| // Copyright 2013 The Chromium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // This file defines some bit utilities. |
| |
| #ifndef BASE_BITS_H_ |
| #define BASE_BITS_H_ |
| |
| #include <limits.h> |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| #include <type_traits> |
| |
| #include "base/check.h" |
| #include "base/compiler_specific.h" |
| #include "build/build_config.h" |
| |
| namespace base { |
| namespace bits { |
| |
| // Returns true iff |value| is a power of 2. |
| // |
| // TODO(pkasting): When C++20 is available, replace with std::has_single_bit(). |
| template <typename T, typename = std::enable_if_t<std::is_integral<T>::value>> |
| constexpr bool IsPowerOfTwo(T value) { |
| // From "Hacker's Delight": Section 2.1 Manipulating Rightmost Bits. |
| // |
| // Only positive integers with a single bit set are powers of two. If only one |
| // bit is set in x (e.g. 0b00000100000000) then |x-1| will have that bit set |
| // to zero and all bits to its right set to 1 (e.g. 0b00000011111111). Hence |
| // |x & (x-1)| is 0 iff x is a power of two. |
| return value > 0 && (value & (value - 1)) == 0; |
| } |
| |
| #ifdef COBALT_PENDING_CLEAN_UP |
| // Round up |size| to a multiple of alignment, which must be a power of two. |
| inline size_t Align(size_t size, size_t alignment) { |
| DCHECK(IsPowerOfTwo(alignment)); |
| return (size + alignment - 1) & ~(alignment - 1); |
| } |
| |
| // Round up |size| to a multiple of alignment, which must be a power of two. |
| inline constexpr size_t AlignUp(size_t size, size_t alignment) { |
| DCHECK(IsPowerOfTwo(alignment)); |
| return (size + alignment - 1) & ~(alignment - 1); |
| } |
| #endif |
| |
| |
| // Round down |size| to a multiple of alignment, which must be a power of two. |
| template <typename T, typename = std::enable_if_t<std::is_integral_v<T>>> |
| constexpr T AlignDown(T size, T alignment) { |
| DCHECK(IsPowerOfTwo(alignment)); |
| return size & ~(alignment - 1); |
| } |
| |
| // Move |ptr| back to the previous multiple of alignment, which must be a power |
| // of two. Defined for types where sizeof(T) is one byte. |
| template <typename T, typename = typename std::enable_if<sizeof(T) == 1>::type> |
| inline T* AlignDown(T* ptr, uintptr_t alignment) { |
| return reinterpret_cast<T*>( |
| AlignDown(reinterpret_cast<uintptr_t>(ptr), alignment)); |
| } |
| |
| // Round up |size| to a multiple of alignment, which must be a power of two. |
| template <typename T, typename = std::enable_if_t<std::is_integral_v<T>>> |
| constexpr T AlignUp(T size, T alignment) { |
| DCHECK(IsPowerOfTwo(alignment)); |
| return (size + alignment - 1) & ~(alignment - 1); |
| } |
| |
| // Advance |ptr| to the next multiple of alignment, which must be a power of |
| // two. Defined for types where sizeof(T) is one byte. |
| template <typename T, typename = typename std::enable_if<sizeof(T) == 1>::type> |
| inline T* AlignUp(T* ptr, uintptr_t alignment) { |
| return reinterpret_cast<T*>( |
| AlignUp(reinterpret_cast<uintptr_t>(ptr), alignment)); |
| } |
| |
| // CountLeadingZeroBits(value) returns the number of zero bits following the |
| // most significant 1 bit in |value| if |value| is non-zero, otherwise it |
| // returns {sizeof(T) * 8}. |
| // Example: 00100010 -> 2 |
| // |
| // CountTrailingZeroBits(value) returns the number of zero bits preceding the |
| // least significant 1 bit in |value| if |value| is non-zero, otherwise it |
| // returns {sizeof(T) * 8}. |
| // Example: 00100010 -> 1 |
| // |
| // C does not have an operator to do this, but fortunately the various |
| // compilers have built-ins that map to fast underlying processor instructions. |
| // |
| // TODO(pkasting): When C++20 is available, replace with std::countl_zero() and |
| // similar. |
| |
| #if defined(COMPILER_MSVC) |
| |
| template <typename T, unsigned bits = sizeof(T) * 8> |
| ALWAYS_INLINE |
| typename std::enable_if<std::is_unsigned<T>::value && sizeof(T) <= 4, |
| unsigned>::type |
| CountLeadingZeroBits(T x) { |
| static_assert(bits > 0, "invalid instantiation"); |
| unsigned long index; |
| return LIKELY(_BitScanReverse(&index, static_cast<uint32_t>(x))) |
| ? (31 - index - (32 - bits)) |
| : bits; |
| } |
| |
| template <typename T, unsigned bits = sizeof(T) * 8> |
| ALWAYS_INLINE |
| typename std::enable_if<std::is_unsigned<T>::value && sizeof(T) == 8, |
| unsigned>::type |
| CountLeadingZeroBits(T x) { |
| static_assert(bits > 0, "invalid instantiation"); |
| unsigned long index; |
| return LIKELY(_BitScanReverse64(&index, static_cast<uint64_t>(x))) |
| ? (63 - index) |
| : 64; |
| } |
| |
| template <typename T, unsigned bits = sizeof(T) * 8> |
| ALWAYS_INLINE |
| typename std::enable_if<std::is_unsigned<T>::value && sizeof(T) <= 4, |
| unsigned>::type |
| CountTrailingZeroBits(T x) { |
| static_assert(bits > 0, "invalid instantiation"); |
| unsigned long index; |
| return LIKELY(_BitScanForward(&index, static_cast<uint32_t>(x))) ? index |
| : bits; |
| } |
| |
| template <typename T, unsigned bits = sizeof(T) * 8> |
| ALWAYS_INLINE |
| typename std::enable_if<std::is_unsigned<T>::value && sizeof(T) == 8, |
| unsigned>::type |
| CountTrailingZeroBits(T x) { |
| static_assert(bits > 0, "invalid instantiation"); |
| unsigned long index; |
| return LIKELY(_BitScanForward64(&index, static_cast<uint64_t>(x))) ? index |
| : 64; |
| } |
| |
| #elif defined(COMPILER_GCC) |
| |
| // __builtin_clz has undefined behaviour for an input of 0, even though there's |
| // clearly a return value that makes sense, and even though some processor clz |
| // instructions have defined behaviour for 0. We could drop to raw __asm__ to |
| // do better, but we'll avoid doing that unless we see proof that we need to. |
| template <typename T, int bits = sizeof(T) * 8> |
| ALWAYS_INLINE constexpr |
| typename std::enable_if<std::is_unsigned<T>::value && sizeof(T) <= 8, |
| int>::type |
| CountLeadingZeroBits(T value) { |
| static_assert(bits > 0, "invalid instantiation"); |
| return LIKELY(value) |
| ? bits == 64 |
| ? __builtin_clzll(static_cast<uint64_t>(value)) |
| : __builtin_clz(static_cast<uint32_t>(value)) - (32 - bits) |
| : bits; |
| } |
| |
| template <typename T, int bits = sizeof(T) * 8> |
| ALWAYS_INLINE constexpr |
| typename std::enable_if<std::is_unsigned<T>::value && sizeof(T) <= 8, |
| int>::type |
| CountTrailingZeroBits(T value) { |
| return LIKELY(value) ? bits == 64 |
| ? __builtin_ctzll(static_cast<uint64_t>(value)) |
| : __builtin_ctz(static_cast<uint32_t>(value)) |
| : bits; |
| } |
| |
| #endif |
| |
| // Returns the integer i such as 2^i <= n < 2^(i+1). |
| // |
| // There is a common `BitLength` function, which returns the number of bits |
| // required to represent a value. Rather than implement that function, |
| // use `Log2Floor` and add 1 to the result. |
| // |
| // TODO(pkasting): When C++20 is available, replace with std::bit_xxx(). |
| ALWAYS_INLINE int Log2Floor(uint32_t n) { |
| return 31 - CountLeadingZeroBits(n); |
| } |
| |
| // Returns the integer i such as 2^(i-1) < n <= 2^i. |
| ALWAYS_INLINE int Log2Ceiling(uint32_t n) { |
| // When n == 0, we want the function to return -1. |
| // When n == 0, (n - 1) will underflow to 0xFFFFFFFF, which is |
| // why the statement below starts with (n ? 32 : -1). |
| return (n ? 32 : -1) - CountLeadingZeroBits(n - 1); |
| } |
| |
| // Returns a value of type T with a single bit set in the left-most position. |
| // Can be used instead of manually shifting a 1 to the left. |
| template <typename T> |
| constexpr T LeftmostBit() { |
| static_assert(std::is_integral<T>::value, |
| "This function can only be used with integral types."); |
| T one(1u); |
| return one << ((CHAR_BIT * sizeof(T) - 1)); |
| } |
| |
| } // namespace bits |
| } // namespace base |
| |
| #endif // BASE_BITS_H_ |