| //===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// This file implements classes for searching and anlyzing source code clones. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Analysis/CloneDetection.h" |
| |
| #include "clang/AST/DataCollection.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "llvm/Support/MD5.h" |
| #include "llvm/Support/Path.h" |
| |
| using namespace clang; |
| |
| StmtSequence::StmtSequence(const CompoundStmt *Stmt, const Decl *D, |
| unsigned StartIndex, unsigned EndIndex) |
| : S(Stmt), D(D), StartIndex(StartIndex), EndIndex(EndIndex) { |
| assert(Stmt && "Stmt must not be a nullptr"); |
| assert(StartIndex < EndIndex && "Given array should not be empty"); |
| assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt"); |
| } |
| |
| StmtSequence::StmtSequence(const Stmt *Stmt, const Decl *D) |
| : S(Stmt), D(D), StartIndex(0), EndIndex(0) {} |
| |
| StmtSequence::StmtSequence() |
| : S(nullptr), D(nullptr), StartIndex(0), EndIndex(0) {} |
| |
| bool StmtSequence::contains(const StmtSequence &Other) const { |
| // If both sequences reside in different declarations, they can never contain |
| // each other. |
| if (D != Other.D) |
| return false; |
| |
| const SourceManager &SM = getASTContext().getSourceManager(); |
| |
| // Otherwise check if the start and end locations of the current sequence |
| // surround the other sequence. |
| bool StartIsInBounds = |
| SM.isBeforeInTranslationUnit(getStartLoc(), Other.getStartLoc()) || |
| getStartLoc() == Other.getStartLoc(); |
| if (!StartIsInBounds) |
| return false; |
| |
| bool EndIsInBounds = |
| SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) || |
| Other.getEndLoc() == getEndLoc(); |
| return EndIsInBounds; |
| } |
| |
| StmtSequence::iterator StmtSequence::begin() const { |
| if (!holdsSequence()) { |
| return &S; |
| } |
| auto CS = cast<CompoundStmt>(S); |
| return CS->body_begin() + StartIndex; |
| } |
| |
| StmtSequence::iterator StmtSequence::end() const { |
| if (!holdsSequence()) { |
| return reinterpret_cast<StmtSequence::iterator>(&S) + 1; |
| } |
| auto CS = cast<CompoundStmt>(S); |
| return CS->body_begin() + EndIndex; |
| } |
| |
| ASTContext &StmtSequence::getASTContext() const { |
| assert(D); |
| return D->getASTContext(); |
| } |
| |
| SourceLocation StmtSequence::getBeginLoc() const { |
| return front()->getLocStart(); |
| } |
| |
| SourceLocation StmtSequence::getEndLoc() const { return back()->getLocEnd(); } |
| |
| SourceRange StmtSequence::getSourceRange() const { |
| return SourceRange(getStartLoc(), getEndLoc()); |
| } |
| |
| void CloneDetector::analyzeCodeBody(const Decl *D) { |
| assert(D); |
| assert(D->hasBody()); |
| |
| Sequences.push_back(StmtSequence(D->getBody(), D)); |
| } |
| |
| /// Returns true if and only if \p Stmt contains at least one other |
| /// sequence in the \p Group. |
| static bool containsAnyInGroup(StmtSequence &Seq, |
| CloneDetector::CloneGroup &Group) { |
| for (StmtSequence &GroupSeq : Group) { |
| if (Seq.contains(GroupSeq)) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Returns true if and only if all sequences in \p OtherGroup are |
| /// contained by a sequence in \p Group. |
| static bool containsGroup(CloneDetector::CloneGroup &Group, |
| CloneDetector::CloneGroup &OtherGroup) { |
| // We have less sequences in the current group than we have in the other, |
| // so we will never fulfill the requirement for returning true. This is only |
| // possible because we know that a sequence in Group can contain at most |
| // one sequence in OtherGroup. |
| if (Group.size() < OtherGroup.size()) |
| return false; |
| |
| for (StmtSequence &Stmt : Group) { |
| if (!containsAnyInGroup(Stmt, OtherGroup)) |
| return false; |
| } |
| return true; |
| } |
| |
| void OnlyLargestCloneConstraint::constrain( |
| std::vector<CloneDetector::CloneGroup> &Result) { |
| std::vector<unsigned> IndexesToRemove; |
| |
| // Compare every group in the result with the rest. If one groups contains |
| // another group, we only need to return the bigger group. |
| // Note: This doesn't scale well, so if possible avoid calling any heavy |
| // function from this loop to minimize the performance impact. |
| for (unsigned i = 0; i < Result.size(); ++i) { |
| for (unsigned j = 0; j < Result.size(); ++j) { |
| // Don't compare a group with itself. |
| if (i == j) |
| continue; |
| |
| if (containsGroup(Result[j], Result[i])) { |
| IndexesToRemove.push_back(i); |
| break; |
| } |
| } |
| } |
| |
| // Erasing a list of indexes from the vector should be done with decreasing |
| // indexes. As IndexesToRemove is constructed with increasing values, we just |
| // reverse iterate over it to get the desired order. |
| for (auto I = IndexesToRemove.rbegin(); I != IndexesToRemove.rend(); ++I) { |
| Result.erase(Result.begin() + *I); |
| } |
| } |
| |
| bool FilenamePatternConstraint::isAutoGenerated( |
| const CloneDetector::CloneGroup &Group) { |
| std::string Error; |
| if (IgnoredFilesPattern.empty() || Group.empty() || |
| !IgnoredFilesRegex->isValid(Error)) |
| return false; |
| |
| for (const StmtSequence &S : Group) { |
| const SourceManager &SM = S.getASTContext().getSourceManager(); |
| StringRef Filename = llvm::sys::path::filename( |
| SM.getFilename(S.getContainingDecl()->getLocation())); |
| if (IgnoredFilesRegex->match(Filename)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// This class defines what a type II code clone is: If it collects for two |
| /// statements the same data, then those two statements are considered to be |
| /// clones of each other. |
| /// |
| /// All collected data is forwarded to the given data consumer of the type T. |
| /// The data consumer class needs to provide a member method with the signature: |
| /// update(StringRef Str) |
| namespace { |
| template <class T> |
| class CloneTypeIIStmtDataCollector |
| : public ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>> { |
| ASTContext &Context; |
| /// The data sink to which all data is forwarded. |
| T &DataConsumer; |
| |
| template <class Ty> void addData(const Ty &Data) { |
| data_collection::addDataToConsumer(DataConsumer, Data); |
| } |
| |
| public: |
| CloneTypeIIStmtDataCollector(const Stmt *S, ASTContext &Context, |
| T &DataConsumer) |
| : Context(Context), DataConsumer(DataConsumer) { |
| this->Visit(S); |
| } |
| |
| // Define a visit method for each class to collect data and subsequently visit |
| // all parent classes. This uses a template so that custom visit methods by us |
| // take precedence. |
| #define DEF_ADD_DATA(CLASS, CODE) \ |
| template <class = void> void Visit##CLASS(const CLASS *S) { \ |
| CODE; \ |
| ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S); \ |
| } |
| |
| #include "clang/AST/StmtDataCollectors.inc" |
| |
| // Type II clones ignore variable names and literals, so let's skip them. |
| #define SKIP(CLASS) \ |
| void Visit##CLASS(const CLASS *S) { \ |
| ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S); \ |
| } |
| SKIP(DeclRefExpr) |
| SKIP(MemberExpr) |
| SKIP(IntegerLiteral) |
| SKIP(FloatingLiteral) |
| SKIP(StringLiteral) |
| SKIP(CXXBoolLiteralExpr) |
| SKIP(CharacterLiteral) |
| #undef SKIP |
| }; |
| } // end anonymous namespace |
| |
| static size_t createHash(llvm::MD5 &Hash) { |
| size_t HashCode; |
| |
| // Create the final hash code for the current Stmt. |
| llvm::MD5::MD5Result HashResult; |
| Hash.final(HashResult); |
| |
| // Copy as much as possible of the generated hash code to the Stmt's hash |
| // code. |
| std::memcpy(&HashCode, &HashResult, |
| std::min(sizeof(HashCode), sizeof(HashResult))); |
| |
| return HashCode; |
| } |
| |
| /// Generates and saves a hash code for the given Stmt. |
| /// \param S The given Stmt. |
| /// \param D The Decl containing S. |
| /// \param StmtsByHash Output parameter that will contain the hash codes for |
| /// each StmtSequence in the given Stmt. |
| /// \return The hash code of the given Stmt. |
| /// |
| /// If the given Stmt is a CompoundStmt, this method will also generate |
| /// hashes for all possible StmtSequences in the children of this Stmt. |
| static size_t |
| saveHash(const Stmt *S, const Decl *D, |
| std::vector<std::pair<size_t, StmtSequence>> &StmtsByHash) { |
| llvm::MD5 Hash; |
| ASTContext &Context = D->getASTContext(); |
| |
| CloneTypeIIStmtDataCollector<llvm::MD5>(S, Context, Hash); |
| |
| auto CS = dyn_cast<CompoundStmt>(S); |
| SmallVector<size_t, 8> ChildHashes; |
| |
| for (const Stmt *Child : S->children()) { |
| if (Child == nullptr) { |
| ChildHashes.push_back(0); |
| continue; |
| } |
| size_t ChildHash = saveHash(Child, D, StmtsByHash); |
| Hash.update( |
| StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash))); |
| ChildHashes.push_back(ChildHash); |
| } |
| |
| if (CS) { |
| // If we're in a CompoundStmt, we hash all possible combinations of child |
| // statements to find clones in those subsequences. |
| // We first go through every possible starting position of a subsequence. |
| for (unsigned Pos = 0; Pos < CS->size(); ++Pos) { |
| // Then we try all possible lengths this subsequence could have and |
| // reuse the same hash object to make sure we only hash every child |
| // hash exactly once. |
| llvm::MD5 Hash; |
| for (unsigned Length = 1; Length <= CS->size() - Pos; ++Length) { |
| // Grab the current child hash and put it into our hash. We do |
| // -1 on the index because we start counting the length at 1. |
| size_t ChildHash = ChildHashes[Pos + Length - 1]; |
| Hash.update( |
| StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash))); |
| // If we have at least two elements in our subsequence, we can start |
| // saving it. |
| if (Length > 1) { |
| llvm::MD5 SubHash = Hash; |
| StmtsByHash.push_back(std::make_pair( |
| createHash(SubHash), StmtSequence(CS, D, Pos, Pos + Length))); |
| } |
| } |
| } |
| } |
| |
| size_t HashCode = createHash(Hash); |
| StmtsByHash.push_back(std::make_pair(HashCode, StmtSequence(S, D))); |
| return HashCode; |
| } |
| |
| namespace { |
| /// Wrapper around FoldingSetNodeID that it can be used as the template |
| /// argument of the StmtDataCollector. |
| class FoldingSetNodeIDWrapper { |
| |
| llvm::FoldingSetNodeID &FS; |
| |
| public: |
| FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {} |
| |
| void update(StringRef Str) { FS.AddString(Str); } |
| }; |
| } // end anonymous namespace |
| |
| /// Writes the relevant data from all statements and child statements |
| /// in the given StmtSequence into the given FoldingSetNodeID. |
| static void CollectStmtSequenceData(const StmtSequence &Sequence, |
| FoldingSetNodeIDWrapper &OutputData) { |
| for (const Stmt *S : Sequence) { |
| CloneTypeIIStmtDataCollector<FoldingSetNodeIDWrapper>( |
| S, Sequence.getASTContext(), OutputData); |
| |
| for (const Stmt *Child : S->children()) { |
| if (!Child) |
| continue; |
| |
| CollectStmtSequenceData(StmtSequence(Child, Sequence.getContainingDecl()), |
| OutputData); |
| } |
| } |
| } |
| |
| /// Returns true if both sequences are clones of each other. |
| static bool areSequencesClones(const StmtSequence &LHS, |
| const StmtSequence &RHS) { |
| // We collect the data from all statements in the sequence as we did before |
| // when generating a hash value for each sequence. But this time we don't |
| // hash the collected data and compare the whole data set instead. This |
| // prevents any false-positives due to hash code collisions. |
| llvm::FoldingSetNodeID DataLHS, DataRHS; |
| FoldingSetNodeIDWrapper LHSWrapper(DataLHS); |
| FoldingSetNodeIDWrapper RHSWrapper(DataRHS); |
| |
| CollectStmtSequenceData(LHS, LHSWrapper); |
| CollectStmtSequenceData(RHS, RHSWrapper); |
| |
| return DataLHS == DataRHS; |
| } |
| |
| void RecursiveCloneTypeIIHashConstraint::constrain( |
| std::vector<CloneDetector::CloneGroup> &Sequences) { |
| // FIXME: Maybe we can do this in-place and don't need this additional vector. |
| std::vector<CloneDetector::CloneGroup> Result; |
| |
| for (CloneDetector::CloneGroup &Group : Sequences) { |
| // We assume in the following code that the Group is non-empty, so we |
| // skip all empty groups. |
| if (Group.empty()) |
| continue; |
| |
| std::vector<std::pair<size_t, StmtSequence>> StmtsByHash; |
| |
| // Generate hash codes for all children of S and save them in StmtsByHash. |
| for (const StmtSequence &S : Group) { |
| saveHash(S.front(), S.getContainingDecl(), StmtsByHash); |
| } |
| |
| // Sort hash_codes in StmtsByHash. |
| std::stable_sort(StmtsByHash.begin(), StmtsByHash.end(), |
| [](std::pair<size_t, StmtSequence> LHS, |
| std::pair<size_t, StmtSequence> RHS) { |
| return LHS.first < RHS.first; |
| }); |
| |
| // Check for each StmtSequence if its successor has the same hash value. |
| // We don't check the last StmtSequence as it has no successor. |
| // Note: The 'size - 1 ' in the condition is safe because we check for an |
| // empty Group vector at the beginning of this function. |
| for (unsigned i = 0; i < StmtsByHash.size() - 1; ++i) { |
| const auto Current = StmtsByHash[i]; |
| |
| // It's likely that we just found a sequence of StmtSequences that |
| // represent a CloneGroup, so we create a new group and start checking and |
| // adding the StmtSequences in this sequence. |
| CloneDetector::CloneGroup NewGroup; |
| |
| size_t PrototypeHash = Current.first; |
| |
| for (; i < StmtsByHash.size(); ++i) { |
| // A different hash value means we have reached the end of the sequence. |
| if (PrototypeHash != StmtsByHash[i].first) { |
| // The current sequence could be the start of a new CloneGroup. So we |
| // decrement i so that we visit it again in the outer loop. |
| // Note: i can never be 0 at this point because we are just comparing |
| // the hash of the Current StmtSequence with itself in the 'if' above. |
| assert(i != 0); |
| --i; |
| break; |
| } |
| // Same hash value means we should add the StmtSequence to the current |
| // group. |
| NewGroup.push_back(StmtsByHash[i].second); |
| } |
| |
| // We created a new clone group with matching hash codes and move it to |
| // the result vector. |
| Result.push_back(NewGroup); |
| } |
| } |
| // Sequences is the output parameter, so we copy our result into it. |
| Sequences = Result; |
| } |
| |
| void RecursiveCloneTypeIIVerifyConstraint::constrain( |
| std::vector<CloneDetector::CloneGroup> &Sequences) { |
| CloneConstraint::splitCloneGroups( |
| Sequences, [](const StmtSequence &A, const StmtSequence &B) { |
| return areSequencesClones(A, B); |
| }); |
| } |
| |
| size_t MinComplexityConstraint::calculateStmtComplexity( |
| const StmtSequence &Seq, std::size_t Limit, |
| const std::string &ParentMacroStack) { |
| if (Seq.empty()) |
| return 0; |
| |
| size_t Complexity = 1; |
| |
| ASTContext &Context = Seq.getASTContext(); |
| |
| // Look up what macros expanded into the current statement. |
| std::string MacroStack = |
| data_collection::getMacroStack(Seq.getStartLoc(), Context); |
| |
| // First, check if ParentMacroStack is not empty which means we are currently |
| // dealing with a parent statement which was expanded from a macro. |
| // If this parent statement was expanded from the same macros as this |
| // statement, we reduce the initial complexity of this statement to zero. |
| // This causes that a group of statements that were generated by a single |
| // macro expansion will only increase the total complexity by one. |
| // Note: This is not the final complexity of this statement as we still |
| // add the complexity of the child statements to the complexity value. |
| if (!ParentMacroStack.empty() && MacroStack == ParentMacroStack) { |
| Complexity = 0; |
| } |
| |
| // Iterate over the Stmts in the StmtSequence and add their complexity values |
| // to the current complexity value. |
| if (Seq.holdsSequence()) { |
| for (const Stmt *S : Seq) { |
| Complexity += calculateStmtComplexity( |
| StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack); |
| if (Complexity >= Limit) |
| return Limit; |
| } |
| } else { |
| for (const Stmt *S : Seq.front()->children()) { |
| Complexity += calculateStmtComplexity( |
| StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack); |
| if (Complexity >= Limit) |
| return Limit; |
| } |
| } |
| return Complexity; |
| } |
| |
| void MatchingVariablePatternConstraint::constrain( |
| std::vector<CloneDetector::CloneGroup> &CloneGroups) { |
| CloneConstraint::splitCloneGroups( |
| CloneGroups, [](const StmtSequence &A, const StmtSequence &B) { |
| VariablePattern PatternA(A); |
| VariablePattern PatternB(B); |
| return PatternA.countPatternDifferences(PatternB) == 0; |
| }); |
| } |
| |
| void CloneConstraint::splitCloneGroups( |
| std::vector<CloneDetector::CloneGroup> &CloneGroups, |
| llvm::function_ref<bool(const StmtSequence &, const StmtSequence &)> |
| Compare) { |
| std::vector<CloneDetector::CloneGroup> Result; |
| for (auto &HashGroup : CloneGroups) { |
| // Contains all indexes in HashGroup that were already added to a |
| // CloneGroup. |
| std::vector<char> Indexes; |
| Indexes.resize(HashGroup.size()); |
| |
| for (unsigned i = 0; i < HashGroup.size(); ++i) { |
| // Skip indexes that are already part of a CloneGroup. |
| if (Indexes[i]) |
| continue; |
| |
| // Pick the first unhandled StmtSequence and consider it as the |
| // beginning |
| // of a new CloneGroup for now. |
| // We don't add i to Indexes because we never iterate back. |
| StmtSequence Prototype = HashGroup[i]; |
| CloneDetector::CloneGroup PotentialGroup = {Prototype}; |
| ++Indexes[i]; |
| |
| // Check all following StmtSequences for clones. |
| for (unsigned j = i + 1; j < HashGroup.size(); ++j) { |
| // Skip indexes that are already part of a CloneGroup. |
| if (Indexes[j]) |
| continue; |
| |
| // If a following StmtSequence belongs to our CloneGroup, we add it. |
| const StmtSequence &Candidate = HashGroup[j]; |
| |
| if (!Compare(Prototype, Candidate)) |
| continue; |
| |
| PotentialGroup.push_back(Candidate); |
| // Make sure we never visit this StmtSequence again. |
| ++Indexes[j]; |
| } |
| |
| // Otherwise, add it to the result and continue searching for more |
| // groups. |
| Result.push_back(PotentialGroup); |
| } |
| |
| assert(std::all_of(Indexes.begin(), Indexes.end(), |
| [](char c) { return c == 1; })); |
| } |
| CloneGroups = Result; |
| } |
| |
| void VariablePattern::addVariableOccurence(const VarDecl *VarDecl, |
| const Stmt *Mention) { |
| // First check if we already reference this variable |
| for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) { |
| if (Variables[KindIndex] == VarDecl) { |
| // If yes, add a new occurrence that points to the existing entry in |
| // the Variables vector. |
| Occurences.emplace_back(KindIndex, Mention); |
| return; |
| } |
| } |
| // If this variable wasn't already referenced, add it to the list of |
| // referenced variables and add a occurrence that points to this new entry. |
| Occurences.emplace_back(Variables.size(), Mention); |
| Variables.push_back(VarDecl); |
| } |
| |
| void VariablePattern::addVariables(const Stmt *S) { |
| // Sometimes we get a nullptr (such as from IfStmts which often have nullptr |
| // children). We skip such statements as they don't reference any |
| // variables. |
| if (!S) |
| return; |
| |
| // Check if S is a reference to a variable. If yes, add it to the pattern. |
| if (auto D = dyn_cast<DeclRefExpr>(S)) { |
| if (auto VD = dyn_cast<VarDecl>(D->getDecl()->getCanonicalDecl())) |
| addVariableOccurence(VD, D); |
| } |
| |
| // Recursively check all children of the given statement. |
| for (const Stmt *Child : S->children()) { |
| addVariables(Child); |
| } |
| } |
| |
| unsigned VariablePattern::countPatternDifferences( |
| const VariablePattern &Other, |
| VariablePattern::SuspiciousClonePair *FirstMismatch) { |
| unsigned NumberOfDifferences = 0; |
| |
| assert(Other.Occurences.size() == Occurences.size()); |
| for (unsigned i = 0; i < Occurences.size(); ++i) { |
| auto ThisOccurence = Occurences[i]; |
| auto OtherOccurence = Other.Occurences[i]; |
| if (ThisOccurence.KindID == OtherOccurence.KindID) |
| continue; |
| |
| ++NumberOfDifferences; |
| |
| // If FirstMismatch is not a nullptr, we need to store information about |
| // the first difference between the two patterns. |
| if (FirstMismatch == nullptr) |
| continue; |
| |
| // Only proceed if we just found the first difference as we only store |
| // information about the first difference. |
| if (NumberOfDifferences != 1) |
| continue; |
| |
| const VarDecl *FirstSuggestion = nullptr; |
| // If there is a variable available in the list of referenced variables |
| // which wouldn't break the pattern if it is used in place of the |
| // current variable, we provide this variable as the suggested fix. |
| if (OtherOccurence.KindID < Variables.size()) |
| FirstSuggestion = Variables[OtherOccurence.KindID]; |
| |
| // Store information about the first clone. |
| FirstMismatch->FirstCloneInfo = |
| VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo( |
| Variables[ThisOccurence.KindID], ThisOccurence.Mention, |
| FirstSuggestion); |
| |
| // Same as above but with the other clone. We do this for both clones as |
| // we don't know which clone is the one containing the unintended |
| // pattern error. |
| const VarDecl *SecondSuggestion = nullptr; |
| if (ThisOccurence.KindID < Other.Variables.size()) |
| SecondSuggestion = Other.Variables[ThisOccurence.KindID]; |
| |
| // Store information about the second clone. |
| FirstMismatch->SecondCloneInfo = |
| VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo( |
| Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention, |
| SecondSuggestion); |
| |
| // SuspiciousClonePair guarantees that the first clone always has a |
| // suggested variable associated with it. As we know that one of the two |
| // clones in the pair always has suggestion, we swap the two clones |
| // in case the first clone has no suggested variable which means that |
| // the second clone has a suggested variable and should be first. |
| if (!FirstMismatch->FirstCloneInfo.Suggestion) |
| std::swap(FirstMismatch->FirstCloneInfo, FirstMismatch->SecondCloneInfo); |
| |
| // This ensures that we always have at least one suggestion in a pair. |
| assert(FirstMismatch->FirstCloneInfo.Suggestion); |
| } |
| |
| return NumberOfDifferences; |
| } |