| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
| /* vim: set ts=8 sts=2 et sw=2 tw=80: */ |
| /* This Source Code Form is subject to the terms of the Mozilla Public |
| * License, v. 2.0. If a copy of the MPL was not distributed with this file, |
| * You can obtain one at http://mozilla.org/MPL/2.0/. */ |
| |
| #include <math.h> |
| |
| #include "mozilla/Assertions.h" |
| #include "mozilla/PodOperations.h" |
| #include "mozilla/XorShift128PlusRNG.h" |
| |
| using mozilla::non_crypto::XorShift128PlusRNG; |
| |
| static void |
| TestDumbSequence() |
| { |
| XorShift128PlusRNG rng(1, 4); |
| |
| // Calculated by hand following the algorithm given in the paper. The upper |
| // bits are mostly zero because we started with a poor seed; once it has run |
| // for a while, we'll get an even mix of ones and zeros in all 64 bits. |
| MOZ_RELEASE_ASSERT(rng.next() == 0x800049); |
| MOZ_RELEASE_ASSERT(rng.next() == 0x3000186); |
| MOZ_RELEASE_ASSERT(rng.next() == 0x400003001145); |
| |
| // Using ldexp here lets us write out the mantissa in hex, so we can compare |
| // them with the results generated by hand. |
| MOZ_RELEASE_ASSERT(rng.nextDouble() |
| == ldexp(static_cast<double>(0x1400003105049), -53)); |
| MOZ_RELEASE_ASSERT(rng.nextDouble() |
| == ldexp(static_cast<double>(0x2000802e49146), -53)); |
| MOZ_RELEASE_ASSERT(rng.nextDouble() |
| == ldexp(static_cast<double>(0x248300468544d), -53)); |
| } |
| |
| static size_t |
| Population(uint64_t n) |
| { |
| size_t pop = 0; |
| |
| while (n > 0) { |
| n &= n-1; // Clear the rightmost 1-bit in n. |
| pop++; |
| } |
| |
| return pop; |
| } |
| |
| static void |
| TestPopulation() |
| { |
| XorShift128PlusRNG rng(698079309544035222ULL, 6012389156611637584ULL); |
| |
| // Give it some time to warm up; it should tend towards more |
| // even distributions of zeros and ones. |
| for (size_t i = 0; i < 40; i++) |
| rng.next(); |
| |
| for (size_t i = 0; i < 40; i++) { |
| size_t pop = Population(rng.next()); |
| MOZ_RELEASE_ASSERT(24 <= pop && pop <= 40); |
| } |
| } |
| |
| static void |
| TestSetState() |
| { |
| static const uint64_t seed[2] = { 1795644156779822404ULL, 14162896116325912595ULL }; |
| XorShift128PlusRNG rng(seed[0], seed[1]); |
| |
| const size_t n = 10; |
| uint64_t log[n]; |
| |
| for (size_t i = 0; i < n; i++) |
| log[i] = rng.next(); |
| |
| rng.setState(seed[0], seed[1]); |
| |
| for (size_t i = 0; i < n; i++) |
| MOZ_RELEASE_ASSERT(log[i] == rng.next()); |
| } |
| |
| static void |
| TestDoubleDistribution() |
| { |
| XorShift128PlusRNG rng(0xa207aaede6859736, 0xaca6ca5060804791); |
| |
| const size_t n = 100; |
| size_t bins[n]; |
| mozilla::PodArrayZero(bins); |
| |
| // This entire file runs in 0.006s on my laptop. Generating |
| // more numbers lets us put tighter bounds on the bins. |
| for (size_t i = 0; i < 100000; i++) { |
| double d = rng.nextDouble(); |
| MOZ_RELEASE_ASSERT(0.0 <= d && d < 1.0); |
| bins[(int) (d * n)]++; |
| } |
| |
| for (size_t i = 0; i < n; i++) { |
| MOZ_RELEASE_ASSERT(900 <= bins[i] && bins[i] <= 1100); |
| } |
| } |
| |
| int |
| main() |
| { |
| TestDumbSequence(); |
| TestPopulation(); |
| TestSetState(); |
| TestDoubleDistribution(); |
| |
| return 0; |
| } |