blob: 99fef31d16d4492f45a60ff9529058c6eddda6cc [file] [log] [blame]
/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <immintrin.h>
#include "./vp9_rtcd.h"
#include "vpx/vpx_integer.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_dsp/x86/bitdepth_conversion_avx2.h"
int64_t vp9_block_error_avx2(const tran_low_t *coeff, const tran_low_t *dqcoeff,
intptr_t block_size, int64_t *ssz) {
__m256i sse_256, ssz_256;
__m256i exp_dqcoeff_lo, exp_dqcoeff_hi, exp_coeff_lo, exp_coeff_hi;
__m256i sse_hi, ssz_hi;
__m128i sse_128, ssz_128;
int64_t sse;
const __m256i zero = _mm256_setzero_si256();
// If the block size is 16 then the results will fit in 32 bits.
if (block_size == 16) {
__m256i coeff_256, dqcoeff_256, coeff_hi, dqcoeff_hi;
// Load 16 elements for coeff and dqcoeff.
coeff_256 = load_tran_low(coeff);
dqcoeff_256 = load_tran_low(dqcoeff);
// dqcoeff - coeff
dqcoeff_256 = _mm256_sub_epi16(dqcoeff_256, coeff_256);
// madd (dqcoeff - coeff)
dqcoeff_256 = _mm256_madd_epi16(dqcoeff_256, dqcoeff_256);
// madd coeff
coeff_256 = _mm256_madd_epi16(coeff_256, coeff_256);
// Save the higher 64 bit of each 128 bit lane.
dqcoeff_hi = _mm256_srli_si256(dqcoeff_256, 8);
coeff_hi = _mm256_srli_si256(coeff_256, 8);
// Add the higher 64 bit to the low 64 bit.
dqcoeff_256 = _mm256_add_epi32(dqcoeff_256, dqcoeff_hi);
coeff_256 = _mm256_add_epi32(coeff_256, coeff_hi);
// Expand each double word in the lower 64 bits to quad word.
sse_256 = _mm256_unpacklo_epi32(dqcoeff_256, zero);
ssz_256 = _mm256_unpacklo_epi32(coeff_256, zero);
} else {
int i;
assert(block_size % 32 == 0);
sse_256 = zero;
ssz_256 = zero;
for (i = 0; i < block_size; i += 32) {
__m256i coeff_0, coeff_1, dqcoeff_0, dqcoeff_1;
// Load 32 elements for coeff and dqcoeff.
coeff_0 = load_tran_low(coeff + i);
dqcoeff_0 = load_tran_low(dqcoeff + i);
coeff_1 = load_tran_low(coeff + i + 16);
dqcoeff_1 = load_tran_low(dqcoeff + i + 16);
// dqcoeff - coeff
dqcoeff_0 = _mm256_sub_epi16(dqcoeff_0, coeff_0);
dqcoeff_1 = _mm256_sub_epi16(dqcoeff_1, coeff_1);
// madd (dqcoeff - coeff)
dqcoeff_0 = _mm256_madd_epi16(dqcoeff_0, dqcoeff_0);
dqcoeff_1 = _mm256_madd_epi16(dqcoeff_1, dqcoeff_1);
// madd coeff
coeff_0 = _mm256_madd_epi16(coeff_0, coeff_0);
coeff_1 = _mm256_madd_epi16(coeff_1, coeff_1);
// Add the first madd (dqcoeff - coeff) with the second.
dqcoeff_0 = _mm256_add_epi32(dqcoeff_0, dqcoeff_1);
// Add the first madd (coeff) with the second.
coeff_0 = _mm256_add_epi32(coeff_0, coeff_1);
// Expand each double word of madd (dqcoeff - coeff) to quad word.
exp_dqcoeff_lo = _mm256_unpacklo_epi32(dqcoeff_0, zero);
exp_dqcoeff_hi = _mm256_unpackhi_epi32(dqcoeff_0, zero);
// expand each double word of madd (coeff) to quad word
exp_coeff_lo = _mm256_unpacklo_epi32(coeff_0, zero);
exp_coeff_hi = _mm256_unpackhi_epi32(coeff_0, zero);
// Add each quad word of madd (dqcoeff - coeff) and madd (coeff).
sse_256 = _mm256_add_epi64(sse_256, exp_dqcoeff_lo);
ssz_256 = _mm256_add_epi64(ssz_256, exp_coeff_lo);
sse_256 = _mm256_add_epi64(sse_256, exp_dqcoeff_hi);
ssz_256 = _mm256_add_epi64(ssz_256, exp_coeff_hi);
}
}
// Save the higher 64 bit of each 128 bit lane.
sse_hi = _mm256_srli_si256(sse_256, 8);
ssz_hi = _mm256_srli_si256(ssz_256, 8);
// Add the higher 64 bit to the low 64 bit.
sse_256 = _mm256_add_epi64(sse_256, sse_hi);
ssz_256 = _mm256_add_epi64(ssz_256, ssz_hi);
// Add each 64 bit from each of the 128 bit lane of the 256 bit.
sse_128 = _mm_add_epi64(_mm256_castsi256_si128(sse_256),
_mm256_extractf128_si256(sse_256, 1));
ssz_128 = _mm_add_epi64(_mm256_castsi256_si128(ssz_256),
_mm256_extractf128_si256(ssz_256, 1));
// Store the results.
_mm_storel_epi64((__m128i *)(&sse), sse_128);
_mm_storel_epi64((__m128i *)(ssz), ssz_128);
return sse;
}
int64_t vp9_block_error_fp_avx2(const tran_low_t *coeff,
const tran_low_t *dqcoeff, int block_size) {
int i;
const __m256i zero = _mm256_setzero_si256();
__m256i sse_256 = zero;
__m256i sse_hi;
__m128i sse_128;
int64_t sse;
if (block_size == 16) {
// Load 16 elements for coeff and dqcoeff.
const __m256i _coeff = load_tran_low(coeff);
const __m256i _dqcoeff = load_tran_low(dqcoeff);
// dqcoeff - coeff
const __m256i diff = _mm256_sub_epi16(_dqcoeff, _coeff);
// madd (dqcoeff - coeff)
const __m256i error_lo = _mm256_madd_epi16(diff, diff);
// Save the higher 64 bit of each 128 bit lane.
const __m256i error_hi = _mm256_srli_si256(error_lo, 8);
// Add the higher 64 bit to the low 64 bit.
const __m256i error = _mm256_add_epi32(error_lo, error_hi);
// Expand each double word in the lower 64 bits to quad word.
sse_256 = _mm256_unpacklo_epi32(error, zero);
} else {
for (i = 0; i < block_size; i += 16) {
// Load 16 elements for coeff and dqcoeff.
const __m256i _coeff = load_tran_low(coeff);
const __m256i _dqcoeff = load_tran_low(dqcoeff);
const __m256i diff = _mm256_sub_epi16(_dqcoeff, _coeff);
const __m256i error = _mm256_madd_epi16(diff, diff);
// Expand each double word of madd (dqcoeff - coeff) to quad word.
const __m256i exp_error_lo = _mm256_unpacklo_epi32(error, zero);
const __m256i exp_error_hi = _mm256_unpackhi_epi32(error, zero);
// Add each quad word of madd (dqcoeff - coeff).
sse_256 = _mm256_add_epi64(sse_256, exp_error_lo);
sse_256 = _mm256_add_epi64(sse_256, exp_error_hi);
coeff += 16;
dqcoeff += 16;
}
}
// Save the higher 64 bit of each 128 bit lane.
sse_hi = _mm256_srli_si256(sse_256, 8);
// Add the higher 64 bit to the low 64 bit.
sse_256 = _mm256_add_epi64(sse_256, sse_hi);
// Add each 64 bit from each of the 128 bit lane of the 256 bit.
sse_128 = _mm_add_epi64(_mm256_castsi256_si128(sse_256),
_mm256_extractf128_si256(sse_256, 1));
// Store the results.
_mm_storel_epi64((__m128i *)&sse, sse_128);
return sse;
}