blob: 16781c3d6ae16297a60142ead5c7dc4051b63df4 [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrTypesPriv_DEFINED
#define GrTypesPriv_DEFINED
#include <chrono>
#include "include/core/SkCanvas.h"
#include "include/core/SkColorPriv.h"
#include "include/core/SkImage.h"
#include "include/core/SkImageInfo.h"
#include "include/core/SkPath.h"
#include "include/core/SkRefCnt.h"
#include "include/gpu/GrTypes.h"
#include "include/private/GrSharedEnums.h"
#include "include/private/SkImageInfoPriv.h"
#include "include/private/SkWeakRefCnt.h"
class GrBackendFormat;
class GrCaps;
// The old libstdc++ uses the draft name "monotonic_clock" rather than "steady_clock". This might
// not actually be monotonic, depending on how libstdc++ was built. However, this is only currently
// used for idle resource purging so it shouldn't cause a correctness problem.
#if defined(__GLIBCXX__) && (__GLIBCXX__ < 20130000)
using GrStdSteadyClock = std::chrono::monotonic_clock;
#else
using GrStdSteadyClock = std::chrono::steady_clock;
#endif
/**
* Pixel configurations. This type conflates texture formats, CPU pixel formats, and
* premultipliedness. We are moving away from it towards SkColorType and backend API (GL, Vulkan)
* texture formats in the public API. Right now this mostly refers to texture formats as we're
* migrating.
*/
enum GrPixelConfig {
kUnknown_GrPixelConfig,
kAlpha_8_GrPixelConfig,
kAlpha_8_as_Alpha_GrPixelConfig,
kAlpha_8_as_Red_GrPixelConfig,
kGray_8_GrPixelConfig,
kGray_8_as_Lum_GrPixelConfig,
kGray_8_as_Red_GrPixelConfig,
kRGB_565_GrPixelConfig,
kRGBA_4444_GrPixelConfig,
kRGBA_8888_GrPixelConfig,
kRGB_888_GrPixelConfig,
kRGB_888X_GrPixelConfig,
kRG_88_GrPixelConfig,
kBGRA_8888_GrPixelConfig,
kSRGBA_8888_GrPixelConfig,
kRGBA_1010102_GrPixelConfig,
kAlpha_half_GrPixelConfig,
kAlpha_half_as_Lum_GrPixelConfig,
kAlpha_half_as_Red_GrPixelConfig,
kRGBA_half_GrPixelConfig,
kRGBA_half_Clamped_GrPixelConfig,
kRGB_ETC1_GrPixelConfig,
kAlpha_16_GrPixelConfig,
kRG_1616_GrPixelConfig,
kRGBA_16161616_GrPixelConfig,
kRG_half_GrPixelConfig,
kLast_GrPixelConfig = kRG_half_GrPixelConfig
};
static const int kGrPixelConfigCnt = kLast_GrPixelConfig + 1;
// Aliases for pixel configs that match skia's byte order.
#ifndef SK_CPU_LENDIAN
#error "Skia gpu currently assumes little endian"
#endif
#if defined(STARBOARD) && SB_API_VERSION >= 12
static const GrPixelConfig kSkia8888_GrPixelConfig =
(GetSkPmcolor() == SkPmcolorIsBgra) ? kBGRA_8888_GrPixelConfig : kRGBA_8888_GrPixelConfig;
#else
#if SK_PMCOLOR_BYTE_ORDER(B,G,R,A)
static const GrPixelConfig kSkia8888_GrPixelConfig = kBGRA_8888_GrPixelConfig;
#elif SK_PMCOLOR_BYTE_ORDER(R,G,B,A)
static const GrPixelConfig kSkia8888_GrPixelConfig = kRGBA_8888_GrPixelConfig;
#else
#error "SK_*32_SHIFT values must correspond to GL_BGRA or GL_RGBA format."
#endif
#endif
/**
* Geometric primitives used for drawing.
*/
enum class GrPrimitiveType {
kTriangles,
kTriangleStrip,
kPoints,
kLines, // 1 pix wide only
kLineStrip, // 1 pix wide only
kPath
};
static constexpr int kNumGrPrimitiveTypes = (int)GrPrimitiveType::kPath + 1;
static constexpr bool GrIsPrimTypeLines(GrPrimitiveType type) {
return GrPrimitiveType::kLines == type || GrPrimitiveType::kLineStrip == type;
}
static constexpr bool GrIsPrimTypeTris(GrPrimitiveType type) {
return GrPrimitiveType::kTriangles == type || GrPrimitiveType::kTriangleStrip == type;
}
enum class GrPrimitiveRestart : bool {
kNo = false,
kYes = true
};
/**
* Formats for masks, used by the font cache. Important that these are 0-based.
*/
enum GrMaskFormat {
kA8_GrMaskFormat, //!< 1-byte per pixel
kA565_GrMaskFormat, //!< 2-bytes per pixel, RGB represent 3-channel LCD coverage
kARGB_GrMaskFormat, //!< 4-bytes per pixel, color format
kLast_GrMaskFormat = kARGB_GrMaskFormat
};
static const int kMaskFormatCount = kLast_GrMaskFormat + 1;
/**
* Return the number of bytes-per-pixel for the specified mask format.
*/
static inline int GrMaskFormatBytesPerPixel(GrMaskFormat format) {
SkASSERT(format < kMaskFormatCount);
// kA8 (0) -> 1
// kA565 (1) -> 2
// kARGB (2) -> 4
static const int sBytesPerPixel[] = {1, 2, 4};
static_assert(SK_ARRAY_COUNT(sBytesPerPixel) == kMaskFormatCount, "array_size_mismatch");
static_assert(kA8_GrMaskFormat == 0, "enum_order_dependency");
static_assert(kA565_GrMaskFormat == 1, "enum_order_dependency");
static_assert(kARGB_GrMaskFormat == 2, "enum_order_dependency");
return sBytesPerPixel[(int)format];
}
/**
* Describes a surface to be created.
*/
struct GrSurfaceDesc {
GrSurfaceDesc() : fWidth(0), fHeight(0), fConfig(kUnknown_GrPixelConfig) {}
int fWidth; //!< Width of the texture
int fHeight; //!< Height of the texture
/**
* Format of source data of the texture. Not guaranteed to be the same as
* internal format used by 3D API.
*/
GrPixelConfig fConfig;
};
/** Ownership rules for external GPU resources imported into Skia. */
enum GrWrapOwnership {
/** Skia will assume the client will keep the resource alive and Skia will not free it. */
kBorrow_GrWrapOwnership,
/** Skia will assume ownership of the resource and free it. */
kAdopt_GrWrapOwnership,
};
enum class GrWrapCacheable : bool {
/**
* The wrapped resource will be removed from the cache as soon as it becomes purgeable. It may
* still be assigned and found by a unique key, but the presence of the key will not be used to
* keep the resource alive when it has no references.
*/
kNo = false,
/**
* The wrapped resource is allowed to remain in the GrResourceCache when it has no references
* but has a unique key. Such resources should only be given unique keys when it is known that
* the key will eventually be removed from the resource or invalidated via the message bus.
*/
kYes = true
};
enum class GrBudgetedType : uint8_t {
/** The resource is budgeted and is subject to purging under budget pressure. */
kBudgeted,
/**
* The resource is unbudgeted and is purged as soon as it has no refs regardless of whether
* it has a unique or scratch key.
*/
kUnbudgetedUncacheable,
/**
* The resource is unbudgeted and is allowed to remain in the cache with no refs if it
* has a unique key. Scratch keys are ignored.
*/
kUnbudgetedCacheable,
};
/**
* Clips are composed from these objects.
*/
enum GrClipType {
kRect_ClipType,
kPath_ClipType
};
enum class GrScissorTest : bool {
kDisabled = false,
kEnabled = true
};
struct GrMipLevel {
#if defined(COBALT)
// In C++11, we run into issues when initializing a struct when it has
// initializers for non-static members. We must use a constructor instead.
GrMipLevel(const void* fPixels = nullptr, size_t fRowBytes = 0)
: fPixels(fPixels), fRowBytes(fRowBytes) {}
const void* fPixels;
size_t fRowBytes;
#else
const void* fPixels = nullptr;
size_t fRowBytes = 0;
#endif
};
/**
* This enum is used to specify the load operation to be used when an GrOpsTask/GrOpsRenderPass
* begins execution.
*/
enum class GrLoadOp {
kLoad,
kClear,
kDiscard,
};
/**
* This enum is used to specify the store operation to be used when an GrOpsTask/GrOpsRenderPass
* ends execution.
*/
enum class GrStoreOp {
kStore,
kDiscard,
};
/**
* Used to control antialiasing in draw calls.
*/
enum class GrAA : bool {
kNo = false,
kYes = true
};
enum class GrFillRule : bool {
kNonzero,
kEvenOdd
};
inline GrFillRule GrFillRuleForSkPath(const SkPath& path) {
switch (path.getFillType()) {
case SkPath::kWinding_FillType:
case SkPath::kInverseWinding_FillType:
return GrFillRule::kNonzero;
case SkPath::kEvenOdd_FillType:
case SkPath::kInverseEvenOdd_FillType:
return GrFillRule::kEvenOdd;
}
SkUNREACHABLE;
}
/** This enum indicates the type of antialiasing to be performed. */
enum class GrAAType : unsigned {
/** No antialiasing */
kNone,
/** Use fragment shader code or mixed samples to blend with a fractional pixel coverage. */
kCoverage,
/** Use normal MSAA. */
kMSAA
};
static CONSTEXPR bool GrAATypeIsHW(GrAAType type) {
switch (type) {
case GrAAType::kNone:
return false;
case GrAAType::kCoverage:
return false;
case GrAAType::kMSAA:
return true;
}
SkUNREACHABLE;
}
/**
* Some pixel configs are inherently clamped to [0,1], some are allowed to go outside that range,
* and some are FP but manually clamped in the XP.
*/
enum class GrClampType {
kAuto, // Normalized, fixed-point configs
kManual, // Clamped FP configs
kNone, // Normal (unclamped) FP configs
};
/**
* A number of rectangle/quadrilateral drawing APIs can control anti-aliasing on a per edge basis.
* These masks specify which edges are AA'ed. The intent for this is to support tiling with seamless
* boundaries, where the inner edges are non-AA and the outer edges are AA. Regular draws (where AA
* is specified by GrAA) is almost equivalent to kNone or kAll, with the exception of how MSAA is
* handled.
*
* When tiling and there is MSAA, mixed edge rectangles are processed with MSAA, so in order for the
* tiled edges to remain seamless, inner tiles with kNone must also be processed with MSAA. In
* regular drawing, however, kNone should disable MSAA (if it's supported) to match the expected
* appearance.
*
* Therefore, APIs that use per-edge AA flags also take a GrAA value so that they can differentiate
* between the regular and tiling use case behaviors. Tiling operations should always pass
* GrAA::kYes while regular options should pass GrAA based on the SkPaint's anti-alias state.
*/
enum class GrQuadAAFlags {
kLeft = SkCanvas::kLeft_QuadAAFlag,
kTop = SkCanvas::kTop_QuadAAFlag,
kRight = SkCanvas::kRight_QuadAAFlag,
kBottom = SkCanvas::kBottom_QuadAAFlag,
kNone = SkCanvas::kNone_QuadAAFlags,
kAll = SkCanvas::kAll_QuadAAFlags
};
GR_MAKE_BITFIELD_CLASS_OPS(GrQuadAAFlags)
static inline GrQuadAAFlags SkToGrQuadAAFlags(unsigned flags) {
return static_cast<GrQuadAAFlags>(flags);
}
/**
* Types of shader-language-specific boxed variables we can create.
*/
enum GrSLType {
kVoid_GrSLType,
kBool_GrSLType,
kByte_GrSLType,
kByte2_GrSLType,
kByte3_GrSLType,
kByte4_GrSLType,
kUByte_GrSLType,
kUByte2_GrSLType,
kUByte3_GrSLType,
kUByte4_GrSLType,
kShort_GrSLType,
kShort2_GrSLType,
kShort3_GrSLType,
kShort4_GrSLType,
kUShort_GrSLType,
kUShort2_GrSLType,
kUShort3_GrSLType,
kUShort4_GrSLType,
kFloat_GrSLType,
kFloat2_GrSLType,
kFloat3_GrSLType,
kFloat4_GrSLType,
kFloat2x2_GrSLType,
kFloat3x3_GrSLType,
kFloat4x4_GrSLType,
kHalf_GrSLType,
kHalf2_GrSLType,
kHalf3_GrSLType,
kHalf4_GrSLType,
kHalf2x2_GrSLType,
kHalf3x3_GrSLType,
kHalf4x4_GrSLType,
kInt_GrSLType,
kInt2_GrSLType,
kInt3_GrSLType,
kInt4_GrSLType,
kUint_GrSLType,
kUint2_GrSLType,
kTexture2DSampler_GrSLType,
kTextureExternalSampler_GrSLType,
kTexture2DRectSampler_GrSLType,
kTexture2D_GrSLType,
kSampler_GrSLType,
kLast_GrSLType = kSampler_GrSLType
};
static const int kGrSLTypeCount = kLast_GrSLType + 1;
/**
* The type of texture. Backends other than GL currently only use the 2D value but the type must
* still be known at the API-neutral layer as it used to determine whether MIP maps, renderability,
* and sampling parameters are legal for proxies that will be instantiated with wrapped textures.
*/
enum class GrTextureType {
kNone,
k2D,
/* Rectangle uses unnormalized texture coordinates. */
kRectangle,
kExternal
};
enum GrShaderType {
kVertex_GrShaderType,
kGeometry_GrShaderType,
kFragment_GrShaderType,
kLastkFragment_GrShaderType = kFragment_GrShaderType
};
static const int kGrShaderTypeCount = kLastkFragment_GrShaderType + 1;
enum GrShaderFlags {
kNone_GrShaderFlags = 0,
kVertex_GrShaderFlag = 1 << kVertex_GrShaderType,
kGeometry_GrShaderFlag = 1 << kGeometry_GrShaderType,
kFragment_GrShaderFlag = 1 << kFragment_GrShaderType
};
GR_MAKE_BITFIELD_OPS(GrShaderFlags)
/** Is the shading language type float (including vectors/matrices)? */
static CONSTEXPR bool GrSLTypeIsFloatType(GrSLType type) {
switch (type) {
case kFloat_GrSLType:
case kFloat2_GrSLType:
case kFloat3_GrSLType:
case kFloat4_GrSLType:
case kFloat2x2_GrSLType:
case kFloat3x3_GrSLType:
case kFloat4x4_GrSLType:
case kHalf_GrSLType:
case kHalf2_GrSLType:
case kHalf3_GrSLType:
case kHalf4_GrSLType:
case kHalf2x2_GrSLType:
case kHalf3x3_GrSLType:
case kHalf4x4_GrSLType:
return true;
case kVoid_GrSLType:
case kTexture2DSampler_GrSLType:
case kTextureExternalSampler_GrSLType:
case kTexture2DRectSampler_GrSLType:
case kBool_GrSLType:
case kByte_GrSLType:
case kByte2_GrSLType:
case kByte3_GrSLType:
case kByte4_GrSLType:
case kUByte_GrSLType:
case kUByte2_GrSLType:
case kUByte3_GrSLType:
case kUByte4_GrSLType:
case kShort_GrSLType:
case kShort2_GrSLType:
case kShort3_GrSLType:
case kShort4_GrSLType:
case kUShort_GrSLType:
case kUShort2_GrSLType:
case kUShort3_GrSLType:
case kUShort4_GrSLType:
case kInt_GrSLType:
case kInt2_GrSLType:
case kInt3_GrSLType:
case kInt4_GrSLType:
case kUint_GrSLType:
case kUint2_GrSLType:
case kTexture2D_GrSLType:
case kSampler_GrSLType:
return false;
}
SkUNREACHABLE;
}
/** If the type represents a single value or vector return the vector length, else -1. */
static CONSTEXPR int GrSLTypeVecLength(GrSLType type) {
switch (type) {
case kFloat_GrSLType:
case kHalf_GrSLType:
case kBool_GrSLType:
case kByte_GrSLType:
case kUByte_GrSLType:
case kShort_GrSLType:
case kUShort_GrSLType:
case kInt_GrSLType:
case kUint_GrSLType:
return 1;
case kFloat2_GrSLType:
case kHalf2_GrSLType:
case kByte2_GrSLType:
case kUByte2_GrSLType:
case kShort2_GrSLType:
case kUShort2_GrSLType:
case kInt2_GrSLType:
case kUint2_GrSLType:
return 2;
case kFloat3_GrSLType:
case kHalf3_GrSLType:
case kByte3_GrSLType:
case kUByte3_GrSLType:
case kShort3_GrSLType:
case kUShort3_GrSLType:
case kInt3_GrSLType:
return 3;
case kFloat4_GrSLType:
case kHalf4_GrSLType:
case kByte4_GrSLType:
case kUByte4_GrSLType:
case kShort4_GrSLType:
case kUShort4_GrSLType:
case kInt4_GrSLType:
return 4;
case kFloat2x2_GrSLType:
case kFloat3x3_GrSLType:
case kFloat4x4_GrSLType:
case kHalf2x2_GrSLType:
case kHalf3x3_GrSLType:
case kHalf4x4_GrSLType:
case kVoid_GrSLType:
case kTexture2DSampler_GrSLType:
case kTextureExternalSampler_GrSLType:
case kTexture2DRectSampler_GrSLType:
case kTexture2D_GrSLType:
case kSampler_GrSLType:
return -1;
}
SkUNREACHABLE;
}
static inline GrSLType GrSLCombinedSamplerTypeForTextureType(GrTextureType type) {
switch (type) {
case GrTextureType::k2D:
return kTexture2DSampler_GrSLType;
case GrTextureType::kRectangle:
return kTexture2DRectSampler_GrSLType;
case GrTextureType::kExternal:
return kTextureExternalSampler_GrSLType;
default:
SK_ABORT("Unexpected texture type");
}
}
/** Rectangle and external textures only support the clamp wrap mode and do not support
* MIP maps.
*/
static inline bool GrTextureTypeHasRestrictedSampling(GrTextureType type) {
switch (type) {
case GrTextureType::k2D:
return false;
case GrTextureType::kRectangle:
return true;
case GrTextureType::kExternal:
return true;
default:
SK_ABORT("Unexpected texture type");
}
}
static CONSTEXPR bool GrSLTypeIsCombinedSamplerType(GrSLType type) {
switch (type) {
case kTexture2DSampler_GrSLType:
case kTextureExternalSampler_GrSLType:
case kTexture2DRectSampler_GrSLType:
return true;
case kVoid_GrSLType:
case kFloat_GrSLType:
case kFloat2_GrSLType:
case kFloat3_GrSLType:
case kFloat4_GrSLType:
case kFloat2x2_GrSLType:
case kFloat3x3_GrSLType:
case kFloat4x4_GrSLType:
case kHalf_GrSLType:
case kHalf2_GrSLType:
case kHalf3_GrSLType:
case kHalf4_GrSLType:
case kHalf2x2_GrSLType:
case kHalf3x3_GrSLType:
case kHalf4x4_GrSLType:
case kInt_GrSLType:
case kInt2_GrSLType:
case kInt3_GrSLType:
case kInt4_GrSLType:
case kUint_GrSLType:
case kUint2_GrSLType:
case kBool_GrSLType:
case kByte_GrSLType:
case kByte2_GrSLType:
case kByte3_GrSLType:
case kByte4_GrSLType:
case kUByte_GrSLType:
case kUByte2_GrSLType:
case kUByte3_GrSLType:
case kUByte4_GrSLType:
case kShort_GrSLType:
case kShort2_GrSLType:
case kShort3_GrSLType:
case kShort4_GrSLType:
case kUShort_GrSLType:
case kUShort2_GrSLType:
case kUShort3_GrSLType:
case kUShort4_GrSLType:
case kTexture2D_GrSLType:
case kSampler_GrSLType:
return false;
}
SkUNREACHABLE;
}
//////////////////////////////////////////////////////////////////////////////
/**
* Types used to describe format of vertices in arrays.
*/
enum GrVertexAttribType {
kFloat_GrVertexAttribType = 0,
kFloat2_GrVertexAttribType,
kFloat3_GrVertexAttribType,
kFloat4_GrVertexAttribType,
kHalf_GrVertexAttribType,
kHalf2_GrVertexAttribType,
kHalf3_GrVertexAttribType,
kHalf4_GrVertexAttribType,
kInt2_GrVertexAttribType, // vector of 2 32-bit ints
kInt3_GrVertexAttribType, // vector of 3 32-bit ints
kInt4_GrVertexAttribType, // vector of 4 32-bit ints
kByte_GrVertexAttribType, // signed byte
kByte2_GrVertexAttribType, // vector of 2 8-bit signed bytes
kByte3_GrVertexAttribType, // vector of 3 8-bit signed bytes
kByte4_GrVertexAttribType, // vector of 4 8-bit signed bytes
kUByte_GrVertexAttribType, // unsigned byte
kUByte2_GrVertexAttribType, // vector of 2 8-bit unsigned bytes
kUByte3_GrVertexAttribType, // vector of 3 8-bit unsigned bytes
kUByte4_GrVertexAttribType, // vector of 4 8-bit unsigned bytes
kUByte_norm_GrVertexAttribType, // unsigned byte, e.g. coverage, 0 -> 0.0f, 255 -> 1.0f.
kUByte4_norm_GrVertexAttribType, // vector of 4 unsigned bytes, e.g. colors, 0 -> 0.0f,
// 255 -> 1.0f.
kShort2_GrVertexAttribType, // vector of 2 16-bit shorts.
kShort4_GrVertexAttribType, // vector of 4 16-bit shorts.
kUShort2_GrVertexAttribType, // vector of 2 unsigned shorts. 0 -> 0, 65535 -> 65535.
kUShort2_norm_GrVertexAttribType, // vector of 2 unsigned shorts. 0 -> 0.0f, 65535 -> 1.0f.
kInt_GrVertexAttribType,
kUint_GrVertexAttribType,
kUShort_norm_GrVertexAttribType,
kUShort4_norm_GrVertexAttribType, // vector of 4 unsigned shorts. 0 -> 0.0f, 65535 -> 1.0f.
kLast_GrVertexAttribType = kUShort4_norm_GrVertexAttribType
};
static const int kGrVertexAttribTypeCount = kLast_GrVertexAttribType + 1;
//////////////////////////////////////////////////////////////////////////////
static const int kGrClipEdgeTypeCnt = (int) GrClipEdgeType::kLast + 1;
static constexpr bool GrProcessorEdgeTypeIsFill(const GrClipEdgeType edgeType) {
return (GrClipEdgeType::kFillAA == edgeType || GrClipEdgeType::kFillBW == edgeType);
}
static constexpr bool GrProcessorEdgeTypeIsInverseFill(const GrClipEdgeType edgeType) {
return (GrClipEdgeType::kInverseFillAA == edgeType ||
GrClipEdgeType::kInverseFillBW == edgeType);
}
static constexpr bool GrProcessorEdgeTypeIsAA(const GrClipEdgeType edgeType) {
return (GrClipEdgeType::kFillBW != edgeType &&
GrClipEdgeType::kInverseFillBW != edgeType);
}
static inline GrClipEdgeType GrInvertProcessorEdgeType(const GrClipEdgeType edgeType) {
switch (edgeType) {
case GrClipEdgeType::kFillBW:
return GrClipEdgeType::kInverseFillBW;
case GrClipEdgeType::kFillAA:
return GrClipEdgeType::kInverseFillAA;
case GrClipEdgeType::kInverseFillBW:
return GrClipEdgeType::kFillBW;
case GrClipEdgeType::kInverseFillAA:
return GrClipEdgeType::kFillAA;
case GrClipEdgeType::kHairlineAA:
SK_ABORT("Hairline fill isn't invertible.");
}
return GrClipEdgeType::kFillAA; // suppress warning.
}
/**
* Indicates the type of pending IO operations that can be recorded for gpu resources.
*/
enum GrIOType {
kRead_GrIOType,
kWrite_GrIOType,
kRW_GrIOType
};
/**
* Indicates the type of data that a GPU buffer will be used for.
*/
enum class GrGpuBufferType {
kVertex,
kIndex,
kXferCpuToGpu,
kXferGpuToCpu,
};
static const int kGrGpuBufferTypeCount = static_cast<int>(GrGpuBufferType::kXferGpuToCpu) + 1;
/**
* Provides a performance hint regarding the frequency at which a data store will be accessed.
*/
enum GrAccessPattern {
/** Data store will be respecified repeatedly and used many times. */
kDynamic_GrAccessPattern,
/** Data store will be specified once and used many times. (Thus disqualified from caching.) */
kStatic_GrAccessPattern,
/** Data store will be specified once and used at most a few times. (Also can't be cached.) */
kStream_GrAccessPattern,
kLast_GrAccessPattern = kStream_GrAccessPattern
};
// Flags shared between the GrSurface & GrSurfaceProxy class hierarchies
enum class GrInternalSurfaceFlags {
kNone = 0,
// Texture-level
// Means the pixels in the texture are read-only. Cannot also be a GrRenderTarget[Proxy].
kReadOnly = 1 << 0,
// RT-level
// This flag is for use with GL only. It tells us that the internal render target wraps FBO 0.
kGLRTFBOIDIs0 = 1 << 1,
// This means the render target is multisampled, and internally holds a non-msaa texture for
// resolving into. The render target resolves itself by blitting into this internal texture.
// (asTexture() might or might not return the internal texture, but if it does, we always
// resolve the render target before accessing this texture's data.)
kRequiresManualMSAAResolve = 1 << 2,
};
GR_MAKE_BITFIELD_CLASS_OPS(GrInternalSurfaceFlags)
// 'GR_MAKE_BITFIELD_CLASS_OPS' defines the & operator on GrInternalSurfaceFlags to return bool.
// We want to find the bitwise & with these masks, so we declare them as ints.
constexpr static int kGrInternalTextureFlagsMask = static_cast<int>(
GrInternalSurfaceFlags::kReadOnly);
constexpr static int kGrInternalRenderTargetFlagsMask = static_cast<int>(
GrInternalSurfaceFlags::kGLRTFBOIDIs0 | GrInternalSurfaceFlags::kRequiresManualMSAAResolve);
constexpr static int kGrInternalTextureRenderTargetFlagsMask =
kGrInternalTextureFlagsMask | kGrInternalRenderTargetFlagsMask;
#ifdef SK_DEBUG
// Takes a pointer to a GrCaps, and will suppress prints if required
#define GrCapsDebugf(caps, ...) if (!(caps)->suppressPrints()) SkDebugf(__VA_ARGS__)
#else
#define GrCapsDebugf(caps, ...) do {} while (0)
#endif
/**
* Specifies if the holder owns the backend, OpenGL or Vulkan, object.
*/
enum class GrBackendObjectOwnership : bool {
/** Holder does not destroy the backend object. */
kBorrowed = false,
/** Holder destroys the backend object. */
kOwned = true
};
// On some platforms, sizeof(T*) != sizeof(std::unique_ptr<T>) so an array of
// std::unique_ptr<T> cannot be casted to an array of T*.
template <typename T>
std::unique_ptr<const T>* unique_ptr_array_to_unique_const_ptr_array(
std::unique_ptr<T>* up_array) {
static_assert(sizeof(std::unique_ptr<const T>) ==
sizeof(std::unique_ptr<T>), "unique_ptr not expected size.");
return reinterpret_cast< std::unique_ptr<const T>* >(up_array);
}
/*
* Object for CPU-GPU synchronization
*/
typedef uint64_t GrFence;
/**
* Used to include or exclude specific GPU path renderers for testing purposes.
*/
enum class GpuPathRenderers {
kNone = 0, // Always use software masks and/or GrDefaultPathRenderer.
kDashLine = 1 << 0,
kStencilAndCover = 1 << 1,
kCoverageCounting = 1 << 2,
kAAHairline = 1 << 3,
kAAConvex = 1 << 4,
kAALinearizing = 1 << 5,
kSmall = 1 << 6,
kTessellating = 1 << 7,
kAll = (kTessellating | (kTessellating - 1)),
kDefault = kAll & ~kCoverageCounting
};
/**
* Used to describe the current state of Mips on a GrTexture
*/
enum class GrMipMapsStatus {
kNotAllocated, // Mips have not been allocated
kDirty, // Mips are allocated but the full mip tree does not have valid data
kValid, // All levels fully allocated and have valid data in them
};
GR_MAKE_BITFIELD_CLASS_OPS(GpuPathRenderers)
/**
* Utility functions for GrPixelConfig
*/
static CONSTEXPR GrPixelConfig GrCompressionTypePixelConfig(SkImage::CompressionType compression) {
switch (compression) {
case SkImage::kETC1_CompressionType: return kRGB_ETC1_GrPixelConfig;
}
SkUNREACHABLE;
}
/**
* Returns true if the pixel config is a GPU-specific compressed format
* representation.
*/
static CONSTEXPR bool GrPixelConfigIsCompressed(GrPixelConfig config) {
switch (config) {
case kRGB_ETC1_GrPixelConfig:
return true;
default:
return false;
}
SkUNREACHABLE;
}
/**
* Returns the data size for the given SkImage::CompressionType
*/
static inline size_t GrCompressedFormatDataSize(SkImage::CompressionType compressionType,
int width, int height) {
switch (compressionType) {
case SkImage::kETC1_CompressionType:
SkASSERT((width & 3) == 0);
SkASSERT((height & 3) == 0);
return (width >> 2) * (height >> 2) * 8;
}
SK_ABORT("Invalid pixel config");
}
/**
* Like SkColorType this describes a layout of pixel data in CPU memory. It specifies the channels,
* their type, and width. This exists so that the GPU backend can have private types that have no
* analog in the public facing SkColorType enum and omit types not implemented in the GPU backend.
* It does not refer to a texture format and the mapping to texture formats may be many-to-many.
* It does not specify the sRGB encoding of the stored values. The components are listed in order of
* where they appear in memory. In other words the first component listed is in the low bits and
* the last component in the high bits.
*/
enum class GrColorType {
kUnknown,
kAlpha_8,
kBGR_565,
kABGR_4444, // This name differs from SkColorType. kARGB_4444_SkColorType is misnamed.
kRGBA_8888,
kRGBA_8888_SRGB,
kRGB_888x,
kRG_88,
kBGRA_8888,
kRGBA_1010102,
kGray_8,
kAlpha_F16,
kRGBA_F16,
kRGBA_F16_Clamped,
kRGBA_F32,
kAlpha_16,
kRG_1616,
kRG_F16,
kRGBA_16161616,
// Unusual formats that come up after reading back in cases where we are reassigning the meaning
// of a texture format's channels to use for a particular color format but have to read back the
// data to a full RGBA quadruple. (e.g. using a R8 texture format as A8 color type but the API
// only supports reading to RGBA8.) None of these have SkColorType equivalents.
kAlpha_8xxx,
kAlpha_F32xxx,
kGray_8xxx,
kLast = kGray_8xxx
};
static const int kGrColorTypeCnt = static_cast<int>(GrColorType::kLast) + 1;
static CONSTEXPR SkColorType GrColorTypeToSkColorType(GrColorType ct) {
switch (ct) {
case GrColorType::kUnknown: return kUnknown_SkColorType;
case GrColorType::kAlpha_8: return kAlpha_8_SkColorType;
case GrColorType::kBGR_565: return kRGB_565_SkColorType;
case GrColorType::kABGR_4444: return kARGB_4444_SkColorType;
case GrColorType::kRGBA_8888: return kRGBA_8888_SkColorType;
// Once we add kRGBA_8888_SRGB_SkColorType we should return that here.
case GrColorType::kRGBA_8888_SRGB: return kRGBA_8888_SkColorType;
case GrColorType::kRGB_888x: return kRGB_888x_SkColorType;
case GrColorType::kRG_88: return kR8G8_unorm_SkColorType;
case GrColorType::kBGRA_8888: return kBGRA_8888_SkColorType;
case GrColorType::kRGBA_1010102: return kRGBA_1010102_SkColorType;
case GrColorType::kGray_8: return kGray_8_SkColorType;
case GrColorType::kAlpha_F16: return kA16_float_SkColorType;
case GrColorType::kRGBA_F16: return kRGBA_F16_SkColorType;
case GrColorType::kRGBA_F16_Clamped: return kRGBA_F16Norm_SkColorType;
case GrColorType::kRGBA_F32: return kRGBA_F32_SkColorType;
case GrColorType::kAlpha_8xxx: return kUnknown_SkColorType;
case GrColorType::kAlpha_F32xxx: return kUnknown_SkColorType;
case GrColorType::kGray_8xxx: return kUnknown_SkColorType;
case GrColorType::kAlpha_16: return kA16_unorm_SkColorType;
case GrColorType::kRG_1616: return kR16G16_unorm_SkColorType;
case GrColorType::kRGBA_16161616: return kR16G16B16A16_unorm_SkColorType;
case GrColorType::kRG_F16: return kR16G16_float_SkColorType;
}
SkUNREACHABLE;
}
static CONSTEXPR GrColorType SkColorTypeToGrColorType(SkColorType ct) {
switch (ct) {
case kUnknown_SkColorType: return GrColorType::kUnknown;
case kAlpha_8_SkColorType: return GrColorType::kAlpha_8;
case kRGB_565_SkColorType: return GrColorType::kBGR_565;
case kARGB_4444_SkColorType: return GrColorType::kABGR_4444;
case kRGBA_8888_SkColorType: return GrColorType::kRGBA_8888;
case kRGB_888x_SkColorType: return GrColorType::kRGB_888x;
case kBGRA_8888_SkColorType: return GrColorType::kBGRA_8888;
case kGray_8_SkColorType: return GrColorType::kGray_8;
case kRGBA_F16Norm_SkColorType: return GrColorType::kRGBA_F16_Clamped;
case kRGBA_F16_SkColorType: return GrColorType::kRGBA_F16;
case kRGBA_1010102_SkColorType: return GrColorType::kRGBA_1010102;
case kRGB_101010x_SkColorType: return GrColorType::kUnknown;
case kRGBA_F32_SkColorType: return GrColorType::kRGBA_F32;
case kR8G8_unorm_SkColorType: return GrColorType::kRG_88;
case kA16_unorm_SkColorType: return GrColorType::kAlpha_16;
case kR16G16_unorm_SkColorType: return GrColorType::kRG_1616;
case kA16_float_SkColorType: return GrColorType::kAlpha_F16;
case kR16G16_float_SkColorType: return GrColorType::kRG_F16;
case kR16G16B16A16_unorm_SkColorType: return GrColorType::kRGBA_16161616;
}
SkUNREACHABLE;
}
// This is a temporary means of mapping an SkColorType and format to a
// GrColorType::kRGBA_8888_SRGB. Once we have an SRGB SkColorType this can go away.
GrColorType SkColorTypeAndFormatToGrColorType(const GrCaps* caps,
SkColorType skCT,
const GrBackendFormat& format);
static CONSTEXPR uint32_t GrColorTypeComponentFlags(GrColorType ct) {
switch (ct) {
case GrColorType::kUnknown: return 0;
case GrColorType::kAlpha_8: return kAlpha_SkColorTypeComponentFlag;
case GrColorType::kBGR_565: return kRGB_SkColorTypeComponentFlags;
case GrColorType::kABGR_4444: return kRGBA_SkColorTypeComponentFlags;
case GrColorType::kRGBA_8888: return kRGBA_SkColorTypeComponentFlags;
case GrColorType::kRGBA_8888_SRGB: return kRGBA_SkColorTypeComponentFlags;
case GrColorType::kRGB_888x: return kRGB_SkColorTypeComponentFlags;
case GrColorType::kRG_88: return kRed_SkColorTypeComponentFlag |
kGreen_SkColorTypeComponentFlag;
case GrColorType::kBGRA_8888: return kRGBA_SkColorTypeComponentFlags;
case GrColorType::kRGBA_1010102: return kRGBA_SkColorTypeComponentFlags;
case GrColorType::kGray_8: return kGray_SkColorTypeComponentFlag;
case GrColorType::kAlpha_F16: return kAlpha_SkColorTypeComponentFlag;
case GrColorType::kRGBA_F16: return kRGBA_SkColorTypeComponentFlags;
case GrColorType::kRGBA_F16_Clamped: return kRGBA_SkColorTypeComponentFlags;
case GrColorType::kRGBA_F32: return kRGBA_SkColorTypeComponentFlags;
case GrColorType::kAlpha_8xxx: return kAlpha_SkColorTypeComponentFlag;
case GrColorType::kAlpha_F32xxx: return kAlpha_SkColorTypeComponentFlag;
case GrColorType::kGray_8xxx: return kGray_SkColorTypeComponentFlag;
case GrColorType::kAlpha_16: return kAlpha_SkColorTypeComponentFlag;
case GrColorType::kRG_1616: return kRed_SkColorTypeComponentFlag |
kGreen_SkColorTypeComponentFlag;
case GrColorType::kRGBA_16161616: return kRGBA_SkColorTypeComponentFlags;
case GrColorType::kRG_F16: return kRed_SkColorTypeComponentFlag |
kGreen_SkColorTypeComponentFlag;
}
SkUNREACHABLE;
}
/**
* Describes the encoding of channel data in a GrColorType.
*/
enum class GrColorTypeEncoding {
kUnorm,
kSRGBUnorm,
// kSnorm,
kFloat,
// kSint
// kUint
};
/**
* Describes a GrColorType by how many bits are used for each color component and how they are
* encoded. Currently all the non-zero channels share a single GrColorTypeEncoding. This could be
* expanded to store separate encodings and to indicate which bits belong to which components.
*/
struct GrColorTypeDesc {
public:
static CONSTEXPR GrColorTypeDesc MakeRGBA(int rgba, GrColorTypeEncoding e) {
return {rgba, rgba, rgba, rgba, 0, e};
}
static CONSTEXPR GrColorTypeDesc MakeRGBA(int rgb, int a, GrColorTypeEncoding e) {
return {rgb, rgb, rgb, a, 0, e};
}
static CONSTEXPR GrColorTypeDesc MakeRGB(int rgb, GrColorTypeEncoding e) {
return {rgb, rgb, rgb, 0, 0, e};
}
static CONSTEXPR GrColorTypeDesc MakeRGB(int r, int g, int b, GrColorTypeEncoding e) {
return {r, g, b, 0, 0, e};
}
static CONSTEXPR GrColorTypeDesc MakeAlpha(int a, GrColorTypeEncoding e) {
return {0, 0, 0, a, 0, e};
}
static CONSTEXPR GrColorTypeDesc MakeR(int r, GrColorTypeEncoding e) {
return {r, 0, 0, 0, 0, e};
}
static CONSTEXPR GrColorTypeDesc MakeRG(int rg, GrColorTypeEncoding e) {
return {rg, rg, 0, 0, 0, e};
}
static CONSTEXPR GrColorTypeDesc MakeGray(int grayBits, GrColorTypeEncoding e) {
return {0, 0, 0, 0, grayBits, e};
}
static CONSTEXPR GrColorTypeDesc MakeInvalid() { return {}; }
constexpr int r() const { return fRBits; }
constexpr int g() const { return fGBits; }
constexpr int b() const { return fBBits; }
constexpr int a() const { return fABits; }
CONSTEXPR int operator[](int c) const {
switch (c) {
case 0: return this->r();
case 1: return this->g();
case 2: return this->b();
case 3: return this->a();
}
SkUNREACHABLE;
}
constexpr int gray() const { return fGrayBits; }
constexpr GrColorTypeEncoding encoding() const { return fEncoding; }
private:
int fRBits = 0;
int fGBits = 0;
int fBBits = 0;
int fABits = 0;
int fGrayBits = 0;
GrColorTypeEncoding fEncoding = GrColorTypeEncoding::kUnorm;
constexpr GrColorTypeDesc() = default;
CONSTEXPR GrColorTypeDesc(int r, int g, int b, int a, int gray, GrColorTypeEncoding encoding)
: fRBits(r), fGBits(g), fBBits(b), fABits(a), fGrayBits(gray), fEncoding(encoding) {
SkASSERT(r >= 0 && g >= 0 && b >= 0 && a >= 0 && gray >= 0);
SkASSERT(!gray || (!r && !g && !b));
SkASSERT(r || g || b || a || gray);
}
};
static CONSTEXPR GrColorTypeDesc GrGetColorTypeDesc(GrColorType ct) {
switch (ct) {
case GrColorType::kUnknown:
return GrColorTypeDesc::MakeInvalid();
case GrColorType::kAlpha_8:
return GrColorTypeDesc::MakeAlpha(8, GrColorTypeEncoding::kUnorm);
case GrColorType::kBGR_565:
return GrColorTypeDesc::MakeRGB(5, 6, 5, GrColorTypeEncoding::kUnorm);
case GrColorType::kABGR_4444:
return GrColorTypeDesc::MakeRGBA(4, GrColorTypeEncoding::kUnorm);
case GrColorType::kRGBA_8888:
return GrColorTypeDesc::MakeRGBA(8, GrColorTypeEncoding::kUnorm);
case GrColorType::kRGBA_8888_SRGB:
return GrColorTypeDesc::MakeRGBA(8, GrColorTypeEncoding::kSRGBUnorm);
case GrColorType::kRGB_888x:
return GrColorTypeDesc::MakeRGB(8, GrColorTypeEncoding::kUnorm);
case GrColorType::kRG_88:
return GrColorTypeDesc::MakeRG(8, GrColorTypeEncoding::kUnorm);
case GrColorType::kBGRA_8888:
return GrColorTypeDesc::MakeRGBA(8, GrColorTypeEncoding::kUnorm);
case GrColorType::kRGBA_1010102:
return GrColorTypeDesc::MakeRGBA(10, 2, GrColorTypeEncoding::kUnorm);
case GrColorType::kGray_8:
return GrColorTypeDesc::MakeGray(8, GrColorTypeEncoding::kUnorm);
case GrColorType::kAlpha_F16:
return GrColorTypeDesc::MakeAlpha(16, GrColorTypeEncoding::kFloat);
case GrColorType::kRGBA_F16:
return GrColorTypeDesc::MakeRGBA(16, GrColorTypeEncoding::kFloat);
case GrColorType::kRGBA_F16_Clamped:
return GrColorTypeDesc::MakeRGBA(16, GrColorTypeEncoding::kFloat);
case GrColorType::kRGBA_F32:
return GrColorTypeDesc::MakeRGBA(32, GrColorTypeEncoding::kFloat);
case GrColorType::kAlpha_8xxx:
return GrColorTypeDesc::MakeAlpha(8, GrColorTypeEncoding::kUnorm);
case GrColorType::kAlpha_F32xxx:
return GrColorTypeDesc::MakeAlpha(32, GrColorTypeEncoding::kFloat);
case GrColorType::kGray_8xxx:
return GrColorTypeDesc::MakeGray(8, GrColorTypeEncoding::kUnorm);
case GrColorType::kAlpha_16:
return GrColorTypeDesc::MakeAlpha(16, GrColorTypeEncoding::kUnorm);
case GrColorType::kRG_1616:
return GrColorTypeDesc::MakeRG(16, GrColorTypeEncoding::kUnorm);
case GrColorType::kRGBA_16161616:
return GrColorTypeDesc::MakeRGBA(16, GrColorTypeEncoding::kUnorm);
case GrColorType::kRG_F16:
return GrColorTypeDesc::MakeRG(16, GrColorTypeEncoding::kFloat);
}
SkUNREACHABLE;
}
static CONSTEXPR GrClampType GrColorTypeClampType(GrColorType colorType) {
if (GrGetColorTypeDesc(colorType).encoding() == GrColorTypeEncoding::kUnorm ||
GrGetColorTypeDesc(colorType).encoding() == GrColorTypeEncoding::kSRGBUnorm) {
return GrClampType::kAuto;
}
return GrColorType::kRGBA_F16_Clamped == colorType ? GrClampType::kManual : GrClampType::kNone;
}
// Consider a color type "wider" than n if it has more than n bits for any its representable
// channels.
static CONSTEXPR bool GrColorTypeIsWiderThan(GrColorType colorType, int n) {
SkASSERT(n > 0);
auto desc = GrGetColorTypeDesc(colorType);
return (desc.r() && desc.r() > n )||
(desc.g() && desc.g() > n) ||
(desc.b() && desc.b() > n) ||
(desc.a() && desc.a() > n) ||
(desc.gray() && desc.gray() > n);
}
static CONSTEXPR bool GrColorTypeIsAlphaOnly(GrColorType ct) {
return kAlpha_SkColorTypeComponentFlag == GrColorTypeComponentFlags(ct);
}
static CONSTEXPR bool GrColorTypeHasAlpha(GrColorType ct) {
return kAlpha_SkColorTypeComponentFlag & GrColorTypeComponentFlags(ct);
}
static CONSTEXPR size_t GrColorTypeBytesPerPixel(GrColorType ct) {
switch (ct) {
case GrColorType::kUnknown: return 0;
case GrColorType::kAlpha_8: return 1;
case GrColorType::kBGR_565: return 2;
case GrColorType::kABGR_4444: return 2;
case GrColorType::kRGBA_8888: return 4;
case GrColorType::kRGBA_8888_SRGB: return 4;
case GrColorType::kRGB_888x: return 4;
case GrColorType::kRG_88: return 2;
case GrColorType::kBGRA_8888: return 4;
case GrColorType::kRGBA_1010102: return 4;
case GrColorType::kGray_8: return 1;
case GrColorType::kAlpha_F16: return 2;
case GrColorType::kRGBA_F16: return 8;
case GrColorType::kRGBA_F16_Clamped: return 8;
case GrColorType::kRGBA_F32: return 16;
case GrColorType::kAlpha_8xxx: return 4;
case GrColorType::kAlpha_F32xxx: return 16;
case GrColorType::kGray_8xxx: return 4;
case GrColorType::kAlpha_16: return 2;
case GrColorType::kRG_1616: return 4;
case GrColorType::kRGBA_16161616: return 8;
case GrColorType::kRG_F16: return 4;
}
SkUNREACHABLE;
}
static CONSTEXPR GrColorType GrPixelConfigToColorType(GrPixelConfig config) {
switch (config) {
case kUnknown_GrPixelConfig:
return GrColorType::kUnknown;
case kAlpha_8_GrPixelConfig:
return GrColorType::kAlpha_8;
case kGray_8_GrPixelConfig:
return GrColorType::kGray_8;
case kRGB_565_GrPixelConfig:
return GrColorType::kBGR_565;
case kRGBA_4444_GrPixelConfig:
return GrColorType::kABGR_4444;
case kRGBA_8888_GrPixelConfig:
return GrColorType::kRGBA_8888;
case kRGB_888_GrPixelConfig:
return GrColorType::kRGB_888x;
case kRGB_888X_GrPixelConfig:
return GrColorType::kRGB_888x;
case kRG_88_GrPixelConfig:
return GrColorType::kRG_88;
case kBGRA_8888_GrPixelConfig:
return GrColorType::kBGRA_8888;
case kSRGBA_8888_GrPixelConfig:
return GrColorType::kRGBA_8888_SRGB;
case kRGBA_1010102_GrPixelConfig:
return GrColorType::kRGBA_1010102;
case kAlpha_half_GrPixelConfig:
return GrColorType::kAlpha_F16;
case kRGBA_half_GrPixelConfig:
return GrColorType::kRGBA_F16;
case kRGBA_half_Clamped_GrPixelConfig:
return GrColorType::kRGBA_F16_Clamped;
case kRGB_ETC1_GrPixelConfig:
// We may need a roughly equivalent color type for a compressed texture. This should be
// the logical format for decompressing the data into.
return GrColorType::kRGB_888x;
case kAlpha_8_as_Alpha_GrPixelConfig:
return GrColorType::kAlpha_8;
case kAlpha_8_as_Red_GrPixelConfig:
return GrColorType::kAlpha_8;
case kAlpha_half_as_Lum_GrPixelConfig: // fall through
case kAlpha_half_as_Red_GrPixelConfig:
return GrColorType::kAlpha_F16;
case kGray_8_as_Lum_GrPixelConfig:
return GrColorType::kGray_8;
case kGray_8_as_Red_GrPixelConfig:
return GrColorType::kGray_8;
case kAlpha_16_GrPixelConfig:
return GrColorType::kAlpha_16;
case kRG_1616_GrPixelConfig:
return GrColorType::kRG_1616;
case kRGBA_16161616_GrPixelConfig:
return GrColorType::kRGBA_16161616;
case kRG_half_GrPixelConfig:
return GrColorType::kRG_F16;
}
SkUNREACHABLE;
}
static CONSTEXPR GrPixelConfig GrColorTypeToPixelConfig(GrColorType colorType) {
switch (colorType) {
case GrColorType::kUnknown: return kUnknown_GrPixelConfig;
case GrColorType::kAlpha_8: return kAlpha_8_GrPixelConfig;
case GrColorType::kGray_8: return kGray_8_GrPixelConfig;
case GrColorType::kBGR_565: return kRGB_565_GrPixelConfig;
case GrColorType::kABGR_4444: return kRGBA_4444_GrPixelConfig;
case GrColorType::kRGBA_8888: return kRGBA_8888_GrPixelConfig;
case GrColorType::kRGBA_8888_SRGB: return kSRGBA_8888_GrPixelConfig;
case GrColorType::kRGB_888x: return kRGB_888_GrPixelConfig;
case GrColorType::kRG_88: return kRG_88_GrPixelConfig;
case GrColorType::kBGRA_8888: return kBGRA_8888_GrPixelConfig;
case GrColorType::kRGBA_1010102: return kRGBA_1010102_GrPixelConfig;
case GrColorType::kRGBA_F32: return kUnknown_GrPixelConfig;
case GrColorType::kAlpha_F16: return kAlpha_half_GrPixelConfig;
case GrColorType::kRGBA_F16: return kRGBA_half_GrPixelConfig;
case GrColorType::kRGBA_F16_Clamped: return kRGBA_half_Clamped_GrPixelConfig;
case GrColorType::kAlpha_8xxx: return kUnknown_GrPixelConfig;
case GrColorType::kAlpha_F32xxx: return kUnknown_GrPixelConfig;
case GrColorType::kGray_8xxx: return kUnknown_GrPixelConfig;
case GrColorType::kAlpha_16: return kAlpha_16_GrPixelConfig;
case GrColorType::kRG_1616: return kRG_1616_GrPixelConfig;
case GrColorType::kRGBA_16161616: return kRGBA_16161616_GrPixelConfig;
case GrColorType::kRG_F16: return kRG_half_GrPixelConfig;
}
SkUNREACHABLE;
}
/**
* Ref-counted object that calls a callback from its destructor.
*/
class GrRefCntedCallback : public SkRefCnt {
public:
using Context = void*;
using Callback = void (*)(Context);
GrRefCntedCallback(Callback proc, Context ctx) : fReleaseProc(proc), fReleaseCtx(ctx) {
SkASSERT(proc);
}
~GrRefCntedCallback() override { fReleaseProc ? fReleaseProc(fReleaseCtx) : void(); }
Context context() const { return fReleaseCtx; }
private:
Callback fReleaseProc;
Context fReleaseCtx;
};
#if GR_TEST_UTILS || defined(SK_ENABLE_DUMP_GPU)
static CONSTEXPR const char* GrBackendApiToStr(GrBackendApi api) {
switch (api) {
case GrBackendApi::kMetal: return "Metal";
case GrBackendApi::kDawn: return "Dawn";
case GrBackendApi::kOpenGL: return "OpenGL";
case GrBackendApi::kVulkan: return "Vulkan";
case GrBackendApi::kMock: return "Mock";
}
SkUNREACHABLE;
}
static CONSTEXPR const char* GrColorTypeToStr(GrColorType ct) {
switch (ct) {
case GrColorType::kUnknown: return "kUnknown";
case GrColorType::kAlpha_8: return "kAlpha_8";
case GrColorType::kBGR_565: return "kRGB_565";
case GrColorType::kABGR_4444: return "kABGR_4444";
case GrColorType::kRGBA_8888: return "kRGBA_8888";
case GrColorType::kRGBA_8888_SRGB: return "kRGBA_8888_SRGB";
case GrColorType::kRGB_888x: return "kRGB_888x";
case GrColorType::kRG_88: return "kRG_88";
case GrColorType::kBGRA_8888: return "kBGRA_8888";
case GrColorType::kRGBA_1010102: return "kRGBA_1010102";
case GrColorType::kGray_8: return "kGray_8";
case GrColorType::kAlpha_F16: return "kAlpha_F16";
case GrColorType::kRGBA_F16: return "kRGBA_F16";
case GrColorType::kRGBA_F16_Clamped: return "kRGBA_F16_Clamped";
case GrColorType::kRGBA_F32: return "kRGBA_F32";
case GrColorType::kAlpha_8xxx: return "kAlpha_8xxx";
case GrColorType::kAlpha_F32xxx: return "kAlpha_F32xxx";
case GrColorType::kGray_8xxx: return "kGray_8xxx";
case GrColorType::kAlpha_16: return "kAlpha_16";
case GrColorType::kRG_1616: return "kRG_1616";
case GrColorType::kRGBA_16161616: return "kRGBA_16161616";
case GrColorType::kRG_F16: return "kRG_F16";
}
SkUNREACHABLE;
}
#endif
#endif