blob: 7e87b015d4a06f6d19a64ad2fe41cd49f281b627 [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/ic/keyed-store-generic.h"
#include "src/codegen/code-factory.h"
#include "src/codegen/code-stub-assembler.h"
#include "src/codegen/interface-descriptors.h"
#include "src/execution/isolate.h"
#include "src/ic/accessor-assembler.h"
#include "src/objects/contexts.h"
#include "src/objects/feedback-vector.h"
#include "src/objects/objects-inl.h"
namespace v8 {
namespace internal {
using Node = compiler::Node;
template <class T>
using TNode = compiler::TNode<T>;
enum class StoreMode { kOrdinary, kInLiteral };
class KeyedStoreGenericAssembler : public AccessorAssembler {
public:
explicit KeyedStoreGenericAssembler(compiler::CodeAssemblerState* state,
StoreMode mode)
: AccessorAssembler(state), mode_(mode) {}
void KeyedStoreGeneric();
void StoreIC_Uninitialized();
// Generates code for [[Set]] operation, the |unique_name| is supposed to be
// unique otherwise this code will always go to runtime.
void SetProperty(TNode<Context> context, TNode<JSReceiver> receiver,
TNode<BoolT> is_simple_receiver, TNode<Name> unique_name,
TNode<Object> value, LanguageMode language_mode);
// [[Set]], but more generic than the above. This impl does essentially the
// same as "KeyedStoreGeneric" but does not use feedback slot and uses a
// hardcoded LanguageMode instead of trying to deduce it from the feedback
// slot's kind.
void SetProperty(TNode<Context> context, TNode<Object> receiver,
TNode<Object> key, TNode<Object> value,
LanguageMode language_mode);
private:
StoreMode mode_;
enum UpdateLength {
kDontChangeLength,
kIncrementLengthByOne,
kBumpLengthWithGap
};
enum UseStubCache { kUseStubCache, kDontUseStubCache };
// Helper that is used by the public KeyedStoreGeneric and by SetProperty.
void KeyedStoreGeneric(TNode<Context> context, TNode<Object> receiver,
TNode<Object> key, TNode<Object> value,
Maybe<LanguageMode> language_mode);
void EmitGenericElementStore(Node* receiver, Node* receiver_map,
Node* instance_type, Node* intptr_index,
Node* value, Node* context, Label* slow);
// If language mode is not provided it is deduced from the feedback slot's
// kind.
void EmitGenericPropertyStore(TNode<JSReceiver> receiver,
TNode<Map> receiver_map,
const StoreICParameters* p,
ExitPoint* exit_point, Label* slow,
Maybe<LanguageMode> maybe_language_mode);
void EmitGenericPropertyStore(SloppyTNode<JSReceiver> receiver,
SloppyTNode<Map> receiver_map,
const StoreICParameters* p, Label* slow) {
ExitPoint direct_exit(this);
EmitGenericPropertyStore(receiver, receiver_map, p, &direct_exit, slow,
Nothing<LanguageMode>());
}
void BranchIfPrototypesHaveNonFastElements(Node* receiver_map,
Label* non_fast_elements,
Label* only_fast_elements);
void TryRewriteElements(Node* receiver, Node* receiver_map, Node* elements,
Node* native_context, ElementsKind from_kind,
ElementsKind to_kind, Label* bailout);
void StoreElementWithCapacity(Node* receiver, Node* receiver_map,
Node* elements, Node* elements_kind,
Node* intptr_index, Node* value, Node* context,
Label* slow, UpdateLength update_length);
void MaybeUpdateLengthAndReturn(Node* receiver, Node* index, Node* value,
UpdateLength update_length);
void TryChangeToHoleyMapHelper(Node* receiver, Node* receiver_map,
Node* native_context, ElementsKind packed_kind,
ElementsKind holey_kind, Label* done,
Label* map_mismatch, Label* bailout);
void TryChangeToHoleyMap(Node* receiver, Node* receiver_map,
Node* current_elements_kind, Node* context,
ElementsKind packed_kind, Label* bailout);
void TryChangeToHoleyMapMulti(Node* receiver, Node* receiver_map,
Node* current_elements_kind, Node* context,
ElementsKind packed_kind,
ElementsKind packed_kind_2, Label* bailout);
void LookupPropertyOnPrototypeChain(Node* receiver_map, Node* name,
Label* accessor,
Variable* var_accessor_pair,
Variable* var_accessor_holder,
Label* readonly, Label* bailout);
TNode<Map> FindCandidateStoreICTransitionMapHandler(TNode<Map> map,
TNode<Name> name,
Label* slow);
bool IsKeyedStore() const { return mode_ == StoreMode::kOrdinary; }
bool IsStoreInLiteral() const { return mode_ == StoreMode::kInLiteral; }
bool ShouldCheckPrototype() const { return IsKeyedStore(); }
bool ShouldReconfigureExisting() const { return IsStoreInLiteral(); }
bool ShouldCallSetter() const { return IsKeyedStore(); }
bool ShouldCheckPrototypeValidity() const {
// We don't do this for "in-literal" stores, because it is impossible for
// the target object to be a "prototype"
return !IsStoreInLiteral();
}
};
void KeyedStoreGenericGenerator::Generate(compiler::CodeAssemblerState* state) {
KeyedStoreGenericAssembler assembler(state, StoreMode::kOrdinary);
assembler.KeyedStoreGeneric();
}
void StoreICUninitializedGenerator::Generate(
compiler::CodeAssemblerState* state) {
KeyedStoreGenericAssembler assembler(state, StoreMode::kOrdinary);
assembler.StoreIC_Uninitialized();
}
void KeyedStoreGenericGenerator::SetProperty(
compiler::CodeAssemblerState* state, TNode<Context> context,
TNode<JSReceiver> receiver, TNode<BoolT> is_simple_receiver,
TNode<Name> name, TNode<Object> value, LanguageMode language_mode) {
KeyedStoreGenericAssembler assembler(state, StoreMode::kOrdinary);
assembler.SetProperty(context, receiver, is_simple_receiver, name, value,
language_mode);
}
void KeyedStoreGenericGenerator::SetProperty(
compiler::CodeAssemblerState* state, TNode<Context> context,
TNode<Object> receiver, TNode<Object> key, TNode<Object> value,
LanguageMode language_mode) {
KeyedStoreGenericAssembler assembler(state, StoreMode::kOrdinary);
assembler.SetProperty(context, receiver, key, value, language_mode);
}
void KeyedStoreGenericGenerator::SetPropertyInLiteral(
compiler::CodeAssemblerState* state, TNode<Context> context,
TNode<JSObject> receiver, TNode<Object> key, TNode<Object> value) {
KeyedStoreGenericAssembler assembler(state, StoreMode::kInLiteral);
assembler.SetProperty(context, receiver, key, value, LanguageMode::kStrict);
}
void KeyedStoreGenericAssembler::BranchIfPrototypesHaveNonFastElements(
Node* receiver_map, Label* non_fast_elements, Label* only_fast_elements) {
VARIABLE(var_map, MachineRepresentation::kTagged);
var_map.Bind(receiver_map);
Label loop_body(this, &var_map);
Goto(&loop_body);
BIND(&loop_body);
{
Node* map = var_map.value();
Node* prototype = LoadMapPrototype(map);
GotoIf(IsNull(prototype), only_fast_elements);
Node* prototype_map = LoadMap(prototype);
var_map.Bind(prototype_map);
TNode<Int32T> instance_type = LoadMapInstanceType(prototype_map);
GotoIf(IsCustomElementsReceiverInstanceType(instance_type),
non_fast_elements);
TNode<Int32T> elements_kind = LoadMapElementsKind(prototype_map);
GotoIf(IsFastElementsKind(elements_kind), &loop_body);
GotoIf(Word32Equal(elements_kind, Int32Constant(NO_ELEMENTS)), &loop_body);
Goto(non_fast_elements);
}
}
void KeyedStoreGenericAssembler::TryRewriteElements(
Node* receiver, Node* receiver_map, Node* elements, Node* native_context,
ElementsKind from_kind, ElementsKind to_kind, Label* bailout) {
DCHECK(IsFastPackedElementsKind(from_kind));
ElementsKind holey_from_kind = GetHoleyElementsKind(from_kind);
ElementsKind holey_to_kind = GetHoleyElementsKind(to_kind);
if (AllocationSite::ShouldTrack(from_kind, to_kind)) {
TrapAllocationMemento(receiver, bailout);
}
Label perform_transition(this), check_holey_map(this);
VARIABLE(var_target_map, MachineRepresentation::kTagged);
// Check if the receiver has the default |from_kind| map.
{
Node* packed_map = LoadJSArrayElementsMap(from_kind, native_context);
GotoIf(WordNotEqual(receiver_map, packed_map), &check_holey_map);
var_target_map.Bind(
LoadContextElement(native_context, Context::ArrayMapIndex(to_kind)));
Goto(&perform_transition);
}
// Check if the receiver has the default |holey_from_kind| map.
BIND(&check_holey_map);
{
Node* holey_map = LoadContextElement(
native_context, Context::ArrayMapIndex(holey_from_kind));
GotoIf(WordNotEqual(receiver_map, holey_map), bailout);
var_target_map.Bind(LoadContextElement(
native_context, Context::ArrayMapIndex(holey_to_kind)));
Goto(&perform_transition);
}
// Found a supported transition target map, perform the transition!
BIND(&perform_transition);
{
if (IsDoubleElementsKind(from_kind) != IsDoubleElementsKind(to_kind)) {
Node* capacity = SmiUntag(LoadFixedArrayBaseLength(elements));
GrowElementsCapacity(receiver, elements, from_kind, to_kind, capacity,
capacity, INTPTR_PARAMETERS, bailout);
}
StoreMap(receiver, var_target_map.value());
}
}
void KeyedStoreGenericAssembler::TryChangeToHoleyMapHelper(
Node* receiver, Node* receiver_map, Node* native_context,
ElementsKind packed_kind, ElementsKind holey_kind, Label* done,
Label* map_mismatch, Label* bailout) {
Node* packed_map = LoadJSArrayElementsMap(packed_kind, native_context);
GotoIf(WordNotEqual(receiver_map, packed_map), map_mismatch);
if (AllocationSite::ShouldTrack(packed_kind, holey_kind)) {
TrapAllocationMemento(receiver, bailout);
}
Node* holey_map =
LoadContextElement(native_context, Context::ArrayMapIndex(holey_kind));
StoreMap(receiver, holey_map);
Goto(done);
}
void KeyedStoreGenericAssembler::TryChangeToHoleyMap(
Node* receiver, Node* receiver_map, Node* current_elements_kind,
Node* context, ElementsKind packed_kind, Label* bailout) {
ElementsKind holey_kind = GetHoleyElementsKind(packed_kind);
Label already_holey(this);
GotoIf(Word32Equal(current_elements_kind, Int32Constant(holey_kind)),
&already_holey);
Node* native_context = LoadNativeContext(context);
TryChangeToHoleyMapHelper(receiver, receiver_map, native_context, packed_kind,
holey_kind, &already_holey, bailout, bailout);
BIND(&already_holey);
}
void KeyedStoreGenericAssembler::TryChangeToHoleyMapMulti(
Node* receiver, Node* receiver_map, Node* current_elements_kind,
Node* context, ElementsKind packed_kind, ElementsKind packed_kind_2,
Label* bailout) {
ElementsKind holey_kind = GetHoleyElementsKind(packed_kind);
ElementsKind holey_kind_2 = GetHoleyElementsKind(packed_kind_2);
Label already_holey(this), check_other_kind(this);
GotoIf(Word32Equal(current_elements_kind, Int32Constant(holey_kind)),
&already_holey);
GotoIf(Word32Equal(current_elements_kind, Int32Constant(holey_kind_2)),
&already_holey);
Node* native_context = LoadNativeContext(context);
TryChangeToHoleyMapHelper(receiver, receiver_map, native_context, packed_kind,
holey_kind, &already_holey, &check_other_kind,
bailout);
BIND(&check_other_kind);
TryChangeToHoleyMapHelper(receiver, receiver_map, native_context,
packed_kind_2, holey_kind_2, &already_holey,
bailout, bailout);
BIND(&already_holey);
}
void KeyedStoreGenericAssembler::MaybeUpdateLengthAndReturn(
Node* receiver, Node* index, Node* value, UpdateLength update_length) {
if (update_length != kDontChangeLength) {
Node* new_length = SmiTag(Signed(IntPtrAdd(index, IntPtrConstant(1))));
StoreObjectFieldNoWriteBarrier(receiver, JSArray::kLengthOffset, new_length,
MachineRepresentation::kTagged);
}
Return(value);
}
void KeyedStoreGenericAssembler::StoreElementWithCapacity(
Node* receiver, Node* receiver_map, Node* elements, Node* elements_kind,
Node* intptr_index, Node* value, Node* context, Label* slow,
UpdateLength update_length) {
if (update_length != kDontChangeLength) {
CSA_ASSERT(this, InstanceTypeEqual(LoadMapInstanceType(receiver_map),
JS_ARRAY_TYPE));
// Check if the length property is writable. The fast check is only
// supported for fast properties.
GotoIf(IsDictionaryMap(receiver_map), slow);
// The length property is non-configurable, so it's guaranteed to always
// be the first property.
TNode<DescriptorArray> descriptors = LoadMapDescriptors(receiver_map);
TNode<Uint32T> details = LoadDetailsByDescriptorEntry(descriptors, 0);
GotoIf(IsSetWord32(details, PropertyDetails::kAttributesReadOnlyMask),
slow);
}
STATIC_ASSERT(FixedArray::kHeaderSize == FixedDoubleArray::kHeaderSize);
const int kHeaderSize = FixedArray::kHeaderSize - kHeapObjectTag;
Label check_double_elements(this), check_cow_elements(this);
Node* elements_map = LoadMap(elements);
GotoIf(WordNotEqual(elements_map, LoadRoot(RootIndex::kFixedArrayMap)),
&check_double_elements);
// FixedArray backing store -> Smi or object elements.
{
Node* offset = ElementOffsetFromIndex(intptr_index, PACKED_ELEMENTS,
INTPTR_PARAMETERS, kHeaderSize);
// Check if we're about to overwrite the hole. We can safely do that
// only if there can be no setters on the prototype chain.
// If we know that we're storing beyond the previous array length, we
// can skip the hole check (and always assume the hole).
{
Label hole_check_passed(this);
if (update_length == kDontChangeLength) {
Node* element = Load(MachineType::AnyTagged(), elements, offset);
GotoIf(WordNotEqual(element, TheHoleConstant()), &hole_check_passed);
}
BranchIfPrototypesHaveNonFastElements(receiver_map, slow,
&hole_check_passed);
BIND(&hole_check_passed);
}
// Check if the value we're storing matches the elements_kind. Smis
// can always be stored.
{
Label non_smi_value(this);
GotoIfNot(TaggedIsSmi(value), &non_smi_value);
// If we're about to introduce holes, ensure holey elements.
if (update_length == kBumpLengthWithGap) {
TryChangeToHoleyMapMulti(receiver, receiver_map, elements_kind, context,
PACKED_SMI_ELEMENTS, PACKED_ELEMENTS, slow);
}
StoreNoWriteBarrier(MachineRepresentation::kTaggedSigned, elements,
offset, value);
MaybeUpdateLengthAndReturn(receiver, intptr_index, value, update_length);
BIND(&non_smi_value);
}
// Check if we already have object elements; just do the store if so.
{
Label must_transition(this);
STATIC_ASSERT(PACKED_SMI_ELEMENTS == 0);
STATIC_ASSERT(HOLEY_SMI_ELEMENTS == 1);
GotoIf(Int32LessThanOrEqual(elements_kind,
Int32Constant(HOLEY_SMI_ELEMENTS)),
&must_transition);
if (update_length == kBumpLengthWithGap) {
TryChangeToHoleyMap(receiver, receiver_map, elements_kind, context,
PACKED_ELEMENTS, slow);
}
Store(elements, offset, value);
MaybeUpdateLengthAndReturn(receiver, intptr_index, value, update_length);
BIND(&must_transition);
}
// Transition to the required ElementsKind.
{
Label transition_to_double(this), transition_to_object(this);
Node* native_context = LoadNativeContext(context);
Branch(WordEqual(LoadMap(value), LoadRoot(RootIndex::kHeapNumberMap)),
&transition_to_double, &transition_to_object);
BIND(&transition_to_double);
{
// If we're adding holes at the end, always transition to a holey
// elements kind, otherwise try to remain packed.
ElementsKind target_kind = update_length == kBumpLengthWithGap
? HOLEY_DOUBLE_ELEMENTS
: PACKED_DOUBLE_ELEMENTS;
TryRewriteElements(receiver, receiver_map, elements, native_context,
PACKED_SMI_ELEMENTS, target_kind, slow);
// Reload migrated elements.
Node* double_elements = LoadElements(receiver);
Node* double_offset =
ElementOffsetFromIndex(intptr_index, PACKED_DOUBLE_ELEMENTS,
INTPTR_PARAMETERS, kHeaderSize);
// Make sure we do not store signalling NaNs into double arrays.
Node* double_value = Float64SilenceNaN(LoadHeapNumberValue(value));
StoreNoWriteBarrier(MachineRepresentation::kFloat64, double_elements,
double_offset, double_value);
MaybeUpdateLengthAndReturn(receiver, intptr_index, value,
update_length);
}
BIND(&transition_to_object);
{
// If we're adding holes at the end, always transition to a holey
// elements kind, otherwise try to remain packed.
ElementsKind target_kind = update_length == kBumpLengthWithGap
? HOLEY_ELEMENTS
: PACKED_ELEMENTS;
TryRewriteElements(receiver, receiver_map, elements, native_context,
PACKED_SMI_ELEMENTS, target_kind, slow);
// The elements backing store didn't change, no reload necessary.
CSA_ASSERT(this, WordEqual(elements, LoadElements(receiver)));
Store(elements, offset, value);
MaybeUpdateLengthAndReturn(receiver, intptr_index, value,
update_length);
}
}
}
BIND(&check_double_elements);
Node* fixed_double_array_map = LoadRoot(RootIndex::kFixedDoubleArrayMap);
GotoIf(WordNotEqual(elements_map, fixed_double_array_map),
&check_cow_elements);
// FixedDoubleArray backing store -> double elements.
{
Node* offset = ElementOffsetFromIndex(intptr_index, PACKED_DOUBLE_ELEMENTS,
INTPTR_PARAMETERS, kHeaderSize);
// Check if we're about to overwrite the hole. We can safely do that
// only if there can be no setters on the prototype chain.
{
Label hole_check_passed(this);
// If we know that we're storing beyond the previous array length, we
// can skip the hole check (and always assume the hole).
if (update_length == kDontChangeLength) {
Label found_hole(this);
LoadDoubleWithHoleCheck(elements, offset, &found_hole,
MachineType::None());
Goto(&hole_check_passed);
BIND(&found_hole);
}
BranchIfPrototypesHaveNonFastElements(receiver_map, slow,
&hole_check_passed);
BIND(&hole_check_passed);
}
// Try to store the value as a double.
{
Label non_number_value(this);
Node* double_value = TryTaggedToFloat64(value, &non_number_value);
// Make sure we do not store signalling NaNs into double arrays.
double_value = Float64SilenceNaN(double_value);
// If we're about to introduce holes, ensure holey elements.
if (update_length == kBumpLengthWithGap) {
TryChangeToHoleyMap(receiver, receiver_map, elements_kind, context,
PACKED_DOUBLE_ELEMENTS, slow);
}
StoreNoWriteBarrier(MachineRepresentation::kFloat64, elements, offset,
double_value);
MaybeUpdateLengthAndReturn(receiver, intptr_index, value, update_length);
BIND(&non_number_value);
}
// Transition to object elements.
{
Node* native_context = LoadNativeContext(context);
ElementsKind target_kind = update_length == kBumpLengthWithGap
? HOLEY_ELEMENTS
: PACKED_ELEMENTS;
TryRewriteElements(receiver, receiver_map, elements, native_context,
PACKED_DOUBLE_ELEMENTS, target_kind, slow);
// Reload migrated elements.
Node* fast_elements = LoadElements(receiver);
Node* fast_offset = ElementOffsetFromIndex(
intptr_index, PACKED_ELEMENTS, INTPTR_PARAMETERS, kHeaderSize);
Store(fast_elements, fast_offset, value);
MaybeUpdateLengthAndReturn(receiver, intptr_index, value, update_length);
}
}
BIND(&check_cow_elements);
{
// TODO(jkummerow): Use GrowElementsCapacity instead of bailing out.
Goto(slow);
}
}
void KeyedStoreGenericAssembler::EmitGenericElementStore(
Node* receiver, Node* receiver_map, Node* instance_type, Node* intptr_index,
Node* value, Node* context, Label* slow) {
Label if_fast(this), if_in_bounds(this), if_out_of_bounds(this),
if_increment_length_by_one(this), if_bump_length_with_gap(this),
if_grow(this), if_nonfast(this), if_typed_array(this),
if_dictionary(this);
Node* elements = LoadElements(receiver);
TNode<Int32T> elements_kind = LoadMapElementsKind(receiver_map);
Branch(IsFastElementsKind(elements_kind), &if_fast, &if_nonfast);
BIND(&if_fast);
Label if_array(this);
GotoIf(InstanceTypeEqual(instance_type, JS_ARRAY_TYPE), &if_array);
{
Node* capacity = SmiUntag(LoadFixedArrayBaseLength(elements));
Branch(UintPtrLessThan(intptr_index, capacity), &if_in_bounds,
&if_out_of_bounds);
}
BIND(&if_array);
{
Node* length = SmiUntag(LoadFastJSArrayLength(receiver));
GotoIf(UintPtrLessThan(intptr_index, length), &if_in_bounds);
Node* capacity = SmiUntag(LoadFixedArrayBaseLength(elements));
GotoIf(UintPtrGreaterThanOrEqual(intptr_index, capacity), &if_grow);
Branch(WordEqual(intptr_index, length), &if_increment_length_by_one,
&if_bump_length_with_gap);
}
BIND(&if_in_bounds);
{
StoreElementWithCapacity(receiver, receiver_map, elements, elements_kind,
intptr_index, value, context, slow,
kDontChangeLength);
}
BIND(&if_out_of_bounds);
{
// Integer indexed out-of-bounds accesses to typed arrays are simply
// ignored, since we never look up integer indexed properties on the
// prototypes of typed arrays. For all other types, we may need to
// grow the backing store.
GotoIfNot(InstanceTypeEqual(instance_type, JS_TYPED_ARRAY_TYPE), &if_grow);
Return(value);
}
BIND(&if_increment_length_by_one);
{
StoreElementWithCapacity(receiver, receiver_map, elements, elements_kind,
intptr_index, value, context, slow,
kIncrementLengthByOne);
}
BIND(&if_bump_length_with_gap);
{
StoreElementWithCapacity(receiver, receiver_map, elements, elements_kind,
intptr_index, value, context, slow,
kBumpLengthWithGap);
}
// Out-of-capacity accesses (index >= capacity) jump here. Additionally,
// an ElementsKind transition might be necessary.
// The index can also be negative at this point! Jump to the runtime in that
// case to convert it to a named property.
BIND(&if_grow);
{
Comment("Grow backing store");
// TODO(jkummerow): Support inline backing store growth.
Goto(slow);
}
// Any ElementsKind > LAST_FAST_ELEMENTS_KIND jumps here for further
// dispatch.
BIND(&if_nonfast);
{
STATIC_ASSERT(LAST_ELEMENTS_KIND == LAST_FIXED_TYPED_ARRAY_ELEMENTS_KIND);
GotoIf(Int32GreaterThanOrEqual(
elements_kind,
Int32Constant(FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND)),
&if_typed_array);
GotoIf(Word32Equal(elements_kind, Int32Constant(DICTIONARY_ELEMENTS)),
&if_dictionary);
Goto(slow);
}
BIND(&if_dictionary);
{
Comment("Dictionary");
// TODO(jkummerow): Support storing to dictionary elements.
Goto(slow);
}
BIND(&if_typed_array);
{
Comment("Typed array");
// TODO(jkummerow): Support typed arrays.
Goto(slow);
}
}
void KeyedStoreGenericAssembler::LookupPropertyOnPrototypeChain(
Node* receiver_map, Node* name, Label* accessor,
Variable* var_accessor_pair, Variable* var_accessor_holder, Label* readonly,
Label* bailout) {
Label ok_to_write(this);
VARIABLE(var_holder, MachineRepresentation::kTagged);
var_holder.Bind(LoadMapPrototype(receiver_map));
VARIABLE(var_holder_map, MachineRepresentation::kTagged);
var_holder_map.Bind(LoadMap(var_holder.value()));
Variable* merged_variables[] = {&var_holder, &var_holder_map};
Label loop(this, arraysize(merged_variables), merged_variables);
Goto(&loop);
BIND(&loop);
{
Node* holder = var_holder.value();
GotoIf(IsNull(holder), &ok_to_write);
Node* holder_map = var_holder_map.value();
Node* instance_type = LoadMapInstanceType(holder_map);
Label next_proto(this);
{
Label found(this), found_fast(this), found_dict(this), found_global(this);
TVARIABLE(HeapObject, var_meta_storage);
TVARIABLE(IntPtrT, var_entry);
TryLookupProperty(holder, holder_map, instance_type, name, &found_fast,
&found_dict, &found_global, &var_meta_storage,
&var_entry, &next_proto, bailout);
BIND(&found_fast);
{
TNode<DescriptorArray> descriptors = CAST(var_meta_storage.value());
TNode<IntPtrT> name_index = var_entry.value();
Node* details = LoadDetailsByKeyIndex(descriptors, name_index);
JumpIfDataProperty(details, &ok_to_write, readonly);
// Accessor case.
// TODO(jkummerow): Implement a trimmed-down
// LoadAccessorFromFastObject.
VARIABLE(var_details, MachineRepresentation::kWord32);
LoadPropertyFromFastObject(holder, holder_map, descriptors, name_index,
&var_details, var_accessor_pair);
var_accessor_holder->Bind(holder);
Goto(accessor);
}
BIND(&found_dict);
{
Node* dictionary = var_meta_storage.value();
Node* entry = var_entry.value();
Node* details =
LoadDetailsByKeyIndex<NameDictionary>(dictionary, entry);
JumpIfDataProperty(details, &ok_to_write, readonly);
if (accessor != nullptr) {
// Accessor case.
var_accessor_pair->Bind(
LoadValueByKeyIndex<NameDictionary>(dictionary, entry));
var_accessor_holder->Bind(holder);
Goto(accessor);
} else {
Goto(&ok_to_write);
}
}
BIND(&found_global);
{
Node* dictionary = var_meta_storage.value();
Node* entry = var_entry.value();
Node* property_cell =
LoadValueByKeyIndex<GlobalDictionary>(dictionary, entry);
Node* value =
LoadObjectField(property_cell, PropertyCell::kValueOffset);
GotoIf(WordEqual(value, TheHoleConstant()), &next_proto);
Node* details = LoadAndUntagToWord32ObjectField(
property_cell, PropertyCell::kPropertyDetailsRawOffset);
JumpIfDataProperty(details, &ok_to_write, readonly);
if (accessor != nullptr) {
// Accessor case.
var_accessor_pair->Bind(value);
var_accessor_holder->Bind(holder);
Goto(accessor);
} else {
Goto(&ok_to_write);
}
}
}
BIND(&next_proto);
// Bailout if it can be an integer indexed exotic case.
GotoIf(InstanceTypeEqual(instance_type, JS_TYPED_ARRAY_TYPE), bailout);
Node* proto = LoadMapPrototype(holder_map);
GotoIf(IsNull(proto), &ok_to_write);
var_holder.Bind(proto);
var_holder_map.Bind(LoadMap(proto));
Goto(&loop);
}
BIND(&ok_to_write);
}
TNode<Map> KeyedStoreGenericAssembler::FindCandidateStoreICTransitionMapHandler(
TNode<Map> map, TNode<Name> name, Label* slow) {
TVARIABLE(Map, var_transition_map);
Label simple_transition(this), transition_array(this),
found_handler_candidate(this);
TNode<MaybeObject> maybe_handler =
LoadMaybeWeakObjectField(map, Map::kTransitionsOrPrototypeInfoOffset);
// Smi -> slow,
// Cleared weak reference -> slow
// weak reference -> simple_transition
// strong reference -> transition_array
TVARIABLE(Object, var_transition_map_or_array);
DispatchMaybeObject(maybe_handler, slow, slow, &simple_transition,
&transition_array, &var_transition_map_or_array);
BIND(&simple_transition);
{
var_transition_map = CAST(var_transition_map_or_array.value());
Goto(&found_handler_candidate);
}
BIND(&transition_array);
{
TNode<Map> maybe_handler_map =
LoadMap(CAST(var_transition_map_or_array.value()));
GotoIfNot(IsTransitionArrayMap(maybe_handler_map), slow);
TVARIABLE(IntPtrT, var_name_index);
Label if_found_candidate(this);
TNode<TransitionArray> transitions =
CAST(var_transition_map_or_array.value());
TransitionLookup(name, transitions, &if_found_candidate, &var_name_index,
slow);
BIND(&if_found_candidate);
{
// Given that
// 1) transitions with the same name are ordered in the transition
// array by PropertyKind and then by PropertyAttributes values,
// 2) kData < kAccessor,
// 3) NONE == 0,
// 4) properties with private symbol names are guaranteed to be
// non-enumerable (so DONT_ENUM bit in attributes is always set),
// the resulting map of transitioning store if it exists in the
// transition array is expected to be the first among the transitions
// with the same name.
// See TransitionArray::CompareDetails() for details.
STATIC_ASSERT(kData == 0);
STATIC_ASSERT(NONE == 0);
const int kKeyToTargetOffset = (TransitionArray::kEntryTargetIndex -
TransitionArray::kEntryKeyIndex) *
kTaggedSize;
var_transition_map = CAST(GetHeapObjectAssumeWeak(
LoadArrayElement(transitions, WeakFixedArray::kHeaderSize,
var_name_index.value(), kKeyToTargetOffset)));
Goto(&found_handler_candidate);
}
}
BIND(&found_handler_candidate);
return var_transition_map.value();
}
void KeyedStoreGenericAssembler::EmitGenericPropertyStore(
TNode<JSReceiver> receiver, TNode<Map> receiver_map,
const StoreICParameters* p, ExitPoint* exit_point, Label* slow,
Maybe<LanguageMode> maybe_language_mode) {
CSA_ASSERT(this, IsSimpleObjectMap(receiver_map));
VARIABLE(var_accessor_pair, MachineRepresentation::kTagged);
VARIABLE(var_accessor_holder, MachineRepresentation::kTagged);
Label fast_properties(this), dictionary_properties(this), accessor(this),
readonly(this);
Node* bitfield3 = LoadMapBitField3(receiver_map);
Branch(IsSetWord32<Map::IsDictionaryMapBit>(bitfield3),
&dictionary_properties, &fast_properties);
BIND(&fast_properties);
{
Comment("fast property store");
TNode<DescriptorArray> descriptors = LoadMapDescriptors(receiver_map);
Label descriptor_found(this), lookup_transition(this);
TVARIABLE(IntPtrT, var_name_index);
DescriptorLookup(p->name(), descriptors, bitfield3, &descriptor_found,
&var_name_index, &lookup_transition);
BIND(&descriptor_found);
{
TNode<IntPtrT> name_index = var_name_index.value();
Node* details = LoadDetailsByKeyIndex(descriptors, name_index);
Label data_property(this);
JumpIfDataProperty(details, &data_property,
ShouldReconfigureExisting() ? nullptr : &readonly);
if (ShouldCallSetter()) {
// Accessor case.
// TODO(jkummerow): Implement a trimmed-down LoadAccessorFromFastObject.
VARIABLE(var_details, MachineRepresentation::kWord32);
LoadPropertyFromFastObject(receiver, receiver_map, descriptors,
name_index, &var_details,
&var_accessor_pair);
var_accessor_holder.Bind(receiver);
Goto(&accessor);
} else {
Goto(&data_property);
}
BIND(&data_property);
{
CheckForAssociatedProtector(p->name(), slow);
OverwriteExistingFastDataProperty(receiver, receiver_map, descriptors,
name_index, details, p->value(), slow,
false);
exit_point->Return(p->value());
}
}
BIND(&lookup_transition);
{
Comment("lookup transition");
TNode<Map> transition_map = FindCandidateStoreICTransitionMapHandler(
receiver_map, CAST(p->name()), slow);
// Validate the transition handler candidate and apply the transition.
StoreTransitionMapFlags flags = kValidateTransitionHandler;
if (ShouldCheckPrototypeValidity()) {
flags = StoreTransitionMapFlags(flags | kCheckPrototypeValidity);
}
HandleStoreICTransitionMapHandlerCase(p, transition_map, slow, flags);
exit_point->Return(p->value());
}
}
BIND(&dictionary_properties);
{
Comment("dictionary property store");
// We checked for LAST_CUSTOM_ELEMENTS_RECEIVER before, which rules out
// seeing global objects here (which would need special handling).
TVARIABLE(IntPtrT, var_name_index);
Label dictionary_found(this, &var_name_index), not_found(this);
TNode<NameDictionary> properties = CAST(LoadSlowProperties(CAST(receiver)));
NameDictionaryLookup<NameDictionary>(properties, CAST(p->name()),
&dictionary_found, &var_name_index,
&not_found);
BIND(&dictionary_found);
{
Label overwrite(this);
TNode<Uint32T> details = LoadDetailsByKeyIndex<NameDictionary>(
properties, var_name_index.value());
JumpIfDataProperty(details, &overwrite,
ShouldReconfigureExisting() ? nullptr : &readonly);
if (ShouldCallSetter()) {
// Accessor case.
var_accessor_pair.Bind(LoadValueByKeyIndex<NameDictionary>(
properties, var_name_index.value()));
var_accessor_holder.Bind(receiver);
Goto(&accessor);
} else {
// We must reconfigure an accessor property to a data property
// here, let the runtime take care of that.
Goto(slow);
}
BIND(&overwrite);
{
CheckForAssociatedProtector(p->name(), slow);
StoreValueByKeyIndex<NameDictionary>(properties, var_name_index.value(),
p->value());
exit_point->Return(p->value());
}
}
BIND(&not_found);
{
CheckForAssociatedProtector(p->name(), slow);
Label extensible(this), is_private_symbol(this);
Node* bitfield3 = LoadMapBitField3(receiver_map);
GotoIf(IsPrivateSymbol(p->name()), &is_private_symbol);
Branch(IsSetWord32<Map::IsExtensibleBit>(bitfield3), &extensible, slow);
BIND(&is_private_symbol);
{
CSA_ASSERT(this, IsPrivateSymbol(p->name()));
// For private names, we miss to the runtime which will throw.
// For private symbols, we extend and store an own property.
Branch(IsPrivateName(p->name()), slow, &extensible);
}
BIND(&extensible);
if (ShouldCheckPrototype()) {
DCHECK(ShouldCallSetter());
LookupPropertyOnPrototypeChain(
receiver_map, p->name(), &accessor, &var_accessor_pair,
&var_accessor_holder,
ShouldReconfigureExisting() ? nullptr : &readonly, slow);
}
Label add_dictionary_property_slow(this);
InvalidateValidityCellIfPrototype(receiver_map, bitfield3);
Add<NameDictionary>(properties, CAST(p->name()), p->value(),
&add_dictionary_property_slow);
exit_point->Return(p->value());
BIND(&add_dictionary_property_slow);
exit_point->ReturnCallRuntime(Runtime::kAddDictionaryProperty,
p->context(), p->receiver(), p->name(),
p->value());
}
}
if (ShouldCallSetter()) {
BIND(&accessor);
{
Label not_callable(this);
Node* accessor_pair = var_accessor_pair.value();
GotoIf(IsAccessorInfoMap(LoadMap(accessor_pair)), slow);
CSA_ASSERT(this, HasInstanceType(accessor_pair, ACCESSOR_PAIR_TYPE));
Node* setter =
LoadObjectField(accessor_pair, AccessorPair::kSetterOffset);
Node* setter_map = LoadMap(setter);
// FunctionTemplateInfo setters are not supported yet.
GotoIf(IsFunctionTemplateInfoMap(setter_map), slow);
GotoIfNot(IsCallableMap(setter_map), &not_callable);
Callable callable = CodeFactory::Call(isolate());
CallJS(callable, p->context(), setter, receiver, p->value());
exit_point->Return(p->value());
BIND(&not_callable);
{
LanguageMode language_mode;
if (maybe_language_mode.To(&language_mode)) {
if (language_mode == LanguageMode::kStrict) {
exit_point->ReturnCallRuntime(
Runtime::kThrowTypeError, p->context(),
SmiConstant(MessageTemplate::kNoSetterInCallback), p->name(),
var_accessor_holder.value());
} else {
exit_point->Return(p->value());
}
} else {
CallRuntime(Runtime::kThrowTypeErrorIfStrict, p->context(),
SmiConstant(MessageTemplate::kNoSetterInCallback),
p->name(), var_accessor_holder.value());
exit_point->Return(p->value());
}
}
}
}
if (!ShouldReconfigureExisting()) {
BIND(&readonly);
{
LanguageMode language_mode;
if (maybe_language_mode.To(&language_mode)) {
if (language_mode == LanguageMode::kStrict) {
Node* type = Typeof(p->receiver());
ThrowTypeError(p->context(), MessageTemplate::kStrictReadOnlyProperty,
p->name(), type, p->receiver());
} else {
exit_point->Return(p->value());
}
} else {
CallRuntime(Runtime::kThrowTypeErrorIfStrict, p->context(),
SmiConstant(MessageTemplate::kStrictReadOnlyProperty),
p->name(), Typeof(p->receiver()), p->receiver());
exit_point->Return(p->value());
}
}
}
}
// Helper that is used by the public KeyedStoreGeneric and by SetProperty.
void KeyedStoreGenericAssembler::KeyedStoreGeneric(
TNode<Context> context, TNode<Object> receiver, TNode<Object> key,
TNode<Object> value, Maybe<LanguageMode> language_mode) {
TVARIABLE(IntPtrT, var_index);
TVARIABLE(Object, var_unique, key);
Label if_index(this), if_unique_name(this), not_internalized(this),
slow(this);
GotoIf(TaggedIsSmi(receiver), &slow);
TNode<Map> receiver_map = LoadMap(CAST(receiver));
TNode<Int32T> instance_type = LoadMapInstanceType(receiver_map);
// Receivers requiring non-standard element accesses (interceptors, access
// checks, strings and string wrappers, proxies) are handled in the runtime.
GotoIf(IsCustomElementsReceiverInstanceType(instance_type), &slow);
TryToName(key, &if_index, &var_index, &if_unique_name, &var_unique, &slow,
&not_internalized);
BIND(&if_index);
{
Comment("integer index");
EmitGenericElementStore(receiver, receiver_map, instance_type,
var_index.value(), value, context, &slow);
}
BIND(&if_unique_name);
{
Comment("key is unique name");
StoreICParameters p(context, receiver, var_unique.value(), value, nullptr,
nullptr);
ExitPoint direct_exit(this);
EmitGenericPropertyStore(CAST(receiver), receiver_map, &p, &direct_exit,
&slow, language_mode);
}
BIND(&not_internalized);
{
if (FLAG_internalize_on_the_fly) {
TryInternalizeString(key, &if_index, &var_index, &if_unique_name,
&var_unique, &slow, &slow);
} else {
Goto(&slow);
}
}
BIND(&slow);
{
if (IsKeyedStore()) {
Comment("KeyedStoreGeneric_slow");
TailCallRuntime(Runtime::kSetKeyedProperty, context, receiver, key,
value);
} else {
DCHECK(IsStoreInLiteral());
TailCallRuntime(Runtime::kStoreDataPropertyInLiteral, context, receiver,
key, value);
}
}
}
void KeyedStoreGenericAssembler::KeyedStoreGeneric() {
using Descriptor = StoreDescriptor;
TNode<Object> receiver = CAST(Parameter(Descriptor::kReceiver));
TNode<Object> name = CAST(Parameter(Descriptor::kName));
TNode<Object> value = CAST(Parameter(Descriptor::kValue));
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
KeyedStoreGeneric(context, receiver, name, value, Nothing<LanguageMode>());
}
void KeyedStoreGenericAssembler::SetProperty(TNode<Context> context,
TNode<Object> receiver,
TNode<Object> key,
TNode<Object> value,
LanguageMode language_mode) {
KeyedStoreGeneric(context, receiver, key, value, Just(language_mode));
}
void KeyedStoreGenericAssembler::StoreIC_Uninitialized() {
using Descriptor = StoreWithVectorDescriptor;
Node* receiver = Parameter(Descriptor::kReceiver);
Node* name = Parameter(Descriptor::kName);
Node* value = Parameter(Descriptor::kValue);
Node* slot = Parameter(Descriptor::kSlot);
Node* vector = Parameter(Descriptor::kVector);
Node* context = Parameter(Descriptor::kContext);
Label miss(this, Label::kDeferred), store_property(this);
GotoIf(TaggedIsSmi(receiver), &miss);
Node* receiver_map = LoadMap(receiver);
TNode<Int32T> instance_type = LoadMapInstanceType(receiver_map);
// Receivers requiring non-standard element accesses (interceptors, access
// checks, strings and string wrappers, proxies) are handled in the runtime.
GotoIf(IsSpecialReceiverInstanceType(instance_type), &miss);
// Optimistically write the state transition to the vector.
GotoIf(IsUndefined(vector), &store_property);
StoreFeedbackVectorSlot(vector, slot,
LoadRoot(RootIndex::kpremonomorphic_symbol),
SKIP_WRITE_BARRIER, 0, SMI_PARAMETERS);
Goto(&store_property);
BIND(&store_property);
{
StoreICParameters p(CAST(context), receiver, name, value, slot, vector);
EmitGenericPropertyStore(receiver, receiver_map, &p, &miss);
}
BIND(&miss);
{
Label call_runtime(this);
// Undo the optimistic state transition.
GotoIf(IsUndefined(vector), &call_runtime);
StoreFeedbackVectorSlot(vector, slot,
LoadRoot(RootIndex::kuninitialized_symbol),
SKIP_WRITE_BARRIER, 0, SMI_PARAMETERS);
Goto(&call_runtime);
BIND(&call_runtime);
TailCallRuntime(Runtime::kStoreIC_Miss, context, value, slot, vector,
receiver, name);
}
}
void KeyedStoreGenericAssembler::SetProperty(TNode<Context> context,
TNode<JSReceiver> receiver,
TNode<BoolT> is_simple_receiver,
TNode<Name> unique_name,
TNode<Object> value,
LanguageMode language_mode) {
StoreICParameters p(context, receiver, unique_name, value, nullptr, nullptr);
Label done(this), slow(this, Label::kDeferred);
ExitPoint exit_point(this, [&](Node* result) { Goto(&done); });
CSA_ASSERT(this, Word32Equal(is_simple_receiver,
IsSimpleObjectMap(LoadMap(receiver))));
GotoIfNot(is_simple_receiver, &slow);
EmitGenericPropertyStore(receiver, LoadMap(receiver), &p, &exit_point, &slow,
Just(language_mode));
BIND(&slow);
{
if (IsStoreInLiteral()) {
CallRuntime(Runtime::kStoreDataPropertyInLiteral, context, receiver,
unique_name, value);
} else {
CallRuntime(Runtime::kSetKeyedProperty, context, receiver, unique_name,
value);
}
Goto(&done);
}
BIND(&done);
}
} // namespace internal
} // namespace v8