| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/handles/handles.h" |
| |
| #include "src/api/api.h" |
| #include "src/base/logging.h" |
| #include "src/codegen/optimized-compilation-info.h" |
| #include "src/handles/maybe-handles.h" |
| #include "src/objects/objects-inl.h" |
| #include "src/roots/roots-inl.h" |
| #include "src/utils/address-map.h" |
| #include "src/utils/identity-map.h" |
| |
| #ifdef DEBUG |
| // For GetIsolateFromWritableHeapObject. |
| #include "src/heap/heap-write-barrier-inl.h" |
| #endif |
| |
| namespace v8 { |
| namespace internal { |
| |
| // Handles should be trivially copyable so that they can be efficiently passed |
| // by value. If they are not trivially copyable, they cannot be passed in |
| // registers. |
| ASSERT_TRIVIALLY_COPYABLE(HandleBase); |
| ASSERT_TRIVIALLY_COPYABLE(Handle<Object>); |
| ASSERT_TRIVIALLY_COPYABLE(MaybeHandle<Object>); |
| |
| #ifdef DEBUG |
| bool HandleBase::IsDereferenceAllowed() const { |
| DCHECK_NOT_NULL(location_); |
| Object object(*location_); |
| if (object.IsSmi()) return true; |
| HeapObject heap_object = HeapObject::cast(object); |
| if (IsReadOnlyHeapObject(heap_object)) return true; |
| Isolate* isolate = GetIsolateFromWritableObject(heap_object); |
| RootIndex root_index; |
| if (isolate->roots_table().IsRootHandleLocation(location_, &root_index) && |
| RootsTable::IsImmortalImmovable(root_index)) { |
| return true; |
| } |
| if (isolate->IsBuiltinsTableHandleLocation(location_)) return true; |
| |
| LocalHeap* local_heap = LocalHeap::Current(); |
| if (FLAG_local_heaps && local_heap) { |
| // Local heap can't access handles when parked |
| if (!local_heap->IsHandleDereferenceAllowed()) return false; |
| |
| if (local_heap->ContainsPersistentHandle(location_) || |
| local_heap->ContainsLocalHandle(location_)) { |
| // The current thread owns the handle and thus can dereference it. |
| return true; |
| } |
| } |
| |
| return AllowHandleDereference::IsAllowed(); |
| } |
| #endif |
| |
| int HandleScope::NumberOfHandles(Isolate* isolate) { |
| HandleScopeImplementer* impl = isolate->handle_scope_implementer(); |
| int n = static_cast<int>(impl->blocks()->size()); |
| if (n == 0) return 0; |
| return ((n - 1) * kHandleBlockSize) + |
| static_cast<int>( |
| (isolate->handle_scope_data()->next - impl->blocks()->back())); |
| } |
| |
| Address* HandleScope::Extend(Isolate* isolate) { |
| HandleScopeData* current = isolate->handle_scope_data(); |
| |
| Address* result = current->next; |
| |
| DCHECK(result == current->limit); |
| // Make sure there's at least one scope on the stack and that the |
| // top of the scope stack isn't a barrier. |
| if (!Utils::ApiCheck(current->level != current->sealed_level, |
| "v8::HandleScope::CreateHandle()", |
| "Cannot create a handle without a HandleScope")) { |
| return nullptr; |
| } |
| HandleScopeImplementer* impl = isolate->handle_scope_implementer(); |
| // If there's more room in the last block, we use that. This is used |
| // for fast creation of scopes after scope barriers. |
| if (!impl->blocks()->empty()) { |
| Address* limit = &impl->blocks()->back()[kHandleBlockSize]; |
| if (current->limit != limit) { |
| current->limit = limit; |
| DCHECK_LT(limit - current->next, kHandleBlockSize); |
| } |
| } |
| |
| // If we still haven't found a slot for the handle, we extend the |
| // current handle scope by allocating a new handle block. |
| if (result == current->limit) { |
| // If there's a spare block, use it for growing the current scope. |
| result = impl->GetSpareOrNewBlock(); |
| // Add the extension to the global list of blocks, but count the |
| // extension as part of the current scope. |
| impl->blocks()->push_back(result); |
| current->limit = &result[kHandleBlockSize]; |
| } |
| |
| return result; |
| } |
| |
| void HandleScope::DeleteExtensions(Isolate* isolate) { |
| HandleScopeData* current = isolate->handle_scope_data(); |
| isolate->handle_scope_implementer()->DeleteExtensions(current->limit); |
| } |
| |
| #ifdef ENABLE_HANDLE_ZAPPING |
| void HandleScope::ZapRange(Address* start, Address* end) { |
| DCHECK_LE(end - start, kHandleBlockSize); |
| for (Address* p = start; p != end; p++) { |
| *p = static_cast<Address>(kHandleZapValue); |
| } |
| } |
| #endif |
| |
| Address HandleScope::current_level_address(Isolate* isolate) { |
| return reinterpret_cast<Address>(&isolate->handle_scope_data()->level); |
| } |
| |
| Address HandleScope::current_next_address(Isolate* isolate) { |
| return reinterpret_cast<Address>(&isolate->handle_scope_data()->next); |
| } |
| |
| Address HandleScope::current_limit_address(Isolate* isolate) { |
| return reinterpret_cast<Address>(&isolate->handle_scope_data()->limit); |
| } |
| |
| CanonicalHandleScope::CanonicalHandleScope(Isolate* isolate, |
| OptimizedCompilationInfo* info) |
| : isolate_(isolate), |
| info_(info), |
| zone_(info ? info->zone() : new Zone(isolate->allocator(), ZONE_NAME)) { |
| HandleScopeData* handle_scope_data = isolate_->handle_scope_data(); |
| prev_canonical_scope_ = handle_scope_data->canonical_scope; |
| handle_scope_data->canonical_scope = this; |
| root_index_map_ = new RootIndexMap(isolate); |
| identity_map_ = std::make_unique<CanonicalHandlesMap>( |
| isolate->heap(), ZoneAllocationPolicy(zone_)); |
| canonical_level_ = handle_scope_data->level; |
| } |
| |
| CanonicalHandleScope::~CanonicalHandleScope() { |
| delete root_index_map_; |
| if (info_) { |
| // If we passed a compilation info as parameter, we created the identity map |
| // on its zone(). Then, we pass it to the compilation info which is |
| // responsible for the disposal. |
| info_->set_canonical_handles(DetachCanonicalHandles()); |
| } else { |
| // If we don't have a compilation info, we created the zone manually. To |
| // properly dispose of said zone, we need to first free the identity_map_. |
| // Then we do so manually even though identity_map_ is a unique_ptr. |
| identity_map_.reset(); |
| delete zone_; |
| } |
| isolate_->handle_scope_data()->canonical_scope = prev_canonical_scope_; |
| } |
| |
| Address* CanonicalHandleScope::Lookup(Address object) { |
| DCHECK_LE(canonical_level_, isolate_->handle_scope_data()->level); |
| if (isolate_->handle_scope_data()->level != canonical_level_) { |
| // We are in an inner handle scope. Do not canonicalize since we will leave |
| // this handle scope while still being in the canonical scope. |
| return HandleScope::CreateHandle(isolate_, object); |
| } |
| if (Internals::HasHeapObjectTag(object)) { |
| RootIndex root_index; |
| if (root_index_map_->Lookup(object, &root_index)) { |
| return isolate_->root_handle(root_index).location(); |
| } |
| } |
| auto find_result = identity_map_->FindOrInsert(Object(object)); |
| if (!find_result.already_exists) { |
| // Allocate new handle location. |
| *find_result.entry = HandleScope::CreateHandle(isolate_, object); |
| } |
| return *find_result.entry; |
| } |
| |
| std::unique_ptr<CanonicalHandlesMap> |
| CanonicalHandleScope::DetachCanonicalHandles() { |
| return std::move(identity_map_); |
| } |
| |
| } // namespace internal |
| } // namespace v8 |