blob: 8bdd611030ff4bc6ef95bc2855ae6727a94b2400 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// from google3/strings/strutil.h
#ifndef GOOGLE_PROTOBUF_STUBS_STRUTIL_H__
#define GOOGLE_PROTOBUF_STUBS_STRUTIL_H__
#include <stdlib.h>
#include <vector>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/stubs/stringpiece.h>
namespace google {
namespace protobuf {
#ifdef _MSC_VER
#define strtoll _strtoi64
#define strtoull _strtoui64
#elif defined(__DECCXX) && defined(__osf__)
// HP C++ on Tru64 does not have strtoll, but strtol is already 64-bit.
#define strtoll strtol
#define strtoull strtoul
#endif
// ----------------------------------------------------------------------
// ascii_isalnum()
// Check if an ASCII character is alphanumeric. We can't use ctype's
// isalnum() because it is affected by locale. This function is applied
// to identifiers in the protocol buffer language, not to natural-language
// strings, so locale should not be taken into account.
// ascii_isdigit()
// Like above, but only accepts digits.
// ascii_isspace()
// Check if the character is a space character.
// ----------------------------------------------------------------------
inline bool ascii_isalnum(char c) {
return ('a' <= c && c <= 'z') ||
('A' <= c && c <= 'Z') ||
('0' <= c && c <= '9');
}
inline bool ascii_isdigit(char c) {
return ('0' <= c && c <= '9');
}
inline bool ascii_isspace(char c) {
return c == ' ' || c == '\t' || c == '\n' || c == '\v' || c == '\f' ||
c == '\r';
}
inline bool ascii_isupper(char c) {
return c >= 'A' && c <= 'Z';
}
inline bool ascii_islower(char c) {
return c >= 'a' && c <= 'z';
}
inline char ascii_toupper(char c) {
return ascii_islower(c) ? c - ('a' - 'A') : c;
}
inline char ascii_tolower(char c) {
return ascii_isupper(c) ? c + ('a' - 'A') : c;
}
inline int hex_digit_to_int(char c) {
/* Assume ASCII. */
int x = static_cast<unsigned char>(c);
if (x > '9') {
x += 9;
}
return x & 0xf;
}
// ----------------------------------------------------------------------
// HasPrefixString()
// Check if a string begins with a given prefix.
// StripPrefixString()
// Given a string and a putative prefix, returns the string minus the
// prefix string if the prefix matches, otherwise the original
// string.
// ----------------------------------------------------------------------
inline bool HasPrefixString(const string& str,
const string& prefix) {
return str.size() >= prefix.size() &&
str.compare(0, prefix.size(), prefix) == 0;
}
inline string StripPrefixString(const string& str, const string& prefix) {
if (HasPrefixString(str, prefix)) {
return str.substr(prefix.size());
} else {
return str;
}
}
// ----------------------------------------------------------------------
// HasSuffixString()
// Return true if str ends in suffix.
// StripSuffixString()
// Given a string and a putative suffix, returns the string minus the
// suffix string if the suffix matches, otherwise the original
// string.
// ----------------------------------------------------------------------
inline bool HasSuffixString(const string& str,
const string& suffix) {
return str.size() >= suffix.size() &&
str.compare(str.size() - suffix.size(), suffix.size(), suffix) == 0;
}
inline string StripSuffixString(const string& str, const string& suffix) {
if (HasSuffixString(str, suffix)) {
return str.substr(0, str.size() - suffix.size());
} else {
return str;
}
}
// ----------------------------------------------------------------------
// StripString
// Replaces any occurrence of the character 'remove' (or the characters
// in 'remove') with the character 'replacewith'.
// Good for keeping html characters or protocol characters (\t) out
// of places where they might cause a problem.
// StripWhitespace
// Removes whitespaces from both ends of the given string.
// ----------------------------------------------------------------------
LIBPROTOBUF_EXPORT void StripString(string* s, const char* remove,
char replacewith);
LIBPROTOBUF_EXPORT void StripWhitespace(string* s);
// ----------------------------------------------------------------------
// LowerString()
// UpperString()
// ToUpper()
// Convert the characters in "s" to lowercase or uppercase. ASCII-only:
// these functions intentionally ignore locale because they are applied to
// identifiers used in the Protocol Buffer language, not to natural-language
// strings.
// ----------------------------------------------------------------------
inline void LowerString(string * s) {
string::iterator end = s->end();
for (string::iterator i = s->begin(); i != end; ++i) {
// tolower() changes based on locale. We don't want this!
if ('A' <= *i && *i <= 'Z') *i += 'a' - 'A';
}
}
inline void UpperString(string * s) {
string::iterator end = s->end();
for (string::iterator i = s->begin(); i != end; ++i) {
// toupper() changes based on locale. We don't want this!
if ('a' <= *i && *i <= 'z') *i += 'A' - 'a';
}
}
inline string ToUpper(const string& s) {
string out = s;
UpperString(&out);
return out;
}
// ----------------------------------------------------------------------
// StringReplace()
// Give me a string and two patterns "old" and "new", and I replace
// the first instance of "old" in the string with "new", if it
// exists. RETURN a new string, regardless of whether the replacement
// happened or not.
// ----------------------------------------------------------------------
LIBPROTOBUF_EXPORT string StringReplace(const string& s, const string& oldsub,
const string& newsub, bool replace_all);
// ----------------------------------------------------------------------
// SplitStringUsing()
// Split a string using a character delimiter. Append the components
// to 'result'. If there are consecutive delimiters, this function skips
// over all of them.
// ----------------------------------------------------------------------
LIBPROTOBUF_EXPORT void SplitStringUsing(const string& full, const char* delim,
vector<string>* res);
// Split a string using one or more byte delimiters, presented
// as a nul-terminated c string. Append the components to 'result'.
// If there are consecutive delimiters, this function will return
// corresponding empty strings. If you want to drop the empty
// strings, try SplitStringUsing().
//
// If "full" is the empty string, yields an empty string as the only value.
// ----------------------------------------------------------------------
LIBPROTOBUF_EXPORT void SplitStringAllowEmpty(const string& full,
const char* delim,
vector<string>* result);
// ----------------------------------------------------------------------
// Split()
// Split a string using a character delimiter.
// ----------------------------------------------------------------------
inline vector<string> Split(
const string& full, const char* delim, bool skip_empty = true) {
vector<string> result;
if (skip_empty) {
SplitStringUsing(full, delim, &result);
} else {
SplitStringAllowEmpty(full, delim, &result);
}
return result;
}
// ----------------------------------------------------------------------
// JoinStrings()
// These methods concatenate a vector of strings into a C++ string, using
// the C-string "delim" as a separator between components. There are two
// flavors of the function, one flavor returns the concatenated string,
// another takes a pointer to the target string. In the latter case the
// target string is cleared and overwritten.
// ----------------------------------------------------------------------
LIBPROTOBUF_EXPORT void JoinStrings(const vector<string>& components,
const char* delim, string* result);
inline string JoinStrings(const vector<string>& components,
const char* delim) {
string result;
JoinStrings(components, delim, &result);
return result;
}
// ----------------------------------------------------------------------
// UnescapeCEscapeSequences()
// Copies "source" to "dest", rewriting C-style escape sequences
// -- '\n', '\r', '\\', '\ooo', etc -- to their ASCII
// equivalents. "dest" must be sufficiently large to hold all
// the characters in the rewritten string (i.e. at least as large
// as strlen(source) + 1 should be safe, since the replacements
// are always shorter than the original escaped sequences). It's
// safe for source and dest to be the same. RETURNS the length
// of dest.
//
// It allows hex sequences \xhh, or generally \xhhhhh with an
// arbitrary number of hex digits, but all of them together must
// specify a value of a single byte (e.g. \x0045 is equivalent
// to \x45, and \x1234 is erroneous).
//
// It also allows escape sequences of the form \uhhhh (exactly four
// hex digits, upper or lower case) or \Uhhhhhhhh (exactly eight
// hex digits, upper or lower case) to specify a Unicode code
// point. The dest array will contain the UTF8-encoded version of
// that code-point (e.g., if source contains \u2019, then dest will
// contain the three bytes 0xE2, 0x80, and 0x99).
//
// Errors: In the first form of the call, errors are reported with
// LOG(ERROR). The same is true for the second form of the call if
// the pointer to the string vector is NULL; otherwise, error
// messages are stored in the vector. In either case, the effect on
// the dest array is not defined, but rest of the source will be
// processed.
// ----------------------------------------------------------------------
LIBPROTOBUF_EXPORT int UnescapeCEscapeSequences(const char* source, char* dest);
LIBPROTOBUF_EXPORT int UnescapeCEscapeSequences(const char* source, char* dest,
vector<string> *errors);
// ----------------------------------------------------------------------
// UnescapeCEscapeString()
// This does the same thing as UnescapeCEscapeSequences, but creates
// a new string. The caller does not need to worry about allocating
// a dest buffer. This should be used for non performance critical
// tasks such as printing debug messages. It is safe for src and dest
// to be the same.
//
// The second call stores its errors in a supplied string vector.
// If the string vector pointer is NULL, it reports the errors with LOG().
//
// In the first and second calls, the length of dest is returned. In the
// the third call, the new string is returned.
// ----------------------------------------------------------------------
LIBPROTOBUF_EXPORT int UnescapeCEscapeString(const string& src, string* dest);
LIBPROTOBUF_EXPORT int UnescapeCEscapeString(const string& src, string* dest,
vector<string> *errors);
LIBPROTOBUF_EXPORT string UnescapeCEscapeString(const string& src);
// ----------------------------------------------------------------------
// CEscape()
// Escapes 'src' using C-style escape sequences and returns the resulting
// string.
//
// Escaped chars: \n, \r, \t, ", ', \, and !isprint().
// ----------------------------------------------------------------------
LIBPROTOBUF_EXPORT string CEscape(const string& src);
// ----------------------------------------------------------------------
// CEscapeAndAppend()
// Escapes 'src' using C-style escape sequences, and appends the escaped
// string to 'dest'.
// ----------------------------------------------------------------------
LIBPROTOBUF_EXPORT void CEscapeAndAppend(StringPiece src, string* dest);
namespace strings {
// Like CEscape() but does not escape bytes with the upper bit set.
LIBPROTOBUF_EXPORT string Utf8SafeCEscape(const string& src);
// Like CEscape() but uses hex (\x) escapes instead of octals.
LIBPROTOBUF_EXPORT string CHexEscape(const string& src);
} // namespace strings
// ----------------------------------------------------------------------
// strto32()
// strtou32()
// strto64()
// strtou64()
// Architecture-neutral plug compatible replacements for strtol() and
// strtoul(). Long's have different lengths on ILP-32 and LP-64
// platforms, so using these is safer, from the point of view of
// overflow behavior, than using the standard libc functions.
// ----------------------------------------------------------------------
LIBPROTOBUF_EXPORT int32 strto32_adaptor(const char *nptr, char **endptr,
int base);
LIBPROTOBUF_EXPORT uint32 strtou32_adaptor(const char *nptr, char **endptr,
int base);
inline int32 strto32(const char *nptr, char **endptr, int base) {
if (sizeof(int32) == sizeof(long))
return strtol(nptr, endptr, base);
else
return strto32_adaptor(nptr, endptr, base);
}
inline uint32 strtou32(const char *nptr, char **endptr, int base) {
if (sizeof(uint32) == sizeof(unsigned long))
return strtoul(nptr, endptr, base);
else
return strtou32_adaptor(nptr, endptr, base);
}
// For now, long long is 64-bit on all the platforms we care about, so these
// functions can simply pass the call to strto[u]ll.
inline int64 strto64(const char *nptr, char **endptr, int base) {
GOOGLE_COMPILE_ASSERT(sizeof(int64) == sizeof(long long),
sizeof_int64_is_not_sizeof_long_long);
return strtoll(nptr, endptr, base);
}
inline uint64 strtou64(const char *nptr, char **endptr, int base) {
GOOGLE_COMPILE_ASSERT(sizeof(uint64) == sizeof(unsigned long long),
sizeof_uint64_is_not_sizeof_long_long);
return strtoull(nptr, endptr, base);
}
// ----------------------------------------------------------------------
// safe_strtob()
// safe_strto32()
// safe_strtou32()
// safe_strto64()
// safe_strtou64()
// safe_strtof()
// safe_strtod()
// ----------------------------------------------------------------------
LIBPROTOBUF_EXPORT bool safe_strtob(StringPiece str, bool* value);
LIBPROTOBUF_EXPORT bool safe_strto32(const string& str, int32* value);
LIBPROTOBUF_EXPORT bool safe_strtou32(const string& str, uint32* value);
inline bool safe_strto32(const char* str, int32* value) {
return safe_strto32(string(str), value);
}
inline bool safe_strto32(StringPiece str, int32* value) {
return safe_strto32(str.ToString(), value);
}
inline bool safe_strtou32(const char* str, uint32* value) {
return safe_strtou32(string(str), value);
}
inline bool safe_strtou32(StringPiece str, uint32* value) {
return safe_strtou32(str.ToString(), value);
}
LIBPROTOBUF_EXPORT bool safe_strto64(const string& str, int64* value);
LIBPROTOBUF_EXPORT bool safe_strtou64(const string& str, uint64* value);
inline bool safe_strto64(const char* str, int64* value) {
return safe_strto64(string(str), value);
}
inline bool safe_strto64(StringPiece str, int64* value) {
return safe_strto64(str.ToString(), value);
}
inline bool safe_strtou64(const char* str, uint64* value) {
return safe_strtou64(string(str), value);
}
inline bool safe_strtou64(StringPiece str, uint64* value) {
return safe_strtou64(str.ToString(), value);
}
LIBPROTOBUF_EXPORT bool safe_strtof(const char* str, float* value);
LIBPROTOBUF_EXPORT bool safe_strtod(const char* str, double* value);
inline bool safe_strtof(const string& str, float* value) {
return safe_strtof(str.c_str(), value);
}
inline bool safe_strtod(const string& str, double* value) {
return safe_strtod(str.c_str(), value);
}
inline bool safe_strtof(StringPiece str, float* value) {
return safe_strtof(str.ToString(), value);
}
inline bool safe_strtod(StringPiece str, double* value) {
return safe_strtod(str.ToString(), value);
}
// ----------------------------------------------------------------------
// FastIntToBuffer()
// FastHexToBuffer()
// FastHex64ToBuffer()
// FastHex32ToBuffer()
// FastTimeToBuffer()
// These are intended for speed. FastIntToBuffer() assumes the
// integer is non-negative. FastHexToBuffer() puts output in
// hex rather than decimal. FastTimeToBuffer() puts the output
// into RFC822 format.
//
// FastHex64ToBuffer() puts a 64-bit unsigned value in hex-format,
// padded to exactly 16 bytes (plus one byte for '\0')
//
// FastHex32ToBuffer() puts a 32-bit unsigned value in hex-format,
// padded to exactly 8 bytes (plus one byte for '\0')
//
// All functions take the output buffer as an arg.
// They all return a pointer to the beginning of the output,
// which may not be the beginning of the input buffer.
// ----------------------------------------------------------------------
// Suggested buffer size for FastToBuffer functions. Also works with
// DoubleToBuffer() and FloatToBuffer().
static const int kFastToBufferSize = 32;
LIBPROTOBUF_EXPORT char* FastInt32ToBuffer(int32 i, char* buffer);
LIBPROTOBUF_EXPORT char* FastInt64ToBuffer(int64 i, char* buffer);
char* FastUInt32ToBuffer(uint32 i, char* buffer); // inline below
char* FastUInt64ToBuffer(uint64 i, char* buffer); // inline below
LIBPROTOBUF_EXPORT char* FastHexToBuffer(int i, char* buffer);
LIBPROTOBUF_EXPORT char* FastHex64ToBuffer(uint64 i, char* buffer);
LIBPROTOBUF_EXPORT char* FastHex32ToBuffer(uint32 i, char* buffer);
// at least 22 bytes long
inline char* FastIntToBuffer(int i, char* buffer) {
return (sizeof(i) == 4 ?
FastInt32ToBuffer(i, buffer) : FastInt64ToBuffer(i, buffer));
}
inline char* FastUIntToBuffer(unsigned int i, char* buffer) {
return (sizeof(i) == 4 ?
FastUInt32ToBuffer(i, buffer) : FastUInt64ToBuffer(i, buffer));
}
inline char* FastLongToBuffer(long i, char* buffer) {
return (sizeof(i) == 4 ?
FastInt32ToBuffer(i, buffer) : FastInt64ToBuffer(i, buffer));
}
inline char* FastULongToBuffer(unsigned long i, char* buffer) {
return (sizeof(i) == 4 ?
FastUInt32ToBuffer(i, buffer) : FastUInt64ToBuffer(i, buffer));
}
// ----------------------------------------------------------------------
// FastInt32ToBufferLeft()
// FastUInt32ToBufferLeft()
// FastInt64ToBufferLeft()
// FastUInt64ToBufferLeft()
//
// Like the Fast*ToBuffer() functions above, these are intended for speed.
// Unlike the Fast*ToBuffer() functions, however, these functions write
// their output to the beginning of the buffer (hence the name, as the
// output is left-aligned). The caller is responsible for ensuring that
// the buffer has enough space to hold the output.
//
// Returns a pointer to the end of the string (i.e. the null character
// terminating the string).
// ----------------------------------------------------------------------
LIBPROTOBUF_EXPORT char* FastInt32ToBufferLeft(int32 i, char* buffer);
LIBPROTOBUF_EXPORT char* FastUInt32ToBufferLeft(uint32 i, char* buffer);
LIBPROTOBUF_EXPORT char* FastInt64ToBufferLeft(int64 i, char* buffer);
LIBPROTOBUF_EXPORT char* FastUInt64ToBufferLeft(uint64 i, char* buffer);
// Just define these in terms of the above.
inline char* FastUInt32ToBuffer(uint32 i, char* buffer) {
FastUInt32ToBufferLeft(i, buffer);
return buffer;
}
inline char* FastUInt64ToBuffer(uint64 i, char* buffer) {
FastUInt64ToBufferLeft(i, buffer);
return buffer;
}
inline string SimpleBtoa(bool value) {
return value ? "true" : "false";
}
// ----------------------------------------------------------------------
// SimpleItoa()
// Description: converts an integer to a string.
//
// Return value: string
// ----------------------------------------------------------------------
LIBPROTOBUF_EXPORT string SimpleItoa(int i);
LIBPROTOBUF_EXPORT string SimpleItoa(unsigned int i);
LIBPROTOBUF_EXPORT string SimpleItoa(long i);
LIBPROTOBUF_EXPORT string SimpleItoa(unsigned long i);
LIBPROTOBUF_EXPORT string SimpleItoa(long long i);
LIBPROTOBUF_EXPORT string SimpleItoa(unsigned long long i);
// ----------------------------------------------------------------------
// SimpleDtoa()
// SimpleFtoa()
// DoubleToBuffer()
// FloatToBuffer()
// Description: converts a double or float to a string which, if
// passed to NoLocaleStrtod(), will produce the exact same original double
// (except in case of NaN; all NaNs are considered the same value).
// We try to keep the string short but it's not guaranteed to be as
// short as possible.
//
// DoubleToBuffer() and FloatToBuffer() write the text to the given
// buffer and return it. The buffer must be at least
// kDoubleToBufferSize bytes for doubles and kFloatToBufferSize
// bytes for floats. kFastToBufferSize is also guaranteed to be large
// enough to hold either.
//
// Return value: string
// ----------------------------------------------------------------------
LIBPROTOBUF_EXPORT string SimpleDtoa(double value);
LIBPROTOBUF_EXPORT string SimpleFtoa(float value);
LIBPROTOBUF_EXPORT char* DoubleToBuffer(double i, char* buffer);
LIBPROTOBUF_EXPORT char* FloatToBuffer(float i, char* buffer);
// In practice, doubles should never need more than 24 bytes and floats
// should never need more than 14 (including null terminators), but we
// overestimate to be safe.
static const int kDoubleToBufferSize = 32;
static const int kFloatToBufferSize = 24;
namespace strings {
enum PadSpec {
NO_PAD = 1,
ZERO_PAD_2,
ZERO_PAD_3,
ZERO_PAD_4,
ZERO_PAD_5,
ZERO_PAD_6,
ZERO_PAD_7,
ZERO_PAD_8,
ZERO_PAD_9,
ZERO_PAD_10,
ZERO_PAD_11,
ZERO_PAD_12,
ZERO_PAD_13,
ZERO_PAD_14,
ZERO_PAD_15,
ZERO_PAD_16,
};
struct Hex {
uint64 value;
enum PadSpec spec;
template <class Int>
explicit Hex(Int v, PadSpec s = NO_PAD)
: spec(s) {
// Prevent sign-extension by casting integers to
// their unsigned counterparts.
#ifdef LANG_CXX11
static_assert(
sizeof(v) == 1 || sizeof(v) == 2 || sizeof(v) == 4 || sizeof(v) == 8,
"Unknown integer type");
#endif
value = sizeof(v) == 1 ? static_cast<uint8>(v)
: sizeof(v) == 2 ? static_cast<uint16>(v)
: sizeof(v) == 4 ? static_cast<uint32>(v)
: static_cast<uint64>(v);
}
};
struct LIBPROTOBUF_EXPORT AlphaNum {
const char *piece_data_; // move these to string_ref eventually
size_t piece_size_; // move these to string_ref eventually
char digits[kFastToBufferSize];
// No bool ctor -- bools convert to an integral type.
// A bool ctor would also convert incoming pointers (bletch).
AlphaNum(int32 i32)
: piece_data_(digits),
piece_size_(FastInt32ToBufferLeft(i32, digits) - &digits[0]) {}
AlphaNum(uint32 u32)
: piece_data_(digits),
piece_size_(FastUInt32ToBufferLeft(u32, digits) - &digits[0]) {}
AlphaNum(int64 i64)
: piece_data_(digits),
piece_size_(FastInt64ToBufferLeft(i64, digits) - &digits[0]) {}
AlphaNum(uint64 u64)
: piece_data_(digits),
piece_size_(FastUInt64ToBufferLeft(u64, digits) - &digits[0]) {}
AlphaNum(float f)
: piece_data_(digits), piece_size_(strlen(FloatToBuffer(f, digits))) {}
AlphaNum(double f)
: piece_data_(digits), piece_size_(strlen(DoubleToBuffer(f, digits))) {}
AlphaNum(Hex hex);
AlphaNum(const char* c_str)
: piece_data_(c_str), piece_size_(strlen(c_str)) {}
// TODO: Add a string_ref constructor, eventually
// AlphaNum(const StringPiece &pc) : piece(pc) {}
AlphaNum(const string& str)
: piece_data_(str.data()), piece_size_(str.size()) {}
AlphaNum(StringPiece str)
: piece_data_(str.data()), piece_size_(str.size()) {}
AlphaNum(internal::StringPiecePod str)
: piece_data_(str.data()), piece_size_(str.size()) {}
size_t size() const { return piece_size_; }
const char *data() const { return piece_data_; }
private:
// Use ":" not ':'
AlphaNum(char c); // NOLINT(runtime/explicit)
// Disallow copy and assign.
AlphaNum(const AlphaNum&);
void operator=(const AlphaNum&);
};
} // namespace strings
using strings::AlphaNum;
// ----------------------------------------------------------------------
// StrCat()
// This merges the given strings or numbers, with no delimiter. This
// is designed to be the fastest possible way to construct a string out
// of a mix of raw C strings, strings, bool values,
// and numeric values.
//
// Don't use this for user-visible strings. The localization process
// works poorly on strings built up out of fragments.
//
// For clarity and performance, don't use StrCat when appending to a
// string. In particular, avoid using any of these (anti-)patterns:
// str.append(StrCat(...)
// str += StrCat(...)
// str = StrCat(str, ...)
// where the last is the worse, with the potential to change a loop
// from a linear time operation with O(1) dynamic allocations into a
// quadratic time operation with O(n) dynamic allocations. StrAppend
// is a better choice than any of the above, subject to the restriction
// of StrAppend(&str, a, b, c, ...) that none of the a, b, c, ... may
// be a reference into str.
// ----------------------------------------------------------------------
LIBPROTOBUF_EXPORT string StrCat(const AlphaNum& a, const AlphaNum& b);
LIBPROTOBUF_EXPORT string StrCat(const AlphaNum& a, const AlphaNum& b,
const AlphaNum& c);
LIBPROTOBUF_EXPORT string StrCat(const AlphaNum& a, const AlphaNum& b,
const AlphaNum& c, const AlphaNum& d);
LIBPROTOBUF_EXPORT string StrCat(const AlphaNum& a, const AlphaNum& b,
const AlphaNum& c, const AlphaNum& d,
const AlphaNum& e);
LIBPROTOBUF_EXPORT string StrCat(const AlphaNum& a, const AlphaNum& b,
const AlphaNum& c, const AlphaNum& d,
const AlphaNum& e, const AlphaNum& f);
LIBPROTOBUF_EXPORT string StrCat(const AlphaNum& a, const AlphaNum& b,
const AlphaNum& c, const AlphaNum& d,
const AlphaNum& e, const AlphaNum& f,
const AlphaNum& g);
LIBPROTOBUF_EXPORT string StrCat(const AlphaNum& a, const AlphaNum& b,
const AlphaNum& c, const AlphaNum& d,
const AlphaNum& e, const AlphaNum& f,
const AlphaNum& g, const AlphaNum& h);
LIBPROTOBUF_EXPORT string StrCat(const AlphaNum& a, const AlphaNum& b,
const AlphaNum& c, const AlphaNum& d,
const AlphaNum& e, const AlphaNum& f,
const AlphaNum& g, const AlphaNum& h,
const AlphaNum& i);
inline string StrCat(const AlphaNum& a) { return string(a.data(), a.size()); }
// ----------------------------------------------------------------------
// StrAppend()
// Same as above, but adds the output to the given string.
// WARNING: For speed, StrAppend does not try to check each of its input
// arguments to be sure that they are not a subset of the string being
// appended to. That is, while this will work:
//
// string s = "foo";
// s += s;
//
// This will not (necessarily) work:
//
// string s = "foo";
// StrAppend(&s, s);
//
// Note: while StrCat supports appending up to 9 arguments, StrAppend
// is currently limited to 4. That's rarely an issue except when
// automatically transforming StrCat to StrAppend, and can easily be
// worked around as consecutive calls to StrAppend are quite efficient.
// ----------------------------------------------------------------------
LIBPROTOBUF_EXPORT void StrAppend(string* dest, const AlphaNum& a);
LIBPROTOBUF_EXPORT void StrAppend(string* dest, const AlphaNum& a,
const AlphaNum& b);
LIBPROTOBUF_EXPORT void StrAppend(string* dest, const AlphaNum& a,
const AlphaNum& b, const AlphaNum& c);
LIBPROTOBUF_EXPORT void StrAppend(string* dest, const AlphaNum& a,
const AlphaNum& b, const AlphaNum& c,
const AlphaNum& d);
// ----------------------------------------------------------------------
// Join()
// These methods concatenate a range of components into a C++ string, using
// the C-string "delim" as a separator between components.
// ----------------------------------------------------------------------
template <typename Iterator>
void Join(Iterator start, Iterator end,
const char* delim, string* result) {
for (Iterator it = start; it != end; ++it) {
if (it != start) {
result->append(delim);
}
StrAppend(result, *it);
}
}
template <typename Range>
string Join(const Range& components,
const char* delim) {
string result;
Join(components.begin(), components.end(), delim, &result);
return result;
}
// ----------------------------------------------------------------------
// ToHex()
// Return a lower-case hex string representation of the given integer.
// ----------------------------------------------------------------------
LIBPROTOBUF_EXPORT string ToHex(uint64 num);
// ----------------------------------------------------------------------
// GlobalReplaceSubstring()
// Replaces all instances of a substring in a string. Does nothing
// if 'substring' is empty. Returns the number of replacements.
//
// NOTE: The string pieces must not overlap s.
// ----------------------------------------------------------------------
LIBPROTOBUF_EXPORT int GlobalReplaceSubstring(const string& substring,
const string& replacement,
string* s);
// ----------------------------------------------------------------------
// Base64Unescape()
// Converts "src" which is encoded in Base64 to its binary equivalent and
// writes it to "dest". If src contains invalid characters, dest is cleared
// and the function returns false. Returns true on success.
// ----------------------------------------------------------------------
LIBPROTOBUF_EXPORT bool Base64Unescape(StringPiece src, string* dest);
// ----------------------------------------------------------------------
// WebSafeBase64Unescape()
// This is a variation of Base64Unescape which uses '-' instead of '+', and
// '_' instead of '/'. src is not null terminated, instead specify len. I
// recommend that slen<szdest, but we honor szdest anyway.
// RETURNS the length of dest, or -1 if src contains invalid chars.
// The variation that stores into a string clears the string first, and
// returns false (with dest empty) if src contains invalid chars; for
// this version src and dest must be different strings.
// ----------------------------------------------------------------------
LIBPROTOBUF_EXPORT int WebSafeBase64Unescape(const char* src, int slen,
char* dest, int szdest);
LIBPROTOBUF_EXPORT bool WebSafeBase64Unescape(StringPiece src, string* dest);
// Return the length to use for the output buffer given to the base64 escape
// routines. Make sure to use the same value for do_padding in both.
// This function may return incorrect results if given input_len values that
// are extremely high, which should happen rarely.
LIBPROTOBUF_EXPORT int CalculateBase64EscapedLen(int input_len,
bool do_padding);
// Use this version when calling Base64Escape without a do_padding arg.
LIBPROTOBUF_EXPORT int CalculateBase64EscapedLen(int input_len);
// ----------------------------------------------------------------------
// Base64Escape()
// WebSafeBase64Escape()
// Encode "src" to "dest" using base64 encoding.
// src is not null terminated, instead specify len.
// 'dest' should have at least CalculateBase64EscapedLen() length.
// RETURNS the length of dest.
// The WebSafe variation use '-' instead of '+' and '_' instead of '/'
// so that we can place the out in the URL or cookies without having
// to escape them. It also has an extra parameter "do_padding",
// which when set to false will prevent padding with "=".
// ----------------------------------------------------------------------
LIBPROTOBUF_EXPORT int Base64Escape(const unsigned char* src, int slen,
char* dest, int szdest);
LIBPROTOBUF_EXPORT int WebSafeBase64Escape(
const unsigned char* src, int slen, char* dest,
int szdest, bool do_padding);
// Encode src into dest with padding.
LIBPROTOBUF_EXPORT void Base64Escape(StringPiece src, string* dest);
// Encode src into dest web-safely without padding.
LIBPROTOBUF_EXPORT void WebSafeBase64Escape(StringPiece src, string* dest);
// Encode src into dest web-safely with padding.
LIBPROTOBUF_EXPORT void WebSafeBase64EscapeWithPadding(StringPiece src,
string* dest);
LIBPROTOBUF_EXPORT void Base64Escape(const unsigned char* src, int szsrc,
string* dest, bool do_padding);
LIBPROTOBUF_EXPORT void WebSafeBase64Escape(const unsigned char* src, int szsrc,
string* dest, bool do_padding);
inline bool IsValidCodePoint(uint32 code_point) {
return code_point < 0xD800 ||
(code_point >= 0xE000 && code_point <= 0x10FFFF);
}
static const int UTFmax = 4;
// ----------------------------------------------------------------------
// EncodeAsUTF8Char()
// Helper to append a Unicode code point to a string as UTF8, without bringing
// in any external dependencies. The output buffer must be as least 4 bytes
// large.
// ----------------------------------------------------------------------
LIBPROTOBUF_EXPORT int EncodeAsUTF8Char(uint32 code_point, char* output);
// ----------------------------------------------------------------------
// UTF8FirstLetterNumBytes()
// Length of the first UTF-8 character.
// ----------------------------------------------------------------------
LIBPROTOBUF_EXPORT int UTF8FirstLetterNumBytes(const char* src, int len);
} // namespace protobuf
} // namespace google
#endif // GOOGLE_PROTOBUF_STUBS_STRUTIL_H__