blob: f720c2908461ba85d6bc2baed835bdbd4a34ec50 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/machine-operator-reducer.h"
#include <cmath>
#include "src/base/bits.h"
#include "src/base/division-by-constant.h"
#include "src/base/ieee754.h"
#include "src/base/overflowing-math.h"
#include "src/compiler/diamond.h"
#include "src/compiler/graph.h"
#include "src/compiler/machine-graph.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties.h"
#include "src/numbers/conversions-inl.h"
namespace v8 {
namespace internal {
namespace compiler {
MachineOperatorReducer::MachineOperatorReducer(Editor* editor,
MachineGraph* mcgraph,
bool allow_signalling_nan)
: AdvancedReducer(editor),
mcgraph_(mcgraph),
allow_signalling_nan_(allow_signalling_nan) {}
MachineOperatorReducer::~MachineOperatorReducer() = default;
Node* MachineOperatorReducer::Float32Constant(volatile float value) {
return graph()->NewNode(common()->Float32Constant(value));
}
Node* MachineOperatorReducer::Float64Constant(volatile double value) {
return mcgraph()->Float64Constant(value);
}
Node* MachineOperatorReducer::Int32Constant(int32_t value) {
return mcgraph()->Int32Constant(value);
}
Node* MachineOperatorReducer::Int64Constant(int64_t value) {
return graph()->NewNode(common()->Int64Constant(value));
}
Node* MachineOperatorReducer::Float64Mul(Node* lhs, Node* rhs) {
return graph()->NewNode(machine()->Float64Mul(), lhs, rhs);
}
Node* MachineOperatorReducer::Float64PowHalf(Node* value) {
value =
graph()->NewNode(machine()->Float64Add(), Float64Constant(0.0), value);
Diamond d(graph(), common(),
graph()->NewNode(machine()->Float64LessThanOrEqual(), value,
Float64Constant(-V8_INFINITY)),
BranchHint::kFalse);
return d.Phi(MachineRepresentation::kFloat64, Float64Constant(V8_INFINITY),
graph()->NewNode(machine()->Float64Sqrt(), value));
}
Node* MachineOperatorReducer::Word32And(Node* lhs, Node* rhs) {
Node* const node = graph()->NewNode(machine()->Word32And(), lhs, rhs);
Reduction const reduction = ReduceWord32And(node);
return reduction.Changed() ? reduction.replacement() : node;
}
Node* MachineOperatorReducer::Word32Sar(Node* lhs, uint32_t rhs) {
if (rhs == 0) return lhs;
return graph()->NewNode(machine()->Word32Sar(), lhs, Uint32Constant(rhs));
}
Node* MachineOperatorReducer::Word32Shr(Node* lhs, uint32_t rhs) {
if (rhs == 0) return lhs;
return graph()->NewNode(machine()->Word32Shr(), lhs, Uint32Constant(rhs));
}
Node* MachineOperatorReducer::Word32Equal(Node* lhs, Node* rhs) {
return graph()->NewNode(machine()->Word32Equal(), lhs, rhs);
}
Node* MachineOperatorReducer::Int32Add(Node* lhs, Node* rhs) {
Node* const node = graph()->NewNode(machine()->Int32Add(), lhs, rhs);
Reduction const reduction = ReduceInt32Add(node);
return reduction.Changed() ? reduction.replacement() : node;
}
Node* MachineOperatorReducer::Int32Sub(Node* lhs, Node* rhs) {
Node* const node = graph()->NewNode(machine()->Int32Sub(), lhs, rhs);
Reduction const reduction = ReduceInt32Sub(node);
return reduction.Changed() ? reduction.replacement() : node;
}
Node* MachineOperatorReducer::Int32Mul(Node* lhs, Node* rhs) {
return graph()->NewNode(machine()->Int32Mul(), lhs, rhs);
}
Node* MachineOperatorReducer::Int32Div(Node* dividend, int32_t divisor) {
DCHECK_NE(0, divisor);
DCHECK_NE(std::numeric_limits<int32_t>::min(), divisor);
base::MagicNumbersForDivision<uint32_t> const mag =
base::SignedDivisionByConstant(bit_cast<uint32_t>(divisor));
Node* quotient = graph()->NewNode(machine()->Int32MulHigh(), dividend,
Uint32Constant(mag.multiplier));
if (divisor > 0 && bit_cast<int32_t>(mag.multiplier) < 0) {
quotient = Int32Add(quotient, dividend);
} else if (divisor < 0 && bit_cast<int32_t>(mag.multiplier) > 0) {
quotient = Int32Sub(quotient, dividend);
}
return Int32Add(Word32Sar(quotient, mag.shift), Word32Shr(dividend, 31));
}
Node* MachineOperatorReducer::Uint32Div(Node* dividend, uint32_t divisor) {
DCHECK_LT(0u, divisor);
// If the divisor is even, we can avoid using the expensive fixup by shifting
// the dividend upfront.
unsigned const shift = base::bits::CountTrailingZeros(divisor);
dividend = Word32Shr(dividend, shift);
divisor >>= shift;
// Compute the magic number for the (shifted) divisor.
base::MagicNumbersForDivision<uint32_t> const mag =
base::UnsignedDivisionByConstant(divisor, shift);
Node* quotient = graph()->NewNode(machine()->Uint32MulHigh(), dividend,
Uint32Constant(mag.multiplier));
if (mag.add) {
DCHECK_LE(1u, mag.shift);
quotient = Word32Shr(
Int32Add(Word32Shr(Int32Sub(dividend, quotient), 1), quotient),
mag.shift - 1);
} else {
quotient = Word32Shr(quotient, mag.shift);
}
return quotient;
}
// Perform constant folding and strength reduction on machine operators.
Reduction MachineOperatorReducer::Reduce(Node* node) {
switch (node->opcode()) {
case IrOpcode::kProjection:
return ReduceProjection(ProjectionIndexOf(node->op()), node->InputAt(0));
case IrOpcode::kWord32And:
return ReduceWord32And(node);
case IrOpcode::kWord32Or:
return ReduceWord32Or(node);
case IrOpcode::kWord32Xor:
return ReduceWord32Xor(node);
case IrOpcode::kWord32Shl:
return ReduceWord32Shl(node);
case IrOpcode::kWord64Shl:
return ReduceWord64Shl(node);
case IrOpcode::kWord32Shr:
return ReduceWord32Shr(node);
case IrOpcode::kWord64Shr:
return ReduceWord64Shr(node);
case IrOpcode::kWord32Sar:
return ReduceWord32Sar(node);
case IrOpcode::kWord64Sar:
return ReduceWord64Sar(node);
case IrOpcode::kWord32Ror: {
Int32BinopMatcher m(node);
if (m.right().Is(0)) return Replace(m.left().node()); // x ror 0 => x
if (m.IsFoldable()) { // K ror K => K
return ReplaceInt32(base::bits::RotateRight32(m.left().Value(),
m.right().Value() & 31));
}
break;
}
case IrOpcode::kWord32Equal: {
Int32BinopMatcher m(node);
if (m.IsFoldable()) { // K == K => K
return ReplaceBool(m.left().Value() == m.right().Value());
}
if (m.left().IsInt32Sub() && m.right().Is(0)) { // x - y == 0 => x == y
Int32BinopMatcher msub(m.left().node());
node->ReplaceInput(0, msub.left().node());
node->ReplaceInput(1, msub.right().node());
return Changed(node);
}
// TODO(turbofan): fold HeapConstant, ExternalReference, pointer compares
if (m.LeftEqualsRight()) return ReplaceBool(true); // x == x => true
break;
}
case IrOpcode::kWord64Equal: {
Int64BinopMatcher m(node);
if (m.IsFoldable()) { // K == K => K
return ReplaceBool(m.left().Value() == m.right().Value());
}
if (m.left().IsInt64Sub() && m.right().Is(0)) { // x - y == 0 => x == y
Int64BinopMatcher msub(m.left().node());
node->ReplaceInput(0, msub.left().node());
node->ReplaceInput(1, msub.right().node());
return Changed(node);
}
// TODO(turbofan): fold HeapConstant, ExternalReference, pointer compares
if (m.LeftEqualsRight()) return ReplaceBool(true); // x == x => true
break;
}
case IrOpcode::kInt32Add:
return ReduceInt32Add(node);
case IrOpcode::kInt64Add:
return ReduceInt64Add(node);
case IrOpcode::kInt32Sub:
return ReduceInt32Sub(node);
case IrOpcode::kInt64Sub:
return ReduceInt64Sub(node);
case IrOpcode::kInt32Mul: {
Int32BinopMatcher m(node);
if (m.right().Is(0)) return Replace(m.right().node()); // x * 0 => 0
if (m.right().Is(1)) return Replace(m.left().node()); // x * 1 => x
if (m.IsFoldable()) { // K * K => K
return ReplaceInt32(
base::MulWithWraparound(m.left().Value(), m.right().Value()));
}
if (m.right().Is(-1)) { // x * -1 => 0 - x
node->ReplaceInput(0, Int32Constant(0));
node->ReplaceInput(1, m.left().node());
NodeProperties::ChangeOp(node, machine()->Int32Sub());
return Changed(node);
}
if (m.right().IsPowerOf2()) { // x * 2^n => x << n
node->ReplaceInput(1, Int32Constant(WhichPowerOf2(m.right().Value())));
NodeProperties::ChangeOp(node, machine()->Word32Shl());
Reduction reduction = ReduceWord32Shl(node);
return reduction.Changed() ? reduction : Changed(node);
}
break;
}
case IrOpcode::kInt32MulWithOverflow: {
Int32BinopMatcher m(node);
if (m.right().Is(2)) {
node->ReplaceInput(1, m.left().node());
NodeProperties::ChangeOp(node, machine()->Int32AddWithOverflow());
return Changed(node);
}
if (m.right().Is(-1)) {
node->ReplaceInput(0, Int32Constant(0));
node->ReplaceInput(1, m.left().node());
NodeProperties::ChangeOp(node, machine()->Int32SubWithOverflow());
return Changed(node);
}
break;
}
case IrOpcode::kInt32Div:
return ReduceInt32Div(node);
case IrOpcode::kUint32Div:
return ReduceUint32Div(node);
case IrOpcode::kInt32Mod:
return ReduceInt32Mod(node);
case IrOpcode::kUint32Mod:
return ReduceUint32Mod(node);
case IrOpcode::kInt32LessThan: {
Int32BinopMatcher m(node);
if (m.IsFoldable()) { // K < K => K
return ReplaceBool(m.left().Value() < m.right().Value());
}
if (m.LeftEqualsRight()) return ReplaceBool(false); // x < x => false
if (m.left().IsWord32Or() && m.right().Is(0)) {
// (x | K) < 0 => true or (K | x) < 0 => true iff K < 0
Int32BinopMatcher mleftmatcher(m.left().node());
if (mleftmatcher.left().IsNegative() ||
mleftmatcher.right().IsNegative()) {
return ReplaceBool(true);
}
}
break;
}
case IrOpcode::kInt32LessThanOrEqual: {
Int32BinopMatcher m(node);
if (m.IsFoldable()) { // K <= K => K
return ReplaceBool(m.left().Value() <= m.right().Value());
}
if (m.LeftEqualsRight()) return ReplaceBool(true); // x <= x => true
break;
}
case IrOpcode::kUint32LessThan: {
Uint32BinopMatcher m(node);
if (m.left().Is(kMaxUInt32)) return ReplaceBool(false); // M < x => false
if (m.right().Is(0)) return ReplaceBool(false); // x < 0 => false
if (m.IsFoldable()) { // K < K => K
return ReplaceBool(m.left().Value() < m.right().Value());
}
if (m.LeftEqualsRight()) return ReplaceBool(false); // x < x => false
if (m.left().IsWord32Sar() && m.right().HasValue()) {
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue()) {
// (x >> K) < C => x < (C << K)
// when C < (M >> K)
const uint32_t c = m.right().Value();
const uint32_t k = mleft.right().Value() & 0x1F;
if (c < static_cast<uint32_t>(kMaxInt >> k)) {
node->ReplaceInput(0, mleft.left().node());
node->ReplaceInput(1, Uint32Constant(c << k));
return Changed(node);
}
// TODO(turbofan): else the comparison is always true.
}
}
break;
}
case IrOpcode::kUint32LessThanOrEqual: {
Uint32BinopMatcher m(node);
if (m.left().Is(0)) return ReplaceBool(true); // 0 <= x => true
if (m.right().Is(kMaxUInt32)) return ReplaceBool(true); // x <= M => true
if (m.IsFoldable()) { // K <= K => K
return ReplaceBool(m.left().Value() <= m.right().Value());
}
if (m.LeftEqualsRight()) return ReplaceBool(true); // x <= x => true
break;
}
case IrOpcode::kFloat32Sub: {
Float32BinopMatcher m(node);
if (allow_signalling_nan_ && m.right().Is(0) &&
(std::copysign(1.0, m.right().Value()) > 0)) {
return Replace(m.left().node()); // x - 0 => x
}
if (m.right().IsNaN()) { // x - NaN => NaN
// Do some calculation to make a signalling NaN quiet.
return ReplaceFloat32(m.right().Value() - m.right().Value());
}
if (m.left().IsNaN()) { // NaN - x => NaN
// Do some calculation to make a signalling NaN quiet.
return ReplaceFloat32(m.left().Value() - m.left().Value());
}
if (m.IsFoldable()) { // L - R => (L - R)
return ReplaceFloat32(m.left().Value() - m.right().Value());
}
if (allow_signalling_nan_ && m.left().IsMinusZero()) {
// -0.0 - round_down(-0.0 - R) => round_up(R)
if (machine()->Float32RoundUp().IsSupported() &&
m.right().IsFloat32RoundDown()) {
if (m.right().InputAt(0)->opcode() == IrOpcode::kFloat32Sub) {
Float32BinopMatcher mright0(m.right().InputAt(0));
if (mright0.left().IsMinusZero()) {
return Replace(graph()->NewNode(machine()->Float32RoundUp().op(),
mright0.right().node()));
}
}
}
// -0.0 - R => -R
node->RemoveInput(0);
NodeProperties::ChangeOp(node, machine()->Float32Neg());
return Changed(node);
}
break;
}
case IrOpcode::kFloat64Add: {
Float64BinopMatcher m(node);
if (m.IsFoldable()) { // K + K => K
return ReplaceFloat64(m.left().Value() + m.right().Value());
}
break;
}
case IrOpcode::kFloat64Sub: {
Float64BinopMatcher m(node);
if (allow_signalling_nan_ && m.right().Is(0) &&
(Double(m.right().Value()).Sign() > 0)) {
return Replace(m.left().node()); // x - 0 => x
}
if (m.right().IsNaN()) { // x - NaN => NaN
// Do some calculation to make a signalling NaN quiet.
return ReplaceFloat64(m.right().Value() - m.right().Value());
}
if (m.left().IsNaN()) { // NaN - x => NaN
// Do some calculation to make a signalling NaN quiet.
return ReplaceFloat64(m.left().Value() - m.left().Value());
}
if (m.IsFoldable()) { // L - R => (L - R)
return ReplaceFloat64(m.left().Value() - m.right().Value());
}
if (allow_signalling_nan_ && m.left().IsMinusZero()) {
// -0.0 - round_down(-0.0 - R) => round_up(R)
if (machine()->Float64RoundUp().IsSupported() &&
m.right().IsFloat64RoundDown()) {
if (m.right().InputAt(0)->opcode() == IrOpcode::kFloat64Sub) {
Float64BinopMatcher mright0(m.right().InputAt(0));
if (mright0.left().IsMinusZero()) {
return Replace(graph()->NewNode(machine()->Float64RoundUp().op(),
mright0.right().node()));
}
}
}
// -0.0 - R => -R
node->RemoveInput(0);
NodeProperties::ChangeOp(node, machine()->Float64Neg());
return Changed(node);
}
break;
}
case IrOpcode::kFloat64Mul: {
Float64BinopMatcher m(node);
if (allow_signalling_nan_ && m.right().Is(1))
return Replace(m.left().node()); // x * 1.0 => x
if (m.right().Is(-1)) { // x * -1.0 => -0.0 - x
node->ReplaceInput(0, Float64Constant(-0.0));
node->ReplaceInput(1, m.left().node());
NodeProperties::ChangeOp(node, machine()->Float64Sub());
return Changed(node);
}
if (m.right().IsNaN()) { // x * NaN => NaN
// Do some calculation to make a signalling NaN quiet.
return ReplaceFloat64(m.right().Value() - m.right().Value());
}
if (m.IsFoldable()) { // K * K => K
return ReplaceFloat64(m.left().Value() * m.right().Value());
}
if (m.right().Is(2)) { // x * 2.0 => x + x
node->ReplaceInput(1, m.left().node());
NodeProperties::ChangeOp(node, machine()->Float64Add());
return Changed(node);
}
break;
}
case IrOpcode::kFloat64Div: {
Float64BinopMatcher m(node);
if (allow_signalling_nan_ && m.right().Is(1))
return Replace(m.left().node()); // x / 1.0 => x
// TODO(ahaas): We could do x / 1.0 = x if we knew that x is not an sNaN.
if (m.right().IsNaN()) { // x / NaN => NaN
// Do some calculation to make a signalling NaN quiet.
return ReplaceFloat64(m.right().Value() - m.right().Value());
}
if (m.left().IsNaN()) { // NaN / x => NaN
// Do some calculation to make a signalling NaN quiet.
return ReplaceFloat64(m.left().Value() - m.left().Value());
}
if (m.IsFoldable()) { // K / K => K
return ReplaceFloat64(
base::Divide(m.left().Value(), m.right().Value()));
}
if (allow_signalling_nan_ && m.right().Is(-1)) { // x / -1.0 => -x
node->RemoveInput(1);
NodeProperties::ChangeOp(node, machine()->Float64Neg());
return Changed(node);
}
if (m.right().IsNormal() && m.right().IsPositiveOrNegativePowerOf2()) {
// All reciprocals of non-denormal powers of two can be represented
// exactly, so division by power of two can be reduced to
// multiplication by reciprocal, with the same result.
node->ReplaceInput(1, Float64Constant(1.0 / m.right().Value()));
NodeProperties::ChangeOp(node, machine()->Float64Mul());
return Changed(node);
}
break;
}
case IrOpcode::kFloat64Mod: {
Float64BinopMatcher m(node);
if (m.right().Is(0)) { // x % 0 => NaN
return ReplaceFloat64(std::numeric_limits<double>::quiet_NaN());
}
if (m.right().IsNaN()) { // x % NaN => NaN
return Replace(m.right().node());
}
if (m.left().IsNaN()) { // NaN % x => NaN
return Replace(m.left().node());
}
if (m.IsFoldable()) { // K % K => K
return ReplaceFloat64(Modulo(m.left().Value(), m.right().Value()));
}
break;
}
case IrOpcode::kFloat64Acos: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceFloat64(base::ieee754::acos(m.Value()));
break;
}
case IrOpcode::kFloat64Acosh: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceFloat64(base::ieee754::acosh(m.Value()));
break;
}
case IrOpcode::kFloat64Asin: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceFloat64(base::ieee754::asin(m.Value()));
break;
}
case IrOpcode::kFloat64Asinh: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceFloat64(base::ieee754::asinh(m.Value()));
break;
}
case IrOpcode::kFloat64Atan: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceFloat64(base::ieee754::atan(m.Value()));
break;
}
case IrOpcode::kFloat64Atanh: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceFloat64(base::ieee754::atanh(m.Value()));
break;
}
case IrOpcode::kFloat64Atan2: {
Float64BinopMatcher m(node);
if (m.right().IsNaN()) {
return Replace(m.right().node());
}
if (m.left().IsNaN()) {
return Replace(m.left().node());
}
if (m.IsFoldable()) {
return ReplaceFloat64(
base::ieee754::atan2(m.left().Value(), m.right().Value()));
}
break;
}
case IrOpcode::kFloat64Cbrt: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceFloat64(base::ieee754::cbrt(m.Value()));
break;
}
case IrOpcode::kFloat64Cos: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceFloat64(base::ieee754::cos(m.Value()));
break;
}
case IrOpcode::kFloat64Cosh: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceFloat64(base::ieee754::cosh(m.Value()));
break;
}
case IrOpcode::kFloat64Exp: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceFloat64(base::ieee754::exp(m.Value()));
break;
}
case IrOpcode::kFloat64Expm1: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceFloat64(base::ieee754::expm1(m.Value()));
break;
}
case IrOpcode::kFloat64Log: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceFloat64(base::ieee754::log(m.Value()));
break;
}
case IrOpcode::kFloat64Log1p: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceFloat64(base::ieee754::log1p(m.Value()));
break;
}
case IrOpcode::kFloat64Log10: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceFloat64(base::ieee754::log10(m.Value()));
break;
}
case IrOpcode::kFloat64Log2: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceFloat64(base::ieee754::log2(m.Value()));
break;
}
case IrOpcode::kFloat64Pow: {
Float64BinopMatcher m(node);
if (m.IsFoldable()) {
return ReplaceFloat64(
base::ieee754::pow(m.left().Value(), m.right().Value()));
} else if (m.right().Is(0.0)) { // x ** +-0.0 => 1.0
return ReplaceFloat64(1.0);
} else if (m.right().Is(-2.0)) { // x ** -2.0 => 1 / (x * x)
node->ReplaceInput(0, Float64Constant(1.0));
node->ReplaceInput(1, Float64Mul(m.left().node(), m.left().node()));
NodeProperties::ChangeOp(node, machine()->Float64Div());
return Changed(node);
} else if (m.right().Is(2.0)) { // x ** 2.0 => x * x
node->ReplaceInput(1, m.left().node());
NodeProperties::ChangeOp(node, machine()->Float64Mul());
return Changed(node);
} else if (m.right().Is(-0.5)) {
// x ** 0.5 => 1 / (if x <= -Infinity then Infinity else sqrt(0.0 + x))
node->ReplaceInput(0, Float64Constant(1.0));
node->ReplaceInput(1, Float64PowHalf(m.left().node()));
NodeProperties::ChangeOp(node, machine()->Float64Div());
return Changed(node);
} else if (m.right().Is(0.5)) {
// x ** 0.5 => if x <= -Infinity then Infinity else sqrt(0.0 + x)
return Replace(Float64PowHalf(m.left().node()));
}
break;
}
case IrOpcode::kFloat64Sin: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceFloat64(base::ieee754::sin(m.Value()));
break;
}
case IrOpcode::kFloat64Sinh: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceFloat64(base::ieee754::sinh(m.Value()));
break;
}
case IrOpcode::kFloat64Tan: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceFloat64(base::ieee754::tan(m.Value()));
break;
}
case IrOpcode::kFloat64Tanh: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceFloat64(base::ieee754::tanh(m.Value()));
break;
}
case IrOpcode::kChangeFloat32ToFloat64: {
Float32Matcher m(node->InputAt(0));
if (m.HasValue()) {
if (!allow_signalling_nan_ && std::isnan(m.Value())) {
// Do some calculation to make guarantee the value is a quiet NaN.
return ReplaceFloat64(m.Value() + m.Value());
}
return ReplaceFloat64(m.Value());
}
break;
}
case IrOpcode::kChangeFloat64ToInt32: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceInt32(FastD2IChecked(m.Value()));
if (m.IsChangeInt32ToFloat64()) return Replace(m.node()->InputAt(0));
break;
}
case IrOpcode::kChangeFloat64ToInt64: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceInt64(static_cast<int64_t>(m.Value()));
if (m.IsChangeInt64ToFloat64()) return Replace(m.node()->InputAt(0));
break;
}
case IrOpcode::kChangeFloat64ToUint32: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceInt32(FastD2UI(m.Value()));
if (m.IsChangeUint32ToFloat64()) return Replace(m.node()->InputAt(0));
break;
}
case IrOpcode::kChangeInt32ToFloat64: {
Int32Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceFloat64(FastI2D(m.Value()));
break;
}
case IrOpcode::kChangeInt32ToInt64: {
Int32Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceInt64(m.Value());
break;
}
case IrOpcode::kChangeInt64ToFloat64: {
Int64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceFloat64(static_cast<double>(m.Value()));
if (m.IsChangeFloat64ToInt64()) return Replace(m.node()->InputAt(0));
break;
}
case IrOpcode::kChangeUint32ToFloat64: {
Uint32Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceFloat64(FastUI2D(m.Value()));
break;
}
case IrOpcode::kChangeUint32ToUint64: {
Uint32Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceInt64(static_cast<uint64_t>(m.Value()));
break;
}
case IrOpcode::kTruncateFloat64ToWord32: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceInt32(DoubleToInt32(m.Value()));
if (m.IsChangeInt32ToFloat64()) return Replace(m.node()->InputAt(0));
return NoChange();
}
case IrOpcode::kTruncateInt64ToInt32: {
Int64Matcher m(node->InputAt(0));
if (m.HasValue()) return ReplaceInt32(static_cast<int32_t>(m.Value()));
if (m.IsChangeInt32ToInt64()) return Replace(m.node()->InputAt(0));
break;
}
case IrOpcode::kTruncateFloat64ToFloat32: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) {
if (!allow_signalling_nan_ && std::isnan(m.Value())) {
// Do some calculation to make guarantee the value is a quiet NaN.
return ReplaceFloat32(DoubleToFloat32(m.Value() + m.Value()));
}
return ReplaceFloat32(DoubleToFloat32(m.Value()));
}
if (allow_signalling_nan_ && m.IsChangeFloat32ToFloat64())
return Replace(m.node()->InputAt(0));
break;
}
case IrOpcode::kRoundFloat64ToInt32: {
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) {
return ReplaceInt32(DoubleToInt32(m.Value()));
}
if (m.IsChangeInt32ToFloat64()) return Replace(m.node()->InputAt(0));
break;
}
case IrOpcode::kFloat64InsertLowWord32:
return ReduceFloat64InsertLowWord32(node);
case IrOpcode::kFloat64InsertHighWord32:
return ReduceFloat64InsertHighWord32(node);
case IrOpcode::kStore:
case IrOpcode::kUnalignedStore:
return ReduceStore(node);
case IrOpcode::kFloat64Equal:
case IrOpcode::kFloat64LessThan:
case IrOpcode::kFloat64LessThanOrEqual:
return ReduceFloat64Compare(node);
case IrOpcode::kFloat64RoundDown:
return ReduceFloat64RoundDown(node);
case IrOpcode::kBitcastTaggedToWord:
case IrOpcode::kBitcastTaggedSignedToWord: {
NodeMatcher m(node->InputAt(0));
if (m.IsBitcastWordToTaggedSigned()) {
RelaxEffectsAndControls(node);
return Replace(m.InputAt(0));
}
break;
}
default:
break;
}
return NoChange();
}
Reduction MachineOperatorReducer::ReduceInt32Add(Node* node) {
DCHECK_EQ(IrOpcode::kInt32Add, node->opcode());
Int32BinopMatcher m(node);
if (m.right().Is(0)) return Replace(m.left().node()); // x + 0 => x
if (m.IsFoldable()) { // K + K => K
return ReplaceInt32(
base::AddWithWraparound(m.left().Value(), m.right().Value()));
}
if (m.left().IsInt32Sub()) {
Int32BinopMatcher mleft(m.left().node());
if (mleft.left().Is(0)) { // (0 - x) + y => y - x
node->ReplaceInput(0, m.right().node());
node->ReplaceInput(1, mleft.right().node());
NodeProperties::ChangeOp(node, machine()->Int32Sub());
Reduction const reduction = ReduceInt32Sub(node);
return reduction.Changed() ? reduction : Changed(node);
}
}
if (m.right().IsInt32Sub()) {
Int32BinopMatcher mright(m.right().node());
if (mright.left().Is(0)) { // y + (0 - x) => y - x
node->ReplaceInput(1, mright.right().node());
NodeProperties::ChangeOp(node, machine()->Int32Sub());
Reduction const reduction = ReduceInt32Sub(node);
return reduction.Changed() ? reduction : Changed(node);
}
}
// (x + Int32Constant(a)) + Int32Constant(b)) => x + Int32Constant(a + b)
if (m.right().HasValue() && m.left().IsInt32Add()) {
Int32BinopMatcher n(m.left().node());
if (n.right().HasValue() && m.OwnsInput(m.left().node())) {
node->ReplaceInput(1, Int32Constant(base::AddWithWraparound(
m.right().Value(), n.right().Value())));
node->ReplaceInput(0, n.left().node());
return Changed(node);
}
}
return NoChange();
}
Reduction MachineOperatorReducer::ReduceInt64Add(Node* node) {
DCHECK_EQ(IrOpcode::kInt64Add, node->opcode());
Int64BinopMatcher m(node);
if (m.right().Is(0)) return Replace(m.left().node()); // x + 0 => 0
if (m.IsFoldable()) {
return ReplaceInt64(
base::AddWithWraparound(m.left().Value(), m.right().Value()));
}
// (x + Int64Constant(a)) + Int64Constant(b)) => x + Int64Constant(a + b)
if (m.right().HasValue() && m.left().IsInt64Add()) {
Int64BinopMatcher n(m.left().node());
if (n.right().HasValue() && m.OwnsInput(m.left().node())) {
node->ReplaceInput(1, Int64Constant(base::AddWithWraparound(
m.right().Value(), n.right().Value())));
node->ReplaceInput(0, n.left().node());
return Changed(node);
}
}
return NoChange();
}
Reduction MachineOperatorReducer::ReduceInt32Sub(Node* node) {
DCHECK_EQ(IrOpcode::kInt32Sub, node->opcode());
Int32BinopMatcher m(node);
if (m.right().Is(0)) return Replace(m.left().node()); // x - 0 => x
if (m.IsFoldable()) { // K - K => K
return ReplaceInt32(
base::SubWithWraparound(m.left().Value(), m.right().Value()));
}
if (m.LeftEqualsRight()) return ReplaceInt32(0); // x - x => 0
if (m.right().HasValue()) { // x - K => x + -K
node->ReplaceInput(
1, Int32Constant(base::NegateWithWraparound(m.right().Value())));
NodeProperties::ChangeOp(node, machine()->Int32Add());
Reduction const reduction = ReduceInt32Add(node);
return reduction.Changed() ? reduction : Changed(node);
}
return NoChange();
}
Reduction MachineOperatorReducer::ReduceInt64Sub(Node* node) {
DCHECK_EQ(IrOpcode::kInt64Sub, node->opcode());
Int64BinopMatcher m(node);
if (m.right().Is(0)) return Replace(m.left().node()); // x - 0 => x
if (m.IsFoldable()) { // K - K => K
return ReplaceInt64(
base::SubWithWraparound(m.left().Value(), m.right().Value()));
}
if (m.LeftEqualsRight()) return Replace(Int64Constant(0)); // x - x => 0
if (m.right().HasValue()) { // x - K => x + -K
node->ReplaceInput(
1, Int64Constant(base::NegateWithWraparound(m.right().Value())));
NodeProperties::ChangeOp(node, machine()->Int64Add());
Reduction const reduction = ReduceInt64Add(node);
return reduction.Changed() ? reduction : Changed(node);
}
return NoChange();
}
Reduction MachineOperatorReducer::ReduceInt32Div(Node* node) {
Int32BinopMatcher m(node);
if (m.left().Is(0)) return Replace(m.left().node()); // 0 / x => 0
if (m.right().Is(0)) return Replace(m.right().node()); // x / 0 => 0
if (m.right().Is(1)) return Replace(m.left().node()); // x / 1 => x
if (m.IsFoldable()) { // K / K => K
return ReplaceInt32(
base::bits::SignedDiv32(m.left().Value(), m.right().Value()));
}
if (m.LeftEqualsRight()) { // x / x => x != 0
Node* const zero = Int32Constant(0);
return Replace(Word32Equal(Word32Equal(m.left().node(), zero), zero));
}
if (m.right().Is(-1)) { // x / -1 => 0 - x
node->ReplaceInput(0, Int32Constant(0));
node->ReplaceInput(1, m.left().node());
node->TrimInputCount(2);
NodeProperties::ChangeOp(node, machine()->Int32Sub());
return Changed(node);
}
if (m.right().HasValue()) {
int32_t const divisor = m.right().Value();
Node* const dividend = m.left().node();
Node* quotient = dividend;
if (base::bits::IsPowerOfTwo(Abs(divisor))) {
uint32_t const shift = WhichPowerOf2(Abs(divisor));
DCHECK_NE(0u, shift);
if (shift > 1) {
quotient = Word32Sar(quotient, 31);
}
quotient = Int32Add(Word32Shr(quotient, 32u - shift), dividend);
quotient = Word32Sar(quotient, shift);
} else {
quotient = Int32Div(quotient, Abs(divisor));
}
if (divisor < 0) {
node->ReplaceInput(0, Int32Constant(0));
node->ReplaceInput(1, quotient);
node->TrimInputCount(2);
NodeProperties::ChangeOp(node, machine()->Int32Sub());
return Changed(node);
}
return Replace(quotient);
}
return NoChange();
}
Reduction MachineOperatorReducer::ReduceUint32Div(Node* node) {
Uint32BinopMatcher m(node);
if (m.left().Is(0)) return Replace(m.left().node()); // 0 / x => 0
if (m.right().Is(0)) return Replace(m.right().node()); // x / 0 => 0
if (m.right().Is(1)) return Replace(m.left().node()); // x / 1 => x
if (m.IsFoldable()) { // K / K => K
return ReplaceUint32(
base::bits::UnsignedDiv32(m.left().Value(), m.right().Value()));
}
if (m.LeftEqualsRight()) { // x / x => x != 0
Node* const zero = Int32Constant(0);
return Replace(Word32Equal(Word32Equal(m.left().node(), zero), zero));
}
if (m.right().HasValue()) {
Node* const dividend = m.left().node();
uint32_t const divisor = m.right().Value();
if (base::bits::IsPowerOfTwo(divisor)) { // x / 2^n => x >> n
node->ReplaceInput(1, Uint32Constant(WhichPowerOf2(m.right().Value())));
node->TrimInputCount(2);
NodeProperties::ChangeOp(node, machine()->Word32Shr());
return Changed(node);
} else {
return Replace(Uint32Div(dividend, divisor));
}
}
return NoChange();
}
Reduction MachineOperatorReducer::ReduceInt32Mod(Node* node) {
Int32BinopMatcher m(node);
if (m.left().Is(0)) return Replace(m.left().node()); // 0 % x => 0
if (m.right().Is(0)) return Replace(m.right().node()); // x % 0 => 0
if (m.right().Is(1)) return ReplaceInt32(0); // x % 1 => 0
if (m.right().Is(-1)) return ReplaceInt32(0); // x % -1 => 0
if (m.LeftEqualsRight()) return ReplaceInt32(0); // x % x => 0
if (m.IsFoldable()) { // K % K => K
return ReplaceInt32(
base::bits::SignedMod32(m.left().Value(), m.right().Value()));
}
if (m.right().HasValue()) {
Node* const dividend = m.left().node();
uint32_t const divisor = Abs(m.right().Value());
if (base::bits::IsPowerOfTwo(divisor)) {
uint32_t const mask = divisor - 1;
Node* const zero = Int32Constant(0);
Diamond d(graph(), common(),
graph()->NewNode(machine()->Int32LessThan(), dividend, zero),
BranchHint::kFalse);
return Replace(
d.Phi(MachineRepresentation::kWord32,
Int32Sub(zero, Word32And(Int32Sub(zero, dividend), mask)),
Word32And(dividend, mask)));
} else {
Node* quotient = Int32Div(dividend, divisor);
DCHECK_EQ(dividend, node->InputAt(0));
node->ReplaceInput(1, Int32Mul(quotient, Int32Constant(divisor)));
node->TrimInputCount(2);
NodeProperties::ChangeOp(node, machine()->Int32Sub());
}
return Changed(node);
}
return NoChange();
}
Reduction MachineOperatorReducer::ReduceUint32Mod(Node* node) {
Uint32BinopMatcher m(node);
if (m.left().Is(0)) return Replace(m.left().node()); // 0 % x => 0
if (m.right().Is(0)) return Replace(m.right().node()); // x % 0 => 0
if (m.right().Is(1)) return ReplaceUint32(0); // x % 1 => 0
if (m.LeftEqualsRight()) return ReplaceInt32(0); // x % x => 0
if (m.IsFoldable()) { // K % K => K
return ReplaceUint32(
base::bits::UnsignedMod32(m.left().Value(), m.right().Value()));
}
if (m.right().HasValue()) {
Node* const dividend = m.left().node();
uint32_t const divisor = m.right().Value();
if (base::bits::IsPowerOfTwo(divisor)) { // x % 2^n => x & 2^n-1
node->ReplaceInput(1, Uint32Constant(m.right().Value() - 1));
node->TrimInputCount(2);
NodeProperties::ChangeOp(node, machine()->Word32And());
} else {
Node* quotient = Uint32Div(dividend, divisor);
DCHECK_EQ(dividend, node->InputAt(0));
node->ReplaceInput(1, Int32Mul(quotient, Uint32Constant(divisor)));
node->TrimInputCount(2);
NodeProperties::ChangeOp(node, machine()->Int32Sub());
}
return Changed(node);
}
return NoChange();
}
Reduction MachineOperatorReducer::ReduceStore(Node* node) {
NodeMatcher nm(node);
MachineRepresentation rep;
int value_input;
if (nm.IsStore()) {
rep = StoreRepresentationOf(node->op()).representation();
value_input = 2;
} else {
DCHECK(nm.IsUnalignedStore());
rep = UnalignedStoreRepresentationOf(node->op());
value_input = 2;
}
Node* const value = node->InputAt(value_input);
switch (value->opcode()) {
case IrOpcode::kWord32And: {
Uint32BinopMatcher m(value);
if (m.right().HasValue() && ((rep == MachineRepresentation::kWord8 &&
(m.right().Value() & 0xFF) == 0xFF) ||
(rep == MachineRepresentation::kWord16 &&
(m.right().Value() & 0xFFFF) == 0xFFFF))) {
node->ReplaceInput(value_input, m.left().node());
return Changed(node);
}
break;
}
case IrOpcode::kWord32Sar: {
Int32BinopMatcher m(value);
if (m.left().IsWord32Shl() && ((rep == MachineRepresentation::kWord8 &&
m.right().IsInRange(1, 24)) ||
(rep == MachineRepresentation::kWord16 &&
m.right().IsInRange(1, 16)))) {
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().Is(m.right().Value())) {
node->ReplaceInput(value_input, mleft.left().node());
return Changed(node);
}
}
break;
}
default:
break;
}
return NoChange();
}
Reduction MachineOperatorReducer::ReduceProjection(size_t index, Node* node) {
switch (node->opcode()) {
case IrOpcode::kInt32AddWithOverflow: {
DCHECK(index == 0 || index == 1);
Int32BinopMatcher m(node);
if (m.IsFoldable()) {
int32_t val;
bool ovf = base::bits::SignedAddOverflow32(m.left().Value(),
m.right().Value(), &val);
return ReplaceInt32(index == 0 ? val : ovf);
}
if (m.right().Is(0)) {
return Replace(index == 0 ? m.left().node() : m.right().node());
}
break;
}
case IrOpcode::kInt32SubWithOverflow: {
DCHECK(index == 0 || index == 1);
Int32BinopMatcher m(node);
if (m.IsFoldable()) {
int32_t val;
bool ovf = base::bits::SignedSubOverflow32(m.left().Value(),
m.right().Value(), &val);
return ReplaceInt32(index == 0 ? val : ovf);
}
if (m.right().Is(0)) {
return Replace(index == 0 ? m.left().node() : m.right().node());
}
break;
}
case IrOpcode::kInt32MulWithOverflow: {
DCHECK(index == 0 || index == 1);
Int32BinopMatcher m(node);
if (m.IsFoldable()) {
int32_t val;
bool ovf = base::bits::SignedMulOverflow32(m.left().Value(),
m.right().Value(), &val);
return ReplaceInt32(index == 0 ? val : ovf);
}
if (m.right().Is(0)) {
return Replace(m.right().node());
}
if (m.right().Is(1)) {
return index == 0 ? Replace(m.left().node()) : ReplaceInt32(0);
}
break;
}
default:
break;
}
return NoChange();
}
Reduction MachineOperatorReducer::ReduceWord32Shifts(Node* node) {
DCHECK((node->opcode() == IrOpcode::kWord32Shl) ||
(node->opcode() == IrOpcode::kWord32Shr) ||
(node->opcode() == IrOpcode::kWord32Sar));
if (machine()->Word32ShiftIsSafe()) {
// Remove the explicit 'and' with 0x1F if the shift provided by the machine
// instruction matches that required by JavaScript.
Int32BinopMatcher m(node);
if (m.right().IsWord32And()) {
Int32BinopMatcher mright(m.right().node());
if (mright.right().Is(0x1F)) {
node->ReplaceInput(1, mright.left().node());
return Changed(node);
}
}
}
return NoChange();
}
Reduction MachineOperatorReducer::ReduceWord32Shl(Node* node) {
DCHECK_EQ(IrOpcode::kWord32Shl, node->opcode());
Int32BinopMatcher m(node);
if (m.right().Is(0)) return Replace(m.left().node()); // x << 0 => x
if (m.IsFoldable()) { // K << K => K
return ReplaceInt32(
base::ShlWithWraparound(m.left().Value(), m.right().Value()));
}
if (m.right().IsInRange(1, 31)) {
// (x >>> K) << K => x & ~(2^K - 1)
// (x >> K) << K => x & ~(2^K - 1)
if (m.left().IsWord32Sar() || m.left().IsWord32Shr()) {
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().Is(m.right().Value())) {
node->ReplaceInput(0, mleft.left().node());
node->ReplaceInput(1,
Uint32Constant(~((1U << m.right().Value()) - 1U)));
NodeProperties::ChangeOp(node, machine()->Word32And());
Reduction reduction = ReduceWord32And(node);
return reduction.Changed() ? reduction : Changed(node);
}
}
}
return ReduceWord32Shifts(node);
}
Reduction MachineOperatorReducer::ReduceWord64Shl(Node* node) {
DCHECK_EQ(IrOpcode::kWord64Shl, node->opcode());
Int64BinopMatcher m(node);
if (m.right().Is(0)) return Replace(m.left().node()); // x << 0 => x
if (m.IsFoldable()) { // K << K => K
return ReplaceInt64(
base::ShlWithWraparound(m.left().Value(), m.right().Value()));
}
return NoChange();
}
Reduction MachineOperatorReducer::ReduceWord32Shr(Node* node) {
Uint32BinopMatcher m(node);
if (m.right().Is(0)) return Replace(m.left().node()); // x >>> 0 => x
if (m.IsFoldable()) { // K >>> K => K
return ReplaceInt32(m.left().Value() >> (m.right().Value() & 31));
}
if (m.left().IsWord32And() && m.right().HasValue()) {
Uint32BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue()) {
uint32_t shift = m.right().Value() & 31;
uint32_t mask = mleft.right().Value();
if ((mask >> shift) == 0) {
// (m >>> s) == 0 implies ((x & m) >>> s) == 0
return ReplaceInt32(0);
}
}
}
return ReduceWord32Shifts(node);
}
Reduction MachineOperatorReducer::ReduceWord64Shr(Node* node) {
DCHECK_EQ(IrOpcode::kWord64Shr, node->opcode());
Uint64BinopMatcher m(node);
if (m.right().Is(0)) return Replace(m.left().node()); // x >>> 0 => x
if (m.IsFoldable()) { // K >> K => K
return ReplaceInt64(m.left().Value() >> (m.right().Value() & 63));
}
return NoChange();
}
Reduction MachineOperatorReducer::ReduceWord32Sar(Node* node) {
Int32BinopMatcher m(node);
if (m.right().Is(0)) return Replace(m.left().node()); // x >> 0 => x
if (m.IsFoldable()) { // K >> K => K
return ReplaceInt32(m.left().Value() >> (m.right().Value() & 31));
}
if (m.left().IsWord32Shl()) {
Int32BinopMatcher mleft(m.left().node());
if (mleft.left().IsComparison()) {
if (m.right().Is(31) && mleft.right().Is(31)) {
// Comparison << 31 >> 31 => 0 - Comparison
node->ReplaceInput(0, Int32Constant(0));
node->ReplaceInput(1, mleft.left().node());
NodeProperties::ChangeOp(node, machine()->Int32Sub());
Reduction const reduction = ReduceInt32Sub(node);
return reduction.Changed() ? reduction : Changed(node);
}
} else if (mleft.left().IsLoad()) {
LoadRepresentation const rep =
LoadRepresentationOf(mleft.left().node()->op());
if (m.right().Is(24) && mleft.right().Is(24) &&
rep == MachineType::Int8()) {
// Load[kMachInt8] << 24 >> 24 => Load[kMachInt8]
return Replace(mleft.left().node());
}
if (m.right().Is(16) && mleft.right().Is(16) &&
rep == MachineType::Int16()) {
// Load[kMachInt16] << 16 >> 16 => Load[kMachInt8]
return Replace(mleft.left().node());
}
}
}
return ReduceWord32Shifts(node);
}
Reduction MachineOperatorReducer::ReduceWord64Sar(Node* node) {
Int64BinopMatcher m(node);
if (m.right().Is(0)) return Replace(m.left().node()); // x >> 0 => x
if (m.IsFoldable()) {
return ReplaceInt64(m.left().Value() >> (m.right().Value() & 63));
}
return NoChange();
}
Reduction MachineOperatorReducer::ReduceWord32And(Node* node) {
DCHECK_EQ(IrOpcode::kWord32And, node->opcode());
Int32BinopMatcher m(node);
if (m.right().Is(0)) return Replace(m.right().node()); // x & 0 => 0
if (m.right().Is(-1)) return Replace(m.left().node()); // x & -1 => x
if (m.left().IsComparison() && m.right().Is(1)) { // CMP & 1 => CMP
return Replace(m.left().node());
}
if (m.IsFoldable()) { // K & K => K
return ReplaceInt32(m.left().Value() & m.right().Value());
}
if (m.LeftEqualsRight()) return Replace(m.left().node()); // x & x => x
if (m.left().IsWord32And() && m.right().HasValue()) {
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue()) { // (x & K) & K => x & K
node->ReplaceInput(0, mleft.left().node());
node->ReplaceInput(
1, Int32Constant(m.right().Value() & mleft.right().Value()));
Reduction const reduction = ReduceWord32And(node);
return reduction.Changed() ? reduction : Changed(node);
}
}
if (m.right().IsNegativePowerOf2()) {
int32_t const mask = m.right().Value();
int32_t const neg_mask = base::NegateWithWraparound(mask);
if (m.left().IsWord32Shl()) {
Uint32BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue() &&
(mleft.right().Value() & 0x1F) >=
base::bits::CountTrailingZeros(mask)) {
// (x << L) & (-1 << K) => x << L iff L >= K
return Replace(mleft.node());
}
} else if (m.left().IsInt32Add()) {
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue() &&
(mleft.right().Value() & mask) == mleft.right().Value()) {
// (x + (K << L)) & (-1 << L) => (x & (-1 << L)) + (K << L)
node->ReplaceInput(0, Word32And(mleft.left().node(), m.right().node()));
node->ReplaceInput(1, mleft.right().node());
NodeProperties::ChangeOp(node, machine()->Int32Add());
Reduction const reduction = ReduceInt32Add(node);
return reduction.Changed() ? reduction : Changed(node);
}
if (mleft.left().IsInt32Mul()) {
Int32BinopMatcher mleftleft(mleft.left().node());
if (mleftleft.right().IsMultipleOf(neg_mask)) {
// (y * (K << L) + x) & (-1 << L) => (x & (-1 << L)) + y * (K << L)
node->ReplaceInput(0,
Word32And(mleft.right().node(), m.right().node()));
node->ReplaceInput(1, mleftleft.node());
NodeProperties::ChangeOp(node, machine()->Int32Add());
Reduction const reduction = ReduceInt32Add(node);
return reduction.Changed() ? reduction : Changed(node);
}
}
if (mleft.right().IsInt32Mul()) {
Int32BinopMatcher mleftright(mleft.right().node());
if (mleftright.right().IsMultipleOf(neg_mask)) {
// (x + y * (K << L)) & (-1 << L) => (x & (-1 << L)) + y * (K << L)
node->ReplaceInput(0,
Word32And(mleft.left().node(), m.right().node()));
node->ReplaceInput(1, mleftright.node());
NodeProperties::ChangeOp(node, machine()->Int32Add());
Reduction const reduction = ReduceInt32Add(node);
return reduction.Changed() ? reduction : Changed(node);
}
}
if (mleft.left().IsWord32Shl()) {
Int32BinopMatcher mleftleft(mleft.left().node());
if (mleftleft.right().Is(base::bits::CountTrailingZeros(mask))) {
// (y << L + x) & (-1 << L) => (x & (-1 << L)) + y << L
node->ReplaceInput(0,
Word32And(mleft.right().node(), m.right().node()));
node->ReplaceInput(1, mleftleft.node());
NodeProperties::ChangeOp(node, machine()->Int32Add());
Reduction const reduction = ReduceInt32Add(node);
return reduction.Changed() ? reduction : Changed(node);
}
}
if (mleft.right().IsWord32Shl()) {
Int32BinopMatcher mleftright(mleft.right().node());
if (mleftright.right().Is(base::bits::CountTrailingZeros(mask))) {
// (x + y << L) & (-1 << L) => (x & (-1 << L)) + y << L
node->ReplaceInput(0,
Word32And(mleft.left().node(), m.right().node()));
node->ReplaceInput(1, mleftright.node());
NodeProperties::ChangeOp(node, machine()->Int32Add());
Reduction const reduction = ReduceInt32Add(node);
return reduction.Changed() ? reduction : Changed(node);
}
}
} else if (m.left().IsInt32Mul()) {
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().IsMultipleOf(neg_mask)) {
// (x * (K << L)) & (-1 << L) => x * (K << L)
return Replace(mleft.node());
}
}
}
return NoChange();
}
Reduction MachineOperatorReducer::TryMatchWord32Ror(Node* node) {
DCHECK(IrOpcode::kWord32Or == node->opcode() ||
IrOpcode::kWord32Xor == node->opcode());
Int32BinopMatcher m(node);
Node* shl = nullptr;
Node* shr = nullptr;
// Recognize rotation, we are matching:
// * x << y | x >>> (32 - y) => x ror (32 - y), i.e x rol y
// * x << (32 - y) | x >>> y => x ror y
// * x << y ^ x >>> (32 - y) => x ror (32 - y), i.e. x rol y
// * x << (32 - y) ^ x >>> y => x ror y
// as well as their commuted form.
if (m.left().IsWord32Shl() && m.right().IsWord32Shr()) {
shl = m.left().node();
shr = m.right().node();
} else if (m.left().IsWord32Shr() && m.right().IsWord32Shl()) {
shl = m.right().node();
shr = m.left().node();
} else {
return NoChange();
}
Int32BinopMatcher mshl(shl);
Int32BinopMatcher mshr(shr);
if (mshl.left().node() != mshr.left().node()) return NoChange();
if (mshl.right().HasValue() && mshr.right().HasValue()) {
// Case where y is a constant.
if (mshl.right().Value() + mshr.right().Value() != 32) return NoChange();
} else {
Node* sub = nullptr;
Node* y = nullptr;
if (mshl.right().IsInt32Sub()) {
sub = mshl.right().node();
y = mshr.right().node();
} else if (mshr.right().IsInt32Sub()) {
sub = mshr.right().node();
y = mshl.right().node();
} else {
return NoChange();
}
Int32BinopMatcher msub(sub);
if (!msub.left().Is(32) || msub.right().node() != y) return NoChange();
}
node->ReplaceInput(0, mshl.left().node());
node->ReplaceInput(1, mshr.right().node());
NodeProperties::ChangeOp(node, machine()->Word32Ror());
return Changed(node);
}
Reduction MachineOperatorReducer::ReduceWord32Or(Node* node) {
DCHECK_EQ(IrOpcode::kWord32Or, node->opcode());
Int32BinopMatcher m(node);
if (m.right().Is(0)) return Replace(m.left().node()); // x | 0 => x
if (m.right().Is(-1)) return Replace(m.right().node()); // x | -1 => -1
if (m.IsFoldable()) { // K | K => K
return ReplaceInt32(m.left().Value() | m.right().Value());
}
if (m.LeftEqualsRight()) return Replace(m.left().node()); // x | x => x
return TryMatchWord32Ror(node);
}
Reduction MachineOperatorReducer::ReduceWord32Xor(Node* node) {
DCHECK_EQ(IrOpcode::kWord32Xor, node->opcode());
Int32BinopMatcher m(node);
if (m.right().Is(0)) return Replace(m.left().node()); // x ^ 0 => x
if (m.IsFoldable()) { // K ^ K => K
return ReplaceInt32(m.left().Value() ^ m.right().Value());
}
if (m.LeftEqualsRight()) return ReplaceInt32(0); // x ^ x => 0
if (m.left().IsWord32Xor() && m.right().Is(-1)) {
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().Is(-1)) { // (x ^ -1) ^ -1 => x
return Replace(mleft.left().node());
}
}
return TryMatchWord32Ror(node);
}
Reduction MachineOperatorReducer::ReduceFloat64InsertLowWord32(Node* node) {
DCHECK_EQ(IrOpcode::kFloat64InsertLowWord32, node->opcode());
Float64Matcher mlhs(node->InputAt(0));
Uint32Matcher mrhs(node->InputAt(1));
if (mlhs.HasValue() && mrhs.HasValue()) {
return ReplaceFloat64(bit_cast<double>(
(bit_cast<uint64_t>(mlhs.Value()) & uint64_t{0xFFFFFFFF00000000}) |
mrhs.Value()));
}
return NoChange();
}
Reduction MachineOperatorReducer::ReduceFloat64InsertHighWord32(Node* node) {
DCHECK_EQ(IrOpcode::kFloat64InsertHighWord32, node->opcode());
Float64Matcher mlhs(node->InputAt(0));
Uint32Matcher mrhs(node->InputAt(1));
if (mlhs.HasValue() && mrhs.HasValue()) {
return ReplaceFloat64(bit_cast<double>(
(bit_cast<uint64_t>(mlhs.Value()) & uint64_t{0xFFFFFFFF}) |
(static_cast<uint64_t>(mrhs.Value()) << 32)));
}
return NoChange();
}
namespace {
bool IsFloat64RepresentableAsFloat32(const Float64Matcher& m) {
if (m.HasValue()) {
double v = m.Value();
return DoubleToFloat32(v) == v;
}
return false;
}
} // namespace
Reduction MachineOperatorReducer::ReduceFloat64Compare(Node* node) {
DCHECK(IrOpcode::kFloat64Equal == node->opcode() ||
IrOpcode::kFloat64LessThan == node->opcode() ||
IrOpcode::kFloat64LessThanOrEqual == node->opcode());
Float64BinopMatcher m(node);
if (m.IsFoldable()) {
switch (node->opcode()) {
case IrOpcode::kFloat64Equal:
return ReplaceBool(m.left().Value() == m.right().Value());
case IrOpcode::kFloat64LessThan:
return ReplaceBool(m.left().Value() < m.right().Value());
case IrOpcode::kFloat64LessThanOrEqual:
return ReplaceBool(m.left().Value() <= m.right().Value());
default:
UNREACHABLE();
}
} else if ((m.left().IsChangeFloat32ToFloat64() &&
m.right().IsChangeFloat32ToFloat64()) ||
(m.left().IsChangeFloat32ToFloat64() &&
IsFloat64RepresentableAsFloat32(m.right())) ||
(IsFloat64RepresentableAsFloat32(m.left()) &&
m.right().IsChangeFloat32ToFloat64())) {
// As all Float32 values have an exact representation in Float64, comparing
// two Float64 values both converted from Float32 is equivalent to comparing
// the original Float32s, so we can ignore the conversions. We can also
// reduce comparisons of converted Float64 values against constants that
// can be represented exactly as Float32.
switch (node->opcode()) {
case IrOpcode::kFloat64Equal:
NodeProperties::ChangeOp(node, machine()->Float32Equal());
break;
case IrOpcode::kFloat64LessThan:
NodeProperties::ChangeOp(node, machine()->Float32LessThan());
break;
case IrOpcode::kFloat64LessThanOrEqual:
NodeProperties::ChangeOp(node, machine()->Float32LessThanOrEqual());
break;
default:
UNREACHABLE();
}
node->ReplaceInput(
0, m.left().HasValue()
? Float32Constant(static_cast<float>(m.left().Value()))
: m.left().InputAt(0));
node->ReplaceInput(
1, m.right().HasValue()
? Float32Constant(static_cast<float>(m.right().Value()))
: m.right().InputAt(0));
return Changed(node);
}
return NoChange();
}
Reduction MachineOperatorReducer::ReduceFloat64RoundDown(Node* node) {
DCHECK_EQ(IrOpcode::kFloat64RoundDown, node->opcode());
Float64Matcher m(node->InputAt(0));
if (m.HasValue()) {
return ReplaceFloat64(std::floor(m.Value()));
}
return NoChange();
}
CommonOperatorBuilder* MachineOperatorReducer::common() const {
return mcgraph()->common();
}
MachineOperatorBuilder* MachineOperatorReducer::machine() const {
return mcgraph()->machine();
}
Graph* MachineOperatorReducer::graph() const { return mcgraph()->graph(); }
} // namespace compiler
} // namespace internal
} // namespace v8