| /// @ref gtx_dual_quaternion |
| /// @file glm/gtx/dual_quaternion.inl |
| |
| #include "../geometric.hpp" |
| #include <limits> |
| |
| namespace glm |
| { |
| // -- Component accesses -- |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename tdualquat<T, P>::length_type tdualquat<T, P>::length() const |
| { |
| return 2; |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER typename tdualquat<T, P>::part_type & tdualquat<T, P>::operator[](typename tdualquat<T, P>::length_type i) |
| { |
| assert(i >= 0 && i < this->length()); |
| return (&real)[i]; |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER typename tdualquat<T, P>::part_type const & tdualquat<T, P>::operator[](typename tdualquat<T, P>::length_type i) const |
| { |
| assert(i >= 0 && i < this->length()); |
| return (&real)[i]; |
| } |
| |
| // -- Implicit basic constructors -- |
| |
| # if !GLM_HAS_DEFAULTED_FUNCTIONS || !defined(GLM_FORCE_NO_CTOR_INIT) |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER GLM_CONSTEXPR tdualquat<T, P>::tdualquat() |
| # ifndef GLM_FORCE_NO_CTOR_INIT |
| : real(tquat<T, P>()) |
| , dual(tquat<T, P>(0, 0, 0, 0)) |
| # endif |
| {} |
| # endif |
| |
| # if !GLM_HAS_DEFAULTED_FUNCTIONS |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER GLM_CONSTEXPR tdualquat<T, P>::tdualquat(tdualquat<T, P> const & d) |
| : real(d.real) |
| , dual(d.dual) |
| {} |
| # endif//!GLM_HAS_DEFAULTED_FUNCTIONS |
| |
| template <typename T, precision P> |
| template <precision Q> |
| GLM_FUNC_QUALIFIER GLM_CONSTEXPR tdualquat<T, P>::tdualquat(tdualquat<T, Q> const & d) |
| : real(d.real) |
| , dual(d.dual) |
| {} |
| |
| // -- Explicit basic constructors -- |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER GLM_CONSTEXPR_CTOR tdualquat<T, P>::tdualquat(ctor) |
| {} |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER GLM_CONSTEXPR tdualquat<T, P>::tdualquat(tquat<T, P> const & r) |
| : real(r), dual(tquat<T, P>(0, 0, 0, 0)) |
| {} |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER GLM_CONSTEXPR tdualquat<T, P>::tdualquat(tquat<T, P> const & q, tvec3<T, P> const& p) |
| : real(q), dual( |
| T(-0.5) * ( p.x*q.x + p.y*q.y + p.z*q.z), |
| T(+0.5) * ( p.x*q.w + p.y*q.z - p.z*q.y), |
| T(+0.5) * (-p.x*q.z + p.y*q.w + p.z*q.x), |
| T(+0.5) * ( p.x*q.y - p.y*q.x + p.z*q.w)) |
| {} |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER GLM_CONSTEXPR tdualquat<T, P>::tdualquat(tquat<T, P> const & r, tquat<T, P> const & d) |
| : real(r), dual(d) |
| {} |
| |
| // -- Conversion constructors -- |
| |
| template <typename T, precision P> |
| template <typename U, precision Q> |
| GLM_FUNC_QUALIFIER GLM_CONSTEXPR tdualquat<T, P>::tdualquat(tdualquat<U, Q> const & q) |
| : real(q.real) |
| , dual(q.dual) |
| {} |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tdualquat<T, P>::tdualquat(tmat2x4<T, P> const & m) |
| { |
| *this = dualquat_cast(m); |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tdualquat<T, P>::tdualquat(tmat3x4<T, P> const & m) |
| { |
| *this = dualquat_cast(m); |
| } |
| |
| // -- Unary arithmetic operators -- |
| |
| # if !GLM_HAS_DEFAULTED_FUNCTIONS |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tdualquat<T, P> & tdualquat<T, P>::operator=(tdualquat<T, P> const & q) |
| { |
| this->real = q.real; |
| this->dual = q.dual; |
| return *this; |
| } |
| # endif//!GLM_HAS_DEFAULTED_FUNCTIONS |
| |
| template <typename T, precision P> |
| template <typename U> |
| GLM_FUNC_QUALIFIER tdualquat<T, P> & tdualquat<T, P>::operator=(tdualquat<U, P> const & q) |
| { |
| this->real = q.real; |
| this->dual = q.dual; |
| return *this; |
| } |
| |
| template <typename T, precision P> |
| template <typename U> |
| GLM_FUNC_QUALIFIER tdualquat<T, P> & tdualquat<T, P>::operator*=(U s) |
| { |
| this->real *= static_cast<T>(s); |
| this->dual *= static_cast<T>(s); |
| return *this; |
| } |
| |
| template <typename T, precision P> |
| template <typename U> |
| GLM_FUNC_QUALIFIER tdualquat<T, P> & tdualquat<T, P>::operator/=(U s) |
| { |
| this->real /= static_cast<T>(s); |
| this->dual /= static_cast<T>(s); |
| return *this; |
| } |
| |
| // -- Unary bit operators -- |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tdualquat<T, P> operator+(tdualquat<T, P> const & q) |
| { |
| return q; |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tdualquat<T, P> operator-(tdualquat<T, P> const & q) |
| { |
| return tdualquat<T, P>(-q.real, -q.dual); |
| } |
| |
| // -- Binary operators -- |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tdualquat<T, P> operator+(tdualquat<T, P> const & q, tdualquat<T, P> const & p) |
| { |
| return tdualquat<T, P>(q.real + p.real,q.dual + p.dual); |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tdualquat<T, P> operator*(tdualquat<T, P> const & p, tdualquat<T, P> const & o) |
| { |
| return tdualquat<T, P>(p.real * o.real,p.real * o.dual + p.dual * o.real); |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tvec3<T, P> operator*(tdualquat<T, P> const & q, tvec3<T, P> const & v) |
| { |
| tvec3<T, P> const real_v3(q.real.x,q.real.y,q.real.z); |
| tvec3<T, P> const dual_v3(q.dual.x,q.dual.y,q.dual.z); |
| return (cross(real_v3, cross(real_v3,v) + v * q.real.w + dual_v3) + dual_v3 * q.real.w - real_v3 * q.dual.w) * T(2) + v; |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tvec3<T, P> operator*(tvec3<T, P> const & v, tdualquat<T, P> const & q) |
| { |
| return glm::inverse(q) * v; |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tvec4<T, P> operator*(tdualquat<T, P> const & q, tvec4<T, P> const & v) |
| { |
| return tvec4<T, P>(q * tvec3<T, P>(v), v.w); |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tvec4<T, P> operator*(tvec4<T, P> const & v, tdualquat<T, P> const & q) |
| { |
| return glm::inverse(q) * v; |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tdualquat<T, P> operator*(tdualquat<T, P> const & q, T const & s) |
| { |
| return tdualquat<T, P>(q.real * s, q.dual * s); |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tdualquat<T, P> operator*(T const & s, tdualquat<T, P> const & q) |
| { |
| return q * s; |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tdualquat<T, P> operator/(tdualquat<T, P> const & q, T const & s) |
| { |
| return tdualquat<T, P>(q.real / s, q.dual / s); |
| } |
| |
| // -- Boolean operators -- |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER bool operator==(tdualquat<T, P> const & q1, tdualquat<T, P> const & q2) |
| { |
| return (q1.real == q2.real) && (q1.dual == q2.dual); |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER bool operator!=(tdualquat<T, P> const & q1, tdualquat<T, P> const & q2) |
| { |
| return (q1.real != q2.dual) || (q1.real != q2.dual); |
| } |
| |
| // -- Operations -- |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tdualquat<T, P> normalize(tdualquat<T, P> const & q) |
| { |
| return q / length(q.real); |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tdualquat<T, P> lerp(tdualquat<T, P> const & x, tdualquat<T, P> const & y, T const & a) |
| { |
| // Dual Quaternion Linear blend aka DLB: |
| // Lerp is only defined in [0, 1] |
| assert(a >= static_cast<T>(0)); |
| assert(a <= static_cast<T>(1)); |
| T const k = dot(x.real,y.real) < static_cast<T>(0) ? -a : a; |
| T const one(1); |
| return tdualquat<T, P>(x * (one - a) + y * k); |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tdualquat<T, P> inverse(tdualquat<T, P> const & q) |
| { |
| const glm::tquat<T, P> real = conjugate(q.real); |
| const glm::tquat<T, P> dual = conjugate(q.dual); |
| return tdualquat<T, P>(real, dual + (real * (-2.0f * dot(real,dual)))); |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tmat2x4<T, P> mat2x4_cast(tdualquat<T, P> const & x) |
| { |
| return tmat2x4<T, P>( x[0].x, x[0].y, x[0].z, x[0].w, x[1].x, x[1].y, x[1].z, x[1].w ); |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tmat3x4<T, P> mat3x4_cast(tdualquat<T, P> const & x) |
| { |
| tquat<T, P> r = x.real / length2(x.real); |
| |
| tquat<T, P> const rr(r.w * x.real.w, r.x * x.real.x, r.y * x.real.y, r.z * x.real.z); |
| r *= static_cast<T>(2); |
| |
| T const xy = r.x * x.real.y; |
| T const xz = r.x * x.real.z; |
| T const yz = r.y * x.real.z; |
| T const wx = r.w * x.real.x; |
| T const wy = r.w * x.real.y; |
| T const wz = r.w * x.real.z; |
| |
| tvec4<T, P> const a( |
| rr.w + rr.x - rr.y - rr.z, |
| xy - wz, |
| xz + wy, |
| -(x.dual.w * r.x - x.dual.x * r.w + x.dual.y * r.z - x.dual.z * r.y)); |
| |
| tvec4<T, P> const b( |
| xy + wz, |
| rr.w + rr.y - rr.x - rr.z, |
| yz - wx, |
| -(x.dual.w * r.y - x.dual.x * r.z - x.dual.y * r.w + x.dual.z * r.x)); |
| |
| tvec4<T, P> const c( |
| xz - wy, |
| yz + wx, |
| rr.w + rr.z - rr.x - rr.y, |
| -(x.dual.w * r.z + x.dual.x * r.y - x.dual.y * r.x - x.dual.z * r.w)); |
| |
| return tmat3x4<T, P>(a, b, c); |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tdualquat<T, P> dualquat_cast(tmat2x4<T, P> const & x) |
| { |
| return tdualquat<T, P>( |
| tquat<T, P>( x[0].w, x[0].x, x[0].y, x[0].z ), |
| tquat<T, P>( x[1].w, x[1].x, x[1].y, x[1].z )); |
| } |
| |
| template <typename T, precision P> |
| GLM_FUNC_QUALIFIER tdualquat<T, P> dualquat_cast(tmat3x4<T, P> const & x) |
| { |
| tquat<T, P> real(uninitialize); |
| |
| T const trace = x[0].x + x[1].y + x[2].z; |
| if(trace > static_cast<T>(0)) |
| { |
| T const r = sqrt(T(1) + trace); |
| T const invr = static_cast<T>(0.5) / r; |
| real.w = static_cast<T>(0.5) * r; |
| real.x = (x[2].y - x[1].z) * invr; |
| real.y = (x[0].z - x[2].x) * invr; |
| real.z = (x[1].x - x[0].y) * invr; |
| } |
| else if(x[0].x > x[1].y && x[0].x > x[2].z) |
| { |
| T const r = sqrt(T(1) + x[0].x - x[1].y - x[2].z); |
| T const invr = static_cast<T>(0.5) / r; |
| real.x = static_cast<T>(0.5)*r; |
| real.y = (x[1].x + x[0].y) * invr; |
| real.z = (x[0].z + x[2].x) * invr; |
| real.w = (x[2].y - x[1].z) * invr; |
| } |
| else if(x[1].y > x[2].z) |
| { |
| T const r = sqrt(T(1) + x[1].y - x[0].x - x[2].z); |
| T const invr = static_cast<T>(0.5) / r; |
| real.x = (x[1].x + x[0].y) * invr; |
| real.y = static_cast<T>(0.5) * r; |
| real.z = (x[2].y + x[1].z) * invr; |
| real.w = (x[0].z - x[2].x) * invr; |
| } |
| else |
| { |
| T const r = sqrt(T(1) + x[2].z - x[0].x - x[1].y); |
| T const invr = static_cast<T>(0.5) / r; |
| real.x = (x[0].z + x[2].x) * invr; |
| real.y = (x[2].y + x[1].z) * invr; |
| real.z = static_cast<T>(0.5) * r; |
| real.w = (x[1].x - x[0].y) * invr; |
| } |
| |
| tquat<T, P> dual(uninitialize); |
| dual.x = static_cast<T>(0.5) * ( x[0].w * real.w + x[1].w * real.z - x[2].w * real.y); |
| dual.y = static_cast<T>(0.5) * (-x[0].w * real.z + x[1].w * real.w + x[2].w * real.x); |
| dual.z = static_cast<T>(0.5) * ( x[0].w * real.y - x[1].w * real.x + x[2].w * real.w); |
| dual.w = -static_cast<T>(0.5) * ( x[0].w * real.x + x[1].w * real.y + x[2].w * real.z); |
| return tdualquat<T, P>(real, dual); |
| } |
| }//namespace glm |