blob: f8a00735f949dbc0fba136789ee9e09339236e31 [file] [log] [blame]
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_CONTAINERS_BUFFER_ITERATOR_H_
#define BASE_CONTAINERS_BUFFER_ITERATOR_H_
#include <string.h>
#include <type_traits>
#include "base/bit_cast.h"
#include "base/containers/span.h"
#include "base/numerics/checked_math.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
namespace base {
// BufferIterator is a bounds-checked container utility to access variable-
// length, heterogeneous structures contained within a buffer. If the data are
// homogeneous, use base::span<> instead.
//
// After being created with a weakly-owned buffer, BufferIterator returns
// pointers to structured data within the buffer. After each method call that
// returns data in the buffer, the iterator position is advanced by the byte
// size of the object (or span of objects) returned. If there are not enough
// bytes remaining in the buffer to return the requested object(s), a nullptr
// or empty span is returned.
//
// This class is similar to base::Pickle, which should be preferred for
// serializing to disk. Pickle versions its header and does not support writing
// structures, which are problematic for serialization due to struct padding and
// version shear concerns.
//
// Example usage:
//
// std::vector<uint8_t> buffer(4096);
// if (!ReadSomeData(&buffer, buffer.size())) {
// LOG(ERROR) << "Failed to read data.";
// return false;
// }
//
// BufferIterator<uint8_t> iterator(buffer);
// uint32_t* num_items = iterator.Object<uint32_t>();
// if (!num_items) {
// LOG(ERROR) << "No num_items field."
// return false;
// }
//
// base::span<const item_struct> items =
// iterator.Span<item_struct>(*num_items);
// if (items.size() != *num_items) {
// LOG(ERROR) << "Not enough items.";
// return false;
// }
//
// // ... validate the objects in |items|.
template <typename B>
class BufferIterator {
public:
static_assert(std::is_same<std::remove_const_t<B>, char>::value ||
std::is_same<std::remove_const_t<B>, unsigned char>::value,
"Underlying buffer type must be char-type.");
BufferIterator() {}
BufferIterator(B* data, size_t size)
: BufferIterator(make_span(data, size)) {}
explicit BufferIterator(span<B> buffer)
: buffer_(buffer), remaining_(buffer) {}
~BufferIterator() {}
// Returns a pointer to a mutable structure T in the buffer at the current
// position. On success, the iterator position is advanced by sizeof(T). If
// there are not sizeof(T) bytes remaining in the buffer, returns nullptr.
template <typename T,
typename = std::enable_if_t<std::is_trivially_copyable_v<T>>>
T* MutableObject() {
size_t size = sizeof(T);
if (size > remaining_.size())
return nullptr;
T* t = reinterpret_cast<T*>(remaining_.data());
remaining_ = remaining_.subspan(size);
return t;
}
// Returns a const pointer to an object of type T in the buffer at the current
// position.
template <typename T,
typename = std::enable_if_t<std::is_trivially_copyable_v<T>>>
const T* Object() {
return MutableObject<const T>();
}
// Copies out an object. As compared to using Object, this avoids potential
// unaligned access which may be undefined behavior.
template <typename T,
typename = std::enable_if_t<std::is_trivially_copyable_v<T>>>
absl::optional<T> CopyObject() {
absl::optional<T> t;
if (remaining_.size() >= sizeof(T)) {
memcpy(&t.emplace(), remaining_.data(), sizeof(T));
remaining_ = remaining_.subspan(sizeof(T));
}
return t;
}
// Returns a span of |count| T objects in the buffer at the current position.
// On success, the iterator position is advanced by |sizeof(T) * count|. If
// there are not enough bytes remaining in the buffer to fulfill the request,
// returns an empty span.
template <typename T,
typename = std::enable_if_t<std::is_trivially_copyable_v<T>>>
span<T> MutableSpan(size_t count) {
size_t size;
if (!CheckMul(sizeof(T), count).AssignIfValid(&size))
return span<T>();
if (size > remaining_.size())
return span<T>();
auto result = span<T>(reinterpret_cast<T*>(remaining_.data()), count);
remaining_ = remaining_.subspan(size);
return result;
}
// Returns a span to |count| const objects of type T in the buffer at the
// current position.
template <typename T,
typename = std::enable_if_t<std::is_trivially_copyable_v<T>>>
span<const T> Span(size_t count) {
return MutableSpan<const T>(count);
}
// Resets the iterator position to the absolute offset |to|.
void Seek(size_t to) { remaining_ = buffer_.subspan(to); }
// Limits the remaining data to the specified size.
// Seeking to an absolute offset reverses this.
void TruncateTo(size_t size) { remaining_ = remaining_.first(size); }
// Returns the total size of the underlying buffer.
size_t total_size() const { return buffer_.size(); }
// Returns the current position in the buffer.
size_t position() const {
DCHECK(buffer_.data() <= remaining_.data());
DCHECK(remaining_.data() <= buffer_.data() + buffer_.size());
return static_cast<size_t>(remaining_.data() - buffer_.data());
}
private:
// The original buffer that the iterator was constructed with.
const span<B> buffer_;
// A subspan of |buffer_| containing the remaining bytes to iterate over.
span<B> remaining_;
// Copy and assign allowed.
};
} // namespace base
#endif // BASE_CONTAINERS_BUFFER_ITERATOR_H_