| //===- Relocations.cpp ----------------------------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains platform-independent functions to process relocations. |
| // I'll describe the overview of this file here. |
| // |
| // Simple relocations are easy to handle for the linker. For example, |
| // for R_X86_64_PC64 relocs, the linker just has to fix up locations |
| // with the relative offsets to the target symbols. It would just be |
| // reading records from relocation sections and applying them to output. |
| // |
| // But not all relocations are that easy to handle. For example, for |
| // R_386_GOTOFF relocs, the linker has to create new GOT entries for |
| // symbols if they don't exist, and fix up locations with GOT entry |
| // offsets from the beginning of GOT section. So there is more than |
| // fixing addresses in relocation processing. |
| // |
| // ELF defines a large number of complex relocations. |
| // |
| // The functions in this file analyze relocations and do whatever needs |
| // to be done. It includes, but not limited to, the following. |
| // |
| // - create GOT/PLT entries |
| // - create new relocations in .dynsym to let the dynamic linker resolve |
| // them at runtime (since ELF supports dynamic linking, not all |
| // relocations can be resolved at link-time) |
| // - create COPY relocs and reserve space in .bss |
| // - replace expensive relocs (in terms of runtime cost) with cheap ones |
| // - error out infeasible combinations such as PIC and non-relative relocs |
| // |
| // Note that the functions in this file don't actually apply relocations |
| // because it doesn't know about the output file nor the output file buffer. |
| // It instead stores Relocation objects to InputSection's Relocations |
| // vector to let it apply later in InputSection::writeTo. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Relocations.h" |
| #include "Config.h" |
| #include "LinkerScript.h" |
| #include "OutputSections.h" |
| #include "SymbolTable.h" |
| #include "Symbols.h" |
| #include "SyntheticSections.h" |
| #include "Target.h" |
| #include "Thunks.h" |
| #include "lld/Common/Memory.h" |
| #include "lld/Common/Strings.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::support::endian; |
| |
| using namespace lld; |
| using namespace lld::elf; |
| |
| // Construct a message in the following format. |
| // |
| // >>> defined in /home/alice/src/foo.o |
| // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12) |
| // >>> /home/alice/src/bar.o:(.text+0x1) |
| static std::string getLocation(InputSectionBase &S, const Symbol &Sym, |
| uint64_t Off) { |
| std::string Msg = |
| "\n>>> defined in " + toString(Sym.File) + "\n>>> referenced by "; |
| std::string Src = S.getSrcMsg(Sym, Off); |
| if (!Src.empty()) |
| Msg += Src + "\n>>> "; |
| return Msg + S.getObjMsg(Off); |
| } |
| |
| // This function is similar to the `handleTlsRelocation`. MIPS does not |
| // support any relaxations for TLS relocations so by factoring out MIPS |
| // handling in to the separate function we can simplify the code and do not |
| // pollute other `handleTlsRelocation` by MIPS `ifs` statements. |
| // Mips has a custom MipsGotSection that handles the writing of GOT entries |
| // without dynamic relocations. |
| static unsigned handleMipsTlsRelocation(RelType Type, Symbol &Sym, |
| InputSectionBase &C, uint64_t Offset, |
| int64_t Addend, RelExpr Expr) { |
| if (Expr == R_MIPS_TLSLD) { |
| InX::MipsGot->addTlsIndex(*C.File); |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); |
| return 1; |
| } |
| if (Expr == R_MIPS_TLSGD) { |
| InX::MipsGot->addDynTlsEntry(*C.File, Sym); |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); |
| return 1; |
| } |
| return 0; |
| } |
| |
| // This function is similar to the `handleMipsTlsRelocation`. ARM also does not |
| // support any relaxations for TLS relocations. ARM is logically similar to Mips |
| // in how it handles TLS, but Mips uses its own custom GOT which handles some |
| // of the cases that ARM uses GOT relocations for. |
| // |
| // We look for TLS global dynamic and local dynamic relocations, these may |
| // require the generation of a pair of GOT entries that have associated |
| // dynamic relocations. When the results of the dynamic relocations can be |
| // resolved at static link time we do so. This is necessary for static linking |
| // as there will be no dynamic loader to resolve them at load-time. |
| // |
| // The pair of GOT entries created are of the form |
| // GOT[e0] Module Index (Used to find pointer to TLS block at run-time) |
| // GOT[e1] Offset of symbol in TLS block |
| template <class ELFT> |
| static unsigned handleARMTlsRelocation(RelType Type, Symbol &Sym, |
| InputSectionBase &C, uint64_t Offset, |
| int64_t Addend, RelExpr Expr) { |
| // The Dynamic TLS Module Index Relocation for a symbol defined in an |
| // executable is always 1. If the target Symbol is not preemptible then |
| // we know the offset into the TLS block at static link time. |
| bool NeedDynId = Sym.IsPreemptible || Config->Shared; |
| bool NeedDynOff = Sym.IsPreemptible; |
| |
| auto AddTlsReloc = [&](uint64_t Off, RelType Type, Symbol *Dest, bool Dyn) { |
| if (Dyn) |
| InX::RelaDyn->addReloc(Type, InX::Got, Off, Dest); |
| else |
| InX::Got->Relocations.push_back({R_ABS, Type, Off, 0, Dest}); |
| }; |
| |
| // Local Dynamic is for access to module local TLS variables, while still |
| // being suitable for being dynamically loaded via dlopen. |
| // GOT[e0] is the module index, with a special value of 0 for the current |
| // module. GOT[e1] is unused. There only needs to be one module index entry. |
| if (Expr == R_TLSLD_PC && InX::Got->addTlsIndex()) { |
| AddTlsReloc(InX::Got->getTlsIndexOff(), Target->TlsModuleIndexRel, |
| NeedDynId ? nullptr : &Sym, NeedDynId); |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); |
| return 1; |
| } |
| |
| // Global Dynamic is the most general purpose access model. When we know |
| // the module index and offset of symbol in TLS block we can fill these in |
| // using static GOT relocations. |
| if (Expr == R_TLSGD_PC) { |
| if (InX::Got->addDynTlsEntry(Sym)) { |
| uint64_t Off = InX::Got->getGlobalDynOffset(Sym); |
| AddTlsReloc(Off, Target->TlsModuleIndexRel, &Sym, NeedDynId); |
| AddTlsReloc(Off + Config->Wordsize, Target->TlsOffsetRel, &Sym, |
| NeedDynOff); |
| } |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); |
| return 1; |
| } |
| return 0; |
| } |
| |
| // Returns the number of relocations processed. |
| template <class ELFT> |
| static unsigned |
| handleTlsRelocation(RelType Type, Symbol &Sym, InputSectionBase &C, |
| typename ELFT::uint Offset, int64_t Addend, RelExpr Expr) { |
| if (!(C.Flags & SHF_ALLOC)) |
| return 0; |
| |
| if (!Sym.isTls()) |
| return 0; |
| |
| if (Config->EMachine == EM_ARM) |
| return handleARMTlsRelocation<ELFT>(Type, Sym, C, Offset, Addend, Expr); |
| if (Config->EMachine == EM_MIPS) |
| return handleMipsTlsRelocation(Type, Sym, C, Offset, Addend, Expr); |
| |
| if (isRelExprOneOf<R_TLSDESC, R_TLSDESC_PAGE, R_TLSDESC_CALL>(Expr) && |
| Config->Shared) { |
| if (InX::Got->addDynTlsEntry(Sym)) { |
| uint64_t Off = InX::Got->getGlobalDynOffset(Sym); |
| InX::RelaDyn->addReloc( |
| {Target->TlsDescRel, InX::Got, Off, !Sym.IsPreemptible, &Sym, 0}); |
| } |
| if (Expr != R_TLSDESC_CALL) |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); |
| return 1; |
| } |
| |
| if (isRelExprOneOf<R_TLSLD_GOT, R_TLSLD_GOT_FROM_END, R_TLSLD_PC, |
| R_TLSLD_HINT>(Expr)) { |
| // Local-Dynamic relocs can be relaxed to Local-Exec. |
| if (!Config->Shared) { |
| C.Relocations.push_back( |
| {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_LD_TO_LE), Type, |
| Offset, Addend, &Sym}); |
| return Target->TlsGdRelaxSkip; |
| } |
| if (Expr == R_TLSLD_HINT) |
| return 1; |
| if (InX::Got->addTlsIndex()) |
| InX::RelaDyn->addReloc(Target->TlsModuleIndexRel, InX::Got, |
| InX::Got->getTlsIndexOff(), nullptr); |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); |
| return 1; |
| } |
| |
| // Local-Dynamic relocs can be relaxed to Local-Exec. |
| if (Expr == R_ABS && !Config->Shared) { |
| C.Relocations.push_back( |
| {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_LD_TO_LE), Type, |
| Offset, Addend, &Sym}); |
| return 1; |
| } |
| |
| // Local-Dynamic sequence where offset of tls variable relative to dynamic |
| // thread pointer is stored in the got. |
| if (Expr == R_TLSLD_GOT_OFF) { |
| // Local-Dynamic relocs can be relaxed to local-exec |
| if (!Config->Shared) { |
| C.Relocations.push_back({R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Sym}); |
| return 1; |
| } |
| if (!Sym.isInGot()) { |
| InX::Got->addEntry(Sym); |
| uint64_t Off = Sym.getGotOffset(); |
| InX::Got->Relocations.push_back({R_ABS, Target->TlsOffsetRel, Off, 0, &Sym}); |
| } |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); |
| return 1; |
| } |
| |
| if (isRelExprOneOf<R_TLSDESC, R_TLSDESC_PAGE, R_TLSDESC_CALL, R_TLSGD_GOT, |
| R_TLSGD_GOT_FROM_END, R_TLSGD_PC>(Expr)) { |
| if (Config->Shared) { |
| if (InX::Got->addDynTlsEntry(Sym)) { |
| uint64_t Off = InX::Got->getGlobalDynOffset(Sym); |
| InX::RelaDyn->addReloc(Target->TlsModuleIndexRel, InX::Got, Off, &Sym); |
| |
| // If the symbol is preemptible we need the dynamic linker to write |
| // the offset too. |
| uint64_t OffsetOff = Off + Config->Wordsize; |
| if (Sym.IsPreemptible) |
| InX::RelaDyn->addReloc(Target->TlsOffsetRel, InX::Got, OffsetOff, |
| &Sym); |
| else |
| InX::Got->Relocations.push_back( |
| {R_ABS, Target->TlsOffsetRel, OffsetOff, 0, &Sym}); |
| } |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); |
| return 1; |
| } |
| |
| // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec |
| // depending on the symbol being locally defined or not. |
| if (Sym.IsPreemptible) { |
| C.Relocations.push_back( |
| {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_IE), Type, |
| Offset, Addend, &Sym}); |
| if (!Sym.isInGot()) { |
| InX::Got->addEntry(Sym); |
| InX::RelaDyn->addReloc(Target->TlsGotRel, InX::Got, Sym.getGotOffset(), |
| &Sym); |
| } |
| } else { |
| C.Relocations.push_back( |
| {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_LE), Type, |
| Offset, Addend, &Sym}); |
| } |
| return Target->TlsGdRelaxSkip; |
| } |
| |
| // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally |
| // defined. |
| if (isRelExprOneOf<R_GOT, R_GOT_FROM_END, R_GOT_PC, R_GOT_PAGE_PC>(Expr) && |
| !Config->Shared && !Sym.IsPreemptible) { |
| C.Relocations.push_back({R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Sym}); |
| return 1; |
| } |
| |
| if (Expr == R_TLSDESC_CALL) |
| return 1; |
| return 0; |
| } |
| |
| static RelType getMipsPairType(RelType Type, bool IsLocal) { |
| switch (Type) { |
| case R_MIPS_HI16: |
| return R_MIPS_LO16; |
| case R_MIPS_GOT16: |
| // In case of global symbol, the R_MIPS_GOT16 relocation does not |
| // have a pair. Each global symbol has a unique entry in the GOT |
| // and a corresponding instruction with help of the R_MIPS_GOT16 |
| // relocation loads an address of the symbol. In case of local |
| // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold |
| // the high 16 bits of the symbol's value. A paired R_MIPS_LO16 |
| // relocations handle low 16 bits of the address. That allows |
| // to allocate only one GOT entry for every 64 KBytes of local data. |
| return IsLocal ? R_MIPS_LO16 : R_MIPS_NONE; |
| case R_MICROMIPS_GOT16: |
| return IsLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE; |
| case R_MIPS_PCHI16: |
| return R_MIPS_PCLO16; |
| case R_MICROMIPS_HI16: |
| return R_MICROMIPS_LO16; |
| default: |
| return R_MIPS_NONE; |
| } |
| } |
| |
| // True if non-preemptable symbol always has the same value regardless of where |
| // the DSO is loaded. |
| static bool isAbsolute(const Symbol &Sym) { |
| if (Sym.isUndefWeak()) |
| return true; |
| if (const auto *DR = dyn_cast<Defined>(&Sym)) |
| return DR->Section == nullptr; // Absolute symbol. |
| return false; |
| } |
| |
| static bool isAbsoluteValue(const Symbol &Sym) { |
| return isAbsolute(Sym) || Sym.isTls(); |
| } |
| |
| // Returns true if Expr refers a PLT entry. |
| static bool needsPlt(RelExpr Expr) { |
| return isRelExprOneOf<R_PLT_PC, R_PPC_CALL_PLT, R_PLT, R_PLT_PAGE_PC>(Expr); |
| } |
| |
| // Returns true if Expr refers a GOT entry. Note that this function |
| // returns false for TLS variables even though they need GOT, because |
| // TLS variables uses GOT differently than the regular variables. |
| static bool needsGot(RelExpr Expr) { |
| return isRelExprOneOf<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF, |
| R_MIPS_GOT_OFF32, R_GOT_PAGE_PC, R_GOT_PC, |
| R_GOT_FROM_END>(Expr); |
| } |
| |
| // True if this expression is of the form Sym - X, where X is a position in the |
| // file (PC, or GOT for example). |
| static bool isRelExpr(RelExpr Expr) { |
| return isRelExprOneOf<R_PC, R_GOTREL, R_GOTREL_FROM_END, R_MIPS_GOTREL, |
| R_PPC_CALL, R_PPC_CALL_PLT, R_PAGE_PC, |
| R_RELAX_GOT_PC>(Expr); |
| } |
| |
| // Returns true if a given relocation can be computed at link-time. |
| // |
| // For instance, we know the offset from a relocation to its target at |
| // link-time if the relocation is PC-relative and refers a |
| // non-interposable function in the same executable. This function |
| // will return true for such relocation. |
| // |
| // If this function returns false, that means we need to emit a |
| // dynamic relocation so that the relocation will be fixed at load-time. |
| static bool isStaticLinkTimeConstant(RelExpr E, RelType Type, const Symbol &Sym, |
| InputSectionBase &S, uint64_t RelOff) { |
| // These expressions always compute a constant |
| if (isRelExprOneOf< |
| R_GOT_FROM_END, R_GOT_OFF, R_TLSLD_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, |
| R_MIPS_GOTREL, R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, |
| R_MIPS_TLSGD, R_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, |
| R_GOTONLY_PC_FROM_END, R_PLT_PC, R_TLSGD_GOT, R_TLSGD_GOT_FROM_END, |
| R_TLSGD_PC, R_PPC_CALL_PLT, R_TLSDESC_CALL, R_TLSDESC_PAGE, R_HINT, |
| R_TLSLD_HINT>(E)) |
| return true; |
| |
| // These never do, except if the entire file is position dependent or if |
| // only the low bits are used. |
| if (E == R_GOT || E == R_PLT || E == R_TLSDESC) |
| return Target->usesOnlyLowPageBits(Type) || !Config->Pic; |
| |
| if (Sym.IsPreemptible) |
| return false; |
| if (!Config->Pic) |
| return true; |
| |
| // The size of a non preemptible symbol is a constant. |
| if (E == R_SIZE) |
| return true; |
| |
| // For the target and the relocation, we want to know if they are |
| // absolute or relative. |
| bool AbsVal = isAbsoluteValue(Sym); |
| bool RelE = isRelExpr(E); |
| if (AbsVal && !RelE) |
| return true; |
| if (!AbsVal && RelE) |
| return true; |
| if (!AbsVal && !RelE) |
| return Target->usesOnlyLowPageBits(Type); |
| |
| // Relative relocation to an absolute value. This is normally unrepresentable, |
| // but if the relocation refers to a weak undefined symbol, we allow it to |
| // resolve to the image base. This is a little strange, but it allows us to |
| // link function calls to such symbols. Normally such a call will be guarded |
| // with a comparison, which will load a zero from the GOT. |
| // Another special case is MIPS _gp_disp symbol which represents offset |
| // between start of a function and '_gp' value and defined as absolute just |
| // to simplify the code. |
| assert(AbsVal && RelE); |
| if (Sym.isUndefWeak()) |
| return true; |
| |
| error("relocation " + toString(Type) + " cannot refer to absolute symbol: " + |
| toString(Sym) + getLocation(S, Sym, RelOff)); |
| return true; |
| } |
| |
| static RelExpr toPlt(RelExpr Expr) { |
| switch (Expr) { |
| case R_PPC_CALL: |
| return R_PPC_CALL_PLT; |
| case R_PC: |
| return R_PLT_PC; |
| case R_PAGE_PC: |
| return R_PLT_PAGE_PC; |
| case R_ABS: |
| return R_PLT; |
| default: |
| return Expr; |
| } |
| } |
| |
| static RelExpr fromPlt(RelExpr Expr) { |
| // We decided not to use a plt. Optimize a reference to the plt to a |
| // reference to the symbol itself. |
| switch (Expr) { |
| case R_PLT_PC: |
| return R_PC; |
| case R_PPC_CALL_PLT: |
| return R_PPC_CALL; |
| case R_PLT: |
| return R_ABS; |
| default: |
| return Expr; |
| } |
| } |
| |
| // Returns true if a given shared symbol is in a read-only segment in a DSO. |
| template <class ELFT> static bool isReadOnly(SharedSymbol &SS) { |
| typedef typename ELFT::Phdr Elf_Phdr; |
| |
| // Determine if the symbol is read-only by scanning the DSO's program headers. |
| const SharedFile<ELFT> &File = SS.getFile<ELFT>(); |
| for (const Elf_Phdr &Phdr : check(File.getObj().program_headers())) |
| if ((Phdr.p_type == ELF::PT_LOAD || Phdr.p_type == ELF::PT_GNU_RELRO) && |
| !(Phdr.p_flags & ELF::PF_W) && SS.Value >= Phdr.p_vaddr && |
| SS.Value < Phdr.p_vaddr + Phdr.p_memsz) |
| return true; |
| return false; |
| } |
| |
| // Returns symbols at the same offset as a given symbol, including SS itself. |
| // |
| // If two or more symbols are at the same offset, and at least one of |
| // them are copied by a copy relocation, all of them need to be copied. |
| // Otherwise, they would refer to different places at runtime. |
| template <class ELFT> |
| static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &SS) { |
| typedef typename ELFT::Sym Elf_Sym; |
| |
| SharedFile<ELFT> &File = SS.getFile<ELFT>(); |
| |
| SmallSet<SharedSymbol *, 4> Ret; |
| for (const Elf_Sym &S : File.getGlobalELFSyms()) { |
| if (S.st_shndx == SHN_UNDEF || S.st_shndx == SHN_ABS || |
| S.st_value != SS.Value) |
| continue; |
| StringRef Name = check(S.getName(File.getStringTable())); |
| Symbol *Sym = Symtab->find(Name); |
| if (auto *Alias = dyn_cast_or_null<SharedSymbol>(Sym)) |
| Ret.insert(Alias); |
| } |
| return Ret; |
| } |
| |
| // When a symbol is copy relocated or we create a canonical plt entry, it is |
| // effectively a defined symbol. In the case of copy relocation the symbol is |
| // in .bss and in the case of a canonical plt entry it is in .plt. This function |
| // replaces the existing symbol with a Defined pointing to the appropriate |
| // location. |
| static void replaceWithDefined(Symbol &Sym, SectionBase *Sec, uint64_t Value, |
| uint64_t Size) { |
| Symbol Old = Sym; |
| replaceSymbol<Defined>(&Sym, Sym.File, Sym.getName(), Sym.Binding, |
| Sym.StOther, Sym.Type, Value, Size, Sec); |
| Sym.PltIndex = Old.PltIndex; |
| Sym.GotIndex = Old.GotIndex; |
| Sym.VerdefIndex = Old.VerdefIndex; |
| Sym.IsPreemptible = true; |
| Sym.ExportDynamic = true; |
| Sym.IsUsedInRegularObj = true; |
| Sym.Used = true; |
| } |
| |
| // Reserve space in .bss or .bss.rel.ro for copy relocation. |
| // |
| // The copy relocation is pretty much a hack. If you use a copy relocation |
| // in your program, not only the symbol name but the symbol's size, RW/RO |
| // bit and alignment become part of the ABI. In addition to that, if the |
| // symbol has aliases, the aliases become part of the ABI. That's subtle, |
| // but if you violate that implicit ABI, that can cause very counter- |
| // intuitive consequences. |
| // |
| // So, what is the copy relocation? It's for linking non-position |
| // independent code to DSOs. In an ideal world, all references to data |
| // exported by DSOs should go indirectly through GOT. But if object files |
| // are compiled as non-PIC, all data references are direct. There is no |
| // way for the linker to transform the code to use GOT, as machine |
| // instructions are already set in stone in object files. This is where |
| // the copy relocation takes a role. |
| // |
| // A copy relocation instructs the dynamic linker to copy data from a DSO |
| // to a specified address (which is usually in .bss) at load-time. If the |
| // static linker (that's us) finds a direct data reference to a DSO |
| // symbol, it creates a copy relocation, so that the symbol can be |
| // resolved as if it were in .bss rather than in a DSO. |
| // |
| // As you can see in this function, we create a copy relocation for the |
| // dynamic linker, and the relocation contains not only symbol name but |
| // various other informtion about the symbol. So, such attributes become a |
| // part of the ABI. |
| // |
| // Note for application developers: I can give you a piece of advice if |
| // you are writing a shared library. You probably should export only |
| // functions from your library. You shouldn't export variables. |
| // |
| // As an example what can happen when you export variables without knowing |
| // the semantics of copy relocations, assume that you have an exported |
| // variable of type T. It is an ABI-breaking change to add new members at |
| // end of T even though doing that doesn't change the layout of the |
| // existing members. That's because the space for the new members are not |
| // reserved in .bss unless you recompile the main program. That means they |
| // are likely to overlap with other data that happens to be laid out next |
| // to the variable in .bss. This kind of issue is sometimes very hard to |
| // debug. What's a solution? Instead of exporting a varaible V from a DSO, |
| // define an accessor getV(). |
| template <class ELFT> static void addCopyRelSymbol(SharedSymbol &SS) { |
| // Copy relocation against zero-sized symbol doesn't make sense. |
| uint64_t SymSize = SS.getSize(); |
| if (SymSize == 0 || SS.Alignment == 0) |
| fatal("cannot create a copy relocation for symbol " + toString(SS)); |
| |
| // See if this symbol is in a read-only segment. If so, preserve the symbol's |
| // memory protection by reserving space in the .bss.rel.ro section. |
| bool IsReadOnly = isReadOnly<ELFT>(SS); |
| BssSection *Sec = make<BssSection>(IsReadOnly ? ".bss.rel.ro" : ".bss", |
| SymSize, SS.Alignment); |
| if (IsReadOnly) |
| InX::BssRelRo->getParent()->addSection(Sec); |
| else |
| InX::Bss->getParent()->addSection(Sec); |
| |
| // Look through the DSO's dynamic symbol table for aliases and create a |
| // dynamic symbol for each one. This causes the copy relocation to correctly |
| // interpose any aliases. |
| for (SharedSymbol *Sym : getSymbolsAt<ELFT>(SS)) |
| replaceWithDefined(*Sym, Sec, 0, Sym->Size); |
| |
| InX::RelaDyn->addReloc(Target->CopyRel, Sec, 0, &SS); |
| } |
| |
| // MIPS has an odd notion of "paired" relocations to calculate addends. |
| // For example, if a relocation is of R_MIPS_HI16, there must be a |
| // R_MIPS_LO16 relocation after that, and an addend is calculated using |
| // the two relocations. |
| template <class ELFT, class RelTy> |
| static int64_t computeMipsAddend(const RelTy &Rel, const RelTy *End, |
| InputSectionBase &Sec, RelExpr Expr, |
| bool IsLocal) { |
| if (Expr == R_MIPS_GOTREL && IsLocal) |
| return Sec.getFile<ELFT>()->MipsGp0; |
| |
| // The ABI says that the paired relocation is used only for REL. |
| // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| if (RelTy::IsRela) |
| return 0; |
| |
| RelType Type = Rel.getType(Config->IsMips64EL); |
| uint32_t PairTy = getMipsPairType(Type, IsLocal); |
| if (PairTy == R_MIPS_NONE) |
| return 0; |
| |
| const uint8_t *Buf = Sec.Data.data(); |
| uint32_t SymIndex = Rel.getSymbol(Config->IsMips64EL); |
| |
| // To make things worse, paired relocations might not be contiguous in |
| // the relocation table, so we need to do linear search. *sigh* |
| for (const RelTy *RI = &Rel; RI != End; ++RI) |
| if (RI->getType(Config->IsMips64EL) == PairTy && |
| RI->getSymbol(Config->IsMips64EL) == SymIndex) |
| return Target->getImplicitAddend(Buf + RI->r_offset, PairTy); |
| |
| warn("can't find matching " + toString(PairTy) + " relocation for " + |
| toString(Type)); |
| return 0; |
| } |
| |
| // Returns an addend of a given relocation. If it is RELA, an addend |
| // is in a relocation itself. If it is REL, we need to read it from an |
| // input section. |
| template <class ELFT, class RelTy> |
| static int64_t computeAddend(const RelTy &Rel, const RelTy *End, |
| InputSectionBase &Sec, RelExpr Expr, |
| bool IsLocal) { |
| int64_t Addend; |
| RelType Type = Rel.getType(Config->IsMips64EL); |
| |
| if (RelTy::IsRela) { |
| Addend = getAddend<ELFT>(Rel); |
| } else { |
| const uint8_t *Buf = Sec.Data.data(); |
| Addend = Target->getImplicitAddend(Buf + Rel.r_offset, Type); |
| } |
| |
| if (Config->EMachine == EM_PPC64 && Config->Pic && Type == R_PPC64_TOC) |
| Addend += getPPC64TocBase(); |
| if (Config->EMachine == EM_MIPS) |
| Addend += computeMipsAddend<ELFT>(Rel, End, Sec, Expr, IsLocal); |
| |
| return Addend; |
| } |
| |
| // Report an undefined symbol if necessary. |
| // Returns true if this function printed out an error message. |
| static bool maybeReportUndefined(Symbol &Sym, InputSectionBase &Sec, |
| uint64_t Offset) { |
| if (Config->UnresolvedSymbols == UnresolvedPolicy::IgnoreAll) |
| return false; |
| |
| if (Sym.isLocal() || !Sym.isUndefined() || Sym.isWeak()) |
| return false; |
| |
| bool CanBeExternal = |
| Sym.computeBinding() != STB_LOCAL && Sym.Visibility == STV_DEFAULT; |
| if (Config->UnresolvedSymbols == UnresolvedPolicy::Ignore && CanBeExternal) |
| return false; |
| |
| std::string Msg = |
| "undefined symbol: " + toString(Sym) + "\n>>> referenced by "; |
| |
| std::string Src = Sec.getSrcMsg(Sym, Offset); |
| if (!Src.empty()) |
| Msg += Src + "\n>>> "; |
| Msg += Sec.getObjMsg(Offset); |
| |
| if ((Config->UnresolvedSymbols == UnresolvedPolicy::Warn && CanBeExternal) || |
| Config->NoinhibitExec) { |
| warn(Msg); |
| return false; |
| } |
| |
| error(Msg); |
| return true; |
| } |
| |
| // MIPS N32 ABI treats series of successive relocations with the same offset |
| // as a single relocation. The similar approach used by N64 ABI, but this ABI |
| // packs all relocations into the single relocation record. Here we emulate |
| // this for the N32 ABI. Iterate over relocation with the same offset and put |
| // theirs types into the single bit-set. |
| template <class RelTy> static RelType getMipsN32RelType(RelTy *&Rel, RelTy *End) { |
| RelType Type = 0; |
| uint64_t Offset = Rel->r_offset; |
| |
| int N = 0; |
| while (Rel != End && Rel->r_offset == Offset) |
| Type |= (Rel++)->getType(Config->IsMips64EL) << (8 * N++); |
| return Type; |
| } |
| |
| // .eh_frame sections are mergeable input sections, so their input |
| // offsets are not linearly mapped to output section. For each input |
| // offset, we need to find a section piece containing the offset and |
| // add the piece's base address to the input offset to compute the |
| // output offset. That isn't cheap. |
| // |
| // This class is to speed up the offset computation. When we process |
| // relocations, we access offsets in the monotonically increasing |
| // order. So we can optimize for that access pattern. |
| // |
| // For sections other than .eh_frame, this class doesn't do anything. |
| namespace { |
| class OffsetGetter { |
| public: |
| explicit OffsetGetter(InputSectionBase &Sec) { |
| if (auto *Eh = dyn_cast<EhInputSection>(&Sec)) |
| Pieces = Eh->Pieces; |
| } |
| |
| // Translates offsets in input sections to offsets in output sections. |
| // Given offset must increase monotonically. We assume that Piece is |
| // sorted by InputOff. |
| uint64_t get(uint64_t Off) { |
| if (Pieces.empty()) |
| return Off; |
| |
| while (I != Pieces.size() && Pieces[I].InputOff + Pieces[I].Size <= Off) |
| ++I; |
| if (I == Pieces.size()) |
| return Off; |
| |
| // Pieces must be contiguous, so there must be no holes in between. |
| assert(Pieces[I].InputOff <= Off && "Relocation not in any piece"); |
| |
| // Offset -1 means that the piece is dead (i.e. garbage collected). |
| if (Pieces[I].OutputOff == -1) |
| return -1; |
| return Pieces[I].OutputOff + Off - Pieces[I].InputOff; |
| } |
| |
| private: |
| ArrayRef<EhSectionPiece> Pieces; |
| size_t I = 0; |
| }; |
| } // namespace |
| |
| static void addRelativeReloc(InputSectionBase *IS, uint64_t OffsetInSec, |
| Symbol *Sym, int64_t Addend, RelExpr Expr, |
| RelType Type) { |
| // Add a relative relocation. If RelrDyn section is enabled, and the |
| // relocation offset is guaranteed to be even, add the relocation to |
| // the RelrDyn section, otherwise add it to the RelaDyn section. |
| // RelrDyn sections don't support odd offsets. Also, RelrDyn sections |
| // don't store the addend values, so we must write it to the relocated |
| // address. |
| if (InX::RelrDyn && IS->Alignment >= 2 && OffsetInSec % 2 == 0) { |
| IS->Relocations.push_back({Expr, Type, OffsetInSec, Addend, Sym}); |
| InX::RelrDyn->Relocs.push_back({IS, OffsetInSec}); |
| return; |
| } |
| InX::RelaDyn->addReloc(Target->RelativeRel, IS, OffsetInSec, Sym, Addend, |
| Expr, Type); |
| } |
| |
| template <class ELFT, class GotPltSection> |
| static void addPltEntry(PltSection *Plt, GotPltSection *GotPlt, |
| RelocationBaseSection *Rel, RelType Type, Symbol &Sym) { |
| Plt->addEntry<ELFT>(Sym); |
| GotPlt->addEntry(Sym); |
| Rel->addReloc( |
| {Type, GotPlt, Sym.getGotPltOffset(), !Sym.IsPreemptible, &Sym, 0}); |
| } |
| |
| template <class ELFT> static void addGotEntry(Symbol &Sym) { |
| InX::Got->addEntry(Sym); |
| |
| RelExpr Expr = Sym.isTls() ? R_TLS : R_ABS; |
| uint64_t Off = Sym.getGotOffset(); |
| |
| // If a GOT slot value can be calculated at link-time, which is now, |
| // we can just fill that out. |
| // |
| // (We don't actually write a value to a GOT slot right now, but we |
| // add a static relocation to a Relocations vector so that |
| // InputSection::relocate will do the work for us. We may be able |
| // to just write a value now, but it is a TODO.) |
| bool IsLinkTimeConstant = |
| !Sym.IsPreemptible && (!Config->Pic || isAbsolute(Sym)); |
| if (IsLinkTimeConstant) { |
| InX::Got->Relocations.push_back({Expr, Target->GotRel, Off, 0, &Sym}); |
| return; |
| } |
| |
| // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that |
| // the GOT slot will be fixed at load-time. |
| if (!Sym.isTls() && !Sym.IsPreemptible && Config->Pic && !isAbsolute(Sym)) { |
| addRelativeReloc(InX::Got, Off, &Sym, 0, R_ABS, Target->GotRel); |
| return; |
| } |
| InX::RelaDyn->addReloc(Sym.isTls() ? Target->TlsGotRel : Target->GotRel, |
| InX::Got, Off, &Sym, 0, |
| Sym.IsPreemptible ? R_ADDEND : R_ABS, Target->GotRel); |
| } |
| |
| // Return true if we can define a symbol in the executable that |
| // contains the value/function of a symbol defined in a shared |
| // library. |
| static bool canDefineSymbolInExecutable(Symbol &Sym) { |
| // If the symbol has default visibility the symbol defined in the |
| // executable will preempt it. |
| // Note that we want the visibility of the shared symbol itself, not |
| // the visibility of the symbol in the output file we are producing. That is |
| // why we use Sym.StOther. |
| if ((Sym.StOther & 0x3) == STV_DEFAULT) |
| return true; |
| |
| // If we are allowed to break address equality of functions, defining |
| // a plt entry will allow the program to call the function in the |
| // .so, but the .so and the executable will no agree on the address |
| // of the function. Similar logic for objects. |
| return ((Sym.isFunc() && Config->IgnoreFunctionAddressEquality) || |
| (Sym.isObject() && Config->IgnoreDataAddressEquality)); |
| } |
| |
| // The reason we have to do this early scan is as follows |
| // * To mmap the output file, we need to know the size |
| // * For that, we need to know how many dynamic relocs we will have. |
| // It might be possible to avoid this by outputting the file with write: |
| // * Write the allocated output sections, computing addresses. |
| // * Apply relocations, recording which ones require a dynamic reloc. |
| // * Write the dynamic relocations. |
| // * Write the rest of the file. |
| // This would have some drawbacks. For example, we would only know if .rela.dyn |
| // is needed after applying relocations. If it is, it will go after rw and rx |
| // sections. Given that it is ro, we will need an extra PT_LOAD. This |
| // complicates things for the dynamic linker and means we would have to reserve |
| // space for the extra PT_LOAD even if we end up not using it. |
| template <class ELFT, class RelTy> |
| static void processRelocAux(InputSectionBase &Sec, RelExpr Expr, RelType Type, |
| uint64_t Offset, Symbol &Sym, const RelTy &Rel, |
| int64_t Addend) { |
| if (isStaticLinkTimeConstant(Expr, Type, Sym, Sec, Offset)) { |
| Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); |
| return; |
| } |
| bool CanWrite = (Sec.Flags & SHF_WRITE) || !Config->ZText; |
| if (CanWrite) { |
| // R_GOT refers to a position in the got, even if the symbol is preemptible. |
| bool IsPreemptibleValue = Sym.IsPreemptible && Expr != R_GOT; |
| |
| if (!IsPreemptibleValue) { |
| addRelativeReloc(&Sec, Offset, &Sym, Addend, Expr, Type); |
| return; |
| } else if (RelType Rel = Target->getDynRel(Type)) { |
| InX::RelaDyn->addReloc(Rel, &Sec, Offset, &Sym, Addend, R_ADDEND, Type); |
| |
| // MIPS ABI turns using of GOT and dynamic relocations inside out. |
| // While regular ABI uses dynamic relocations to fill up GOT entries |
| // MIPS ABI requires dynamic linker to fills up GOT entries using |
| // specially sorted dynamic symbol table. This affects even dynamic |
| // relocations against symbols which do not require GOT entries |
| // creation explicitly, i.e. do not have any GOT-relocations. So if |
| // a preemptible symbol has a dynamic relocation we anyway have |
| // to create a GOT entry for it. |
| // If a non-preemptible symbol has a dynamic relocation against it, |
| // dynamic linker takes it st_value, adds offset and writes down |
| // result of the dynamic relocation. In case of preemptible symbol |
| // dynamic linker performs symbol resolution, writes the symbol value |
| // to the GOT entry and reads the GOT entry when it needs to perform |
| // a dynamic relocation. |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 |
| if (Config->EMachine == EM_MIPS) |
| InX::MipsGot->addEntry(*Sec.File, Sym, Addend, Expr); |
| return; |
| } |
| } |
| |
| // If the relocation is to a weak undef, and we are producing |
| // executable, give up on it and produce a non preemptible 0. |
| if (!Config->Shared && Sym.isUndefWeak()) { |
| Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); |
| return; |
| } |
| |
| if (!CanWrite && (Config->Pic && !isRelExpr(Expr))) { |
| error( |
| "can't create dynamic relocation " + toString(Type) + " against " + |
| (Sym.getName().empty() ? "local symbol" : "symbol: " + toString(Sym)) + |
| " in readonly segment; recompile object files with -fPIC " |
| "or pass '-Wl,-z,notext' to allow text relocations in the output" + |
| getLocation(Sec, Sym, Offset)); |
| return; |
| } |
| |
| // Copy relocations are only possible if we are creating an executable. |
| if (Config->Shared) { |
| errorOrWarn("relocation " + toString(Type) + |
| " cannot be used against symbol " + toString(Sym) + |
| "; recompile with -fPIC" + getLocation(Sec, Sym, Offset)); |
| return; |
| } |
| |
| // If the symbol is undefined we already reported any relevant errors. |
| if (Sym.isUndefined()) |
| return; |
| |
| if (!canDefineSymbolInExecutable(Sym)) { |
| error("cannot preempt symbol: " + toString(Sym) + |
| getLocation(Sec, Sym, Offset)); |
| return; |
| } |
| |
| if (Sym.isObject()) { |
| // Produce a copy relocation. |
| if (auto *SS = dyn_cast<SharedSymbol>(&Sym)) { |
| if (!Config->ZCopyreloc) |
| error("unresolvable relocation " + toString(Type) + |
| " against symbol '" + toString(*SS) + |
| "'; recompile with -fPIC or remove '-z nocopyreloc'" + |
| getLocation(Sec, Sym, Offset)); |
| addCopyRelSymbol<ELFT>(*SS); |
| } |
| Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); |
| return; |
| } |
| |
| if (Sym.isFunc()) { |
| // This handles a non PIC program call to function in a shared library. In |
| // an ideal world, we could just report an error saying the relocation can |
| // overflow at runtime. In the real world with glibc, crt1.o has a |
| // R_X86_64_PC32 pointing to libc.so. |
| // |
| // The general idea on how to handle such cases is to create a PLT entry and |
| // use that as the function value. |
| // |
| // For the static linking part, we just return a plt expr and everything |
| // else will use the PLT entry as the address. |
| // |
| // The remaining problem is making sure pointer equality still works. We |
| // need the help of the dynamic linker for that. We let it know that we have |
| // a direct reference to a so symbol by creating an undefined symbol with a |
| // non zero st_value. Seeing that, the dynamic linker resolves the symbol to |
| // the value of the symbol we created. This is true even for got entries, so |
| // pointer equality is maintained. To avoid an infinite loop, the only entry |
| // that points to the real function is a dedicated got entry used by the |
| // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, |
| // R_386_JMP_SLOT, etc). |
| |
| // For position independent executable on i386, the plt entry requires ebx |
| // to be set. This causes two problems: |
| // * If some code has a direct reference to a function, it was probably |
| // compiled without -fPIE/-fPIC and doesn't maintain ebx. |
| // * If a library definition gets preempted to the executable, it will have |
| // the wrong ebx value. |
| if (Config->Pie && Config->EMachine == EM_386) |
| errorOrWarn("symbol '" + toString(Sym) + |
| "' cannot be preempted; recompile with -fPIE" + |
| getLocation(Sec, Sym, Offset)); |
| if (!Sym.isInPlt()) |
| addPltEntry<ELFT>(InX::Plt, InX::GotPlt, InX::RelaPlt, Target->PltRel, |
| Sym); |
| if (!Sym.isDefined()) |
| replaceWithDefined(Sym, InX::Plt, Sym.getPltOffset(), 0); |
| Sym.NeedsPltAddr = true; |
| Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); |
| return; |
| } |
| |
| errorOrWarn("symbol '" + toString(Sym) + "' has no type" + |
| getLocation(Sec, Sym, Offset)); |
| } |
| |
| template <class ELFT, class RelTy> |
| static void scanReloc(InputSectionBase &Sec, OffsetGetter &GetOffset, RelTy *&I, |
| RelTy *End) { |
| const RelTy &Rel = *I; |
| Symbol &Sym = Sec.getFile<ELFT>()->getRelocTargetSym(Rel); |
| RelType Type; |
| |
| // Deal with MIPS oddity. |
| if (Config->MipsN32Abi) { |
| Type = getMipsN32RelType(I, End); |
| } else { |
| Type = Rel.getType(Config->IsMips64EL); |
| ++I; |
| } |
| |
| // Get an offset in an output section this relocation is applied to. |
| uint64_t Offset = GetOffset.get(Rel.r_offset); |
| if (Offset == uint64_t(-1)) |
| return; |
| |
| // Skip if the target symbol is an erroneous undefined symbol. |
| if (maybeReportUndefined(Sym, Sec, Rel.r_offset)) |
| return; |
| |
| const uint8_t *RelocatedAddr = Sec.Data.begin() + Rel.r_offset; |
| RelExpr Expr = Target->getRelExpr(Type, Sym, RelocatedAddr); |
| |
| // Ignore "hint" relocations because they are only markers for relaxation. |
| if (isRelExprOneOf<R_HINT, R_NONE>(Expr)) |
| return; |
| |
| // Strenghten or relax relocations. |
| // |
| // GNU ifunc symbols must be accessed via PLT because their addresses |
| // are determined by runtime. |
| // |
| // On the other hand, if we know that a PLT entry will be resolved within |
| // the same ELF module, we can skip PLT access and directly jump to the |
| // destination function. For example, if we are linking a main exectuable, |
| // all dynamic symbols that can be resolved within the executable will |
| // actually be resolved that way at runtime, because the main exectuable |
| // is always at the beginning of a search list. We can leverage that fact. |
| if (Sym.isGnuIFunc()) |
| Expr = toPlt(Expr); |
| else if (!Sym.IsPreemptible && Expr == R_GOT_PC && !isAbsoluteValue(Sym)) |
| Expr = Target->adjustRelaxExpr(Type, RelocatedAddr, Expr); |
| else if (!Sym.IsPreemptible) |
| Expr = fromPlt(Expr); |
| |
| // This relocation does not require got entry, but it is relative to got and |
| // needs it to be created. Here we request for that. |
| if (isRelExprOneOf<R_GOTONLY_PC, R_GOTONLY_PC_FROM_END, R_GOTREL, |
| R_GOTREL_FROM_END, R_PPC_TOC>(Expr)) |
| InX::Got->HasGotOffRel = true; |
| |
| // Read an addend. |
| int64_t Addend = computeAddend<ELFT>(Rel, End, Sec, Expr, Sym.isLocal()); |
| |
| // Process some TLS relocations, including relaxing TLS relocations. |
| // Note that this function does not handle all TLS relocations. |
| if (unsigned Processed = |
| handleTlsRelocation<ELFT>(Type, Sym, Sec, Offset, Addend, Expr)) { |
| I += (Processed - 1); |
| return; |
| } |
| |
| // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol. |
| if (needsPlt(Expr) && !Sym.isInPlt()) { |
| if (Sym.isGnuIFunc() && !Sym.IsPreemptible) |
| addPltEntry<ELFT>(InX::Iplt, InX::IgotPlt, InX::RelaIplt, |
| Target->IRelativeRel, Sym); |
| else |
| addPltEntry<ELFT>(InX::Plt, InX::GotPlt, InX::RelaPlt, Target->PltRel, |
| Sym); |
| } |
| |
| // Create a GOT slot if a relocation needs GOT. |
| if (needsGot(Expr)) { |
| if (Config->EMachine == EM_MIPS) { |
| // MIPS ABI has special rules to process GOT entries and doesn't |
| // require relocation entries for them. A special case is TLS |
| // relocations. In that case dynamic loader applies dynamic |
| // relocations to initialize TLS GOT entries. |
| // See "Global Offset Table" in Chapter 5 in the following document |
| // for detailed description: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| InX::MipsGot->addEntry(*Sec.File, Sym, Addend, Expr); |
| } else if (!Sym.isInGot()) { |
| addGotEntry<ELFT>(Sym); |
| } |
| } |
| |
| processRelocAux<ELFT>(Sec, Expr, Type, Offset, Sym, Rel, Addend); |
| } |
| |
| template <class ELFT, class RelTy> |
| static void scanRelocs(InputSectionBase &Sec, ArrayRef<RelTy> Rels) { |
| OffsetGetter GetOffset(Sec); |
| |
| // Not all relocations end up in Sec.Relocations, but a lot do. |
| Sec.Relocations.reserve(Rels.size()); |
| |
| for (auto I = Rels.begin(), End = Rels.end(); I != End;) |
| scanReloc<ELFT>(Sec, GetOffset, I, End); |
| } |
| |
| template <class ELFT> void elf::scanRelocations(InputSectionBase &S) { |
| if (S.AreRelocsRela) |
| scanRelocs<ELFT>(S, S.relas<ELFT>()); |
| else |
| scanRelocs<ELFT>(S, S.rels<ELFT>()); |
| } |
| |
| // Thunk Implementation |
| // |
| // Thunks (sometimes called stubs, veneers or branch islands) are small pieces |
| // of code that the linker inserts inbetween a caller and a callee. The thunks |
| // are added at link time rather than compile time as the decision on whether |
| // a thunk is needed, such as the caller and callee being out of range, can only |
| // be made at link time. |
| // |
| // It is straightforward to tell given the current state of the program when a |
| // thunk is needed for a particular call. The more difficult part is that |
| // the thunk needs to be placed in the program such that the caller can reach |
| // the thunk and the thunk can reach the callee; furthermore, adding thunks to |
| // the program alters addresses, which can mean more thunks etc. |
| // |
| // In lld we have a synthetic ThunkSection that can hold many Thunks. |
| // The decision to have a ThunkSection act as a container means that we can |
| // more easily handle the most common case of a single block of contiguous |
| // Thunks by inserting just a single ThunkSection. |
| // |
| // The implementation of Thunks in lld is split across these areas |
| // Relocations.cpp : Framework for creating and placing thunks |
| // Thunks.cpp : The code generated for each supported thunk |
| // Target.cpp : Target specific hooks that the framework uses to decide when |
| // a thunk is used |
| // Synthetic.cpp : Implementation of ThunkSection |
| // Writer.cpp : Iteratively call framework until no more Thunks added |
| // |
| // Thunk placement requirements: |
| // Mips LA25 thunks. These must be placed immediately before the callee section |
| // We can assume that the caller is in range of the Thunk. These are modelled |
| // by Thunks that return the section they must precede with |
| // getTargetInputSection(). |
| // |
| // ARM interworking and range extension thunks. These thunks must be placed |
| // within range of the caller. All implemented ARM thunks can always reach the |
| // callee as they use an indirect jump via a register that has no range |
| // restrictions. |
| // |
| // Thunk placement algorithm: |
| // For Mips LA25 ThunkSections; the placement is explicit, it has to be before |
| // getTargetInputSection(). |
| // |
| // For thunks that must be placed within range of the caller there are many |
| // possible choices given that the maximum range from the caller is usually |
| // much larger than the average InputSection size. Desirable properties include: |
| // - Maximize reuse of thunks by multiple callers |
| // - Minimize number of ThunkSections to simplify insertion |
| // - Handle impact of already added Thunks on addresses |
| // - Simple to understand and implement |
| // |
| // In lld for the first pass, we pre-create one or more ThunkSections per |
| // InputSectionDescription at Target specific intervals. A ThunkSection is |
| // placed so that the estimated end of the ThunkSection is within range of the |
| // start of the InputSectionDescription or the previous ThunkSection. For |
| // example: |
| // InputSectionDescription |
| // Section 0 |
| // ... |
| // Section N |
| // ThunkSection 0 |
| // Section N + 1 |
| // ... |
| // Section N + K |
| // Thunk Section 1 |
| // |
| // The intention is that we can add a Thunk to a ThunkSection that is well |
| // spaced enough to service a number of callers without having to do a lot |
| // of work. An important principle is that it is not an error if a Thunk cannot |
| // be placed in a pre-created ThunkSection; when this happens we create a new |
| // ThunkSection placed next to the caller. This allows us to handle the vast |
| // majority of thunks simply, but also handle rare cases where the branch range |
| // is smaller than the target specific spacing. |
| // |
| // The algorithm is expected to create all the thunks that are needed in a |
| // single pass, with a small number of programs needing a second pass due to |
| // the insertion of thunks in the first pass increasing the offset between |
| // callers and callees that were only just in range. |
| // |
| // A consequence of allowing new ThunkSections to be created outside of the |
| // pre-created ThunkSections is that in rare cases calls to Thunks that were in |
| // range in pass K, are out of range in some pass > K due to the insertion of |
| // more Thunks in between the caller and callee. When this happens we retarget |
| // the relocation back to the original target and create another Thunk. |
| |
| // Remove ThunkSections that are empty, this should only be the initial set |
| // precreated on pass 0. |
| |
| // Insert the Thunks for OutputSection OS into their designated place |
| // in the Sections vector, and recalculate the InputSection output section |
| // offsets. |
| // This may invalidate any output section offsets stored outside of InputSection |
| void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> OutputSections) { |
| forEachInputSectionDescription( |
| OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) { |
| if (ISD->ThunkSections.empty()) |
| return; |
| |
| // Remove any zero sized precreated Thunks. |
| llvm::erase_if(ISD->ThunkSections, |
| [](const std::pair<ThunkSection *, uint32_t> &TS) { |
| return TS.first->getSize() == 0; |
| }); |
| // ISD->ThunkSections contains all created ThunkSections, including |
| // those inserted in previous passes. Extract the Thunks created this |
| // pass and order them in ascending OutSecOff. |
| std::vector<ThunkSection *> NewThunks; |
| for (const std::pair<ThunkSection *, uint32_t> TS : ISD->ThunkSections) |
| if (TS.second == Pass) |
| NewThunks.push_back(TS.first); |
| std::stable_sort(NewThunks.begin(), NewThunks.end(), |
| [](const ThunkSection *A, const ThunkSection *B) { |
| return A->OutSecOff < B->OutSecOff; |
| }); |
| |
| // Merge sorted vectors of Thunks and InputSections by OutSecOff |
| std::vector<InputSection *> Tmp; |
| Tmp.reserve(ISD->Sections.size() + NewThunks.size()); |
| auto MergeCmp = [](const InputSection *A, const InputSection *B) { |
| // std::merge requires a strict weak ordering. |
| if (A->OutSecOff < B->OutSecOff) |
| return true; |
| if (A->OutSecOff == B->OutSecOff) { |
| auto *TA = dyn_cast<ThunkSection>(A); |
| auto *TB = dyn_cast<ThunkSection>(B); |
| // Check if Thunk is immediately before any specific Target |
| // InputSection for example Mips LA25 Thunks. |
| if (TA && TA->getTargetInputSection() == B) |
| return true; |
| if (TA && !TB && !TA->getTargetInputSection()) |
| // Place Thunk Sections without specific targets before |
| // non-Thunk Sections. |
| return true; |
| } |
| return false; |
| }; |
| std::merge(ISD->Sections.begin(), ISD->Sections.end(), |
| NewThunks.begin(), NewThunks.end(), std::back_inserter(Tmp), |
| MergeCmp); |
| ISD->Sections = std::move(Tmp); |
| }); |
| } |
| |
| // Find or create a ThunkSection within the InputSectionDescription (ISD) that |
| // is in range of Src. An ISD maps to a range of InputSections described by a |
| // linker script section pattern such as { .text .text.* }. |
| ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *OS, InputSection *IS, |
| InputSectionDescription *ISD, |
| uint32_t Type, uint64_t Src) { |
| for (std::pair<ThunkSection *, uint32_t> TP : ISD->ThunkSections) { |
| ThunkSection *TS = TP.first; |
| uint64_t TSBase = OS->Addr + TS->OutSecOff; |
| uint64_t TSLimit = TSBase + TS->getSize(); |
| if (Target->inBranchRange(Type, Src, (Src > TSLimit) ? TSBase : TSLimit)) |
| return TS; |
| } |
| |
| // No suitable ThunkSection exists. This can happen when there is a branch |
| // with lower range than the ThunkSection spacing or when there are too |
| // many Thunks. Create a new ThunkSection as close to the InputSection as |
| // possible. Error if InputSection is so large we cannot place ThunkSection |
| // anywhere in Range. |
| uint64_t ThunkSecOff = IS->OutSecOff; |
| if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff)) { |
| ThunkSecOff = IS->OutSecOff + IS->getSize(); |
| if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff)) |
| fatal("InputSection too large for range extension thunk " + |
| IS->getObjMsg(Src - (OS->Addr + IS->OutSecOff))); |
| } |
| return addThunkSection(OS, ISD, ThunkSecOff); |
| } |
| |
| // Add a Thunk that needs to be placed in a ThunkSection that immediately |
| // precedes its Target. |
| ThunkSection *ThunkCreator::getISThunkSec(InputSection *IS) { |
| ThunkSection *TS = ThunkedSections.lookup(IS); |
| if (TS) |
| return TS; |
| |
| // Find InputSectionRange within Target Output Section (TOS) that the |
| // InputSection (IS) that we need to precede is in. |
| OutputSection *TOS = IS->getParent(); |
| for (BaseCommand *BC : TOS->SectionCommands) |
| if (auto *ISD = dyn_cast<InputSectionDescription>(BC)) { |
| if (ISD->Sections.empty()) |
| continue; |
| InputSection *first = ISD->Sections.front(); |
| InputSection *last = ISD->Sections.back(); |
| if (IS->OutSecOff >= first->OutSecOff && |
| IS->OutSecOff <= last->OutSecOff) { |
| TS = addThunkSection(TOS, ISD, IS->OutSecOff); |
| ThunkedSections[IS] = TS; |
| break; |
| } |
| } |
| return TS; |
| } |
| |
| // Create one or more ThunkSections per OS that can be used to place Thunks. |
| // We attempt to place the ThunkSections using the following desirable |
| // properties: |
| // - Within range of the maximum number of callers |
| // - Minimise the number of ThunkSections |
| // |
| // We follow a simple but conservative heuristic to place ThunkSections at |
| // offsets that are multiples of a Target specific branch range. |
| // For an InputSectionDescription that is smaller than the range, a single |
| // ThunkSection at the end of the range will do. |
| // |
| // For an InputSectionDescription that is more than twice the size of the range, |
| // we place the last ThunkSection at range bytes from the end of the |
| // InputSectionDescription in order to increase the likelihood that the |
| // distance from a thunk to its target will be sufficiently small to |
| // allow for the creation of a short thunk. |
| void ThunkCreator::createInitialThunkSections( |
| ArrayRef<OutputSection *> OutputSections) { |
| forEachInputSectionDescription( |
| OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) { |
| if (ISD->Sections.empty()) |
| return; |
| uint32_t ISDBegin = ISD->Sections.front()->OutSecOff; |
| uint32_t ISDEnd = |
| ISD->Sections.back()->OutSecOff + ISD->Sections.back()->getSize(); |
| uint32_t LastThunkLowerBound = -1; |
| if (ISDEnd - ISDBegin > Target->ThunkSectionSpacing * 2) |
| LastThunkLowerBound = ISDEnd - Target->ThunkSectionSpacing; |
| |
| uint32_t ISLimit; |
| uint32_t PrevISLimit = ISDBegin; |
| uint32_t ThunkUpperBound = ISDBegin + Target->ThunkSectionSpacing; |
| |
| for (const InputSection *IS : ISD->Sections) { |
| ISLimit = IS->OutSecOff + IS->getSize(); |
| if (ISLimit > ThunkUpperBound) { |
| addThunkSection(OS, ISD, PrevISLimit); |
| ThunkUpperBound = PrevISLimit + Target->ThunkSectionSpacing; |
| } |
| if (ISLimit > LastThunkLowerBound) |
| break; |
| PrevISLimit = ISLimit; |
| } |
| addThunkSection(OS, ISD, ISLimit); |
| }); |
| } |
| |
| ThunkSection *ThunkCreator::addThunkSection(OutputSection *OS, |
| InputSectionDescription *ISD, |
| uint64_t Off) { |
| auto *TS = make<ThunkSection>(OS, Off); |
| ISD->ThunkSections.push_back(std::make_pair(TS, Pass)); |
| return TS; |
| } |
| |
| std::pair<Thunk *, bool> ThunkCreator::getThunk(Symbol &Sym, RelType Type, |
| uint64_t Src) { |
| std::vector<Thunk *> *ThunkVec = nullptr; |
| // We use (section, offset) pair to find the thunk position if possible so |
| // that we create only one thunk for aliased symbols or ICFed sections. |
| if (auto *D = dyn_cast<Defined>(&Sym)) |
| if (!D->isInPlt() && D->Section) |
| ThunkVec = &ThunkedSymbolsBySection[{D->Section->Repl, D->Value}]; |
| if (!ThunkVec) |
| ThunkVec = &ThunkedSymbols[&Sym]; |
| // Check existing Thunks for Sym to see if they can be reused |
| for (Thunk *ET : *ThunkVec) |
| if (ET->isCompatibleWith(Type) && |
| Target->inBranchRange(Type, Src, ET->getThunkTargetSym()->getVA())) |
| return std::make_pair(ET, false); |
| // No existing compatible Thunk in range, create a new one |
| Thunk *T = addThunk(Type, Sym); |
| ThunkVec->push_back(T); |
| return std::make_pair(T, true); |
| } |
| |
| // Call Fn on every executable InputSection accessed via the linker script |
| // InputSectionDescription::Sections. |
| void ThunkCreator::forEachInputSectionDescription( |
| ArrayRef<OutputSection *> OutputSections, |
| llvm::function_ref<void(OutputSection *, InputSectionDescription *)> Fn) { |
| for (OutputSection *OS : OutputSections) { |
| if (!(OS->Flags & SHF_ALLOC) || !(OS->Flags & SHF_EXECINSTR)) |
| continue; |
| for (BaseCommand *BC : OS->SectionCommands) |
| if (auto *ISD = dyn_cast<InputSectionDescription>(BC)) |
| Fn(OS, ISD); |
| } |
| } |
| |
| // Return true if the relocation target is an in range Thunk. |
| // Return false if the relocation is not to a Thunk. If the relocation target |
| // was originally to a Thunk, but is no longer in range we revert the |
| // relocation back to its original non-Thunk target. |
| bool ThunkCreator::normalizeExistingThunk(Relocation &Rel, uint64_t Src) { |
| if (Thunk *ET = Thunks.lookup(Rel.Sym)) { |
| if (Target->inBranchRange(Rel.Type, Src, Rel.Sym->getVA())) |
| return true; |
| Rel.Sym = &ET->Destination; |
| if (Rel.Sym->isInPlt()) |
| Rel.Expr = toPlt(Rel.Expr); |
| } |
| return false; |
| } |
| |
| // Process all relocations from the InputSections that have been assigned |
| // to InputSectionDescriptions and redirect through Thunks if needed. The |
| // function should be called iteratively until it returns false. |
| // |
| // PreConditions: |
| // All InputSections that may need a Thunk are reachable from |
| // OutputSectionCommands. |
| // |
| // All OutputSections have an address and all InputSections have an offset |
| // within the OutputSection. |
| // |
| // The offsets between caller (relocation place) and callee |
| // (relocation target) will not be modified outside of createThunks(). |
| // |
| // PostConditions: |
| // If return value is true then ThunkSections have been inserted into |
| // OutputSections. All relocations that needed a Thunk based on the information |
| // available to createThunks() on entry have been redirected to a Thunk. Note |
| // that adding Thunks changes offsets between caller and callee so more Thunks |
| // may be required. |
| // |
| // If return value is false then no more Thunks are needed, and createThunks has |
| // made no changes. If the target requires range extension thunks, currently |
| // ARM, then any future change in offset between caller and callee risks a |
| // relocation out of range error. |
| bool ThunkCreator::createThunks(ArrayRef<OutputSection *> OutputSections) { |
| bool AddressesChanged = false; |
| if (Pass == 0 && Target->ThunkSectionSpacing) |
| createInitialThunkSections(OutputSections); |
| else if (Pass == 10) |
| // With Thunk Size much smaller than branch range we expect to |
| // converge quickly; if we get to 10 something has gone wrong. |
| fatal("thunk creation not converged"); |
| |
| // Create all the Thunks and insert them into synthetic ThunkSections. The |
| // ThunkSections are later inserted back into InputSectionDescriptions. |
| // We separate the creation of ThunkSections from the insertion of the |
| // ThunkSections as ThunkSections are not always inserted into the same |
| // InputSectionDescription as the caller. |
| forEachInputSectionDescription( |
| OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) { |
| for (InputSection *IS : ISD->Sections) |
| for (Relocation &Rel : IS->Relocations) { |
| uint64_t Src = IS->getVA(Rel.Offset); |
| |
| // If we are a relocation to an existing Thunk, check if it is |
| // still in range. If not then Rel will be altered to point to its |
| // original target so another Thunk can be generated. |
| if (Pass > 0 && normalizeExistingThunk(Rel, Src)) |
| continue; |
| |
| if (!Target->needsThunk(Rel.Expr, Rel.Type, IS->File, Src, |
| *Rel.Sym)) |
| continue; |
| Thunk *T; |
| bool IsNew; |
| std::tie(T, IsNew) = getThunk(*Rel.Sym, Rel.Type, Src); |
| if (IsNew) { |
| // Find or create a ThunkSection for the new Thunk |
| ThunkSection *TS; |
| if (auto *TIS = T->getTargetInputSection()) |
| TS = getISThunkSec(TIS); |
| else |
| TS = getISDThunkSec(OS, IS, ISD, Rel.Type, Src); |
| TS->addThunk(T); |
| Thunks[T->getThunkTargetSym()] = T; |
| } |
| // Redirect relocation to Thunk, we never go via the PLT to a Thunk |
| Rel.Sym = T->getThunkTargetSym(); |
| Rel.Expr = fromPlt(Rel.Expr); |
| } |
| for (auto &P : ISD->ThunkSections) |
| AddressesChanged |= P.first->assignOffsets(); |
| }); |
| for (auto &P : ThunkedSections) |
| AddressesChanged |= P.second->assignOffsets(); |
| |
| // Merge all created synthetic ThunkSections back into OutputSection |
| mergeThunks(OutputSections); |
| ++Pass; |
| return AddressesChanged; |
| } |
| |
| template void elf::scanRelocations<ELF32LE>(InputSectionBase &); |
| template void elf::scanRelocations<ELF32BE>(InputSectionBase &); |
| template void elf::scanRelocations<ELF64LE>(InputSectionBase &); |
| template void elf::scanRelocations<ELF64BE>(InputSectionBase &); |