| //===---------- ExprSequence.cpp - clang-tidy -----------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ExprSequence.h" |
| |
| namespace clang { |
| namespace tidy { |
| namespace utils { |
| |
| // Returns the Stmt nodes that are parents of 'S', skipping any potential |
| // intermediate non-Stmt nodes. |
| // |
| // In almost all cases, this function returns a single parent or no parents at |
| // all. |
| // |
| // The case that a Stmt has multiple parents is rare but does actually occur in |
| // the parts of the AST that we're interested in. Specifically, InitListExpr |
| // nodes cause ASTContext::getParent() to return multiple parents for certain |
| // nodes in their subtree because RecursiveASTVisitor visits both the syntactic |
| // and semantic forms of InitListExpr, and the parent-child relationships are |
| // different between the two forms. |
| static SmallVector<const Stmt *, 1> getParentStmts(const Stmt *S, |
| ASTContext *Context) { |
| SmallVector<const Stmt *, 1> Result; |
| |
| ASTContext::DynTypedNodeList Parents = Context->getParents(*S); |
| |
| SmallVector<ast_type_traits::DynTypedNode, 1> NodesToProcess(Parents.begin(), |
| Parents.end()); |
| |
| while (!NodesToProcess.empty()) { |
| ast_type_traits::DynTypedNode Node = NodesToProcess.back(); |
| NodesToProcess.pop_back(); |
| |
| if (const auto *S = Node.get<Stmt>()) { |
| Result.push_back(S); |
| } else { |
| Parents = Context->getParents(Node); |
| NodesToProcess.append(Parents.begin(), Parents.end()); |
| } |
| } |
| |
| return Result; |
| } |
| |
| namespace { |
| bool isDescendantOrEqual(const Stmt *Descendant, const Stmt *Ancestor, |
| ASTContext *Context) { |
| if (Descendant == Ancestor) |
| return true; |
| for (const Stmt *Parent : getParentStmts(Descendant, Context)) { |
| if (isDescendantOrEqual(Parent, Ancestor, Context)) |
| return true; |
| } |
| |
| return false; |
| } |
| } |
| |
| ExprSequence::ExprSequence(const CFG *TheCFG, ASTContext *TheContext) |
| : Context(TheContext) { |
| for (const auto &SyntheticStmt : TheCFG->synthetic_stmts()) { |
| SyntheticStmtSourceMap[SyntheticStmt.first] = SyntheticStmt.second; |
| } |
| } |
| |
| bool ExprSequence::inSequence(const Stmt *Before, const Stmt *After) const { |
| Before = resolveSyntheticStmt(Before); |
| After = resolveSyntheticStmt(After); |
| |
| // If 'After' is in the subtree of the siblings that follow 'Before' in the |
| // chain of successors, we know that 'After' is sequenced after 'Before'. |
| for (const Stmt *Successor = getSequenceSuccessor(Before); Successor; |
| Successor = getSequenceSuccessor(Successor)) { |
| if (isDescendantOrEqual(After, Successor, Context)) |
| return true; |
| } |
| |
| // If 'After' is a parent of 'Before' or is sequenced after one of these |
| // parents, we know that it is sequenced after 'Before'. |
| for (const Stmt *Parent : getParentStmts(Before, Context)) { |
| if (Parent == After || inSequence(Parent, After)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool ExprSequence::potentiallyAfter(const Stmt *After, |
| const Stmt *Before) const { |
| return !inSequence(After, Before); |
| } |
| |
| const Stmt *ExprSequence::getSequenceSuccessor(const Stmt *S) const { |
| for (const Stmt *Parent : getParentStmts(S, Context)) { |
| if (const auto *BO = dyn_cast<BinaryOperator>(Parent)) { |
| // Comma operator: Right-hand side is sequenced after the left-hand side. |
| if (BO->getLHS() == S && BO->getOpcode() == BO_Comma) |
| return BO->getRHS(); |
| } else if (const auto *InitList = dyn_cast<InitListExpr>(Parent)) { |
| // Initializer list: Each initializer clause is sequenced after the |
| // clauses that precede it. |
| for (unsigned I = 1; I < InitList->getNumInits(); ++I) { |
| if (InitList->getInit(I - 1) == S) |
| return InitList->getInit(I); |
| } |
| } else if (const auto *Compound = dyn_cast<CompoundStmt>(Parent)) { |
| // Compound statement: Each sub-statement is sequenced after the |
| // statements that precede it. |
| const Stmt *Previous = nullptr; |
| for (const auto *Child : Compound->body()) { |
| if (Previous == S) |
| return Child; |
| Previous = Child; |
| } |
| } else if (const auto *TheDeclStmt = dyn_cast<DeclStmt>(Parent)) { |
| // Declaration: Every initializer expression is sequenced after the |
| // initializer expressions that precede it. |
| const Expr *PreviousInit = nullptr; |
| for (const Decl *TheDecl : TheDeclStmt->decls()) { |
| if (const auto *TheVarDecl = dyn_cast<VarDecl>(TheDecl)) { |
| if (const Expr *Init = TheVarDecl->getInit()) { |
| if (PreviousInit == S) |
| return Init; |
| PreviousInit = Init; |
| } |
| } |
| } |
| } else if (const auto *ForRange = dyn_cast<CXXForRangeStmt>(Parent)) { |
| // Range-based for: Loop variable declaration is sequenced before the |
| // body. (We need this rule because these get placed in the same |
| // CFGBlock.) |
| if (S == ForRange->getLoopVarStmt()) |
| return ForRange->getBody(); |
| } else if (const auto *TheIfStmt = dyn_cast<IfStmt>(Parent)) { |
| // If statement: If a variable is declared inside the condition, the |
| // expression used to initialize the variable is sequenced before the |
| // evaluation of the condition. |
| if (S == TheIfStmt->getConditionVariableDeclStmt()) |
| return TheIfStmt->getCond(); |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| const Stmt *ExprSequence::resolveSyntheticStmt(const Stmt *S) const { |
| if (SyntheticStmtSourceMap.count(S)) |
| return SyntheticStmtSourceMap.lookup(S); |
| return S; |
| } |
| |
| StmtToBlockMap::StmtToBlockMap(const CFG *TheCFG, ASTContext *TheContext) |
| : Context(TheContext) { |
| for (const auto *B : *TheCFG) { |
| for (const auto &Elem : *B) { |
| if (Optional<CFGStmt> S = Elem.getAs<CFGStmt>()) |
| Map[S->getStmt()] = B; |
| } |
| } |
| } |
| |
| const CFGBlock *StmtToBlockMap::blockContainingStmt(const Stmt *S) const { |
| while (!Map.count(S)) { |
| SmallVector<const Stmt *, 1> Parents = getParentStmts(S, Context); |
| if (Parents.empty()) |
| return nullptr; |
| S = Parents[0]; |
| } |
| |
| return Map.lookup(S); |
| } |
| |
| } // namespace utils |
| } // namespace tidy |
| } // namespace clang |