| #region Copyright notice and license |
| // Protocol Buffers - Google's data interchange format |
| // Copyright 2008 Google Inc. All rights reserved. |
| // https://developers.google.com/protocol-buffers/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| #endregion |
| |
| using Google.Protobuf.Collections; |
| using System; |
| using System.Collections.Generic; |
| using System.IO; |
| |
| namespace Google.Protobuf |
| { |
| /// <summary> |
| /// Reads and decodes protocol message fields. |
| /// </summary> |
| /// <remarks> |
| /// <para> |
| /// This class is generally used by generated code to read appropriate |
| /// primitives from the stream. It effectively encapsulates the lowest |
| /// levels of protocol buffer format. |
| /// </para> |
| /// <para> |
| /// Repeated fields and map fields are not handled by this class; use <see cref="RepeatedField{T}"/> |
| /// and <see cref="MapField{TKey, TValue}"/> to serialize such fields. |
| /// </para> |
| /// </remarks> |
| public sealed class CodedInputStream : IDisposable |
| { |
| /// <summary> |
| /// Whether to leave the underlying stream open when disposing of this stream. |
| /// This is always true when there's no stream. |
| /// </summary> |
| private readonly bool leaveOpen; |
| |
| /// <summary> |
| /// Buffer of data read from the stream or provided at construction time. |
| /// </summary> |
| private readonly byte[] buffer; |
| |
| /// <summary> |
| /// The index of the buffer at which we need to refill from the stream (if there is one). |
| /// </summary> |
| private int bufferSize; |
| |
| private int bufferSizeAfterLimit = 0; |
| /// <summary> |
| /// The position within the current buffer (i.e. the next byte to read) |
| /// </summary> |
| private int bufferPos = 0; |
| |
| /// <summary> |
| /// The stream to read further input from, or null if the byte array buffer was provided |
| /// directly on construction, with no further data available. |
| /// </summary> |
| private readonly Stream input; |
| |
| /// <summary> |
| /// The last tag we read. 0 indicates we've read to the end of the stream |
| /// (or haven't read anything yet). |
| /// </summary> |
| private uint lastTag = 0; |
| |
| /// <summary> |
| /// The next tag, used to store the value read by PeekTag. |
| /// </summary> |
| private uint nextTag = 0; |
| private bool hasNextTag = false; |
| |
| internal const int DefaultRecursionLimit = 64; |
| internal const int DefaultSizeLimit = 64 << 20; // 64MB |
| internal const int BufferSize = 4096; |
| |
| /// <summary> |
| /// The total number of bytes read before the current buffer. The |
| /// total bytes read up to the current position can be computed as |
| /// totalBytesRetired + bufferPos. |
| /// </summary> |
| private int totalBytesRetired = 0; |
| |
| /// <summary> |
| /// The absolute position of the end of the current message. |
| /// </summary> |
| private int currentLimit = int.MaxValue; |
| |
| private int recursionDepth = 0; |
| |
| private readonly int recursionLimit; |
| private readonly int sizeLimit; |
| |
| #region Construction |
| // Note that the checks are performed such that we don't end up checking obviously-valid things |
| // like non-null references for arrays we've just created. |
| |
| /// <summary> |
| /// Creates a new CodedInputStream reading data from the given byte array. |
| /// </summary> |
| public CodedInputStream(byte[] buffer) : this(null, ProtoPreconditions.CheckNotNull(buffer, "buffer"), 0, buffer.Length) |
| { |
| } |
| |
| /// <summary> |
| /// Creates a new <see cref="CodedInputStream"/> that reads from the given byte array slice. |
| /// </summary> |
| public CodedInputStream(byte[] buffer, int offset, int length) |
| : this(null, ProtoPreconditions.CheckNotNull(buffer, "buffer"), offset, offset + length) |
| { |
| if (offset < 0 || offset > buffer.Length) |
| { |
| throw new ArgumentOutOfRangeException("offset", "Offset must be within the buffer"); |
| } |
| if (length < 0 || offset + length > buffer.Length) |
| { |
| throw new ArgumentOutOfRangeException("length", "Length must be non-negative and within the buffer"); |
| } |
| } |
| |
| /// <summary> |
| /// Creates a new <see cref="CodedInputStream"/> reading data from the given stream, which will be disposed |
| /// when the returned object is disposed. |
| /// </summary> |
| /// <param name="input">The stream to read from.</param> |
| public CodedInputStream(Stream input) : this(input, false) |
| { |
| } |
| |
| /// <summary> |
| /// Creates a new <see cref="CodedInputStream"/> reading data from the given stream. |
| /// </summary> |
| /// <param name="input">The stream to read from.</param> |
| /// <param name="leaveOpen"><c>true</c> to leave <paramref name="input"/> open when the returned |
| /// <c cref="CodedInputStream"/> is disposed; <c>false</c> to dispose of the given stream when the |
| /// returned object is disposed.</param> |
| public CodedInputStream(Stream input, bool leaveOpen) |
| : this(ProtoPreconditions.CheckNotNull(input, "input"), new byte[BufferSize], 0, 0) |
| { |
| this.leaveOpen = leaveOpen; |
| } |
| |
| /// <summary> |
| /// Creates a new CodedInputStream reading data from the given |
| /// stream and buffer, using the default limits. |
| /// </summary> |
| internal CodedInputStream(Stream input, byte[] buffer, int bufferPos, int bufferSize) |
| { |
| this.input = input; |
| this.buffer = buffer; |
| this.bufferPos = bufferPos; |
| this.bufferSize = bufferSize; |
| this.sizeLimit = DefaultSizeLimit; |
| this.recursionLimit = DefaultRecursionLimit; |
| } |
| |
| /// <summary> |
| /// Creates a new CodedInputStream reading data from the given |
| /// stream and buffer, using the specified limits. |
| /// </summary> |
| /// <remarks> |
| /// This chains to the version with the default limits instead of vice versa to avoid |
| /// having to check that the default values are valid every time. |
| /// </remarks> |
| internal CodedInputStream(Stream input, byte[] buffer, int bufferPos, int bufferSize, int sizeLimit, int recursionLimit) |
| : this(input, buffer, bufferPos, bufferSize) |
| { |
| if (sizeLimit <= 0) |
| { |
| throw new ArgumentOutOfRangeException("sizeLimit", "Size limit must be positive"); |
| } |
| if (recursionLimit <= 0) |
| { |
| throw new ArgumentOutOfRangeException("recursionLimit!", "Recursion limit must be positive"); |
| } |
| this.sizeLimit = sizeLimit; |
| this.recursionLimit = recursionLimit; |
| } |
| #endregion |
| |
| /// <summary> |
| /// Creates a <see cref="CodedInputStream"/> with the specified size and recursion limits, reading |
| /// from an input stream. |
| /// </summary> |
| /// <remarks> |
| /// This method exists separately from the constructor to reduce the number of constructor overloads. |
| /// It is likely to be used considerably less frequently than the constructors, as the default limits |
| /// are suitable for most use cases. |
| /// </remarks> |
| /// <param name="input">The input stream to read from</param> |
| /// <param name="sizeLimit">The total limit of data to read from the stream.</param> |
| /// <param name="recursionLimit">The maximum recursion depth to allow while reading.</param> |
| /// <returns>A <c>CodedInputStream</c> reading from <paramref name="input"/> with the specified size |
| /// and recursion limits.</returns> |
| public static CodedInputStream CreateWithLimits(Stream input, int sizeLimit, int recursionLimit) |
| { |
| return new CodedInputStream(input, new byte[BufferSize], 0, 0, sizeLimit, recursionLimit); |
| } |
| |
| /// <summary> |
| /// Returns the current position in the input stream, or the position in the input buffer |
| /// </summary> |
| public long Position |
| { |
| get |
| { |
| if (input != null) |
| { |
| return input.Position - ((bufferSize + bufferSizeAfterLimit) - bufferPos); |
| } |
| return bufferPos; |
| } |
| } |
| |
| /// <summary> |
| /// Returns the last tag read, or 0 if no tags have been read or we've read beyond |
| /// the end of the stream. |
| /// </summary> |
| internal uint LastTag { get { return lastTag; } } |
| |
| /// <summary> |
| /// Returns the size limit for this stream. |
| /// </summary> |
| /// <remarks> |
| /// This limit is applied when reading from the underlying stream, as a sanity check. It is |
| /// not applied when reading from a byte array data source without an underlying stream. |
| /// The default value is 64MB. |
| /// </remarks> |
| /// <value> |
| /// The size limit. |
| /// </value> |
| public int SizeLimit { get { return sizeLimit; } } |
| |
| /// <summary> |
| /// Returns the recursion limit for this stream. This limit is applied whilst reading messages, |
| /// to avoid maliciously-recursive data. |
| /// </summary> |
| /// <remarks> |
| /// The default limit is 64. |
| /// </remarks> |
| /// <value> |
| /// The recursion limit for this stream. |
| /// </value> |
| public int RecursionLimit { get { return recursionLimit; } } |
| |
| /// <summary> |
| /// Disposes of this instance, potentially closing any underlying stream. |
| /// </summary> |
| /// <remarks> |
| /// As there is no flushing to perform here, disposing of a <see cref="CodedInputStream"/> which |
| /// was constructed with the <c>leaveOpen</c> option parameter set to <c>true</c> (or one which |
| /// was constructed to read from a byte array) has no effect. |
| /// </remarks> |
| public void Dispose() |
| { |
| if (!leaveOpen) |
| { |
| input.Dispose(); |
| } |
| } |
| |
| #region Validation |
| /// <summary> |
| /// Verifies that the last call to ReadTag() returned tag 0 - in other words, |
| /// we've reached the end of the stream when we expected to. |
| /// </summary> |
| /// <exception cref="InvalidProtocolBufferException">The |
| /// tag read was not the one specified</exception> |
| internal void CheckReadEndOfStreamTag() |
| { |
| if (lastTag != 0) |
| { |
| throw InvalidProtocolBufferException.MoreDataAvailable(); |
| } |
| } |
| #endregion |
| |
| #region Reading of tags etc |
| |
| /// <summary> |
| /// Peeks at the next field tag. This is like calling <see cref="ReadTag"/>, but the |
| /// tag is not consumed. (So a subsequent call to <see cref="ReadTag"/> will return the |
| /// same value.) |
| /// </summary> |
| public uint PeekTag() |
| { |
| if (hasNextTag) |
| { |
| return nextTag; |
| } |
| |
| uint savedLast = lastTag; |
| nextTag = ReadTag(); |
| hasNextTag = true; |
| lastTag = savedLast; // Undo the side effect of ReadTag |
| return nextTag; |
| } |
| |
| /// <summary> |
| /// Reads a field tag, returning the tag of 0 for "end of stream". |
| /// </summary> |
| /// <remarks> |
| /// If this method returns 0, it doesn't necessarily mean the end of all |
| /// the data in this CodedInputStream; it may be the end of the logical stream |
| /// for an embedded message, for example. |
| /// </remarks> |
| /// <returns>The next field tag, or 0 for end of stream. (0 is never a valid tag.)</returns> |
| public uint ReadTag() |
| { |
| if (hasNextTag) |
| { |
| lastTag = nextTag; |
| hasNextTag = false; |
| return lastTag; |
| } |
| |
| // Optimize for the incredibly common case of having at least two bytes left in the buffer, |
| // and those two bytes being enough to get the tag. This will be true for fields up to 4095. |
| if (bufferPos + 2 <= bufferSize) |
| { |
| int tmp = buffer[bufferPos++]; |
| if (tmp < 128) |
| { |
| lastTag = (uint)tmp; |
| } |
| else |
| { |
| int result = tmp & 0x7f; |
| if ((tmp = buffer[bufferPos++]) < 128) |
| { |
| result |= tmp << 7; |
| lastTag = (uint) result; |
| } |
| else |
| { |
| // Nope, rewind and go the potentially slow route. |
| bufferPos -= 2; |
| lastTag = ReadRawVarint32(); |
| } |
| } |
| } |
| else |
| { |
| if (IsAtEnd) |
| { |
| lastTag = 0; |
| return 0; // This is the only case in which we return 0. |
| } |
| |
| lastTag = ReadRawVarint32(); |
| } |
| if (lastTag == 0) |
| { |
| // If we actually read zero, that's not a valid tag. |
| throw InvalidProtocolBufferException.InvalidTag(); |
| } |
| return lastTag; |
| } |
| |
| /// <summary> |
| /// Skips the data for the field with the tag we've just read. |
| /// This should be called directly after <see cref="ReadTag"/>, when |
| /// the caller wishes to skip an unknown field. |
| /// </summary> |
| /// <remarks> |
| /// This method throws <see cref="InvalidProtocolBufferException"/> if the last-read tag was an end-group tag. |
| /// If a caller wishes to skip a group, they should skip the whole group, by calling this method after reading the |
| /// start-group tag. This behavior allows callers to call this method on any field they don't understand, correctly |
| /// resulting in an error if an end-group tag has not been paired with an earlier start-group tag. |
| /// </remarks> |
| /// <exception cref="InvalidProtocolBufferException">The last tag was an end-group tag</exception> |
| /// <exception cref="InvalidOperationException">The last read operation read to the end of the logical stream</exception> |
| public void SkipLastField() |
| { |
| if (lastTag == 0) |
| { |
| throw new InvalidOperationException("SkipLastField cannot be called at the end of a stream"); |
| } |
| switch (WireFormat.GetTagWireType(lastTag)) |
| { |
| case WireFormat.WireType.StartGroup: |
| SkipGroup(lastTag); |
| break; |
| case WireFormat.WireType.EndGroup: |
| throw new InvalidProtocolBufferException( |
| "SkipLastField called on an end-group tag, indicating that the corresponding start-group was missing"); |
| case WireFormat.WireType.Fixed32: |
| ReadFixed32(); |
| break; |
| case WireFormat.WireType.Fixed64: |
| ReadFixed64(); |
| break; |
| case WireFormat.WireType.LengthDelimited: |
| var length = ReadLength(); |
| SkipRawBytes(length); |
| break; |
| case WireFormat.WireType.Varint: |
| ReadRawVarint32(); |
| break; |
| } |
| } |
| |
| private void SkipGroup(uint startGroupTag) |
| { |
| // Note: Currently we expect this to be the way that groups are read. We could put the recursion |
| // depth changes into the ReadTag method instead, potentially... |
| recursionDepth++; |
| if (recursionDepth >= recursionLimit) |
| { |
| throw InvalidProtocolBufferException.RecursionLimitExceeded(); |
| } |
| uint tag; |
| while (true) |
| { |
| tag = ReadTag(); |
| if (tag == 0) |
| { |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| // Can't call SkipLastField for this case- that would throw. |
| if (WireFormat.GetTagWireType(tag) == WireFormat.WireType.EndGroup) |
| { |
| break; |
| } |
| // This recursion will allow us to handle nested groups. |
| SkipLastField(); |
| } |
| int startField = WireFormat.GetTagFieldNumber(startGroupTag); |
| int endField = WireFormat.GetTagFieldNumber(tag); |
| if (startField != endField) |
| { |
| throw new InvalidProtocolBufferException( |
| $"Mismatched end-group tag. Started with field {startField}; ended with field {endField}"); |
| } |
| recursionDepth--; |
| } |
| |
| /// <summary> |
| /// Reads a double field from the stream. |
| /// </summary> |
| public double ReadDouble() |
| { |
| return BitConverter.Int64BitsToDouble((long) ReadRawLittleEndian64()); |
| } |
| |
| /// <summary> |
| /// Reads a float field from the stream. |
| /// </summary> |
| public float ReadFloat() |
| { |
| if (BitConverter.IsLittleEndian && 4 <= bufferSize - bufferPos) |
| { |
| float ret = BitConverter.ToSingle(buffer, bufferPos); |
| bufferPos += 4; |
| return ret; |
| } |
| else |
| { |
| byte[] rawBytes = ReadRawBytes(4); |
| if (!BitConverter.IsLittleEndian) |
| { |
| ByteArray.Reverse(rawBytes); |
| } |
| return BitConverter.ToSingle(rawBytes, 0); |
| } |
| } |
| |
| /// <summary> |
| /// Reads a uint64 field from the stream. |
| /// </summary> |
| public ulong ReadUInt64() |
| { |
| return ReadRawVarint64(); |
| } |
| |
| /// <summary> |
| /// Reads an int64 field from the stream. |
| /// </summary> |
| public long ReadInt64() |
| { |
| return (long) ReadRawVarint64(); |
| } |
| |
| /// <summary> |
| /// Reads an int32 field from the stream. |
| /// </summary> |
| public int ReadInt32() |
| { |
| return (int) ReadRawVarint32(); |
| } |
| |
| /// <summary> |
| /// Reads a fixed64 field from the stream. |
| /// </summary> |
| public ulong ReadFixed64() |
| { |
| return ReadRawLittleEndian64(); |
| } |
| |
| /// <summary> |
| /// Reads a fixed32 field from the stream. |
| /// </summary> |
| public uint ReadFixed32() |
| { |
| return ReadRawLittleEndian32(); |
| } |
| |
| /// <summary> |
| /// Reads a bool field from the stream. |
| /// </summary> |
| public bool ReadBool() |
| { |
| return ReadRawVarint32() != 0; |
| } |
| |
| /// <summary> |
| /// Reads a string field from the stream. |
| /// </summary> |
| public string ReadString() |
| { |
| int length = ReadLength(); |
| // No need to read any data for an empty string. |
| if (length == 0) |
| { |
| return ""; |
| } |
| if (length <= bufferSize - bufferPos) |
| { |
| // Fast path: We already have the bytes in a contiguous buffer, so |
| // just copy directly from it. |
| String result = CodedOutputStream.Utf8Encoding.GetString(buffer, bufferPos, length); |
| bufferPos += length; |
| return result; |
| } |
| // Slow path: Build a byte array first then copy it. |
| return CodedOutputStream.Utf8Encoding.GetString(ReadRawBytes(length), 0, length); |
| } |
| |
| /// <summary> |
| /// Reads an embedded message field value from the stream. |
| /// </summary> |
| public void ReadMessage(IMessage builder) |
| { |
| int length = ReadLength(); |
| if (recursionDepth >= recursionLimit) |
| { |
| throw InvalidProtocolBufferException.RecursionLimitExceeded(); |
| } |
| int oldLimit = PushLimit(length); |
| ++recursionDepth; |
| builder.MergeFrom(this); |
| CheckReadEndOfStreamTag(); |
| // Check that we've read exactly as much data as expected. |
| if (!ReachedLimit) |
| { |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| --recursionDepth; |
| PopLimit(oldLimit); |
| } |
| |
| /// <summary> |
| /// Reads a bytes field value from the stream. |
| /// </summary> |
| public ByteString ReadBytes() |
| { |
| int length = ReadLength(); |
| if (length <= bufferSize - bufferPos && length > 0) |
| { |
| // Fast path: We already have the bytes in a contiguous buffer, so |
| // just copy directly from it. |
| ByteString result = ByteString.CopyFrom(buffer, bufferPos, length); |
| bufferPos += length; |
| return result; |
| } |
| else |
| { |
| // Slow path: Build a byte array and attach it to a new ByteString. |
| return ByteString.AttachBytes(ReadRawBytes(length)); |
| } |
| } |
| |
| /// <summary> |
| /// Reads a uint32 field value from the stream. |
| /// </summary> |
| public uint ReadUInt32() |
| { |
| return ReadRawVarint32(); |
| } |
| |
| /// <summary> |
| /// Reads an enum field value from the stream. If the enum is valid for type T, |
| /// then the ref value is set and it returns true. Otherwise the unknown output |
| /// value is set and this method returns false. |
| /// </summary> |
| public int ReadEnum() |
| { |
| // Currently just a pass-through, but it's nice to separate it logically from WriteInt32. |
| return (int) ReadRawVarint32(); |
| } |
| |
| /// <summary> |
| /// Reads an sfixed32 field value from the stream. |
| /// </summary> |
| public int ReadSFixed32() |
| { |
| return (int) ReadRawLittleEndian32(); |
| } |
| |
| /// <summary> |
| /// Reads an sfixed64 field value from the stream. |
| /// </summary> |
| public long ReadSFixed64() |
| { |
| return (long) ReadRawLittleEndian64(); |
| } |
| |
| /// <summary> |
| /// Reads an sint32 field value from the stream. |
| /// </summary> |
| public int ReadSInt32() |
| { |
| return DecodeZigZag32(ReadRawVarint32()); |
| } |
| |
| /// <summary> |
| /// Reads an sint64 field value from the stream. |
| /// </summary> |
| public long ReadSInt64() |
| { |
| return DecodeZigZag64(ReadRawVarint64()); |
| } |
| |
| /// <summary> |
| /// Reads a length for length-delimited data. |
| /// </summary> |
| /// <remarks> |
| /// This is internally just reading a varint, but this method exists |
| /// to make the calling code clearer. |
| /// </remarks> |
| public int ReadLength() |
| { |
| return (int) ReadRawVarint32(); |
| } |
| |
| /// <summary> |
| /// Peeks at the next tag in the stream. If it matches <paramref name="tag"/>, |
| /// the tag is consumed and the method returns <c>true</c>; otherwise, the |
| /// stream is left in the original position and the method returns <c>false</c>. |
| /// </summary> |
| public bool MaybeConsumeTag(uint tag) |
| { |
| if (PeekTag() == tag) |
| { |
| hasNextTag = false; |
| return true; |
| } |
| return false; |
| } |
| |
| #endregion |
| |
| #region Underlying reading primitives |
| |
| /// <summary> |
| /// Same code as ReadRawVarint32, but read each byte individually, checking for |
| /// buffer overflow. |
| /// </summary> |
| private uint SlowReadRawVarint32() |
| { |
| int tmp = ReadRawByte(); |
| if (tmp < 128) |
| { |
| return (uint) tmp; |
| } |
| int result = tmp & 0x7f; |
| if ((tmp = ReadRawByte()) < 128) |
| { |
| result |= tmp << 7; |
| } |
| else |
| { |
| result |= (tmp & 0x7f) << 7; |
| if ((tmp = ReadRawByte()) < 128) |
| { |
| result |= tmp << 14; |
| } |
| else |
| { |
| result |= (tmp & 0x7f) << 14; |
| if ((tmp = ReadRawByte()) < 128) |
| { |
| result |= tmp << 21; |
| } |
| else |
| { |
| result |= (tmp & 0x7f) << 21; |
| result |= (tmp = ReadRawByte()) << 28; |
| if (tmp >= 128) |
| { |
| // Discard upper 32 bits. |
| for (int i = 0; i < 5; i++) |
| { |
| if (ReadRawByte() < 128) |
| { |
| return (uint) result; |
| } |
| } |
| throw InvalidProtocolBufferException.MalformedVarint(); |
| } |
| } |
| } |
| } |
| return (uint) result; |
| } |
| |
| /// <summary> |
| /// Reads a raw Varint from the stream. If larger than 32 bits, discard the upper bits. |
| /// This method is optimised for the case where we've got lots of data in the buffer. |
| /// That means we can check the size just once, then just read directly from the buffer |
| /// without constant rechecking of the buffer length. |
| /// </summary> |
| internal uint ReadRawVarint32() |
| { |
| if (bufferPos + 5 > bufferSize) |
| { |
| return SlowReadRawVarint32(); |
| } |
| |
| int tmp = buffer[bufferPos++]; |
| if (tmp < 128) |
| { |
| return (uint) tmp; |
| } |
| int result = tmp & 0x7f; |
| if ((tmp = buffer[bufferPos++]) < 128) |
| { |
| result |= tmp << 7; |
| } |
| else |
| { |
| result |= (tmp & 0x7f) << 7; |
| if ((tmp = buffer[bufferPos++]) < 128) |
| { |
| result |= tmp << 14; |
| } |
| else |
| { |
| result |= (tmp & 0x7f) << 14; |
| if ((tmp = buffer[bufferPos++]) < 128) |
| { |
| result |= tmp << 21; |
| } |
| else |
| { |
| result |= (tmp & 0x7f) << 21; |
| result |= (tmp = buffer[bufferPos++]) << 28; |
| if (tmp >= 128) |
| { |
| // Discard upper 32 bits. |
| // Note that this has to use ReadRawByte() as we only ensure we've |
| // got at least 5 bytes at the start of the method. This lets us |
| // use the fast path in more cases, and we rarely hit this section of code. |
| for (int i = 0; i < 5; i++) |
| { |
| if (ReadRawByte() < 128) |
| { |
| return (uint) result; |
| } |
| } |
| throw InvalidProtocolBufferException.MalformedVarint(); |
| } |
| } |
| } |
| } |
| return (uint) result; |
| } |
| |
| /// <summary> |
| /// Reads a varint from the input one byte at a time, so that it does not |
| /// read any bytes after the end of the varint. If you simply wrapped the |
| /// stream in a CodedInputStream and used ReadRawVarint32(Stream) |
| /// then you would probably end up reading past the end of the varint since |
| /// CodedInputStream buffers its input. |
| /// </summary> |
| /// <param name="input"></param> |
| /// <returns></returns> |
| internal static uint ReadRawVarint32(Stream input) |
| { |
| int result = 0; |
| int offset = 0; |
| for (; offset < 32; offset += 7) |
| { |
| int b = input.ReadByte(); |
| if (b == -1) |
| { |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| result |= (b & 0x7f) << offset; |
| if ((b & 0x80) == 0) |
| { |
| return (uint) result; |
| } |
| } |
| // Keep reading up to 64 bits. |
| for (; offset < 64; offset += 7) |
| { |
| int b = input.ReadByte(); |
| if (b == -1) |
| { |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| if ((b & 0x80) == 0) |
| { |
| return (uint) result; |
| } |
| } |
| throw InvalidProtocolBufferException.MalformedVarint(); |
| } |
| |
| /// <summary> |
| /// Reads a raw varint from the stream. |
| /// </summary> |
| internal ulong ReadRawVarint64() |
| { |
| int shift = 0; |
| ulong result = 0; |
| while (shift < 64) |
| { |
| byte b = ReadRawByte(); |
| result |= (ulong) (b & 0x7F) << shift; |
| if ((b & 0x80) == 0) |
| { |
| return result; |
| } |
| shift += 7; |
| } |
| throw InvalidProtocolBufferException.MalformedVarint(); |
| } |
| |
| /// <summary> |
| /// Reads a 32-bit little-endian integer from the stream. |
| /// </summary> |
| internal uint ReadRawLittleEndian32() |
| { |
| uint b1 = ReadRawByte(); |
| uint b2 = ReadRawByte(); |
| uint b3 = ReadRawByte(); |
| uint b4 = ReadRawByte(); |
| return b1 | (b2 << 8) | (b3 << 16) | (b4 << 24); |
| } |
| |
| /// <summary> |
| /// Reads a 64-bit little-endian integer from the stream. |
| /// </summary> |
| internal ulong ReadRawLittleEndian64() |
| { |
| ulong b1 = ReadRawByte(); |
| ulong b2 = ReadRawByte(); |
| ulong b3 = ReadRawByte(); |
| ulong b4 = ReadRawByte(); |
| ulong b5 = ReadRawByte(); |
| ulong b6 = ReadRawByte(); |
| ulong b7 = ReadRawByte(); |
| ulong b8 = ReadRawByte(); |
| return b1 | (b2 << 8) | (b3 << 16) | (b4 << 24) |
| | (b5 << 32) | (b6 << 40) | (b7 << 48) | (b8 << 56); |
| } |
| |
| /// <summary> |
| /// Decode a 32-bit value with ZigZag encoding. |
| /// </summary> |
| /// <remarks> |
| /// ZigZag encodes signed integers into values that can be efficiently |
| /// encoded with varint. (Otherwise, negative values must be |
| /// sign-extended to 64 bits to be varint encoded, thus always taking |
| /// 10 bytes on the wire.) |
| /// </remarks> |
| internal static int DecodeZigZag32(uint n) |
| { |
| return (int)(n >> 1) ^ -(int)(n & 1); |
| } |
| |
| /// <summary> |
| /// Decode a 32-bit value with ZigZag encoding. |
| /// </summary> |
| /// <remarks> |
| /// ZigZag encodes signed integers into values that can be efficiently |
| /// encoded with varint. (Otherwise, negative values must be |
| /// sign-extended to 64 bits to be varint encoded, thus always taking |
| /// 10 bytes on the wire.) |
| /// </remarks> |
| internal static long DecodeZigZag64(ulong n) |
| { |
| return (long)(n >> 1) ^ -(long)(n & 1); |
| } |
| #endregion |
| |
| #region Internal reading and buffer management |
| |
| /// <summary> |
| /// Sets currentLimit to (current position) + byteLimit. This is called |
| /// when descending into a length-delimited embedded message. The previous |
| /// limit is returned. |
| /// </summary> |
| /// <returns>The old limit.</returns> |
| internal int PushLimit(int byteLimit) |
| { |
| if (byteLimit < 0) |
| { |
| throw InvalidProtocolBufferException.NegativeSize(); |
| } |
| byteLimit += totalBytesRetired + bufferPos; |
| int oldLimit = currentLimit; |
| if (byteLimit > oldLimit) |
| { |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| currentLimit = byteLimit; |
| |
| RecomputeBufferSizeAfterLimit(); |
| |
| return oldLimit; |
| } |
| |
| private void RecomputeBufferSizeAfterLimit() |
| { |
| bufferSize += bufferSizeAfterLimit; |
| int bufferEnd = totalBytesRetired + bufferSize; |
| if (bufferEnd > currentLimit) |
| { |
| // Limit is in current buffer. |
| bufferSizeAfterLimit = bufferEnd - currentLimit; |
| bufferSize -= bufferSizeAfterLimit; |
| } |
| else |
| { |
| bufferSizeAfterLimit = 0; |
| } |
| } |
| |
| /// <summary> |
| /// Discards the current limit, returning the previous limit. |
| /// </summary> |
| internal void PopLimit(int oldLimit) |
| { |
| currentLimit = oldLimit; |
| RecomputeBufferSizeAfterLimit(); |
| } |
| |
| /// <summary> |
| /// Returns whether or not all the data before the limit has been read. |
| /// </summary> |
| /// <returns></returns> |
| internal bool ReachedLimit |
| { |
| get |
| { |
| if (currentLimit == int.MaxValue) |
| { |
| return false; |
| } |
| int currentAbsolutePosition = totalBytesRetired + bufferPos; |
| return currentAbsolutePosition >= currentLimit; |
| } |
| } |
| |
| /// <summary> |
| /// Returns true if the stream has reached the end of the input. This is the |
| /// case if either the end of the underlying input source has been reached or |
| /// the stream has reached a limit created using PushLimit. |
| /// </summary> |
| public bool IsAtEnd |
| { |
| get { return bufferPos == bufferSize && !RefillBuffer(false); } |
| } |
| |
| /// <summary> |
| /// Called when buffer is empty to read more bytes from the |
| /// input. If <paramref name="mustSucceed"/> is true, RefillBuffer() gurantees that |
| /// either there will be at least one byte in the buffer when it returns |
| /// or it will throw an exception. If <paramref name="mustSucceed"/> is false, |
| /// RefillBuffer() returns false if no more bytes were available. |
| /// </summary> |
| /// <param name="mustSucceed"></param> |
| /// <returns></returns> |
| private bool RefillBuffer(bool mustSucceed) |
| { |
| if (bufferPos < bufferSize) |
| { |
| throw new InvalidOperationException("RefillBuffer() called when buffer wasn't empty."); |
| } |
| |
| if (totalBytesRetired + bufferSize == currentLimit) |
| { |
| // Oops, we hit a limit. |
| if (mustSucceed) |
| { |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| else |
| { |
| return false; |
| } |
| } |
| |
| totalBytesRetired += bufferSize; |
| |
| bufferPos = 0; |
| bufferSize = (input == null) ? 0 : input.Read(buffer, 0, buffer.Length); |
| if (bufferSize < 0) |
| { |
| throw new InvalidOperationException("Stream.Read returned a negative count"); |
| } |
| if (bufferSize == 0) |
| { |
| if (mustSucceed) |
| { |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| else |
| { |
| return false; |
| } |
| } |
| else |
| { |
| RecomputeBufferSizeAfterLimit(); |
| int totalBytesRead = |
| totalBytesRetired + bufferSize + bufferSizeAfterLimit; |
| if (totalBytesRead > sizeLimit || totalBytesRead < 0) |
| { |
| throw InvalidProtocolBufferException.SizeLimitExceeded(); |
| } |
| return true; |
| } |
| } |
| |
| /// <summary> |
| /// Read one byte from the input. |
| /// </summary> |
| /// <exception cref="InvalidProtocolBufferException"> |
| /// the end of the stream or the current limit was reached |
| /// </exception> |
| internal byte ReadRawByte() |
| { |
| if (bufferPos == bufferSize) |
| { |
| RefillBuffer(true); |
| } |
| return buffer[bufferPos++]; |
| } |
| |
| /// <summary> |
| /// Reads a fixed size of bytes from the input. |
| /// </summary> |
| /// <exception cref="InvalidProtocolBufferException"> |
| /// the end of the stream or the current limit was reached |
| /// </exception> |
| internal byte[] ReadRawBytes(int size) |
| { |
| if (size < 0) |
| { |
| throw InvalidProtocolBufferException.NegativeSize(); |
| } |
| |
| if (totalBytesRetired + bufferPos + size > currentLimit) |
| { |
| // Read to the end of the stream (up to the current limit) anyway. |
| SkipRawBytes(currentLimit - totalBytesRetired - bufferPos); |
| // Then fail. |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| |
| if (size <= bufferSize - bufferPos) |
| { |
| // We have all the bytes we need already. |
| byte[] bytes = new byte[size]; |
| ByteArray.Copy(buffer, bufferPos, bytes, 0, size); |
| bufferPos += size; |
| return bytes; |
| } |
| else if (size < buffer.Length) |
| { |
| // Reading more bytes than are in the buffer, but not an excessive number |
| // of bytes. We can safely allocate the resulting array ahead of time. |
| |
| // First copy what we have. |
| byte[] bytes = new byte[size]; |
| int pos = bufferSize - bufferPos; |
| ByteArray.Copy(buffer, bufferPos, bytes, 0, pos); |
| bufferPos = bufferSize; |
| |
| // We want to use RefillBuffer() and then copy from the buffer into our |
| // byte array rather than reading directly into our byte array because |
| // the input may be unbuffered. |
| RefillBuffer(true); |
| |
| while (size - pos > bufferSize) |
| { |
| Buffer.BlockCopy(buffer, 0, bytes, pos, bufferSize); |
| pos += bufferSize; |
| bufferPos = bufferSize; |
| RefillBuffer(true); |
| } |
| |
| ByteArray.Copy(buffer, 0, bytes, pos, size - pos); |
| bufferPos = size - pos; |
| |
| return bytes; |
| } |
| else |
| { |
| // The size is very large. For security reasons, we can't allocate the |
| // entire byte array yet. The size comes directly from the input, so a |
| // maliciously-crafted message could provide a bogus very large size in |
| // order to trick the app into allocating a lot of memory. We avoid this |
| // by allocating and reading only a small chunk at a time, so that the |
| // malicious message must actually *be* extremely large to cause |
| // problems. Meanwhile, we limit the allowed size of a message elsewhere. |
| |
| // Remember the buffer markers since we'll have to copy the bytes out of |
| // it later. |
| int originalBufferPos = bufferPos; |
| int originalBufferSize = bufferSize; |
| |
| // Mark the current buffer consumed. |
| totalBytesRetired += bufferSize; |
| bufferPos = 0; |
| bufferSize = 0; |
| |
| // Read all the rest of the bytes we need. |
| int sizeLeft = size - (originalBufferSize - originalBufferPos); |
| List<byte[]> chunks = new List<byte[]>(); |
| |
| while (sizeLeft > 0) |
| { |
| byte[] chunk = new byte[Math.Min(sizeLeft, buffer.Length)]; |
| int pos = 0; |
| while (pos < chunk.Length) |
| { |
| int n = (input == null) ? -1 : input.Read(chunk, pos, chunk.Length - pos); |
| if (n <= 0) |
| { |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| totalBytesRetired += n; |
| pos += n; |
| } |
| sizeLeft -= chunk.Length; |
| chunks.Add(chunk); |
| } |
| |
| // OK, got everything. Now concatenate it all into one buffer. |
| byte[] bytes = new byte[size]; |
| |
| // Start by copying the leftover bytes from this.buffer. |
| int newPos = originalBufferSize - originalBufferPos; |
| ByteArray.Copy(buffer, originalBufferPos, bytes, 0, newPos); |
| |
| // And now all the chunks. |
| foreach (byte[] chunk in chunks) |
| { |
| Buffer.BlockCopy(chunk, 0, bytes, newPos, chunk.Length); |
| newPos += chunk.Length; |
| } |
| |
| // Done. |
| return bytes; |
| } |
| } |
| |
| /// <summary> |
| /// Reads and discards <paramref name="size"/> bytes. |
| /// </summary> |
| /// <exception cref="InvalidProtocolBufferException">the end of the stream |
| /// or the current limit was reached</exception> |
| private void SkipRawBytes(int size) |
| { |
| if (size < 0) |
| { |
| throw InvalidProtocolBufferException.NegativeSize(); |
| } |
| |
| if (totalBytesRetired + bufferPos + size > currentLimit) |
| { |
| // Read to the end of the stream anyway. |
| SkipRawBytes(currentLimit - totalBytesRetired - bufferPos); |
| // Then fail. |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| |
| if (size <= bufferSize - bufferPos) |
| { |
| // We have all the bytes we need already. |
| bufferPos += size; |
| } |
| else |
| { |
| // Skipping more bytes than are in the buffer. First skip what we have. |
| int pos = bufferSize - bufferPos; |
| |
| // ROK 5/7/2013 Issue #54: should retire all bytes in buffer (bufferSize) |
| // totalBytesRetired += pos; |
| totalBytesRetired += bufferSize; |
| |
| bufferPos = 0; |
| bufferSize = 0; |
| |
| // Then skip directly from the InputStream for the rest. |
| if (pos < size) |
| { |
| if (input == null) |
| { |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| SkipImpl(size - pos); |
| totalBytesRetired += size - pos; |
| } |
| } |
| } |
| |
| /// <summary> |
| /// Abstraction of skipping to cope with streams which can't really skip. |
| /// </summary> |
| private void SkipImpl(int amountToSkip) |
| { |
| if (input.CanSeek) |
| { |
| long previousPosition = input.Position; |
| input.Position += amountToSkip; |
| if (input.Position != previousPosition + amountToSkip) |
| { |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| } |
| else |
| { |
| byte[] skipBuffer = new byte[Math.Min(1024, amountToSkip)]; |
| while (amountToSkip > 0) |
| { |
| int bytesRead = input.Read(skipBuffer, 0, Math.Min(skipBuffer.Length, amountToSkip)); |
| if (bytesRead <= 0) |
| { |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| amountToSkip -= bytesRead; |
| } |
| } |
| } |
| |
| #endregion |
| } |
| } |