| // Protocol Buffers - Google's data interchange format |
| // Copyright 2014 Google Inc. All rights reserved. |
| // https://developers.google.com/protocol-buffers/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // from google3/util/gtl/map_util.h |
| // Author: Anton Carver |
| |
| #ifndef GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__ |
| #define GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__ |
| |
| #include <stddef.h> |
| #include <iterator> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| #include <google/protobuf/stubs/common.h> |
| |
| namespace google { |
| namespace protobuf { |
| namespace internal { |
| // Local implementation of RemoveConst to avoid including base/type_traits.h. |
| template <class T> struct RemoveConst { typedef T type; }; |
| template <class T> struct RemoveConst<const T> : RemoveConst<T> {}; |
| } // namespace internal |
| |
| // |
| // Find*() |
| // |
| |
| // Returns a const reference to the value associated with the given key if it |
| // exists. Crashes otherwise. |
| // |
| // This is intended as a replacement for operator[] as an rvalue (for reading) |
| // when the key is guaranteed to exist. |
| // |
| // operator[] for lookup is discouraged for several reasons: |
| // * It has a side-effect of inserting missing keys |
| // * It is not thread-safe (even when it is not inserting, it can still |
| // choose to resize the underlying storage) |
| // * It invalidates iterators (when it chooses to resize) |
| // * It default constructs a value object even if it doesn't need to |
| // |
| // This version assumes the key is printable, and includes it in the fatal log |
| // message. |
| template <class Collection> |
| const typename Collection::value_type::second_type& |
| FindOrDie(const Collection& collection, |
| const typename Collection::value_type::first_type& key) { |
| typename Collection::const_iterator it = collection.find(key); |
| GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key; |
| return it->second; |
| } |
| |
| // Same as above, but returns a non-const reference. |
| template <class Collection> |
| typename Collection::value_type::second_type& |
| FindOrDie(Collection& collection, // NOLINT |
| const typename Collection::value_type::first_type& key) { |
| typename Collection::iterator it = collection.find(key); |
| GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key; |
| return it->second; |
| } |
| |
| // Same as FindOrDie above, but doesn't log the key on failure. |
| template <class Collection> |
| const typename Collection::value_type::second_type& |
| FindOrDieNoPrint(const Collection& collection, |
| const typename Collection::value_type::first_type& key) { |
| typename Collection::const_iterator it = collection.find(key); |
| GOOGLE_CHECK(it != collection.end()) << "Map key not found"; |
| return it->second; |
| } |
| |
| // Same as above, but returns a non-const reference. |
| template <class Collection> |
| typename Collection::value_type::second_type& |
| FindOrDieNoPrint(Collection& collection, // NOLINT |
| const typename Collection::value_type::first_type& key) { |
| typename Collection::iterator it = collection.find(key); |
| GOOGLE_CHECK(it != collection.end()) << "Map key not found"; |
| return it->second; |
| } |
| |
| // Returns a const reference to the value associated with the given key if it |
| // exists, otherwise returns a const reference to the provided default value. |
| // |
| // WARNING: If a temporary object is passed as the default "value," |
| // this function will return a reference to that temporary object, |
| // which will be destroyed at the end of the statement. A common |
| // example: if you have a map with string values, and you pass a char* |
| // as the default "value," either use the returned value immediately |
| // or store it in a string (not string&). |
| // Details: http://go/findwithdefault |
| template <class Collection> |
| const typename Collection::value_type::second_type& |
| FindWithDefault(const Collection& collection, |
| const typename Collection::value_type::first_type& key, |
| const typename Collection::value_type::second_type& value) { |
| typename Collection::const_iterator it = collection.find(key); |
| if (it == collection.end()) { |
| return value; |
| } |
| return it->second; |
| } |
| |
| // Returns a pointer to the const value associated with the given key if it |
| // exists, or NULL otherwise. |
| template <class Collection> |
| const typename Collection::value_type::second_type* |
| FindOrNull(const Collection& collection, |
| const typename Collection::value_type::first_type& key) { |
| typename Collection::const_iterator it = collection.find(key); |
| if (it == collection.end()) { |
| return 0; |
| } |
| return &it->second; |
| } |
| |
| // Same as above but returns a pointer to the non-const value. |
| template <class Collection> |
| typename Collection::value_type::second_type* |
| FindOrNull(Collection& collection, // NOLINT |
| const typename Collection::value_type::first_type& key) { |
| typename Collection::iterator it = collection.find(key); |
| if (it == collection.end()) { |
| return 0; |
| } |
| return &it->second; |
| } |
| |
| // Returns the pointer value associated with the given key. If none is found, |
| // NULL is returned. The function is designed to be used with a map of keys to |
| // pointers. |
| // |
| // This function does not distinguish between a missing key and a key mapped |
| // to a NULL value. |
| template <class Collection> |
| typename Collection::value_type::second_type |
| FindPtrOrNull(const Collection& collection, |
| const typename Collection::value_type::first_type& key) { |
| typename Collection::const_iterator it = collection.find(key); |
| if (it == collection.end()) { |
| return typename Collection::value_type::second_type(); |
| } |
| return it->second; |
| } |
| |
| // Same as above, except takes non-const reference to collection. |
| // |
| // This function is needed for containers that propagate constness to the |
| // pointee, such as boost::ptr_map. |
| template <class Collection> |
| typename Collection::value_type::second_type |
| FindPtrOrNull(Collection& collection, // NOLINT |
| const typename Collection::value_type::first_type& key) { |
| typename Collection::iterator it = collection.find(key); |
| if (it == collection.end()) { |
| return typename Collection::value_type::second_type(); |
| } |
| return it->second; |
| } |
| |
| // Finds the pointer value associated with the given key in a map whose values |
| // are linked_ptrs. Returns NULL if key is not found. |
| template <class Collection> |
| typename Collection::value_type::second_type::element_type* |
| FindLinkedPtrOrNull(const Collection& collection, |
| const typename Collection::value_type::first_type& key) { |
| typename Collection::const_iterator it = collection.find(key); |
| if (it == collection.end()) { |
| return 0; |
| } |
| // Since linked_ptr::get() is a const member returning a non const, |
| // we do not need a version of this function taking a non const collection. |
| return it->second.get(); |
| } |
| |
| // Same as above, but dies if the key is not found. |
| template <class Collection> |
| typename Collection::value_type::second_type::element_type& |
| FindLinkedPtrOrDie(const Collection& collection, |
| const typename Collection::value_type::first_type& key) { |
| typename Collection::const_iterator it = collection.find(key); |
| CHECK(it != collection.end()) << "key not found: " << key; |
| // Since linked_ptr::operator*() is a const member returning a non const, |
| // we do not need a version of this function taking a non const collection. |
| return *it->second; |
| } |
| |
| // Finds the value associated with the given key and copies it to *value (if not |
| // NULL). Returns false if the key was not found, true otherwise. |
| template <class Collection, class Key, class Value> |
| bool FindCopy(const Collection& collection, |
| const Key& key, |
| Value* const value) { |
| typename Collection::const_iterator it = collection.find(key); |
| if (it == collection.end()) { |
| return false; |
| } |
| if (value) { |
| *value = it->second; |
| } |
| return true; |
| } |
| |
| // |
| // Contains*() |
| // |
| |
| // Returns true if and only if the given collection contains the given key. |
| template <class Collection, class Key> |
| bool ContainsKey(const Collection& collection, const Key& key) { |
| return collection.find(key) != collection.end(); |
| } |
| |
| // Returns true if and only if the given collection contains the given key-value |
| // pair. |
| template <class Collection, class Key, class Value> |
| bool ContainsKeyValuePair(const Collection& collection, |
| const Key& key, |
| const Value& value) { |
| typedef typename Collection::const_iterator const_iterator; |
| std::pair<const_iterator, const_iterator> range = collection.equal_range(key); |
| for (const_iterator it = range.first; it != range.second; ++it) { |
| if (it->second == value) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // |
| // Insert*() |
| // |
| |
| // Inserts the given key-value pair into the collection. Returns true if and |
| // only if the key from the given pair didn't previously exist. Otherwise, the |
| // value in the map is replaced with the value from the given pair. |
| template <class Collection> |
| bool InsertOrUpdate(Collection* const collection, |
| const typename Collection::value_type& vt) { |
| std::pair<typename Collection::iterator, bool> ret = collection->insert(vt); |
| if (!ret.second) { |
| // update |
| ret.first->second = vt.second; |
| return false; |
| } |
| return true; |
| } |
| |
| // Same as above, except that the key and value are passed separately. |
| template <class Collection> |
| bool InsertOrUpdate(Collection* const collection, |
| const typename Collection::value_type::first_type& key, |
| const typename Collection::value_type::second_type& value) { |
| return InsertOrUpdate( |
| collection, typename Collection::value_type(key, value)); |
| } |
| |
| // Inserts/updates all the key-value pairs from the range defined by the |
| // iterators "first" and "last" into the given collection. |
| template <class Collection, class InputIterator> |
| void InsertOrUpdateMany(Collection* const collection, |
| InputIterator first, InputIterator last) { |
| for (; first != last; ++first) { |
| InsertOrUpdate(collection, *first); |
| } |
| } |
| |
| // Change the value associated with a particular key in a map or hash_map |
| // of the form map<Key, Value*> which owns the objects pointed to by the |
| // value pointers. If there was an existing value for the key, it is deleted. |
| // True indicates an insert took place, false indicates an update + delete. |
| template <class Collection> |
| bool InsertAndDeleteExisting( |
| Collection* const collection, |
| const typename Collection::value_type::first_type& key, |
| const typename Collection::value_type::second_type& value) { |
| std::pair<typename Collection::iterator, bool> ret = |
| collection->insert(typename Collection::value_type(key, value)); |
| if (!ret.second) { |
| delete ret.first->second; |
| ret.first->second = value; |
| return false; |
| } |
| return true; |
| } |
| |
| // Inserts the given key and value into the given collection if and only if the |
| // given key did NOT already exist in the collection. If the key previously |
| // existed in the collection, the value is not changed. Returns true if the |
| // key-value pair was inserted; returns false if the key was already present. |
| template <class Collection> |
| bool InsertIfNotPresent(Collection* const collection, |
| const typename Collection::value_type& vt) { |
| return collection->insert(vt).second; |
| } |
| |
| // Same as above except the key and value are passed separately. |
| template <class Collection> |
| bool InsertIfNotPresent( |
| Collection* const collection, |
| const typename Collection::value_type::first_type& key, |
| const typename Collection::value_type::second_type& value) { |
| return InsertIfNotPresent( |
| collection, typename Collection::value_type(key, value)); |
| } |
| |
| // Same as above except dies if the key already exists in the collection. |
| template <class Collection> |
| void InsertOrDie(Collection* const collection, |
| const typename Collection::value_type& value) { |
| CHECK(InsertIfNotPresent(collection, value)) << "duplicate value: " << value; |
| } |
| |
| // Same as above except doesn't log the value on error. |
| template <class Collection> |
| void InsertOrDieNoPrint(Collection* const collection, |
| const typename Collection::value_type& value) { |
| CHECK(InsertIfNotPresent(collection, value)) << "duplicate value."; |
| } |
| |
| // Inserts the key-value pair into the collection. Dies if key was already |
| // present. |
| template <class Collection> |
| void InsertOrDie(Collection* const collection, |
| const typename Collection::value_type::first_type& key, |
| const typename Collection::value_type::second_type& data) { |
| GOOGLE_CHECK(InsertIfNotPresent(collection, key, data)) |
| << "duplicate key: " << key; |
| } |
| |
| // Same as above except doesn't log the key on error. |
| template <class Collection> |
| void InsertOrDieNoPrint( |
| Collection* const collection, |
| const typename Collection::value_type::first_type& key, |
| const typename Collection::value_type::second_type& data) { |
| GOOGLE_CHECK(InsertIfNotPresent(collection, key, data)) << "duplicate key."; |
| } |
| |
| // Inserts a new key and default-initialized value. Dies if the key was already |
| // present. Returns a reference to the value. Example usage: |
| // |
| // map<int, SomeProto> m; |
| // SomeProto& proto = InsertKeyOrDie(&m, 3); |
| // proto.set_field("foo"); |
| template <class Collection> |
| typename Collection::value_type::second_type& InsertKeyOrDie( |
| Collection* const collection, |
| const typename Collection::value_type::first_type& key) { |
| typedef typename Collection::value_type value_type; |
| std::pair<typename Collection::iterator, bool> res = |
| collection->insert(value_type(key, typename value_type::second_type())); |
| GOOGLE_CHECK(res.second) << "duplicate key: " << key; |
| return res.first->second; |
| } |
| |
| // |
| // Lookup*() |
| // |
| |
| // Looks up a given key and value pair in a collection and inserts the key-value |
| // pair if it's not already present. Returns a reference to the value associated |
| // with the key. |
| template <class Collection> |
| typename Collection::value_type::second_type& |
| LookupOrInsert(Collection* const collection, |
| const typename Collection::value_type& vt) { |
| return collection->insert(vt).first->second; |
| } |
| |
| // Same as above except the key-value are passed separately. |
| template <class Collection> |
| typename Collection::value_type::second_type& |
| LookupOrInsert(Collection* const collection, |
| const typename Collection::value_type::first_type& key, |
| const typename Collection::value_type::second_type& value) { |
| return LookupOrInsert( |
| collection, typename Collection::value_type(key, value)); |
| } |
| |
| // Counts the number of equivalent elements in the given "sequence", and stores |
| // the results in "count_map" with element as the key and count as the value. |
| // |
| // Example: |
| // vector<string> v = {"a", "b", "c", "a", "b"}; |
| // map<string, int> m; |
| // AddTokenCounts(v, 1, &m); |
| // assert(m["a"] == 2); |
| // assert(m["b"] == 2); |
| // assert(m["c"] == 1); |
| template <typename Sequence, typename Collection> |
| void AddTokenCounts( |
| const Sequence& sequence, |
| const typename Collection::value_type::second_type& increment, |
| Collection* const count_map) { |
| for (typename Sequence::const_iterator it = sequence.begin(); |
| it != sequence.end(); ++it) { |
| typename Collection::value_type::second_type& value = |
| LookupOrInsert(count_map, *it, |
| typename Collection::value_type::second_type()); |
| value += increment; |
| } |
| } |
| |
| // Returns a reference to the value associated with key. If not found, a value |
| // is default constructed on the heap and added to the map. |
| // |
| // This function is useful for containers of the form map<Key, Value*>, where |
| // inserting a new key, value pair involves constructing a new heap-allocated |
| // Value, and storing a pointer to that in the collection. |
| template <class Collection> |
| typename Collection::value_type::second_type& |
| LookupOrInsertNew(Collection* const collection, |
| const typename Collection::value_type::first_type& key) { |
| typedef typename std::iterator_traits< |
| typename Collection::value_type::second_type>::value_type Element; |
| std::pair<typename Collection::iterator, bool> ret = |
| collection->insert(typename Collection::value_type( |
| key, |
| static_cast<typename Collection::value_type::second_type>(NULL))); |
| if (ret.second) { |
| ret.first->second = new Element(); |
| } |
| return ret.first->second; |
| } |
| |
| // Same as above but constructs the value using the single-argument constructor |
| // and the given "arg". |
| template <class Collection, class Arg> |
| typename Collection::value_type::second_type& |
| LookupOrInsertNew(Collection* const collection, |
| const typename Collection::value_type::first_type& key, |
| const Arg& arg) { |
| typedef typename std::iterator_traits< |
| typename Collection::value_type::second_type>::value_type Element; |
| std::pair<typename Collection::iterator, bool> ret = |
| collection->insert(typename Collection::value_type( |
| key, |
| static_cast<typename Collection::value_type::second_type>(NULL))); |
| if (ret.second) { |
| ret.first->second = new Element(arg); |
| } |
| return ret.first->second; |
| } |
| |
| // Lookup of linked/shared pointers is used in two scenarios: |
| // |
| // Use LookupOrInsertNewLinkedPtr if the container owns the elements. |
| // In this case it is fine working with the raw pointer as long as it is |
| // guaranteed that no other thread can delete/update an accessed element. |
| // A mutex will need to lock the container operation as well as the use |
| // of the returned elements. Finding an element may be performed using |
| // FindLinkedPtr*(). |
| // |
| // Use LookupOrInsertNewSharedPtr if the container does not own the elements |
| // for their whole lifetime. This is typically the case when a reader allows |
| // parallel updates to the container. In this case a Mutex only needs to lock |
| // container operations, but all element operations must be performed on the |
| // shared pointer. Finding an element must be performed using FindPtr*() and |
| // cannot be done with FindLinkedPtr*() even though it compiles. |
| |
| // Lookup a key in a map or hash_map whose values are linked_ptrs. If it is |
| // missing, set collection[key].reset(new Value::element_type) and return that. |
| // Value::element_type must be default constructable. |
| template <class Collection> |
| typename Collection::value_type::second_type::element_type* |
| LookupOrInsertNewLinkedPtr( |
| Collection* const collection, |
| const typename Collection::value_type::first_type& key) { |
| typedef typename Collection::value_type::second_type Value; |
| std::pair<typename Collection::iterator, bool> ret = |
| collection->insert(typename Collection::value_type(key, Value())); |
| if (ret.second) { |
| ret.first->second.reset(new typename Value::element_type); |
| } |
| return ret.first->second.get(); |
| } |
| |
| // A variant of LookupOrInsertNewLinkedPtr where the value is constructed using |
| // a single-parameter constructor. Note: the constructor argument is computed |
| // even if it will not be used, so only values cheap to compute should be passed |
| // here. On the other hand it does not matter how expensive the construction of |
| // the actual stored value is, as that only occurs if necessary. |
| template <class Collection, class Arg> |
| typename Collection::value_type::second_type::element_type* |
| LookupOrInsertNewLinkedPtr( |
| Collection* const collection, |
| const typename Collection::value_type::first_type& key, |
| const Arg& arg) { |
| typedef typename Collection::value_type::second_type Value; |
| std::pair<typename Collection::iterator, bool> ret = |
| collection->insert(typename Collection::value_type(key, Value())); |
| if (ret.second) { |
| ret.first->second.reset(new typename Value::element_type(arg)); |
| } |
| return ret.first->second.get(); |
| } |
| |
| // Lookup a key in a map or hash_map whose values are shared_ptrs. If it is |
| // missing, set collection[key].reset(new Value::element_type). Unlike |
| // LookupOrInsertNewLinkedPtr, this function returns the shared_ptr instead of |
| // the raw pointer. Value::element_type must be default constructable. |
| template <class Collection> |
| typename Collection::value_type::second_type& |
| LookupOrInsertNewSharedPtr( |
| Collection* const collection, |
| const typename Collection::value_type::first_type& key) { |
| typedef typename Collection::value_type::second_type SharedPtr; |
| typedef typename Collection::value_type::second_type::element_type Element; |
| std::pair<typename Collection::iterator, bool> ret = |
| collection->insert(typename Collection::value_type(key, SharedPtr())); |
| if (ret.second) { |
| ret.first->second.reset(new Element()); |
| } |
| return ret.first->second; |
| } |
| |
| // A variant of LookupOrInsertNewSharedPtr where the value is constructed using |
| // a single-parameter constructor. Note: the constructor argument is computed |
| // even if it will not be used, so only values cheap to compute should be passed |
| // here. On the other hand it does not matter how expensive the construction of |
| // the actual stored value is, as that only occurs if necessary. |
| template <class Collection, class Arg> |
| typename Collection::value_type::second_type& |
| LookupOrInsertNewSharedPtr( |
| Collection* const collection, |
| const typename Collection::value_type::first_type& key, |
| const Arg& arg) { |
| typedef typename Collection::value_type::second_type SharedPtr; |
| typedef typename Collection::value_type::second_type::element_type Element; |
| std::pair<typename Collection::iterator, bool> ret = |
| collection->insert(typename Collection::value_type(key, SharedPtr())); |
| if (ret.second) { |
| ret.first->second.reset(new Element(arg)); |
| } |
| return ret.first->second; |
| } |
| |
| // |
| // Misc Utility Functions |
| // |
| |
| // Updates the value associated with the given key. If the key was not already |
| // present, then the key-value pair are inserted and "previous" is unchanged. If |
| // the key was already present, the value is updated and "*previous" will |
| // contain a copy of the old value. |
| // |
| // InsertOrReturnExisting has complementary behavior that returns the |
| // address of an already existing value, rather than updating it. |
| template <class Collection> |
| bool UpdateReturnCopy(Collection* const collection, |
| const typename Collection::value_type::first_type& key, |
| const typename Collection::value_type::second_type& value, |
| typename Collection::value_type::second_type* previous) { |
| std::pair<typename Collection::iterator, bool> ret = |
| collection->insert(typename Collection::value_type(key, value)); |
| if (!ret.second) { |
| // update |
| if (previous) { |
| *previous = ret.first->second; |
| } |
| ret.first->second = value; |
| return true; |
| } |
| return false; |
| } |
| |
| // Same as above except that the key and value are passed as a pair. |
| template <class Collection> |
| bool UpdateReturnCopy(Collection* const collection, |
| const typename Collection::value_type& vt, |
| typename Collection::value_type::second_type* previous) { |
| std::pair<typename Collection::iterator, bool> ret = collection->insert(vt); |
| if (!ret.second) { |
| // update |
| if (previous) { |
| *previous = ret.first->second; |
| } |
| ret.first->second = vt.second; |
| return true; |
| } |
| return false; |
| } |
| |
| // Tries to insert the given key-value pair into the collection. Returns NULL if |
| // the insert succeeds. Otherwise, returns a pointer to the existing value. |
| // |
| // This complements UpdateReturnCopy in that it allows to update only after |
| // verifying the old value and still insert quickly without having to look up |
| // twice. Unlike UpdateReturnCopy this also does not come with the issue of an |
| // undefined previous* in case new data was inserted. |
| template <class Collection> |
| typename Collection::value_type::second_type* const |
| InsertOrReturnExisting(Collection* const collection, |
| const typename Collection::value_type& vt) { |
| std::pair<typename Collection::iterator, bool> ret = collection->insert(vt); |
| if (ret.second) { |
| return NULL; // Inserted, no existing previous value. |
| } else { |
| return &ret.first->second; // Return address of already existing value. |
| } |
| } |
| |
| // Same as above, except for explicit key and data. |
| template <class Collection> |
| typename Collection::value_type::second_type* const |
| InsertOrReturnExisting( |
| Collection* const collection, |
| const typename Collection::value_type::first_type& key, |
| const typename Collection::value_type::second_type& data) { |
| return InsertOrReturnExisting(collection, |
| typename Collection::value_type(key, data)); |
| } |
| |
| // Erases the collection item identified by the given key, and returns the value |
| // associated with that key. It is assumed that the value (i.e., the |
| // mapped_type) is a pointer. Returns NULL if the key was not found in the |
| // collection. |
| // |
| // Examples: |
| // map<string, MyType*> my_map; |
| // |
| // One line cleanup: |
| // delete EraseKeyReturnValuePtr(&my_map, "abc"); |
| // |
| // Use returned value: |
| // scoped_ptr<MyType> value_ptr(EraseKeyReturnValuePtr(&my_map, "abc")); |
| // if (value_ptr.get()) |
| // value_ptr->DoSomething(); |
| // |
| template <class Collection> |
| typename Collection::value_type::second_type EraseKeyReturnValuePtr( |
| Collection* const collection, |
| const typename Collection::value_type::first_type& key) { |
| typename Collection::iterator it = collection->find(key); |
| if (it == collection->end()) { |
| return NULL; |
| } |
| typename Collection::value_type::second_type v = it->second; |
| collection->erase(it); |
| return v; |
| } |
| |
| // Inserts all the keys from map_container into key_container, which must |
| // support insert(MapContainer::key_type). |
| // |
| // Note: any initial contents of the key_container are not cleared. |
| template <class MapContainer, class KeyContainer> |
| void InsertKeysFromMap(const MapContainer& map_container, |
| KeyContainer* key_container) { |
| GOOGLE_CHECK(key_container != NULL); |
| for (typename MapContainer::const_iterator it = map_container.begin(); |
| it != map_container.end(); ++it) { |
| key_container->insert(it->first); |
| } |
| } |
| |
| // Appends all the keys from map_container into key_container, which must |
| // support push_back(MapContainer::key_type). |
| // |
| // Note: any initial contents of the key_container are not cleared. |
| template <class MapContainer, class KeyContainer> |
| void AppendKeysFromMap(const MapContainer& map_container, |
| KeyContainer* key_container) { |
| GOOGLE_CHECK(key_container != NULL); |
| for (typename MapContainer::const_iterator it = map_container.begin(); |
| it != map_container.end(); ++it) { |
| key_container->push_back(it->first); |
| } |
| } |
| |
| // A more specialized overload of AppendKeysFromMap to optimize reallocations |
| // for the common case in which we're appending keys to a vector and hence can |
| // (and sometimes should) call reserve() first. |
| // |
| // (It would be possible to play SFINAE games to call reserve() for any |
| // container that supports it, but this seems to get us 99% of what we need |
| // without the complexity of a SFINAE-based solution.) |
| template <class MapContainer, class KeyType> |
| void AppendKeysFromMap(const MapContainer& map_container, |
| vector<KeyType>* key_container) { |
| GOOGLE_CHECK(key_container != NULL); |
| // We now have the opportunity to call reserve(). Calling reserve() every |
| // time is a bad idea for some use cases: libstdc++'s implementation of |
| // vector<>::reserve() resizes the vector's backing store to exactly the |
| // given size (unless it's already at least that big). Because of this, |
| // the use case that involves appending a lot of small maps (total size |
| // N) one by one to a vector would be O(N^2). But never calling reserve() |
| // loses the opportunity to improve the use case of adding from a large |
| // map to an empty vector (this improves performance by up to 33%). A |
| // number of heuristics are possible; see the discussion in |
| // cl/34081696. Here we use the simplest one. |
| if (key_container->empty()) { |
| key_container->reserve(map_container.size()); |
| } |
| for (typename MapContainer::const_iterator it = map_container.begin(); |
| it != map_container.end(); ++it) { |
| key_container->push_back(it->first); |
| } |
| } |
| |
| // Inserts all the values from map_container into value_container, which must |
| // support push_back(MapContainer::mapped_type). |
| // |
| // Note: any initial contents of the value_container are not cleared. |
| template <class MapContainer, class ValueContainer> |
| void AppendValuesFromMap(const MapContainer& map_container, |
| ValueContainer* value_container) { |
| GOOGLE_CHECK(value_container != NULL); |
| for (typename MapContainer::const_iterator it = map_container.begin(); |
| it != map_container.end(); ++it) { |
| value_container->push_back(it->second); |
| } |
| } |
| |
| // A more specialized overload of AppendValuesFromMap to optimize reallocations |
| // for the common case in which we're appending values to a vector and hence |
| // can (and sometimes should) call reserve() first. |
| // |
| // (It would be possible to play SFINAE games to call reserve() for any |
| // container that supports it, but this seems to get us 99% of what we need |
| // without the complexity of a SFINAE-based solution.) |
| template <class MapContainer, class ValueType> |
| void AppendValuesFromMap(const MapContainer& map_container, |
| vector<ValueType>* value_container) { |
| GOOGLE_CHECK(value_container != NULL); |
| // See AppendKeysFromMap for why this is done. |
| if (value_container->empty()) { |
| value_container->reserve(map_container.size()); |
| } |
| for (typename MapContainer::const_iterator it = map_container.begin(); |
| it != map_container.end(); ++it) { |
| value_container->push_back(it->second); |
| } |
| } |
| |
| } // namespace protobuf |
| } // namespace google |
| |
| #endif // GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__ |