a function on the stack. |
| ExternalReference restart_fp = |
| ExternalReference::debug_restart_fp_address(isolate()); |
| Load(rbx, restart_fp); |
| testq(rbx, rbx); |
| |
| Label dont_drop; |
| j(zero, &dont_drop, Label::kNear); |
| Jump(BUILTIN_CODE(isolate(), FrameDropperTrampoline), RelocInfo::CODE_TARGET); |
| |
| bind(&dont_drop); |
| } |
| |
| void TurboAssembler::PrepareForTailCall(Register callee_args_count, |
| Register caller_args_count, |
| Register scratch0, Register scratch1) { |
| DCHECK(!AreAliased(callee_args_count, caller_args_count, scratch0, scratch1)); |
| |
| // Calculate the destination address where we will put the return address |
| // after we drop current frame. |
| Register new_sp_reg = scratch0; |
| subq(caller_args_count, callee_args_count); |
| leaq(new_sp_reg, Operand(rbp, caller_args_count, times_system_pointer_size, |
| StandardFrameConstants::kCallerPCOffset)); |
| |
| if (FLAG_debug_code) { |
| cmpq(rsp, new_sp_reg); |
| Check(below, AbortReason::kStackAccessBelowStackPointer); |
| } |
| |
| // Copy return address from caller's frame to current frame's return address |
| // to avoid its trashing and let the following loop copy it to the right |
| // place. |
| Register tmp_reg = scratch1; |
| movq(tmp_reg, Operand(rbp, StandardFrameConstants::kCallerPCOffset)); |
| movq(Operand(rsp, 0), tmp_reg); |
| |
| // Restore caller's frame pointer now as it could be overwritten by |
| // the copying loop. |
| movq(rbp, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); |
| |
| // +2 here is to copy both receiver and return address. |
| Register count_reg = caller_args_count; |
| leaq(count_reg, Operand(callee_args_count, 2)); |
| |
| // Now copy callee arguments to the caller frame going backwards to avoid |
| // callee arguments corruption (source and destination areas could overlap). |
| Label loop, entry; |
| jmp(&entry, Label::kNear); |
| bind(&loop); |
| decq(count_reg); |
| movq(tmp_reg, Operand(rsp, count_reg, times_system_pointer_size, 0)); |
| movq(Operand(new_sp_reg, count_reg, times_system_pointer_size, 0), tmp_reg); |
| bind(&entry); |
| cmpq(count_reg, Immediate(0)); |
| j(not_equal, &loop, Label::kNear); |
| |
| // Leave current frame. |
| movq(rsp, new_sp_reg); |
| } |
| |
| void MacroAssembler::InvokeFunction(Register function, Register new_target, |
| Register actual_parameter_count, |
| InvokeFlag flag) { |
| LoadTaggedPointerField( |
| rbx, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset)); |
| movzxwq(rbx, |
| FieldOperand(rbx, SharedFunctionInfo::kFormalParameterCountOffset)); |
| |
| InvokeFunction(function, new_target, rbx, actual_parameter_count, flag); |
| } |
| |
| void MacroAssembler::InvokeFunction(Register function, Register new_target, |
| Register expected_parameter_count, |
| Register actual_parameter_count, |
| InvokeFlag flag) { |
| DCHECK(function == rdi); |
| LoadTaggedPointerField(rsi, |
| FieldOperand(function, JSFunction::kContextOffset)); |
| InvokeFunctionCode(rdi, new_target, expected_parameter_count, |
| actual_parameter_count, flag); |
| } |
| |
| void MacroAssembler::InvokeFunctionCode(Register function, Register new_target, |
| Register expected_parameter_count, |
| Register actual_parameter_count, |
| InvokeFlag flag) { |
| // You can't call a function without a valid frame. |
| DCHECK_IMPLIES(flag == CALL_FUNCTION, has_frame()); |
| DCHECK_EQ(function, rdi); |
| DCHECK_IMPLIES(new_target.is_valid(), new_target == rdx); |
| |
| // On function call, call into the debugger if necessary. |
| Label debug_hook, continue_after_hook; |
| { |
| ExternalReference debug_hook_active = |
| ExternalReference::debug_hook_on_function_call_address(isolate()); |
| Operand debug_hook_active_operand = |
| ExternalReferenceAsOperand(debug_hook_active); |
| cmpb(debug_hook_active_operand, Immediate(0)); |
| j(not_equal, &debug_hook); |
| } |
| bind(&continue_after_hook); |
| |
| // Clear the new.target register if not given. |
| if (!new_target.is_valid()) { |
| LoadRoot(rdx, RootIndex::kUndefinedValue); |
| } |
| |
| Label done; |
| InvokePrologue(expected_parameter_count, actual_parameter_count, &done, flag); |
| // We call indirectly through the code field in the function to |
| // allow recompilation to take effect without changing any of the |
| // call sites. |
| static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch"); |
| LoadTaggedPointerField(rcx, FieldOperand(function, JSFunction::kCodeOffset)); |
| if (flag == CALL_FUNCTION) { |
| CallCodeObject(rcx); |
| } else { |
| DCHECK(flag == JUMP_FUNCTION); |
| JumpCodeObject(rcx); |
| } |
| jmp(&done, Label::kNear); |
| |
| // Deferred debug hook. |
| bind(&debug_hook); |
| CallDebugOnFunctionCall(function, new_target, expected_parameter_count, |
| actual_parameter_count); |
| jmp(&continue_after_hook); |
| |
| bind(&done); |
| } |
| |
| Operand MacroAssembler::StackLimitAsOperand(StackLimitKind kind) { |
| DCHECK(root_array_available()); |
| Isolate* isolate = this->isolate(); |
| ExternalReference limit = |
| kind == StackLimitKind::kRealStackLimit |
| ? ExternalReference::address_of_real_jslimit(isolate) |
| : ExternalReference::address_of_jslimit(isolate); |
| DCHECK(TurboAssembler::IsAddressableThroughRootRegister(isolate, limit)); |
| |
| intptr_t offset = |
| TurboAssembler::RootRegisterOffsetForExternalReference(isolate, limit); |
| CHECK(is_int32(offset)); |
| return Operand(kRootRegister, static_cast<int32_t>(offset)); |
| } |
| |
| void MacroAssembler::StackOverflowCheck( |
| Register num_args, Register scratch, Label* stack_overflow, |
| Label::Distance stack_overflow_distance) { |
| DCHECK_NE(num_args, scratch); |
| // Check the stack for overflow. We are not trying to catch |
| // interruptions (e.g. debug break and preemption) here, so the "real stack |
| // limit" is checked. |
| movq(kScratchRegister, StackLimitAsOperand(StackLimitKind::kRealStackLimit)); |
| movq(scratch, rsp); |
| // Make scratch the space we have left. The stack might already be overflowed |
| // here which will cause scratch to become negative. |
| subq(scratch, kScratchRegister); |
| // TODO(victorgomes): Use ia32 approach with leaq, since it requires less |
| // instructions. |
| sarq(scratch, Immediate(kSystemPointerSizeLog2)); |
| // Check if the arguments will overflow the stack. |
| cmpq(scratch, num_args); |
| // Signed comparison. |
| // TODO(victorgomes): Save some bytes in the builtins that use stack checks |
| // by jumping to a builtin that throws the exception. |
| j(less_equal, stack_overflow, stack_overflow_distance); |
| } |
| |
| void MacroAssembler::InvokePrologue(Register expected_parameter_count, |
| Register actual_parameter_count, |
| Label* done, InvokeFlag flag) { |
| if (expected_parameter_count != actual_parameter_count) { |
| Label regular_invoke; |
| #ifdef V8_NO_ARGUMENTS_ADAPTOR |
| // If the expected parameter count is equal to the adaptor sentinel, no need |
| // to push undefined value as arguments. |
| cmpl(expected_parameter_count, Immediate(kDontAdaptArgumentsSentinel)); |
| j(equal, ®ular_invoke, Label::kFar); |
| |
| // If overapplication or if the actual argument count is equal to the |
| // formal parameter count, no need to push extra undefined values. |
| subq(expected_parameter_count, actual_parameter_count); |
| j(less_equal, ®ular_invoke, Label::kFar); |
| |
| Label stack_overflow; |
| StackOverflowCheck(expected_parameter_count, rcx, &stack_overflow); |
| |
| // Underapplication. Move the arguments already in the stack, including the |
| // receiver and the return address. |
| { |
| Label copy, check; |
| Register src = r8, dest = rsp, num = r9, current = r11; |
| movq(src, rsp); |
| leaq(kScratchRegister, |
| Operand(expected_parameter_count, times_system_pointer_size, 0)); |
| AllocateStackSpace(kScratchRegister); |
| // Extra words are the receiver and the return address (if a jump). |
| int extra_words = flag == CALL_FUNCTION ? 1 : 2; |
| leaq(num, Operand(rax, extra_words)); // Number of words to copy. |
| Set(current, 0); |
| // Fall-through to the loop body because there are non-zero words to copy. |
| bind(©); |
| movq(kScratchRegister, |
| Operand(src, current, times_system_pointer_size, 0)); |
| movq(Operand(dest, current, times_system_pointer_size, 0), |
| kScratchRegister); |
| incq(current); |
| bind(&check); |
| cmpq(current, num); |
| j(less, ©); |
| leaq(r8, Operand(rsp, num, times_system_pointer_size, 0)); |
| } |
| // Fill remaining expected arguments with undefined values. |
| LoadRoot(kScratchRegister, RootIndex::kUndefinedValue); |
| { |
| Label loop; |
| bind(&loop); |
| decq(expected_parameter_count); |
| movq(Operand(r8, expected_parameter_count, times_system_pointer_size, 0), |
| kScratchRegister); |
| j(greater, &loop, Label::kNear); |
| } |
| jmp(®ular_invoke); |
| |
| bind(&stack_overflow); |
| { |
| FrameScope frame(this, |
| has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); |
| CallRuntime(Runtime::kThrowStackOverflow); |
| int3(); // This should be unreachable. |
| } |
| #else |
| // Both expected and actual are in (different) registers. This |
| // is the case when we invoke functions using call and apply. |
| cmpq(expected_parameter_count, actual_parameter_count); |
| j(equal, ®ular_invoke, Label::kNear); |
| DCHECK_EQ(actual_parameter_count, rax); |
| DCHECK_EQ(expected_parameter_count, rbx); |
| Handle<Code> adaptor = BUILTIN_CODE(isolate(), ArgumentsAdaptorTrampoline); |
| if (flag == CALL_FUNCTION) { |
| Call(adaptor, RelocInfo::CODE_TARGET); |
| jmp(done, Label::kNear); |
| } else { |
| Jump(adaptor, RelocInfo::CODE_TARGET); |
| } |
| #endif |
| |
| bind(®ular_invoke); |
| } else { |
| Move(rax, actual_parameter_count); |
| } |
| } |
| |
| void MacroAssembler::CallDebugOnFunctionCall(Register fun, Register new_target, |
| Register expected_parameter_count, |
| Register actual_parameter_count) { |
| FrameScope frame(this, has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); |
| |
| SmiTag(expected_parameter_count); |
| Push(expected_parameter_count); |
| |
| SmiTag(actual_parameter_count); |
| Push(actual_parameter_count); |
| SmiUntag(actual_parameter_count); |
| |
| if (new_target.is_valid()) { |
| Push(new_target); |
| } |
| Push(fun); |
| Push(fun); |
| // Arguments are located 2 words below the base pointer. |
| Operand receiver_op = Operand(rbp, kSystemPointerSize * 2); |
| Push(receiver_op); |
| CallRuntime(Runtime::kDebugOnFunctionCall); |
| Pop(fun); |
| if (new_target.is_valid()) { |
| Pop(new_target); |
| } |
| Pop(actual_parameter_count); |
| SmiUntag(actual_parameter_count); |
| Pop(expected_parameter_count); |
| SmiUntag(expected_parameter_count); |
| } |
| |
| void TurboAssembler::StubPrologue(StackFrame::Type type) { |
| pushq(rbp); // Caller's frame pointer. |
| movq(rbp, rsp); |
| Push(Immediate(StackFrame::TypeToMarker(type))); |
| } |
| |
| void TurboAssembler::Prologue() { |
| pushq(rbp); // Caller's frame pointer. |
| movq(rbp, rsp); |
| Push(kContextRegister); // Callee's context. |
| Push(kJSFunctionRegister); // Callee's JS function. |
| Push(kJavaScriptCallArgCountRegister); // Actual argument count. |
| } |
| |
| void TurboAssembler::EnterFrame(StackFrame::Type type) { |
| pushq(rbp); |
| movq(rbp, rsp); |
| Push(Immediate(StackFrame::TypeToMarker(type))); |
| } |
| |
| void TurboAssembler::LeaveFrame(StackFrame::Type type) { |
| if (emit_debug_code()) { |
| cmpq(Operand(rbp, CommonFrameConstants::kContextOrFrameTypeOffset), |
| Immediate(StackFrame::TypeToMarker(type))); |
| Check(equal, AbortReason::kStackFrameTypesMustMatch); |
| } |
| movq(rsp, rbp); |
| popq(rbp); |
| } |
| |
| #ifdef V8_TARGET_OS_WIN |
| void TurboAssembler::AllocateStackSpace(Register bytes_scratch) { |
| // In windows, we cannot increment the stack size by more than one page |
| // (minimum page size is 4KB) without accessing at least one byte on the |
| // page. Check this: |
| // https://msdn.microsoft.com/en-us/library/aa227153(v=vs.60).aspx. |
| Label check_offset; |
| Label touch_next_page; |
| jmp(&check_offset); |
| bind(&touch_next_page); |
| subq(rsp, Immediate(kStackPageSize)); |
| // Just to touch the page, before we increment further. |
| movb(Operand(rsp, 0), Immediate(0)); |
| subq(bytes_scratch, Immediate(kStackPageSize)); |
| |
| bind(&check_offset); |
| cmpq(bytes_scratch, Immediate(kStackPageSize)); |
| j(greater, &touch_next_page); |
| |
| subq(rsp, bytes_scratch); |
| } |
| |
| void TurboAssembler::AllocateStackSpace(int bytes) { |
| while (bytes > kStackPageSize) { |
| subq(rsp, Immediate(kStackPageSize)); |
| movb(Operand(rsp, 0), Immediate(0)); |
| bytes -= kStackPageSize; |
| } |
| subq(rsp, Immediate(bytes)); |
| } |
| #endif |
| |
| void MacroAssembler::EnterExitFramePrologue(bool save_rax, |
| StackFrame::Type frame_type) { |
| DCHECK(frame_type == StackFrame::EXIT || |
| frame_type == StackFrame::BUILTIN_EXIT); |
| |
| // Set up the frame structure on the stack. |
| // All constants are relative to the frame pointer of the exit frame. |
| DCHECK_EQ(kFPOnStackSize + kPCOnStackSize, |
| ExitFrameConstants::kCallerSPDisplacement); |
| DCHECK_EQ(kFPOnStackSize, ExitFrameConstants::kCallerPCOffset); |
| DCHECK_EQ(0 * kSystemPointerSize, ExitFrameConstants::kCallerFPOffset); |
| pushq(rbp); |
| movq(rbp, rsp); |
| |
| // Reserve room for entry stack pointer. |
| Push(Immediate(StackFrame::TypeToMarker(frame_type))); |
| DCHECK_EQ(-2 * kSystemPointerSize, ExitFrameConstants::kSPOffset); |
| Push(Immediate(0)); // Saved entry sp, patched before call. |
| |
| // Save the frame pointer and the context in top. |
| if (save_rax) { |
| movq(r14, rax); // Backup rax in callee-save register. |
| } |
| |
| Store( |
| ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate()), |
| rbp); |
| Store(ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()), |
| rsi); |
| Store( |
| ExternalReference::Create(IsolateAddressId::kCFunctionAddress, isolate()), |
| rbx); |
| } |
| |
| void MacroAssembler::EnterExitFrameEpilogue(int arg_stack_space, |
| bool save_doubles) { |
| #ifdef V8_TARGET_OS_WIN |
| const int kShadowSpace = 4; |
| arg_stack_space += kShadowSpace; |
| #endif |
| // Optionally save all XMM registers. |
| if (save_doubles) { |
| int space = XMMRegister::kNumRegisters * kDoubleSize + |
| arg_stack_space * kSystemPointerSize; |
| AllocateStackSpace(space); |
| int offset = -ExitFrameConstants::kFixedFrameSizeFromFp; |
| const RegisterConfiguration* config = RegisterConfiguration::Default(); |
| for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { |
| DoubleRegister reg = |
| DoubleRegister::from_code(config->GetAllocatableDoubleCode(i)); |
| Movsd(Operand(rbp, offset - ((i + 1) * kDoubleSize)), reg); |
| } |
| } else if (arg_stack_space > 0) { |
| AllocateStackSpace(arg_stack_space * kSystemPointerSize); |
| } |
| |
| // Get the required frame alignment for the OS. |
| const int kFrameAlignment = base::OS::ActivationFrameAlignment(); |
| if (kFrameAlignment > 0) { |
| DCHECK(base::bits::IsPowerOfTwo(kFrameAlignment)); |
| DCHECK(is_int8(kFrameAlignment)); |
| andq(rsp, Immediate(-kFrameAlignment)); |
| } |
| |
| // Patch the saved entry sp. |
| movq(Operand(rbp, ExitFrameConstants::kSPOffset), rsp); |
| } |
| |
| void MacroAssembler::EnterExitFrame(int arg_stack_space, bool save_doubles, |
| StackFrame::Type frame_type) { |
| EnterExitFramePrologue(true, frame_type); |
| |
| // Set up argv in callee-saved register r15. It is reused in LeaveExitFrame, |
| // so it must be retained across the C-call. |
| int offset = StandardFrameConstants::kCallerSPOffset - kSystemPointerSize; |
| leaq(r15, Operand(rbp, r14, times_system_pointer_size, offset)); |
| |
| EnterExitFrameEpilogue(arg_stack_space, save_doubles); |
| } |
| |
| void MacroAssembler::EnterApiExitFrame(int arg_stack_space) { |
| EnterExitFramePrologue(false, StackFrame::EXIT); |
| EnterExitFrameEpilogue(arg_stack_space, false); |
| } |
| |
| void MacroAssembler::LeaveExitFrame(bool save_doubles, bool pop_arguments) { |
| // Registers: |
| // r15 : argv |
| if (save_doubles) { |
| int offset = -ExitFrameConstants::kFixedFrameSizeFromFp; |
| const RegisterConfiguration* config = RegisterConfiguration::Default(); |
| for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { |
| DoubleRegister reg = |
| DoubleRegister::from_code(config->GetAllocatableDoubleCode(i)); |
| Movsd(reg, Operand(rbp, offset - ((i + 1) * kDoubleSize))); |
| } |
| } |
| |
| if (pop_arguments) { |
| // Get the return address from the stack and restore the frame pointer. |
| movq(rcx, Operand(rbp, kFPOnStackSize)); |
| movq(rbp, Operand(rbp, 0 * kSystemPointerSize)); |
| |
| // Drop everything up to and including the arguments and the receiver |
| // from the caller stack. |
| leaq(rsp, Operand(r15, 1 * kSystemPointerSize)); |
| |
| PushReturnAddressFrom(rcx); |
| } else { |
| // Otherwise just leave the exit frame. |
| leave(); |
| } |
| |
| LeaveExitFrameEpilogue(); |
| } |
| |
| void MacroAssembler::LeaveApiExitFrame() { |
| movq(rsp, rbp); |
| popq(rbp); |
| |
| LeaveExitFrameEpilogue(); |
| } |
| |
| void MacroAssembler::LeaveExitFrameEpilogue() { |
| // Restore current context from top and clear it in debug mode. |
| ExternalReference context_address = |
| ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()); |
| Operand context_operand = ExternalReferenceAsOperand(context_address); |
| movq(rsi, context_operand); |
| #ifdef DEBUG |
| movq(context_operand, Immediate(Context::kInvalidContext)); |
| #endif |
| |
| // Clear the top frame. |
| ExternalReference c_entry_fp_address = |
| ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate()); |
| Operand c_entry_fp_operand = ExternalReferenceAsOperand(c_entry_fp_address); |
| movq(c_entry_fp_operand, Immediate(0)); |
| } |
| |
| #ifdef V8_TARGET_OS_WIN |
| static const int kRegisterPassedArguments = 4; |
| #else |
| static const int kRegisterPassedArguments = 6; |
| #endif |
| |
| void MacroAssembler::LoadNativeContextSlot(int index, Register dst) { |
| // Load native context. |
| LoadMap(dst, rsi); |
| LoadTaggedPointerField( |
| dst, |
| FieldOperand(dst, Map::kConstructorOrBackPointerOrNativeContextOffset)); |
| // Load value from native context. |
| LoadTaggedPointerField(dst, Operand(dst, Context::SlotOffset(index))); |
| } |
| |
| int TurboAssembler::ArgumentStackSlotsForCFunctionCall(int num_arguments) { |
| // On Windows 64 stack slots are reserved by the caller for all arguments |
| // including the ones passed in registers, and space is always allocated for |
| // the four register arguments even if the function takes fewer than four |
| // arguments. |
| // On AMD64 ABI (Linux/Mac) the first six arguments are passed in registers |
| // and the caller does not reserve stack slots for them. |
| DCHECK_GE(num_arguments, 0); |
| #ifdef V8_TARGET_OS_WIN |
| const int kMinimumStackSlots = kRegisterPassedArguments; |
| if (num_arguments < kMinimumStackSlots) return kMinimumStackSlots; |
| return num_arguments; |
| #else |
| if (num_arguments < kRegisterPassedArguments) return 0; |
| return num_arguments - kRegisterPassedArguments; |
| #endif |
| } |
| |
| void TurboAssembler::PrepareCallCFunction(int num_arguments) { |
| int frame_alignment = base |