|  | //===- ConstantRange.cpp - ConstantRange implementation -------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Represent a range of possible values that may occur when the program is run | 
|  | // for an integral value.  This keeps track of a lower and upper bound for the | 
|  | // constant, which MAY wrap around the end of the numeric range.  To do this, it | 
|  | // keeps track of a [lower, upper) bound, which specifies an interval just like | 
|  | // STL iterators.  When used with boolean values, the following are important | 
|  | // ranges (other integral ranges use min/max values for special range values): | 
|  | // | 
|  | //  [F, F) = {}     = Empty set | 
|  | //  [T, F) = {T} | 
|  | //  [F, T) = {F} | 
|  | //  [T, T) = {F, T} = Full set | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/IR/ConstantRange.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) | 
|  | : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)), | 
|  | Upper(Lower) {} | 
|  |  | 
|  | ConstantRange::ConstantRange(APInt V) | 
|  | : Lower(std::move(V)), Upper(Lower + 1) {} | 
|  |  | 
|  | ConstantRange::ConstantRange(APInt L, APInt U) | 
|  | : Lower(std::move(L)), Upper(std::move(U)) { | 
|  | assert(Lower.getBitWidth() == Upper.getBitWidth() && | 
|  | "ConstantRange with unequal bit widths"); | 
|  | assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) && | 
|  | "Lower == Upper, but they aren't min or max value!"); | 
|  | } | 
|  |  | 
|  | ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred, | 
|  | const ConstantRange &CR) { | 
|  | if (CR.isEmptySet()) | 
|  | return CR; | 
|  |  | 
|  | uint32_t W = CR.getBitWidth(); | 
|  | switch (Pred) { | 
|  | default: | 
|  | llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()"); | 
|  | case CmpInst::ICMP_EQ: | 
|  | return CR; | 
|  | case CmpInst::ICMP_NE: | 
|  | if (CR.isSingleElement()) | 
|  | return ConstantRange(CR.getUpper(), CR.getLower()); | 
|  | return ConstantRange(W); | 
|  | case CmpInst::ICMP_ULT: { | 
|  | APInt UMax(CR.getUnsignedMax()); | 
|  | if (UMax.isMinValue()) | 
|  | return ConstantRange(W, /* empty */ false); | 
|  | return ConstantRange(APInt::getMinValue(W), std::move(UMax)); | 
|  | } | 
|  | case CmpInst::ICMP_SLT: { | 
|  | APInt SMax(CR.getSignedMax()); | 
|  | if (SMax.isMinSignedValue()) | 
|  | return ConstantRange(W, /* empty */ false); | 
|  | return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax)); | 
|  | } | 
|  | case CmpInst::ICMP_ULE: { | 
|  | APInt UMax(CR.getUnsignedMax()); | 
|  | if (UMax.isMaxValue()) | 
|  | return ConstantRange(W); | 
|  | return ConstantRange(APInt::getMinValue(W), std::move(UMax) + 1); | 
|  | } | 
|  | case CmpInst::ICMP_SLE: { | 
|  | APInt SMax(CR.getSignedMax()); | 
|  | if (SMax.isMaxSignedValue()) | 
|  | return ConstantRange(W); | 
|  | return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax) + 1); | 
|  | } | 
|  | case CmpInst::ICMP_UGT: { | 
|  | APInt UMin(CR.getUnsignedMin()); | 
|  | if (UMin.isMaxValue()) | 
|  | return ConstantRange(W, /* empty */ false); | 
|  | return ConstantRange(std::move(UMin) + 1, APInt::getNullValue(W)); | 
|  | } | 
|  | case CmpInst::ICMP_SGT: { | 
|  | APInt SMin(CR.getSignedMin()); | 
|  | if (SMin.isMaxSignedValue()) | 
|  | return ConstantRange(W, /* empty */ false); | 
|  | return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W)); | 
|  | } | 
|  | case CmpInst::ICMP_UGE: { | 
|  | APInt UMin(CR.getUnsignedMin()); | 
|  | if (UMin.isMinValue()) | 
|  | return ConstantRange(W); | 
|  | return ConstantRange(std::move(UMin), APInt::getNullValue(W)); | 
|  | } | 
|  | case CmpInst::ICMP_SGE: { | 
|  | APInt SMin(CR.getSignedMin()); | 
|  | if (SMin.isMinSignedValue()) | 
|  | return ConstantRange(W); | 
|  | return ConstantRange(std::move(SMin), APInt::getSignedMinValue(W)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred, | 
|  | const ConstantRange &CR) { | 
|  | // Follows from De-Morgan's laws: | 
|  | // | 
|  | // ~(~A union ~B) == A intersect B. | 
|  | // | 
|  | return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR) | 
|  | .inverse(); | 
|  | } | 
|  |  | 
|  | ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred, | 
|  | const APInt &C) { | 
|  | // Computes the exact range that is equal to both the constant ranges returned | 
|  | // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true | 
|  | // when RHS is a singleton such as an APInt and so the assert is valid. | 
|  | // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion | 
|  | // returns [0,4) but makeSatisfyICmpRegion returns [0,2). | 
|  | // | 
|  | assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C)); | 
|  | return makeAllowedICmpRegion(Pred, C); | 
|  | } | 
|  |  | 
|  | bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred, | 
|  | APInt &RHS) const { | 
|  | bool Success = false; | 
|  |  | 
|  | if (isFullSet() || isEmptySet()) { | 
|  | Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE; | 
|  | RHS = APInt(getBitWidth(), 0); | 
|  | Success = true; | 
|  | } else if (auto *OnlyElt = getSingleElement()) { | 
|  | Pred = CmpInst::ICMP_EQ; | 
|  | RHS = *OnlyElt; | 
|  | Success = true; | 
|  | } else if (auto *OnlyMissingElt = getSingleMissingElement()) { | 
|  | Pred = CmpInst::ICMP_NE; | 
|  | RHS = *OnlyMissingElt; | 
|  | Success = true; | 
|  | } else if (getLower().isMinSignedValue() || getLower().isMinValue()) { | 
|  | Pred = | 
|  | getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; | 
|  | RHS = getUpper(); | 
|  | Success = true; | 
|  | } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) { | 
|  | Pred = | 
|  | getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE; | 
|  | RHS = getLower(); | 
|  | Success = true; | 
|  | } | 
|  |  | 
|  | assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) && | 
|  | "Bad result!"); | 
|  |  | 
|  | return Success; | 
|  | } | 
|  |  | 
|  | ConstantRange | 
|  | ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, | 
|  | const ConstantRange &Other, | 
|  | unsigned NoWrapKind) { | 
|  | using OBO = OverflowingBinaryOperator; | 
|  |  | 
|  | // Computes the intersection of CR0 and CR1.  It is different from | 
|  | // intersectWith in that the ConstantRange returned will only contain elements | 
|  | // in both CR0 and CR1 (i.e. SubsetIntersect(X, Y) is a *subset*, proper or | 
|  | // not, of both X and Y). | 
|  | auto SubsetIntersect = | 
|  | [](const ConstantRange &CR0, const ConstantRange &CR1) { | 
|  | return CR0.inverse().unionWith(CR1.inverse()).inverse(); | 
|  | }; | 
|  |  | 
|  | assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); | 
|  |  | 
|  | assert((NoWrapKind == OBO::NoSignedWrap || | 
|  | NoWrapKind == OBO::NoUnsignedWrap || | 
|  | NoWrapKind == (OBO::NoUnsignedWrap | OBO::NoSignedWrap)) && | 
|  | "NoWrapKind invalid!"); | 
|  |  | 
|  | unsigned BitWidth = Other.getBitWidth(); | 
|  | ConstantRange Result(BitWidth); | 
|  |  | 
|  | switch (BinOp) { | 
|  | default: | 
|  | // Conservative answer: empty set | 
|  | return ConstantRange(BitWidth, false); | 
|  |  | 
|  | case Instruction::Add: | 
|  | if (auto *C = Other.getSingleElement()) | 
|  | if (C->isNullValue()) | 
|  | // Full set: nothing signed / unsigned wraps when added to 0. | 
|  | return ConstantRange(BitWidth); | 
|  | if (NoWrapKind & OBO::NoUnsignedWrap) | 
|  | Result = | 
|  | SubsetIntersect(Result, ConstantRange(APInt::getNullValue(BitWidth), | 
|  | -Other.getUnsignedMax())); | 
|  | if (NoWrapKind & OBO::NoSignedWrap) { | 
|  | const APInt &SignedMin = Other.getSignedMin(); | 
|  | const APInt &SignedMax = Other.getSignedMax(); | 
|  | if (SignedMax.isStrictlyPositive()) | 
|  | Result = SubsetIntersect( | 
|  | Result, | 
|  | ConstantRange(APInt::getSignedMinValue(BitWidth), | 
|  | APInt::getSignedMinValue(BitWidth) - SignedMax)); | 
|  | if (SignedMin.isNegative()) | 
|  | Result = SubsetIntersect( | 
|  | Result, | 
|  | ConstantRange(APInt::getSignedMinValue(BitWidth) - SignedMin, | 
|  | APInt::getSignedMinValue(BitWidth))); | 
|  | } | 
|  | return Result; | 
|  |  | 
|  | case Instruction::Sub: | 
|  | if (auto *C = Other.getSingleElement()) | 
|  | if (C->isNullValue()) | 
|  | // Full set: nothing signed / unsigned wraps when subtracting 0. | 
|  | return ConstantRange(BitWidth); | 
|  | if (NoWrapKind & OBO::NoUnsignedWrap) | 
|  | Result = | 
|  | SubsetIntersect(Result, ConstantRange(Other.getUnsignedMax(), | 
|  | APInt::getMinValue(BitWidth))); | 
|  | if (NoWrapKind & OBO::NoSignedWrap) { | 
|  | const APInt &SignedMin = Other.getSignedMin(); | 
|  | const APInt &SignedMax = Other.getSignedMax(); | 
|  | if (SignedMax.isStrictlyPositive()) | 
|  | Result = SubsetIntersect( | 
|  | Result, | 
|  | ConstantRange(APInt::getSignedMinValue(BitWidth) + SignedMax, | 
|  | APInt::getSignedMinValue(BitWidth))); | 
|  | if (SignedMin.isNegative()) | 
|  | Result = SubsetIntersect( | 
|  | Result, | 
|  | ConstantRange(APInt::getSignedMinValue(BitWidth), | 
|  | APInt::getSignedMinValue(BitWidth) + SignedMin)); | 
|  | } | 
|  | return Result; | 
|  | case Instruction::Mul: { | 
|  | if (NoWrapKind == (OBO::NoSignedWrap | OBO::NoUnsignedWrap)) { | 
|  | return SubsetIntersect( | 
|  | makeGuaranteedNoWrapRegion(BinOp, Other, OBO::NoSignedWrap), | 
|  | makeGuaranteedNoWrapRegion(BinOp, Other, OBO::NoUnsignedWrap)); | 
|  | } | 
|  |  | 
|  | // Equivalent to calling makeGuaranteedNoWrapRegion() on [V, V+1). | 
|  | const bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap; | 
|  | const auto makeSingleValueRegion = [Unsigned, | 
|  | BitWidth](APInt V) -> ConstantRange { | 
|  | // Handle special case for 0, -1 and 1. See the last for reason why we | 
|  | // specialize -1 and 1. | 
|  | if (V == 0 || V.isOneValue()) | 
|  | return ConstantRange(BitWidth, true); | 
|  |  | 
|  | APInt MinValue, MaxValue; | 
|  | if (Unsigned) { | 
|  | MinValue = APInt::getMinValue(BitWidth); | 
|  | MaxValue = APInt::getMaxValue(BitWidth); | 
|  | } else { | 
|  | MinValue = APInt::getSignedMinValue(BitWidth); | 
|  | MaxValue = APInt::getSignedMaxValue(BitWidth); | 
|  | } | 
|  | // e.g. Returning [-127, 127], represented as [-127, -128). | 
|  | if (!Unsigned && V.isAllOnesValue()) | 
|  | return ConstantRange(-MaxValue, MinValue); | 
|  |  | 
|  | APInt Lower, Upper; | 
|  | if (!Unsigned && V.isNegative()) { | 
|  | Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP); | 
|  | Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN); | 
|  | } else if (Unsigned) { | 
|  | Lower = APIntOps::RoundingUDiv(MinValue, V, APInt::Rounding::UP); | 
|  | Upper = APIntOps::RoundingUDiv(MaxValue, V, APInt::Rounding::DOWN); | 
|  | } else { | 
|  | Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP); | 
|  | Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN); | 
|  | } | 
|  | if (Unsigned) { | 
|  | Lower = Lower.zextOrSelf(BitWidth); | 
|  | Upper = Upper.zextOrSelf(BitWidth); | 
|  | } else { | 
|  | Lower = Lower.sextOrSelf(BitWidth); | 
|  | Upper = Upper.sextOrSelf(BitWidth); | 
|  | } | 
|  | // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1). | 
|  | // Upper + 1 is guanranteed not to overflow, because |divisor| > 1. 0, -1, | 
|  | // and 1 are already handled as special cases. | 
|  | return ConstantRange(Lower, Upper + 1); | 
|  | }; | 
|  |  | 
|  | if (Unsigned) | 
|  | return makeSingleValueRegion(Other.getUnsignedMax()); | 
|  |  | 
|  | return SubsetIntersect(makeSingleValueRegion(Other.getSignedMin()), | 
|  | makeSingleValueRegion(Other.getSignedMax())); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ConstantRange::isFullSet() const { | 
|  | return Lower == Upper && Lower.isMaxValue(); | 
|  | } | 
|  |  | 
|  | bool ConstantRange::isEmptySet() const { | 
|  | return Lower == Upper && Lower.isMinValue(); | 
|  | } | 
|  |  | 
|  | bool ConstantRange::isWrappedSet() const { | 
|  | return Lower.ugt(Upper); | 
|  | } | 
|  |  | 
|  | bool ConstantRange::isSignWrappedSet() const { | 
|  | return contains(APInt::getSignedMaxValue(getBitWidth())) && | 
|  | contains(APInt::getSignedMinValue(getBitWidth())); | 
|  | } | 
|  |  | 
|  | APInt ConstantRange::getSetSize() const { | 
|  | if (isFullSet()) | 
|  | return APInt::getOneBitSet(getBitWidth()+1, getBitWidth()); | 
|  |  | 
|  | // This is also correct for wrapped sets. | 
|  | return (Upper - Lower).zext(getBitWidth()+1); | 
|  | } | 
|  |  | 
|  | bool | 
|  | ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const { | 
|  | assert(getBitWidth() == Other.getBitWidth()); | 
|  | if (isFullSet()) | 
|  | return false; | 
|  | if (Other.isFullSet()) | 
|  | return true; | 
|  | return (Upper - Lower).ult(Other.Upper - Other.Lower); | 
|  | } | 
|  |  | 
|  | bool | 
|  | ConstantRange::isSizeLargerThan(uint64_t MaxSize) const { | 
|  | assert(MaxSize && "MaxSize can't be 0."); | 
|  | // If this a full set, we need special handling to avoid needing an extra bit | 
|  | // to represent the size. | 
|  | if (isFullSet()) | 
|  | return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1); | 
|  |  | 
|  | return (Upper - Lower).ugt(MaxSize); | 
|  | } | 
|  |  | 
|  | APInt ConstantRange::getUnsignedMax() const { | 
|  | if (isFullSet() || isWrappedSet()) | 
|  | return APInt::getMaxValue(getBitWidth()); | 
|  | return getUpper() - 1; | 
|  | } | 
|  |  | 
|  | APInt ConstantRange::getUnsignedMin() const { | 
|  | if (isFullSet() || (isWrappedSet() && !getUpper().isNullValue())) | 
|  | return APInt::getMinValue(getBitWidth()); | 
|  | return getLower(); | 
|  | } | 
|  |  | 
|  | APInt ConstantRange::getSignedMax() const { | 
|  | if (isFullSet() || Lower.sgt(Upper)) | 
|  | return APInt::getSignedMaxValue(getBitWidth()); | 
|  | return getUpper() - 1; | 
|  | } | 
|  |  | 
|  | APInt ConstantRange::getSignedMin() const { | 
|  | if (isFullSet() || (Lower.sgt(Upper) && !getUpper().isMinSignedValue())) | 
|  | return APInt::getSignedMinValue(getBitWidth()); | 
|  | return getLower(); | 
|  | } | 
|  |  | 
|  | bool ConstantRange::contains(const APInt &V) const { | 
|  | if (Lower == Upper) | 
|  | return isFullSet(); | 
|  |  | 
|  | if (!isWrappedSet()) | 
|  | return Lower.ule(V) && V.ult(Upper); | 
|  | return Lower.ule(V) || V.ult(Upper); | 
|  | } | 
|  |  | 
|  | bool ConstantRange::contains(const ConstantRange &Other) const { | 
|  | if (isFullSet() || Other.isEmptySet()) return true; | 
|  | if (isEmptySet() || Other.isFullSet()) return false; | 
|  |  | 
|  | if (!isWrappedSet()) { | 
|  | if (Other.isWrappedSet()) | 
|  | return false; | 
|  |  | 
|  | return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper); | 
|  | } | 
|  |  | 
|  | if (!Other.isWrappedSet()) | 
|  | return Other.getUpper().ule(Upper) || | 
|  | Lower.ule(Other.getLower()); | 
|  |  | 
|  | return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower()); | 
|  | } | 
|  |  | 
|  | ConstantRange ConstantRange::subtract(const APInt &Val) const { | 
|  | assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width"); | 
|  | // If the set is empty or full, don't modify the endpoints. | 
|  | if (Lower == Upper) | 
|  | return *this; | 
|  | return ConstantRange(Lower - Val, Upper - Val); | 
|  | } | 
|  |  | 
|  | ConstantRange ConstantRange::difference(const ConstantRange &CR) const { | 
|  | return intersectWith(CR.inverse()); | 
|  | } | 
|  |  | 
|  | ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const { | 
|  | assert(getBitWidth() == CR.getBitWidth() && | 
|  | "ConstantRange types don't agree!"); | 
|  |  | 
|  | // Handle common cases. | 
|  | if (   isEmptySet() || CR.isFullSet()) return *this; | 
|  | if (CR.isEmptySet() ||    isFullSet()) return CR; | 
|  |  | 
|  | if (!isWrappedSet() && CR.isWrappedSet()) | 
|  | return CR.intersectWith(*this); | 
|  |  | 
|  | if (!isWrappedSet() && !CR.isWrappedSet()) { | 
|  | if (Lower.ult(CR.Lower)) { | 
|  | if (Upper.ule(CR.Lower)) | 
|  | return ConstantRange(getBitWidth(), false); | 
|  |  | 
|  | if (Upper.ult(CR.Upper)) | 
|  | return ConstantRange(CR.Lower, Upper); | 
|  |  | 
|  | return CR; | 
|  | } | 
|  | if (Upper.ult(CR.Upper)) | 
|  | return *this; | 
|  |  | 
|  | if (Lower.ult(CR.Upper)) | 
|  | return ConstantRange(Lower, CR.Upper); | 
|  |  | 
|  | return ConstantRange(getBitWidth(), false); | 
|  | } | 
|  |  | 
|  | if (isWrappedSet() && !CR.isWrappedSet()) { | 
|  | if (CR.Lower.ult(Upper)) { | 
|  | if (CR.Upper.ult(Upper)) | 
|  | return CR; | 
|  |  | 
|  | if (CR.Upper.ule(Lower)) | 
|  | return ConstantRange(CR.Lower, Upper); | 
|  |  | 
|  | if (isSizeStrictlySmallerThan(CR)) | 
|  | return *this; | 
|  | return CR; | 
|  | } | 
|  | if (CR.Lower.ult(Lower)) { | 
|  | if (CR.Upper.ule(Lower)) | 
|  | return ConstantRange(getBitWidth(), false); | 
|  |  | 
|  | return ConstantRange(Lower, CR.Upper); | 
|  | } | 
|  | return CR; | 
|  | } | 
|  |  | 
|  | if (CR.Upper.ult(Upper)) { | 
|  | if (CR.Lower.ult(Upper)) { | 
|  | if (isSizeStrictlySmallerThan(CR)) | 
|  | return *this; | 
|  | return CR; | 
|  | } | 
|  |  | 
|  | if (CR.Lower.ult(Lower)) | 
|  | return ConstantRange(Lower, CR.Upper); | 
|  |  | 
|  | return CR; | 
|  | } | 
|  | if (CR.Upper.ule(Lower)) { | 
|  | if (CR.Lower.ult(Lower)) | 
|  | return *this; | 
|  |  | 
|  | return ConstantRange(CR.Lower, Upper); | 
|  | } | 
|  | if (isSizeStrictlySmallerThan(CR)) | 
|  | return *this; | 
|  | return CR; | 
|  | } | 
|  |  | 
|  | ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const { | 
|  | assert(getBitWidth() == CR.getBitWidth() && | 
|  | "ConstantRange types don't agree!"); | 
|  |  | 
|  | if (   isFullSet() || CR.isEmptySet()) return *this; | 
|  | if (CR.isFullSet() ||    isEmptySet()) return CR; | 
|  |  | 
|  | if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this); | 
|  |  | 
|  | if (!isWrappedSet() && !CR.isWrappedSet()) { | 
|  | if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) { | 
|  | // If the two ranges are disjoint, find the smaller gap and bridge it. | 
|  | APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper; | 
|  | if (d1.ult(d2)) | 
|  | return ConstantRange(Lower, CR.Upper); | 
|  | return ConstantRange(CR.Lower, Upper); | 
|  | } | 
|  |  | 
|  | APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower; | 
|  | APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper; | 
|  |  | 
|  | if (L.isNullValue() && U.isNullValue()) | 
|  | return ConstantRange(getBitWidth()); | 
|  |  | 
|  | return ConstantRange(std::move(L), std::move(U)); | 
|  | } | 
|  |  | 
|  | if (!CR.isWrappedSet()) { | 
|  | // ------U   L-----  and  ------U   L----- : this | 
|  | //   L--U                            L--U  : CR | 
|  | if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower)) | 
|  | return *this; | 
|  |  | 
|  | // ------U   L----- : this | 
|  | //    L---------U   : CR | 
|  | if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper)) | 
|  | return ConstantRange(getBitWidth()); | 
|  |  | 
|  | // ----U       L---- : this | 
|  | //       L---U       : CR | 
|  | //    <d1>  <d2> | 
|  | if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) { | 
|  | APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper; | 
|  | if (d1.ult(d2)) | 
|  | return ConstantRange(Lower, CR.Upper); | 
|  | return ConstantRange(CR.Lower, Upper); | 
|  | } | 
|  |  | 
|  | // ----U     L----- : this | 
|  | //        L----U    : CR | 
|  | if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper)) | 
|  | return ConstantRange(CR.Lower, Upper); | 
|  |  | 
|  | // ------U    L---- : this | 
|  | //    L-----U       : CR | 
|  | assert(CR.Lower.ult(Upper) && CR.Upper.ult(Lower) && | 
|  | "ConstantRange::unionWith missed a case with one range wrapped"); | 
|  | return ConstantRange(Lower, CR.Upper); | 
|  | } | 
|  |  | 
|  | // ------U    L----  and  ------U    L---- : this | 
|  | // -U  L-----------  and  ------------U  L : CR | 
|  | if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper)) | 
|  | return ConstantRange(getBitWidth()); | 
|  |  | 
|  | APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower; | 
|  | APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper; | 
|  |  | 
|  | return ConstantRange(std::move(L), std::move(U)); | 
|  | } | 
|  |  | 
|  | ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp, | 
|  | uint32_t ResultBitWidth) const { | 
|  | switch (CastOp) { | 
|  | default: | 
|  | llvm_unreachable("unsupported cast type"); | 
|  | case Instruction::Trunc: | 
|  | return truncate(ResultBitWidth); | 
|  | case Instruction::SExt: | 
|  | return signExtend(ResultBitWidth); | 
|  | case Instruction::ZExt: | 
|  | return zeroExtend(ResultBitWidth); | 
|  | case Instruction::BitCast: | 
|  | return *this; | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | if (getBitWidth() == ResultBitWidth) | 
|  | return *this; | 
|  | else | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  | case Instruction::UIToFP: { | 
|  | // TODO: use input range if available | 
|  | auto BW = getBitWidth(); | 
|  | APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth); | 
|  | APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth); | 
|  | return ConstantRange(std::move(Min), std::move(Max)); | 
|  | } | 
|  | case Instruction::SIToFP: { | 
|  | // TODO: use input range if available | 
|  | auto BW = getBitWidth(); | 
|  | APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth); | 
|  | APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth); | 
|  | return ConstantRange(std::move(SMin), std::move(SMax)); | 
|  | } | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::IntToPtr: | 
|  | case Instruction::PtrToInt: | 
|  | case Instruction::AddrSpaceCast: | 
|  | // Conservatively return full set. | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  | }; | 
|  | } | 
|  |  | 
|  | ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const { | 
|  | if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false); | 
|  |  | 
|  | unsigned SrcTySize = getBitWidth(); | 
|  | assert(SrcTySize < DstTySize && "Not a value extension"); | 
|  | if (isFullSet() || isWrappedSet()) { | 
|  | // Change into [0, 1 << src bit width) | 
|  | APInt LowerExt(DstTySize, 0); | 
|  | if (!Upper) // special case: [X, 0) -- not really wrapping around | 
|  | LowerExt = Lower.zext(DstTySize); | 
|  | return ConstantRange(std::move(LowerExt), | 
|  | APInt::getOneBitSet(DstTySize, SrcTySize)); | 
|  | } | 
|  |  | 
|  | return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize)); | 
|  | } | 
|  |  | 
|  | ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const { | 
|  | if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false); | 
|  |  | 
|  | unsigned SrcTySize = getBitWidth(); | 
|  | assert(SrcTySize < DstTySize && "Not a value extension"); | 
|  |  | 
|  | // special case: [X, INT_MIN) -- not really wrapping around | 
|  | if (Upper.isMinSignedValue()) | 
|  | return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize)); | 
|  |  | 
|  | if (isFullSet() || isSignWrappedSet()) { | 
|  | return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1), | 
|  | APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1); | 
|  | } | 
|  |  | 
|  | return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize)); | 
|  | } | 
|  |  | 
|  | ConstantRange ConstantRange::truncate(uint32_t DstTySize) const { | 
|  | assert(getBitWidth() > DstTySize && "Not a value truncation"); | 
|  | if (isEmptySet()) | 
|  | return ConstantRange(DstTySize, /*isFullSet=*/false); | 
|  | if (isFullSet()) | 
|  | return ConstantRange(DstTySize, /*isFullSet=*/true); | 
|  |  | 
|  | APInt LowerDiv(Lower), UpperDiv(Upper); | 
|  | ConstantRange Union(DstTySize, /*isFullSet=*/false); | 
|  |  | 
|  | // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue] | 
|  | // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and | 
|  | // then we do the union with [MaxValue, Upper) | 
|  | if (isWrappedSet()) { | 
|  | // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole | 
|  | // truncated range. | 
|  | if (Upper.getActiveBits() > DstTySize || | 
|  | Upper.countTrailingOnes() == DstTySize) | 
|  | return ConstantRange(DstTySize, /*isFullSet=*/true); | 
|  |  | 
|  | Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize)); | 
|  | UpperDiv.setAllBits(); | 
|  |  | 
|  | // Union covers the MaxValue case, so return if the remaining range is just | 
|  | // MaxValue(DstTy). | 
|  | if (LowerDiv == UpperDiv) | 
|  | return Union; | 
|  | } | 
|  |  | 
|  | // Chop off the most significant bits that are past the destination bitwidth. | 
|  | if (LowerDiv.getActiveBits() > DstTySize) { | 
|  | // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv. | 
|  | APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize); | 
|  | LowerDiv -= Adjust; | 
|  | UpperDiv -= Adjust; | 
|  | } | 
|  |  | 
|  | unsigned UpperDivWidth = UpperDiv.getActiveBits(); | 
|  | if (UpperDivWidth <= DstTySize) | 
|  | return ConstantRange(LowerDiv.trunc(DstTySize), | 
|  | UpperDiv.trunc(DstTySize)).unionWith(Union); | 
|  |  | 
|  | // The truncated value wraps around. Check if we can do better than fullset. | 
|  | if (UpperDivWidth == DstTySize + 1) { | 
|  | // Clear the MSB so that UpperDiv wraps around. | 
|  | UpperDiv.clearBit(DstTySize); | 
|  | if (UpperDiv.ult(LowerDiv)) | 
|  | return ConstantRange(LowerDiv.trunc(DstTySize), | 
|  | UpperDiv.trunc(DstTySize)).unionWith(Union); | 
|  | } | 
|  |  | 
|  | return ConstantRange(DstTySize, /*isFullSet=*/true); | 
|  | } | 
|  |  | 
|  | ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const { | 
|  | unsigned SrcTySize = getBitWidth(); | 
|  | if (SrcTySize > DstTySize) | 
|  | return truncate(DstTySize); | 
|  | if (SrcTySize < DstTySize) | 
|  | return zeroExtend(DstTySize); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const { | 
|  | unsigned SrcTySize = getBitWidth(); | 
|  | if (SrcTySize > DstTySize) | 
|  | return truncate(DstTySize); | 
|  | if (SrcTySize < DstTySize) | 
|  | return signExtend(DstTySize); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp, | 
|  | const ConstantRange &Other) const { | 
|  | assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); | 
|  |  | 
|  | switch (BinOp) { | 
|  | case Instruction::Add: | 
|  | return add(Other); | 
|  | case Instruction::Sub: | 
|  | return sub(Other); | 
|  | case Instruction::Mul: | 
|  | return multiply(Other); | 
|  | case Instruction::UDiv: | 
|  | return udiv(Other); | 
|  | case Instruction::Shl: | 
|  | return shl(Other); | 
|  | case Instruction::LShr: | 
|  | return lshr(Other); | 
|  | case Instruction::AShr: | 
|  | return ashr(Other); | 
|  | case Instruction::And: | 
|  | return binaryAnd(Other); | 
|  | case Instruction::Or: | 
|  | return binaryOr(Other); | 
|  | // Note: floating point operations applied to abstract ranges are just | 
|  | // ideal integer operations with a lossy representation | 
|  | case Instruction::FAdd: | 
|  | return add(Other); | 
|  | case Instruction::FSub: | 
|  | return sub(Other); | 
|  | case Instruction::FMul: | 
|  | return multiply(Other); | 
|  | default: | 
|  | // Conservatively return full set. | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  | } | 
|  | } | 
|  |  | 
|  | ConstantRange | 
|  | ConstantRange::add(const ConstantRange &Other) const { | 
|  | if (isEmptySet() || Other.isEmptySet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  | if (isFullSet() || Other.isFullSet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  |  | 
|  | APInt NewLower = getLower() + Other.getLower(); | 
|  | APInt NewUpper = getUpper() + Other.getUpper() - 1; | 
|  | if (NewLower == NewUpper) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  |  | 
|  | ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper)); | 
|  | if (X.isSizeStrictlySmallerThan(*this) || | 
|  | X.isSizeStrictlySmallerThan(Other)) | 
|  | // We've wrapped, therefore, full set. | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  | return X; | 
|  | } | 
|  |  | 
|  | ConstantRange ConstantRange::addWithNoSignedWrap(const APInt &Other) const { | 
|  | // Calculate the subset of this range such that "X + Other" is | 
|  | // guaranteed not to wrap (overflow) for all X in this subset. | 
|  | // makeGuaranteedNoWrapRegion will produce an exact NSW range since we are | 
|  | // passing a single element range. | 
|  | auto NSWRange = ConstantRange::makeGuaranteedNoWrapRegion(BinaryOperator::Add, | 
|  | ConstantRange(Other), | 
|  | OverflowingBinaryOperator::NoSignedWrap); | 
|  | auto NSWConstrainedRange = intersectWith(NSWRange); | 
|  |  | 
|  | return NSWConstrainedRange.add(ConstantRange(Other)); | 
|  | } | 
|  |  | 
|  | ConstantRange | 
|  | ConstantRange::sub(const ConstantRange &Other) const { | 
|  | if (isEmptySet() || Other.isEmptySet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  | if (isFullSet() || Other.isFullSet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  |  | 
|  | APInt NewLower = getLower() - Other.getUpper() + 1; | 
|  | APInt NewUpper = getUpper() - Other.getLower(); | 
|  | if (NewLower == NewUpper) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  |  | 
|  | ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper)); | 
|  | if (X.isSizeStrictlySmallerThan(*this) || | 
|  | X.isSizeStrictlySmallerThan(Other)) | 
|  | // We've wrapped, therefore, full set. | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  | return X; | 
|  | } | 
|  |  | 
|  | ConstantRange | 
|  | ConstantRange::multiply(const ConstantRange &Other) const { | 
|  | // TODO: If either operand is a single element and the multiply is known to | 
|  | // be non-wrapping, round the result min and max value to the appropriate | 
|  | // multiple of that element. If wrapping is possible, at least adjust the | 
|  | // range according to the greatest power-of-two factor of the single element. | 
|  |  | 
|  | if (isEmptySet() || Other.isEmptySet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  |  | 
|  | // Multiplication is signedness-independent. However different ranges can be | 
|  | // obtained depending on how the input ranges are treated. These different | 
|  | // ranges are all conservatively correct, but one might be better than the | 
|  | // other. We calculate two ranges; one treating the inputs as unsigned | 
|  | // and the other signed, then return the smallest of these ranges. | 
|  |  | 
|  | // Unsigned range first. | 
|  | APInt this_min = getUnsignedMin().zext(getBitWidth() * 2); | 
|  | APInt this_max = getUnsignedMax().zext(getBitWidth() * 2); | 
|  | APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2); | 
|  | APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2); | 
|  |  | 
|  | ConstantRange Result_zext = ConstantRange(this_min * Other_min, | 
|  | this_max * Other_max + 1); | 
|  | ConstantRange UR = Result_zext.truncate(getBitWidth()); | 
|  |  | 
|  | // If the unsigned range doesn't wrap, and isn't negative then it's a range | 
|  | // from one positive number to another which is as good as we can generate. | 
|  | // In this case, skip the extra work of generating signed ranges which aren't | 
|  | // going to be better than this range. | 
|  | if (!UR.isWrappedSet() && | 
|  | (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue())) | 
|  | return UR; | 
|  |  | 
|  | // Now the signed range. Because we could be dealing with negative numbers | 
|  | // here, the lower bound is the smallest of the cartesian product of the | 
|  | // lower and upper ranges; for example: | 
|  | //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6. | 
|  | // Similarly for the upper bound, swapping min for max. | 
|  |  | 
|  | this_min = getSignedMin().sext(getBitWidth() * 2); | 
|  | this_max = getSignedMax().sext(getBitWidth() * 2); | 
|  | Other_min = Other.getSignedMin().sext(getBitWidth() * 2); | 
|  | Other_max = Other.getSignedMax().sext(getBitWidth() * 2); | 
|  |  | 
|  | auto L = {this_min * Other_min, this_min * Other_max, | 
|  | this_max * Other_min, this_max * Other_max}; | 
|  | auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); }; | 
|  | ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1); | 
|  | ConstantRange SR = Result_sext.truncate(getBitWidth()); | 
|  |  | 
|  | return UR.isSizeStrictlySmallerThan(SR) ? UR : SR; | 
|  | } | 
|  |  | 
|  | ConstantRange | 
|  | ConstantRange::smax(const ConstantRange &Other) const { | 
|  | // X smax Y is: range(smax(X_smin, Y_smin), | 
|  | //                    smax(X_smax, Y_smax)) | 
|  | if (isEmptySet() || Other.isEmptySet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  | APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin()); | 
|  | APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1; | 
|  | if (NewU == NewL) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  | return ConstantRange(std::move(NewL), std::move(NewU)); | 
|  | } | 
|  |  | 
|  | ConstantRange | 
|  | ConstantRange::umax(const ConstantRange &Other) const { | 
|  | // X umax Y is: range(umax(X_umin, Y_umin), | 
|  | //                    umax(X_umax, Y_umax)) | 
|  | if (isEmptySet() || Other.isEmptySet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  | APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); | 
|  | APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1; | 
|  | if (NewU == NewL) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  | return ConstantRange(std::move(NewL), std::move(NewU)); | 
|  | } | 
|  |  | 
|  | ConstantRange | 
|  | ConstantRange::smin(const ConstantRange &Other) const { | 
|  | // X smin Y is: range(smin(X_smin, Y_smin), | 
|  | //                    smin(X_smax, Y_smax)) | 
|  | if (isEmptySet() || Other.isEmptySet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  | APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin()); | 
|  | APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1; | 
|  | if (NewU == NewL) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  | return ConstantRange(std::move(NewL), std::move(NewU)); | 
|  | } | 
|  |  | 
|  | ConstantRange | 
|  | ConstantRange::umin(const ConstantRange &Other) const { | 
|  | // X umin Y is: range(umin(X_umin, Y_umin), | 
|  | //                    umin(X_umax, Y_umax)) | 
|  | if (isEmptySet() || Other.isEmptySet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  | APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin()); | 
|  | APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1; | 
|  | if (NewU == NewL) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  | return ConstantRange(std::move(NewL), std::move(NewU)); | 
|  | } | 
|  |  | 
|  | ConstantRange | 
|  | ConstantRange::udiv(const ConstantRange &RHS) const { | 
|  | if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  | if (RHS.isFullSet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  |  | 
|  | APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax()); | 
|  |  | 
|  | APInt RHS_umin = RHS.getUnsignedMin(); | 
|  | if (RHS_umin.isNullValue()) { | 
|  | // We want the lowest value in RHS excluding zero. Usually that would be 1 | 
|  | // except for a range in the form of [X, 1) in which case it would be X. | 
|  | if (RHS.getUpper() == 1) | 
|  | RHS_umin = RHS.getLower(); | 
|  | else | 
|  | RHS_umin = 1; | 
|  | } | 
|  |  | 
|  | APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1; | 
|  |  | 
|  | // If the LHS is Full and the RHS is a wrapped interval containing 1 then | 
|  | // this could occur. | 
|  | if (Lower == Upper) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  |  | 
|  | return ConstantRange(std::move(Lower), std::move(Upper)); | 
|  | } | 
|  |  | 
|  | ConstantRange | 
|  | ConstantRange::binaryAnd(const ConstantRange &Other) const { | 
|  | if (isEmptySet() || Other.isEmptySet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  |  | 
|  | // TODO: replace this with something less conservative | 
|  |  | 
|  | APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax()); | 
|  | if (umin.isAllOnesValue()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  | return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(umin) + 1); | 
|  | } | 
|  |  | 
|  | ConstantRange | 
|  | ConstantRange::binaryOr(const ConstantRange &Other) const { | 
|  | if (isEmptySet() || Other.isEmptySet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  |  | 
|  | // TODO: replace this with something less conservative | 
|  |  | 
|  | APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); | 
|  | if (umax.isNullValue()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  | return ConstantRange(std::move(umax), APInt::getNullValue(getBitWidth())); | 
|  | } | 
|  |  | 
|  | ConstantRange | 
|  | ConstantRange::shl(const ConstantRange &Other) const { | 
|  | if (isEmptySet() || Other.isEmptySet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  |  | 
|  | APInt max = getUnsignedMax(); | 
|  | APInt Other_umax = Other.getUnsignedMax(); | 
|  |  | 
|  | // there's overflow! | 
|  | if (Other_umax.uge(max.countLeadingZeros())) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  |  | 
|  | // FIXME: implement the other tricky cases | 
|  |  | 
|  | APInt min = getUnsignedMin(); | 
|  | min <<= Other.getUnsignedMin(); | 
|  | max <<= Other_umax; | 
|  |  | 
|  | return ConstantRange(std::move(min), std::move(max) + 1); | 
|  | } | 
|  |  | 
|  | ConstantRange | 
|  | ConstantRange::lshr(const ConstantRange &Other) const { | 
|  | if (isEmptySet() || Other.isEmptySet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  |  | 
|  | APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1; | 
|  | APInt min = getUnsignedMin().lshr(Other.getUnsignedMax()); | 
|  | if (min == max) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  |  | 
|  | return ConstantRange(std::move(min), std::move(max)); | 
|  | } | 
|  |  | 
|  | ConstantRange | 
|  | ConstantRange::ashr(const ConstantRange &Other) const { | 
|  | if (isEmptySet() || Other.isEmptySet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  |  | 
|  | // May straddle zero, so handle both positive and negative cases. | 
|  | // 'PosMax' is the upper bound of the result of the ashr | 
|  | // operation, when Upper of the LHS of ashr is a non-negative. | 
|  | // number. Since ashr of a non-negative number will result in a | 
|  | // smaller number, the Upper value of LHS is shifted right with | 
|  | // the minimum value of 'Other' instead of the maximum value. | 
|  | APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1; | 
|  |  | 
|  | // 'PosMin' is the lower bound of the result of the ashr | 
|  | // operation, when Lower of the LHS is a non-negative number. | 
|  | // Since ashr of a non-negative number will result in a smaller | 
|  | // number, the Lower value of LHS is shifted right with the | 
|  | // maximum value of 'Other'. | 
|  | APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax()); | 
|  |  | 
|  | // 'NegMax' is the upper bound of the result of the ashr | 
|  | // operation, when Upper of the LHS of ashr is a negative number. | 
|  | // Since 'ashr' of a negative number will result in a bigger | 
|  | // number, the Upper value of LHS is shifted right with the | 
|  | // maximum value of 'Other'. | 
|  | APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1; | 
|  |  | 
|  | // 'NegMin' is the lower bound of the result of the ashr | 
|  | // operation, when Lower of the LHS of ashr is a negative number. | 
|  | // Since 'ashr' of a negative number will result in a bigger | 
|  | // number, the Lower value of LHS is shifted right with the | 
|  | // minimum value of 'Other'. | 
|  | APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin()); | 
|  |  | 
|  | APInt max, min; | 
|  | if (getSignedMin().isNonNegative()) { | 
|  | // Upper and Lower of LHS are non-negative. | 
|  | min = PosMin; | 
|  | max = PosMax; | 
|  | } else if (getSignedMax().isNegative()) { | 
|  | // Upper and Lower of LHS are negative. | 
|  | min = NegMin; | 
|  | max = NegMax; | 
|  | } else { | 
|  | // Upper is non-negative and Lower is negative. | 
|  | min = NegMin; | 
|  | max = PosMax; | 
|  | } | 
|  | if (min == max) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  |  | 
|  | return ConstantRange(std::move(min), std::move(max)); | 
|  | } | 
|  |  | 
|  | ConstantRange ConstantRange::inverse() const { | 
|  | if (isFullSet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  | if (isEmptySet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  | return ConstantRange(Upper, Lower); | 
|  | } | 
|  |  | 
|  | void ConstantRange::print(raw_ostream &OS) const { | 
|  | if (isFullSet()) | 
|  | OS << "full-set"; | 
|  | else if (isEmptySet()) | 
|  | OS << "empty-set"; | 
|  | else | 
|  | OS << "[" << Lower << "," << Upper << ")"; | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | LLVM_DUMP_METHOD void ConstantRange::dump() const { | 
|  | print(dbgs()); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) { | 
|  | const unsigned NumRanges = Ranges.getNumOperands() / 2; | 
|  | assert(NumRanges >= 1 && "Must have at least one range!"); | 
|  | assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); | 
|  |  | 
|  | auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); | 
|  | auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); | 
|  |  | 
|  | ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); | 
|  |  | 
|  | for (unsigned i = 1; i < NumRanges; ++i) { | 
|  | auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); | 
|  | auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); | 
|  |  | 
|  | // Note: unionWith will potentially create a range that contains values not | 
|  | // contained in any of the original N ranges. | 
|  | CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); | 
|  | } | 
|  |  | 
|  | return CR; | 
|  | } |