blob: c782d691a874bbf075fabba91d431cc84e925ff4 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <google/protobuf/util/time_util.h>
#include <google/protobuf/stubs/time.h>
#include <google/protobuf/stubs/int128.h>
#include <google/protobuf/stubs/strutil.h>
#include <google/protobuf/stubs/stringprintf.h>
#include <google/protobuf/duration.pb.h>
#include <google/protobuf/timestamp.pb.h>
namespace google {
namespace protobuf {
namespace util {
using google::protobuf::Timestamp;
using google::protobuf::Duration;
namespace {
static const int kNanosPerSecond = 1000000000;
static const int kMicrosPerSecond = 1000000;
static const int kMillisPerSecond = 1000;
static const int kNanosPerMillisecond = 1000000;
static const int kMicrosPerMillisecond = 1000;
static const int kNanosPerMicrosecond = 1000;
static const int kSecondsPerMinute = 60; // Note that we ignore leap seconds.
static const int kSecondsPerHour = 3600;
static const char kTimestampFormat[] = "%E4Y-%m-%dT%H:%M:%S";
template <typename T>
T CreateNormalized(int64 seconds, int64 nanos);
template <>
Timestamp CreateNormalized(int64 seconds, int64 nanos) {
// Make sure nanos is in the range.
if (nanos <= -kNanosPerSecond || nanos >= kNanosPerSecond) {
seconds += nanos / kNanosPerSecond;
nanos = nanos % kNanosPerSecond;
}
// For Timestamp nanos should be in the range [0, 999999999]
if (nanos < 0) {
seconds -= 1;
nanos += kNanosPerSecond;
}
GOOGLE_DCHECK(seconds >= TimeUtil::kTimestampMinSeconds &&
seconds <= TimeUtil::kTimestampMaxSeconds);
Timestamp result;
result.set_seconds(seconds);
result.set_nanos(static_cast<int32>(nanos));
return result;
}
template <>
Duration CreateNormalized(int64 seconds, int64 nanos) {
// Make sure nanos is in the range.
if (nanos <= -kNanosPerSecond || nanos >= kNanosPerSecond) {
seconds += nanos / kNanosPerSecond;
nanos = nanos % kNanosPerSecond;
}
// nanos should have the same sign as seconds.
if (seconds < 0 && nanos > 0) {
seconds += 1;
nanos -= kNanosPerSecond;
} else if (seconds > 0 && nanos < 0) {
seconds -= 1;
nanos += kNanosPerSecond;
}
GOOGLE_DCHECK(seconds >= TimeUtil::kDurationMinSeconds &&
seconds <= TimeUtil::kDurationMaxSeconds);
Duration result;
result.set_seconds(seconds);
result.set_nanos(static_cast<int32>(nanos));
return result;
}
// Format nanoseconds with either 3, 6, or 9 digits depending on the required
// precision to represent the exact value.
string FormatNanos(int32 nanos) {
if (nanos % kNanosPerMillisecond == 0) {
return StringPrintf("%03d", nanos / kNanosPerMillisecond);
} else if (nanos % kNanosPerMicrosecond == 0) {
return StringPrintf("%06d", nanos / kNanosPerMicrosecond);
} else {
return StringPrintf("%09d", nanos);
}
}
string FormatTime(int64 seconds, int32 nanos) {
return ::google::protobuf::internal::FormatTime(seconds, nanos);
}
bool ParseTime(const string& value, int64* seconds, int32* nanos) {
return ::google::protobuf::internal::ParseTime(value, seconds, nanos);
}
void CurrentTime(int64* seconds, int32* nanos) {
return ::google::protobuf::internal::GetCurrentTime(seconds, nanos);
}
// Truncates the remainder part after division.
int64 RoundTowardZero(int64 value, int64 divider) {
int64 result = value / divider;
int64 remainder = value % divider;
// Before C++11, the sign of the remainder is implementation dependent if
// any of the operands is negative. Here we try to enforce C++11's "rounded
// toward zero" semantics. For example, for (-5) / 2 an implementation may
// give -3 as the result with the remainder being 1. This function ensures
// we always return -2 (closer to zero) regardless of the implementation.
if (result < 0 && remainder > 0) {
return result + 1;
} else {
return result;
}
}
} // namespace
string TimeUtil::ToString(const Timestamp& timestamp) {
return FormatTime(timestamp.seconds(), timestamp.nanos());
}
bool TimeUtil::FromString(const string& value, Timestamp* timestamp) {
int64 seconds;
int32 nanos;
if (!ParseTime(value, &seconds, &nanos)) {
return false;
}
*timestamp = CreateNormalized<Timestamp>(seconds, nanos);
return true;
}
Timestamp TimeUtil::GetCurrentTime() {
int64 seconds;
int32 nanos;
CurrentTime(&seconds, &nanos);
return CreateNormalized<Timestamp>(seconds, nanos);
}
Timestamp TimeUtil::GetEpoch() { return Timestamp(); }
string TimeUtil::ToString(const Duration& duration) {
string result;
int64 seconds = duration.seconds();
int32 nanos = duration.nanos();
if (seconds < 0 || nanos < 0) {
result += "-";
seconds = -seconds;
nanos = -nanos;
}
result += StringPrintf("%" GOOGLE_LL_FORMAT "d", seconds);
if (nanos != 0) {
result += "." + FormatNanos(nanos);
}
result += "s";
return result;
}
static int64 Pow(int64 x, int y) {
int64 result = 1;
for (int i = 0; i < y; ++i) {
result *= x;
}
return result;
}
bool TimeUtil::FromString(const string& value, Duration* duration) {
if (value.length() <= 1 || value[value.length() - 1] != 's') {
return false;
}
bool negative = (value[0] == '-');
int sign_length = (negative ? 1 : 0);
// Parse the duration value as two integers rather than a float value
// to avoid precision loss.
string seconds_part, nanos_part;
size_t pos = value.find_last_of(".");
if (pos == string::npos) {
seconds_part = value.substr(sign_length, value.length() - 1 - sign_length);
nanos_part = "0";
} else {
seconds_part = value.substr(sign_length, pos - sign_length);
nanos_part = value.substr(pos + 1, value.length() - pos - 2);
}
char* end;
int64 seconds = strto64(seconds_part.c_str(), &end, 10);
if (end != seconds_part.c_str() + seconds_part.length()) {
return false;
}
int64 nanos = strto64(nanos_part.c_str(), &end, 10);
if (end != nanos_part.c_str() + nanos_part.length()) {
return false;
}
nanos = nanos * Pow(10, 9 - nanos_part.length());
if (negative) {
// If a Duration is negative, both seconds and nanos should be negative.
seconds = -seconds;
nanos = -nanos;
}
duration->set_seconds(seconds);
duration->set_nanos(static_cast<int32>(nanos));
return true;
}
Duration TimeUtil::NanosecondsToDuration(int64 nanos) {
return CreateNormalized<Duration>(nanos / kNanosPerSecond,
nanos % kNanosPerSecond);
}
Duration TimeUtil::MicrosecondsToDuration(int64 micros) {
return CreateNormalized<Duration>(
micros / kMicrosPerSecond,
(micros % kMicrosPerSecond) * kNanosPerMicrosecond);
}
Duration TimeUtil::MillisecondsToDuration(int64 millis) {
return CreateNormalized<Duration>(
millis / kMillisPerSecond,
(millis % kMillisPerSecond) * kNanosPerMillisecond);
}
Duration TimeUtil::SecondsToDuration(int64 seconds) {
return CreateNormalized<Duration>(seconds, 0);
}
Duration TimeUtil::MinutesToDuration(int64 minutes) {
return CreateNormalized<Duration>(minutes * kSecondsPerMinute, 0);
}
Duration TimeUtil::HoursToDuration(int64 hours) {
return CreateNormalized<Duration>(hours * kSecondsPerHour, 0);
}
int64 TimeUtil::DurationToNanoseconds(const Duration& duration) {
return duration.seconds() * kNanosPerSecond + duration.nanos();
}
int64 TimeUtil::DurationToMicroseconds(const Duration& duration) {
return duration.seconds() * kMicrosPerSecond +
RoundTowardZero(duration.nanos(), kNanosPerMicrosecond);
}
int64 TimeUtil::DurationToMilliseconds(const Duration& duration) {
return duration.seconds() * kMillisPerSecond +
RoundTowardZero(duration.nanos(), kNanosPerMillisecond);
}
int64 TimeUtil::DurationToSeconds(const Duration& duration) {
return duration.seconds();
}
int64 TimeUtil::DurationToMinutes(const Duration& duration) {
return RoundTowardZero(duration.seconds(), kSecondsPerMinute);
}
int64 TimeUtil::DurationToHours(const Duration& duration) {
return RoundTowardZero(duration.seconds(), kSecondsPerHour);
}
Timestamp TimeUtil::NanosecondsToTimestamp(int64 nanos) {
return CreateNormalized<Timestamp>(nanos / kNanosPerSecond,
nanos % kNanosPerSecond);
}
Timestamp TimeUtil::MicrosecondsToTimestamp(int64 micros) {
return CreateNormalized<Timestamp>(
micros / kMicrosPerSecond,
micros % kMicrosPerSecond * kNanosPerMicrosecond);
}
Timestamp TimeUtil::MillisecondsToTimestamp(int64 millis) {
return CreateNormalized<Timestamp>(
millis / kMillisPerSecond,
millis % kMillisPerSecond * kNanosPerMillisecond);
}
Timestamp TimeUtil::SecondsToTimestamp(int64 seconds) {
return CreateNormalized<Timestamp>(seconds, 0);
}
int64 TimeUtil::TimestampToNanoseconds(const Timestamp& timestamp) {
return timestamp.seconds() * kNanosPerSecond + timestamp.nanos();
}
int64 TimeUtil::TimestampToMicroseconds(const Timestamp& timestamp) {
return timestamp.seconds() * kMicrosPerSecond +
RoundTowardZero(timestamp.nanos(), kNanosPerMicrosecond);
}
int64 TimeUtil::TimestampToMilliseconds(const Timestamp& timestamp) {
return timestamp.seconds() * kMillisPerSecond +
RoundTowardZero(timestamp.nanos(), kNanosPerMillisecond);
}
int64 TimeUtil::TimestampToSeconds(const Timestamp& timestamp) {
return timestamp.seconds();
}
Timestamp TimeUtil::TimeTToTimestamp(time_t value) {
return CreateNormalized<Timestamp>(static_cast<int64>(value), 0);
}
time_t TimeUtil::TimestampToTimeT(const Timestamp& value) {
return static_cast<time_t>(value.seconds());
}
Timestamp TimeUtil::TimevalToTimestamp(const timeval& value) {
return CreateNormalized<Timestamp>(value.tv_sec,
value.tv_usec * kNanosPerMicrosecond);
}
timeval TimeUtil::TimestampToTimeval(const Timestamp& value) {
timeval result;
result.tv_sec = value.seconds();
result.tv_usec = RoundTowardZero(value.nanos(), kNanosPerMicrosecond);
return result;
}
Duration TimeUtil::TimevalToDuration(const timeval& value) {
return CreateNormalized<Duration>(value.tv_sec,
value.tv_usec * kNanosPerMicrosecond);
}
timeval TimeUtil::DurationToTimeval(const Duration& value) {
timeval result;
result.tv_sec = value.seconds();
result.tv_usec = RoundTowardZero(value.nanos(), kNanosPerMicrosecond);
// timeval.tv_usec's range is [0, 1000000)
if (result.tv_usec < 0) {
result.tv_sec -= 1;
result.tv_usec += kMicrosPerSecond;
}
return result;
}
} // namespace util
} // namespace protobuf
namespace protobuf {
namespace {
using google::protobuf::util::kNanosPerSecond;
using google::protobuf::util::CreateNormalized;
// Convert a Timestamp to uint128.
void ToUint128(const Timestamp& value, uint128* result, bool* negative) {
if (value.seconds() < 0) {
*negative = true;
*result = static_cast<uint64>(-value.seconds());
*result = *result * kNanosPerSecond - static_cast<uint32>(value.nanos());
} else {
*negative = false;
*result = static_cast<uint64>(value.seconds());
*result = *result * kNanosPerSecond + static_cast<uint32>(value.nanos());
}
}
// Convert a Duration to uint128.
void ToUint128(const Duration& value, uint128* result, bool* negative) {
if (value.seconds() < 0 || value.nanos() < 0) {
*negative = true;
*result = static_cast<uint64>(-value.seconds());
*result = *result * kNanosPerSecond + static_cast<uint32>(-value.nanos());
} else {
*negative = false;
*result = static_cast<uint64>(value.seconds());
*result = *result * kNanosPerSecond + static_cast<uint32>(value.nanos());
}
}
void ToTimestamp(const uint128& value, bool negative, Timestamp* timestamp) {
int64 seconds = static_cast<int64>(Uint128Low64(value / kNanosPerSecond));
int32 nanos = static_cast<int32>(Uint128Low64(value % kNanosPerSecond));
if (negative) {
seconds = -seconds;
nanos = -nanos;
if (nanos < 0) {
nanos += kNanosPerSecond;
seconds -= 1;
}
}
timestamp->set_seconds(seconds);
timestamp->set_nanos(nanos);
}
void ToDuration(const uint128& value, bool negative, Duration* duration) {
int64 seconds = static_cast<int64>(Uint128Low64(value / kNanosPerSecond));
int32 nanos = static_cast<int32>(Uint128Low64(value % kNanosPerSecond));
if (negative) {
seconds = -seconds;
nanos = -nanos;
}
duration->set_seconds(seconds);
duration->set_nanos(nanos);
}
} // namespace
Duration& operator+=(Duration& d1, const Duration& d2) {
d1 = CreateNormalized<Duration>(d1.seconds() + d2.seconds(),
d1.nanos() + d2.nanos());
return d1;
}
Duration& operator-=(Duration& d1, const Duration& d2) { // NOLINT
d1 = CreateNormalized<Duration>(d1.seconds() - d2.seconds(),
d1.nanos() - d2.nanos());
return d1;
}
Duration& operator*=(Duration& d, int64 r) { // NOLINT
bool negative;
uint128 value;
ToUint128(d, &value, &negative);
if (r > 0) {
value *= static_cast<uint64>(r);
} else {
negative = !negative;
value *= static_cast<uint64>(-r);
}
ToDuration(value, negative, &d);
return d;
}
Duration& operator*=(Duration& d, double r) { // NOLINT
double result = (d.seconds() * 1.0 + 1.0 * d.nanos() / kNanosPerSecond) * r;
int64 seconds = static_cast<int64>(result);
int32 nanos = static_cast<int32>((result - seconds) * kNanosPerSecond);
// Note that we normalize here not just because nanos can have a different
// sign from seconds but also that nanos can be any arbitrary value when
// overflow happens (i.e., the result is a much larger value than what
// int64 can represent).
d = CreateNormalized<Duration>(seconds, nanos);
return d;
}
Duration& operator/=(Duration& d, int64 r) { // NOLINT
bool negative;
uint128 value;
ToUint128(d, &value, &negative);
if (r > 0) {
value /= static_cast<uint64>(r);
} else {
negative = !negative;
value /= static_cast<uint64>(-r);
}
ToDuration(value, negative, &d);
return d;
}
Duration& operator/=(Duration& d, double r) { // NOLINT
return d *= 1.0 / r;
}
Duration& operator%=(Duration& d1, const Duration& d2) { // NOLINT
bool negative1, negative2;
uint128 value1, value2;
ToUint128(d1, &value1, &negative1);
ToUint128(d2, &value2, &negative2);
uint128 result = value1 % value2;
// When negative values are involved in division, we round the division
// result towards zero. With this semantics, sign of the remainder is the
// same as the dividend. For example:
// -5 / 10 = 0, -5 % 10 = -5
// -5 / (-10) = 0, -5 % (-10) = -5
// 5 / (-10) = 0, 5 % (-10) = 5
ToDuration(result, negative1, &d1);
return d1;
}
int64 operator/(const Duration& d1, const Duration& d2) {
bool negative1, negative2;
uint128 value1, value2;
ToUint128(d1, &value1, &negative1);
ToUint128(d2, &value2, &negative2);
int64 result = Uint128Low64(value1 / value2);
if (negative1 != negative2) {
result = -result;
}
return result;
}
Timestamp& operator+=(Timestamp& t, const Duration& d) { // NOLINT
t = CreateNormalized<Timestamp>(t.seconds() + d.seconds(),
t.nanos() + d.nanos());
return t;
}
Timestamp& operator-=(Timestamp& t, const Duration& d) { // NOLINT
t = CreateNormalized<Timestamp>(t.seconds() - d.seconds(),
t.nanos() - d.nanos());
return t;
}
Duration operator-(const Timestamp& t1, const Timestamp& t2) {
return CreateNormalized<Duration>(t1.seconds() - t2.seconds(),
t1.nanos() - t2.nanos());
}
} // namespace protobuf
} // namespace google