| /* |
| * Copyright (c) 2013 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "./vpx_dsp_rtcd.h" |
| #include "vp9/common/vp9_filter.h" |
| #include "vp9/common/vp9_scale.h" |
| #include "vpx_dsp/vpx_filter.h" |
| |
| static INLINE int scaled_x(int val, const struct scale_factors *sf) { |
| return (int)((int64_t)val * sf->x_scale_fp >> REF_SCALE_SHIFT); |
| } |
| |
| static INLINE int scaled_y(int val, const struct scale_factors *sf) { |
| return (int)((int64_t)val * sf->y_scale_fp >> REF_SCALE_SHIFT); |
| } |
| |
| static int unscaled_value(int val, const struct scale_factors *sf) { |
| (void) sf; |
| return val; |
| } |
| |
| static int get_fixed_point_scale_factor(int other_size, int this_size) { |
| // Calculate scaling factor once for each reference frame |
| // and use fixed point scaling factors in decoding and encoding routines. |
| // Hardware implementations can calculate scale factor in device driver |
| // and use multiplication and shifting on hardware instead of division. |
| return (other_size << REF_SCALE_SHIFT) / this_size; |
| } |
| |
| MV32 vp9_scale_mv(const MV *mv, int x, int y, const struct scale_factors *sf) { |
| const int x_off_q4 = scaled_x(x << SUBPEL_BITS, sf) & SUBPEL_MASK; |
| const int y_off_q4 = scaled_y(y << SUBPEL_BITS, sf) & SUBPEL_MASK; |
| const MV32 res = { |
| scaled_y(mv->row, sf) + y_off_q4, |
| scaled_x(mv->col, sf) + x_off_q4 |
| }; |
| return res; |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| void vp9_setup_scale_factors_for_frame(struct scale_factors *sf, |
| int other_w, int other_h, |
| int this_w, int this_h, |
| int use_highbd) { |
| #else |
| void vp9_setup_scale_factors_for_frame(struct scale_factors *sf, |
| int other_w, int other_h, |
| int this_w, int this_h) { |
| #endif |
| if (!valid_ref_frame_size(other_w, other_h, this_w, this_h)) { |
| sf->x_scale_fp = REF_INVALID_SCALE; |
| sf->y_scale_fp = REF_INVALID_SCALE; |
| return; |
| } |
| |
| sf->x_scale_fp = get_fixed_point_scale_factor(other_w, this_w); |
| sf->y_scale_fp = get_fixed_point_scale_factor(other_h, this_h); |
| sf->x_step_q4 = scaled_x(16, sf); |
| sf->y_step_q4 = scaled_y(16, sf); |
| |
| if (vp9_is_scaled(sf)) { |
| sf->scale_value_x = scaled_x; |
| sf->scale_value_y = scaled_y; |
| } else { |
| sf->scale_value_x = unscaled_value; |
| sf->scale_value_y = unscaled_value; |
| } |
| |
| // TODO(agrange): Investigate the best choice of functions to use here |
| // for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what |
| // to do at full-pel offsets. The current selection, where the filter is |
| // applied in one direction only, and not at all for 0,0, seems to give the |
| // best quality, but it may be worth trying an additional mode that does |
| // do the filtering on full-pel. |
| |
| if (sf->x_step_q4 == 16) { |
| if (sf->y_step_q4 == 16) { |
| // No scaling in either direction. |
| sf->predict[0][0][0] = vpx_convolve_copy; |
| sf->predict[0][0][1] = vpx_convolve_avg; |
| sf->predict[0][1][0] = vpx_convolve8_vert; |
| sf->predict[0][1][1] = vpx_convolve8_avg_vert; |
| sf->predict[1][0][0] = vpx_convolve8_horiz; |
| sf->predict[1][0][1] = vpx_convolve8_avg_horiz; |
| } else { |
| // No scaling in x direction. Must always scale in the y direction. |
| sf->predict[0][0][0] = vpx_scaled_vert; |
| sf->predict[0][0][1] = vpx_scaled_avg_vert; |
| sf->predict[0][1][0] = vpx_scaled_vert; |
| sf->predict[0][1][1] = vpx_scaled_avg_vert; |
| sf->predict[1][0][0] = vpx_scaled_2d; |
| sf->predict[1][0][1] = vpx_scaled_avg_2d; |
| } |
| } else { |
| if (sf->y_step_q4 == 16) { |
| // No scaling in the y direction. Must always scale in the x direction. |
| sf->predict[0][0][0] = vpx_scaled_horiz; |
| sf->predict[0][0][1] = vpx_scaled_avg_horiz; |
| sf->predict[0][1][0] = vpx_scaled_2d; |
| sf->predict[0][1][1] = vpx_scaled_avg_2d; |
| sf->predict[1][0][0] = vpx_scaled_horiz; |
| sf->predict[1][0][1] = vpx_scaled_avg_horiz; |
| } else { |
| // Must always scale in both directions. |
| sf->predict[0][0][0] = vpx_scaled_2d; |
| sf->predict[0][0][1] = vpx_scaled_avg_2d; |
| sf->predict[0][1][0] = vpx_scaled_2d; |
| sf->predict[0][1][1] = vpx_scaled_avg_2d; |
| sf->predict[1][0][0] = vpx_scaled_2d; |
| sf->predict[1][0][1] = vpx_scaled_avg_2d; |
| } |
| } |
| |
| // 2D subpel motion always gets filtered in both directions |
| |
| if ((sf->x_step_q4 != 16) || (sf->y_step_q4 != 16)) { |
| sf->predict[1][1][0] = vpx_scaled_2d; |
| sf->predict[1][1][1] = vpx_scaled_avg_2d; |
| } else { |
| sf->predict[1][1][0] = vpx_convolve8; |
| sf->predict[1][1][1] = vpx_convolve8_avg; |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (use_highbd) { |
| if (sf->x_step_q4 == 16) { |
| if (sf->y_step_q4 == 16) { |
| // No scaling in either direction. |
| sf->highbd_predict[0][0][0] = vpx_highbd_convolve_copy; |
| sf->highbd_predict[0][0][1] = vpx_highbd_convolve_avg; |
| sf->highbd_predict[0][1][0] = vpx_highbd_convolve8_vert; |
| sf->highbd_predict[0][1][1] = vpx_highbd_convolve8_avg_vert; |
| sf->highbd_predict[1][0][0] = vpx_highbd_convolve8_horiz; |
| sf->highbd_predict[1][0][1] = vpx_highbd_convolve8_avg_horiz; |
| } else { |
| // No scaling in x direction. Must always scale in the y direction. |
| sf->highbd_predict[0][0][0] = vpx_highbd_convolve8_vert; |
| sf->highbd_predict[0][0][1] = vpx_highbd_convolve8_avg_vert; |
| sf->highbd_predict[0][1][0] = vpx_highbd_convolve8_vert; |
| sf->highbd_predict[0][1][1] = vpx_highbd_convolve8_avg_vert; |
| sf->highbd_predict[1][0][0] = vpx_highbd_convolve8; |
| sf->highbd_predict[1][0][1] = vpx_highbd_convolve8_avg; |
| } |
| } else { |
| if (sf->y_step_q4 == 16) { |
| // No scaling in the y direction. Must always scale in the x direction. |
| sf->highbd_predict[0][0][0] = vpx_highbd_convolve8_horiz; |
| sf->highbd_predict[0][0][1] = vpx_highbd_convolve8_avg_horiz; |
| sf->highbd_predict[0][1][0] = vpx_highbd_convolve8; |
| sf->highbd_predict[0][1][1] = vpx_highbd_convolve8_avg; |
| sf->highbd_predict[1][0][0] = vpx_highbd_convolve8_horiz; |
| sf->highbd_predict[1][0][1] = vpx_highbd_convolve8_avg_horiz; |
| } else { |
| // Must always scale in both directions. |
| sf->highbd_predict[0][0][0] = vpx_highbd_convolve8; |
| sf->highbd_predict[0][0][1] = vpx_highbd_convolve8_avg; |
| sf->highbd_predict[0][1][0] = vpx_highbd_convolve8; |
| sf->highbd_predict[0][1][1] = vpx_highbd_convolve8_avg; |
| sf->highbd_predict[1][0][0] = vpx_highbd_convolve8; |
| sf->highbd_predict[1][0][1] = vpx_highbd_convolve8_avg; |
| } |
| } |
| // 2D subpel motion always gets filtered in both directions. |
| sf->highbd_predict[1][1][0] = vpx_highbd_convolve8; |
| sf->highbd_predict[1][1][1] = vpx_highbd_convolve8_avg; |
| } |
| #endif |
| } |