blob: 61f2c8e3159a19588799b8ede17aee658107764c [file] [log] [blame]
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_CONTAINERS_CIRCULAR_DEQUE_H_
#define BASE_CONTAINERS_CIRCULAR_DEQUE_H_
#include <algorithm>
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
#include "base/check.h"
#include "base/containers/vector_buffer.h"
#include "base/dcheck_is_on.h"
#include "base/memory/raw_ptr_exclusion.h"
#include "base/ranges/algorithm.h"
#include "base/template_util.h"
#if DCHECK_IS_ON()
#include <ostream>
#endif
// base::circular_deque is similar to std::deque. Unlike std::deque, the
// storage is provided in a flat circular buffer conceptually similar to a
// vector. The beginning and end will wrap around as necessary so that
// pushes and pops will be constant time as long as a capacity expansion is
// not required.
//
// The API should be identical to std::deque with the following differences:
//
// - ITERATORS ARE NOT STABLE. Mutating the container will invalidate all
// iterators.
//
// - Insertions may resize the vector and so are not constant time (std::deque
// guarantees constant time for insertions at the ends).
//
// - Container-wide comparisons are not implemented. If you want to compare
// two containers, use an algorithm so the expensive iteration is explicit.
//
// If you want a similar container with only a queue API, use base::queue in
// base/containers/queue.h.
//
// Constructors:
// circular_deque();
// circular_deque(size_t count);
// circular_deque(size_t count, const T& value);
// circular_deque(InputIterator first, InputIterator last);
// circular_deque(const circular_deque&);
// circular_deque(circular_deque&&);
// circular_deque(std::initializer_list<value_type>);
//
// Assignment functions:
// circular_deque& operator=(const circular_deque&);
// circular_deque& operator=(circular_deque&&);
// circular_deque& operator=(std::initializer_list<T>);
// void assign(size_t count, const T& value);
// void assign(InputIterator first, InputIterator last);
// void assign(std::initializer_list<T> value);
//
// Random accessors:
// T& at(size_t);
// const T& at(size_t) const;
// T& operator[](size_t);
// const T& operator[](size_t) const;
//
// End accessors:
// T& front();
// const T& front() const;
// T& back();
// const T& back() const;
//
// Iterator functions:
// iterator begin();
// const_iterator begin() const;
// const_iterator cbegin() const;
// iterator end();
// const_iterator end() const;
// const_iterator cend() const;
// reverse_iterator rbegin();
// const_reverse_iterator rbegin() const;
// const_reverse_iterator crbegin() const;
// reverse_iterator rend();
// const_reverse_iterator rend() const;
// const_reverse_iterator crend() const;
//
// Memory management:
// void reserve(size_t); // SEE IMPLEMENTATION FOR SOME GOTCHAS.
// size_t capacity() const;
// void shrink_to_fit();
//
// Size management:
// void clear();
// bool empty() const;
// size_t size() const;
// void resize(size_t);
// void resize(size_t count, const T& value);
//
// Positional insert and erase:
// void insert(const_iterator pos, size_type count, const T& value);
// void insert(const_iterator pos,
// InputIterator first, InputIterator last);
// iterator insert(const_iterator pos, const T& value);
// iterator insert(const_iterator pos, T&& value);
// iterator emplace(const_iterator pos, Args&&... args);
// iterator erase(const_iterator pos);
// iterator erase(const_iterator first, const_iterator last);
//
// End insert and erase:
// void push_front(const T&);
// void push_front(T&&);
// void push_back(const T&);
// void push_back(T&&);
// T& emplace_front(Args&&...);
// T& emplace_back(Args&&...);
// void pop_front();
// void pop_back();
//
// General:
// void swap(circular_deque&);
namespace base {
template <class T>
class circular_deque;
namespace internal {
// Start allocating nonempty buffers with this many entries. This is the
// external capacity so the internal buffer will be one larger (= 4) which is
// more even for the allocator. See the descriptions of internal vs. external
// capacity on the comment above the buffer_ variable below.
constexpr size_t kCircularBufferInitialCapacity = 3;
template <typename T>
class circular_deque_const_iterator {
public:
using difference_type = std::ptrdiff_t;
using value_type = T;
using pointer = const T*;
using reference = const T&;
using iterator_category = std::random_access_iterator_tag;
circular_deque_const_iterator() : parent_deque_(nullptr), index_(0) {
#if DCHECK_IS_ON()
created_generation_ = 0;
#endif // DCHECK_IS_ON()
}
// Dereferencing.
const T& operator*() const {
CheckUnstableUsage();
parent_deque_->CheckValidIndex(index_);
return parent_deque_->buffer_[index_];
}
const T* operator->() const {
CheckUnstableUsage();
parent_deque_->CheckValidIndex(index_);
return &parent_deque_->buffer_[index_];
}
const value_type& operator[](difference_type i) const { return *(*this + i); }
// Increment and decrement.
circular_deque_const_iterator& operator++() {
Increment();
return *this;
}
circular_deque_const_iterator operator++(int) {
circular_deque_const_iterator ret = *this;
Increment();
return ret;
}
circular_deque_const_iterator& operator--() {
Decrement();
return *this;
}
circular_deque_const_iterator operator--(int) {
circular_deque_const_iterator ret = *this;
Decrement();
return ret;
}
// Random access mutation.
friend circular_deque_const_iterator operator+(
const circular_deque_const_iterator& iter,
difference_type offset) {
circular_deque_const_iterator ret = iter;
ret.Add(offset);
return ret;
}
circular_deque_const_iterator& operator+=(difference_type offset) {
Add(offset);
return *this;
}
friend circular_deque_const_iterator operator-(
const circular_deque_const_iterator& iter,
difference_type offset) {
circular_deque_const_iterator ret = iter;
ret.Add(-offset);
return ret;
}
circular_deque_const_iterator& operator-=(difference_type offset) {
Add(-offset);
return *this;
}
friend std::ptrdiff_t operator-(const circular_deque_const_iterator& lhs,
const circular_deque_const_iterator& rhs) {
lhs.CheckComparable(rhs);
return static_cast<std::ptrdiff_t>(lhs.OffsetFromBegin() -
rhs.OffsetFromBegin());
}
// Comparisons.
friend bool operator==(const circular_deque_const_iterator& lhs,
const circular_deque_const_iterator& rhs) {
lhs.CheckComparable(rhs);
return lhs.index_ == rhs.index_;
}
friend bool operator!=(const circular_deque_const_iterator& lhs,
const circular_deque_const_iterator& rhs) {
return !(lhs == rhs);
}
friend bool operator<(const circular_deque_const_iterator& lhs,
const circular_deque_const_iterator& rhs) {
lhs.CheckComparable(rhs);
return lhs.OffsetFromBegin() < rhs.OffsetFromBegin();
}
friend bool operator<=(const circular_deque_const_iterator& lhs,
const circular_deque_const_iterator& rhs) {
return !(lhs > rhs);
}
friend bool operator>(const circular_deque_const_iterator& lhs,
const circular_deque_const_iterator& rhs) {
lhs.CheckComparable(rhs);
return lhs.OffsetFromBegin() > rhs.OffsetFromBegin();
}
friend bool operator>=(const circular_deque_const_iterator& lhs,
const circular_deque_const_iterator& rhs) {
return !(lhs < rhs);
}
protected:
friend class circular_deque<T>;
circular_deque_const_iterator(const circular_deque<T>* parent, size_t index)
: parent_deque_(parent), index_(index) {
#if DCHECK_IS_ON()
created_generation_ = parent->generation_;
#endif // DCHECK_IS_ON()
}
// Returns the offset from the beginning index of the buffer to the current
// item.
size_t OffsetFromBegin() const {
if (index_ >= parent_deque_->begin_)
return index_ - parent_deque_->begin_; // On the same side as begin.
return parent_deque_->buffer_.capacity() - parent_deque_->begin_ + index_;
}
// Most uses will be ++ and -- so use a simplified implementation.
void Increment() {
CheckUnstableUsage();
parent_deque_->CheckValidIndex(index_);
index_++;
if (index_ == parent_deque_->buffer_.capacity())
index_ = 0;
}
void Decrement() {
CheckUnstableUsage();
parent_deque_->CheckValidIndexOrEnd(index_);
if (index_ == 0)
index_ = parent_deque_->buffer_.capacity() - 1;
else
index_--;
}
void Add(difference_type delta) {
CheckUnstableUsage();
#if DCHECK_IS_ON()
if (delta <= 0)
parent_deque_->CheckValidIndexOrEnd(index_);
else
parent_deque_->CheckValidIndex(index_);
#endif
// It should be valid to add 0 to any iterator, even if the container is
// empty and the iterator points to end(). The modulo below will divide
// by 0 if the buffer capacity is empty, so it's important to check for
// this case explicitly.
if (delta == 0)
return;
difference_type new_offset = OffsetFromBegin() + delta;
DCHECK(new_offset >= 0 &&
new_offset <= static_cast<difference_type>(parent_deque_->size()));
index_ = (new_offset + parent_deque_->begin_) %
parent_deque_->buffer_.capacity();
}
#if DCHECK_IS_ON()
void CheckUnstableUsage() const {
DCHECK(parent_deque_);
// Since circular_deque doesn't guarantee stability, any attempt to
// dereference this iterator after a mutation (i.e. the generation doesn't
// match the original) in the container is illegal.
DCHECK(created_generation_ == parent_deque_->generation_)
<< "circular_deque iterator dereferenced after mutation.";
}
void CheckComparable(const circular_deque_const_iterator& other) const {
DCHECK(parent_deque_ == other.parent_deque_);
// Since circular_deque doesn't guarantee stability, two iterators that
// are compared must have been generated without mutating the container.
// If this fires, the container was mutated between generating the two
// iterators being compared.
DCHECK(created_generation_ == other.created_generation_);
}
#else
inline void CheckUnstableUsage() const {}
inline void CheckComparable(const circular_deque_const_iterator&) const {}
#endif // DCHECK_IS_ON()
// `parent_deque_` is not a raw_ptr<...> for performance reasons: Usually
// on-stack pointer, pointing back to the collection being iterated, owned by
// object that iterates over it. Additionally this is supported by the
// analysis of sampling profiler data and tab_search:top100:2020.
RAW_PTR_EXCLUSION const circular_deque<T>* parent_deque_;
size_t index_;
#if DCHECK_IS_ON()
// The generation of the parent deque when this iterator was created. The
// container will update the generation for every modification so we can
// test if the container was modified by comparing them.
uint64_t created_generation_;
#endif // DCHECK_IS_ON()
};
template <typename T>
class circular_deque_iterator : public circular_deque_const_iterator<T> {
using base = circular_deque_const_iterator<T>;
public:
friend class circular_deque<T>;
using difference_type = std::ptrdiff_t;
using value_type = T;
using pointer = T*;
using reference = T&;
using iterator_category = std::random_access_iterator_tag;
// Expose the base class' constructor.
circular_deque_iterator() : circular_deque_const_iterator<T>() {}
// Dereferencing.
T& operator*() const { return const_cast<T&>(base::operator*()); }
T* operator->() const { return const_cast<T*>(base::operator->()); }
T& operator[](difference_type i) {
return const_cast<T&>(base::operator[](i));
}
// Random access mutation.
friend circular_deque_iterator operator+(const circular_deque_iterator& iter,
difference_type offset) {
circular_deque_iterator ret = iter;
ret.Add(offset);
return ret;
}
circular_deque_iterator& operator+=(difference_type offset) {
base::Add(offset);
return *this;
}
friend circular_deque_iterator operator-(const circular_deque_iterator& iter,
difference_type offset) {
circular_deque_iterator ret = iter;
ret.Add(-offset);
return ret;
}
circular_deque_iterator& operator-=(difference_type offset) {
base::Add(-offset);
return *this;
}
// Increment and decrement.
circular_deque_iterator& operator++() {
base::Increment();
return *this;
}
circular_deque_iterator operator++(int) {
circular_deque_iterator ret = *this;
base::Increment();
return ret;
}
circular_deque_iterator& operator--() {
base::Decrement();
return *this;
}
circular_deque_iterator operator--(int) {
circular_deque_iterator ret = *this;
base::Decrement();
return ret;
}
private:
circular_deque_iterator(const circular_deque<T>* parent, size_t index)
: circular_deque_const_iterator<T>(parent, index) {}
};
} // namespace internal
template <typename T>
class circular_deque {
private:
using VectorBuffer = internal::VectorBuffer<T>;
public:
using value_type = T;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using reference = value_type&;
using const_reference = const value_type&;
using pointer = value_type*;
using const_pointer = const value_type*;
using iterator = internal::circular_deque_iterator<T>;
using const_iterator = internal::circular_deque_const_iterator<T>;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
// ---------------------------------------------------------------------------
// Constructor
constexpr circular_deque() = default;
// Constructs with |count| copies of |value| or default constructed version.
explicit circular_deque(size_type count) { resize(count); }
circular_deque(size_type count, const T& value) { resize(count, value); }
// Range constructor.
template <class InputIterator>
circular_deque(InputIterator first, InputIterator last) {
assign(first, last);
}
// Copy/move.
circular_deque(const circular_deque& other) : buffer_(other.size() + 1) {
assign(other.begin(), other.end());
}
circular_deque(circular_deque&& other) noexcept
: buffer_(std::move(other.buffer_)),
begin_(other.begin_),
end_(other.end_) {
other.begin_ = 0;
other.end_ = 0;
}
circular_deque(std::initializer_list<value_type> init) { assign(init); }
~circular_deque() { DestructRange(begin_, end_); }
// ---------------------------------------------------------------------------
// Assignments.
//
// All of these may invalidate iterators and references.
circular_deque& operator=(const circular_deque& other) {
if (&other == this)
return *this;
reserve(other.size());
assign(other.begin(), other.end());
return *this;
}
circular_deque& operator=(circular_deque&& other) noexcept {
if (&other == this)
return *this;
// We're about to overwrite the buffer, so don't free it in clear to
// avoid doing it twice.
ClearRetainCapacity();
buffer_ = std::move(other.buffer_);
begin_ = other.begin_;
end_ = other.end_;
other.begin_ = 0;
other.end_ = 0;
IncrementGeneration();
return *this;
}
circular_deque& operator=(std::initializer_list<value_type> ilist) {
reserve(ilist.size());
assign(std::begin(ilist), std::end(ilist));
return *this;
}
void assign(size_type count, const value_type& value) {
ClearRetainCapacity();
reserve(count);
for (size_t i = 0; i < count; i++)
emplace_back(value);
IncrementGeneration();
}
// This variant should be enabled only when InputIterator is an iterator.
template <typename InputIterator>
typename std::enable_if<::base::internal::is_iterator<InputIterator>::value,
void>::type
assign(InputIterator first, InputIterator last) {
// Possible future enhancement, dispatch on iterator tag type. For forward
// iterators we can use std::difference to preallocate the space required
// and only do one copy.
ClearRetainCapacity();
for (; first != last; ++first)
emplace_back(*first);
IncrementGeneration();
}
void assign(std::initializer_list<value_type> value) {
reserve(std::distance(value.begin(), value.end()));
assign(value.begin(), value.end());
}
// ---------------------------------------------------------------------------
// Accessors.
//
// Since this class assumes no exceptions, at() and operator[] are equivalent.
const value_type& at(size_type i) const {
DCHECK(i < size());
size_t right_size = buffer_.capacity() - begin_;
if (begin_ <= end_ || i < right_size)
return buffer_[begin_ + i];
return buffer_[i - right_size];
}
value_type& at(size_type i) {
return const_cast<value_type&>(std::as_const(*this).at(i));
}
value_type& operator[](size_type i) {
return const_cast<value_type&>(std::as_const(*this)[i]);
}
const value_type& operator[](size_type i) const { return at(i); }
value_type& front() {
DCHECK(!empty());
return buffer_[begin_];
}
const value_type& front() const {
DCHECK(!empty());
return buffer_[begin_];
}
value_type& back() {
DCHECK(!empty());
return *(--end());
}
const value_type& back() const {
DCHECK(!empty());
return *(--end());
}
// ---------------------------------------------------------------------------
// Iterators.
iterator begin() { return iterator(this, begin_); }
const_iterator begin() const { return const_iterator(this, begin_); }
const_iterator cbegin() const { return const_iterator(this, begin_); }
iterator end() { return iterator(this, end_); }
const_iterator end() const { return const_iterator(this, end_); }
const_iterator cend() const { return const_iterator(this, end_); }
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
const_reverse_iterator crbegin() const { return rbegin(); }
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
const_reverse_iterator crend() const { return rend(); }
// ---------------------------------------------------------------------------
// Memory management.
// IMPORTANT NOTE ON reserve(...): This class implements auto-shrinking of
// the buffer when elements are deleted and there is "too much" wasted space.
// So if you call reserve() with a large size in anticipation of pushing many
// elements, but pop an element before the queue is full, the capacity you
// reserved may be lost.
//
// As a result, it's only worthwhile to call reserve() when you're adding
// many things at once with no intermediate operations.
void reserve(size_type new_capacity) {
if (new_capacity > capacity())
SetCapacityTo(new_capacity);
}
size_type capacity() const {
// One item is wasted to indicate end().
return buffer_.capacity() == 0 ? 0 : buffer_.capacity() - 1;
}
void shrink_to_fit() {
if (empty()) {
// Optimize empty case to really delete everything if there was
// something.
if (buffer_.capacity())
buffer_ = VectorBuffer();
} else {
SetCapacityTo(size());
}
}
// ---------------------------------------------------------------------------
// Size management.
// This will additionally reset the capacity() to 0.
void clear() {
// This can't resize(0) because that requires a default constructor to
// compile, which not all contained classes may implement.
ClearRetainCapacity();
buffer_ = VectorBuffer();
}
bool empty() const { return begin_ == end_; }
size_type size() const {
if (begin_ <= end_)
return end_ - begin_;
return buffer_.capacity() - begin_ + end_;
}
// When reducing size, the elements are deleted from the end. When expanding
// size, elements are added to the end with |value| or the default
// constructed version. Even when using resize(count) to shrink, a default
// constructor is required for the code to compile, even though it will not
// be called.
//
// There are two versions rather than using a default value to avoid
// creating a temporary when shrinking (when it's not needed). Plus if
// the default constructor is desired when expanding usually just calling it
// for each element is faster than making a default-constructed temporary and
// copying it.
void resize(size_type count) {
// SEE BELOW VERSION if you change this. The code is mostly the same.
if (count > size()) {
// This could be slighly more efficient but expanding a queue with
// identical elements is unusual and the extra computations of emplacing
// one-by-one will typically be small relative to calling the constructor
// for every item.
ExpandCapacityIfNecessary(count - size());
while (size() < count)
emplace_back();
} else if (count < size()) {
size_t new_end = (begin_ + count) % buffer_.capacity();
DestructRange(new_end, end_);
end_ = new_end;
ShrinkCapacityIfNecessary();
}
IncrementGeneration();
}
void resize(size_type count, const value_type& value) {
// SEE ABOVE VERSION if you change this. The code is mostly the same.
if (count > size()) {
ExpandCapacityIfNecessary(count - size());
while (size() < count)
emplace_back(value);
} else if (count < size()) {
size_t new_end = (begin_ + count) % buffer_.capacity();
DestructRange(new_end, end_);
end_ = new_end;
ShrinkCapacityIfNecessary();
}
IncrementGeneration();
}
// ---------------------------------------------------------------------------
// Insert and erase.
//
// Insertion and deletion in the middle is O(n) and invalidates all existing
// iterators.
//
// The implementation of insert isn't optimized as much as it could be. If
// the insertion requires that the buffer be grown, it will first be grown
// and everything moved, and then the items will be inserted, potentially
// moving some items twice. This simplifies the implemntation substantially
// and means less generated templatized code. Since this is an uncommon
// operation for deques, and already relatively slow, it doesn't seem worth
// the benefit to optimize this.
void insert(const_iterator pos, size_type count, const T& value) {
ValidateIterator(pos);
// Optimize insert at the beginning.
if (pos == begin()) {
ExpandCapacityIfNecessary(count);
for (size_t i = 0; i < count; i++)
push_front(value);
return;
}
iterator insert_cur(this, pos.index_);
iterator insert_end;
MakeRoomFor(count, &insert_cur, &insert_end);
while (insert_cur < insert_end) {
new (&buffer_[insert_cur.index_]) T(value);
++insert_cur;
}
IncrementGeneration();
}
// This enable_if keeps this call from getting confused with the (pos, count,
// value) version when value is an integer.
template <class InputIterator>
typename std::enable_if<::base::internal::is_iterator<InputIterator>::value,
void>::type
insert(const_iterator pos, InputIterator first, InputIterator last) {
ValidateIterator(pos);
const difference_type inserted_items_signed = std::distance(first, last);
if (inserted_items_signed == 0)
return; // Can divide by 0 when doing modulo below, so return early.
CHECK(inserted_items_signed > 0);
const size_type inserted_items =
static_cast<size_type>(inserted_items_signed);
// Make a hole to copy the items into.
iterator insert_cur;
iterator insert_end;
if (pos == begin()) {
// Optimize insert at the beginning, nothing needs to be shifted and the
// hole is the |inserted_items| block immediately before |begin_|.
ExpandCapacityIfNecessary(inserted_items);
insert_end = begin();
begin_ =
(begin_ + buffer_.capacity() - inserted_items) % buffer_.capacity();
insert_cur = begin();
} else {
insert_cur = iterator(this, pos.index_);
MakeRoomFor(inserted_items, &insert_cur, &insert_end);
}
// Copy the items.
while (insert_cur < insert_end) {
new (&buffer_[insert_cur.index_]) T(*first);
++insert_cur;
++first;
}
IncrementGeneration();
}
// These all return an iterator to the inserted item. Existing iterators will
// be invalidated.
iterator insert(const_iterator pos, const T& value) {
return emplace(pos, value);
}
iterator insert(const_iterator pos, T&& value) {
return emplace(pos, std::move(value));
}
template <class... Args>
iterator emplace(const_iterator pos, Args&&... args) {
ValidateIterator(pos);
// Optimize insert at beginning which doesn't require shifting.
if (pos == cbegin()) {
emplace_front(std::forward<Args>(args)...);
return begin();
}
// Do this before we make the new iterators we return.
IncrementGeneration();
iterator insert_begin(this, pos.index_);
iterator insert_end;
MakeRoomFor(1, &insert_begin, &insert_end);
new (&buffer_[insert_begin.index_]) T(std::forward<Args>(args)...);
return insert_begin;
}
// Calling erase() won't automatically resize the buffer smaller like resize
// or the pop functions. Erase is slow and relatively uncommon, and for
// normal deque usage a pop will normally be done on a regular basis that
// will prevent excessive buffer usage over long periods of time. It's not
// worth having the extra code for every template instantiation of erase()
// to resize capacity downward to a new buffer.
iterator erase(const_iterator pos) { return erase(pos, pos + 1); }
iterator erase(const_iterator first, const_iterator last) {
ValidateIterator(first);
ValidateIterator(last);
IncrementGeneration();
// First, call the destructor on the deleted items.
if (first.index_ == last.index_) {
// Nothing deleted. Need to return early to avoid falling through to
// moving items on top of themselves.
return iterator(this, first.index_);
} else if (first.index_ < last.index_) {
// Contiguous range.
buffer_.DestructRange(&buffer_[first.index_], &buffer_[last.index_]);
} else {
// Deleted range wraps around.
buffer_.DestructRange(&buffer_[first.index_],
&buffer_[buffer_.capacity()]);
buffer_.DestructRange(&buffer_[0], &buffer_[last.index_]);
}
if (first.index_ == begin_) {
// This deletion is from the beginning. Nothing needs to be copied, only
// begin_ needs to be updated.
begin_ = last.index_;
return iterator(this, last.index_);
}
// In an erase operation, the shifted items all move logically to the left,
// so move them from left-to-right.
iterator move_src(this, last.index_);
iterator move_src_end = end();
iterator move_dest(this, first.index_);
for (; move_src < move_src_end; move_src++, move_dest++) {
buffer_.MoveRange(&buffer_[move_src.index_],
&buffer_[move_src.index_ + 1],
&buffer_[move_dest.index_]);
}
end_ = move_dest.index_;
// Since we did not reallocate and only changed things after the erase
// element(s), the input iterator's index points to the thing following the
// deletion.
return iterator(this, first.index_);
}
// ---------------------------------------------------------------------------
// Begin/end operations.
void push_front(const T& value) { emplace_front(value); }
void push_front(T&& value) { emplace_front(std::move(value)); }
void push_back(const T& value) { emplace_back(value); }
void push_back(T&& value) { emplace_back(std::move(value)); }
template <class... Args>
reference emplace_front(Args&&... args) {
ExpandCapacityIfNecessary(1);
if (begin_ == 0)
begin_ = buffer_.capacity() - 1;
else
begin_--;
IncrementGeneration();
new (&buffer_[begin_]) T(std::forward<Args>(args)...);
return front();
}
template <class... Args>
reference emplace_back(Args&&... args) {
ExpandCapacityIfNecessary(1);
new (&buffer_[end_]) T(std::forward<Args>(args)...);
if (end_ == buffer_.capacity() - 1)
end_ = 0;
else
end_++;
IncrementGeneration();
return back();
}
void pop_front() {
DCHECK(size());
buffer_.DestructRange(&buffer_[begin_], &buffer_[begin_ + 1]);
begin_++;
if (begin_ == buffer_.capacity())
begin_ = 0;
ShrinkCapacityIfNecessary();
// Technically popping will not invalidate any iterators since the
// underlying buffer will be stable. But in the future we may want to add a
// feature that resizes the buffer smaller if there is too much wasted
// space. This ensures we can make such a change safely.
IncrementGeneration();
}
void pop_back() {
DCHECK(size());
if (end_ == 0)
end_ = buffer_.capacity() - 1;
else
end_--;
buffer_.DestructRange(&buffer_[end_], &buffer_[end_ + 1]);
ShrinkCapacityIfNecessary();
// See pop_front comment about why this is here.
IncrementGeneration();
}
// ---------------------------------------------------------------------------
// General operations.
void swap(circular_deque& other) {
std::swap(buffer_, other.buffer_);
std::swap(begin_, other.begin_);
std::swap(end_, other.end_);
IncrementGeneration();
}
friend void swap(circular_deque& lhs, circular_deque& rhs) { lhs.swap(rhs); }
private:
friend internal::circular_deque_iterator<T>;
friend internal::circular_deque_const_iterator<T>;
// Moves the items in the given circular buffer to the current one. The
// source is moved from so will become invalid. The destination buffer must
// have already been allocated with enough size.
static void MoveBuffer(VectorBuffer& from_buf,
size_t from_begin,
size_t from_end,
VectorBuffer* to_buf,
size_t* to_begin,
size_t* to_end) {
size_t from_capacity = from_buf.capacity();
*to_begin = 0;
if (from_begin < from_end) {
// Contiguous.
from_buf.MoveRange(&from_buf[from_begin], &from_buf[from_end],
to_buf->begin());
*to_end = from_end - from_begin;
} else if (from_begin > from_end) {
// Discontiguous, copy the right side to the beginning of the new buffer.
from_buf.MoveRange(&from_buf[from_begin], &from_buf[from_capacity],
to_buf->begin());
size_t right_size = from_capacity - from_begin;
// Append the left side.
from_buf.MoveRange(&from_buf[0], &from_buf[from_end],
&(*to_buf)[right_size]);
*to_end = right_size + from_end;
} else {
// No items.
*to_end = 0;
}
}
// Expands the buffer size. This assumes the size is larger than the
// number of elements in the vector (it won't call delete on anything).
void SetCapacityTo(size_t new_capacity) {
// Use the capacity + 1 as the internal buffer size to differentiate
// empty and full (see definition of buffer_ below).
VectorBuffer new_buffer(new_capacity + 1);
MoveBuffer(buffer_, begin_, end_, &new_buffer, &begin_, &end_);
buffer_ = std::move(new_buffer);
}
void ExpandCapacityIfNecessary(size_t additional_elts) {
size_t min_new_capacity = size() + additional_elts;
if (capacity() >= min_new_capacity)
return; // Already enough room.
min_new_capacity =
std::max(min_new_capacity, internal::kCircularBufferInitialCapacity);
// std::vector always grows by at least 50%. WTF::Deque grows by at least
// 25%. We expect queue workloads to generally stay at a similar size and
// grow less than a vector might, so use 25%.
size_t new_capacity =
std::max(min_new_capacity, capacity() + capacity() / 4);
SetCapacityTo(new_capacity);
}
void ShrinkCapacityIfNecessary() {
// Don't auto-shrink below this size.
if (capacity() <= internal::kCircularBufferInitialCapacity)
return;
// Shrink when 100% of the size() is wasted.
size_t sz = size();
size_t empty_spaces = capacity() - sz;
if (empty_spaces < sz)
return;
// Leave 1/4 the size as free capacity, not going below the initial
// capacity.
size_t new_capacity =
std::max(internal::kCircularBufferInitialCapacity, sz + sz / 4);
if (new_capacity < capacity()) {
// Count extra item to convert to internal capacity.
SetCapacityTo(new_capacity);
}
}
// Backend for clear() but does not resize the internal buffer.
void ClearRetainCapacity() {
// This can't resize(0) because that requires a default constructor to
// compile, which not all contained classes may implement.
DestructRange(begin_, end_);
begin_ = 0;
end_ = 0;
IncrementGeneration();
}
// Calls destructors for the given begin->end indices. The indices may wrap
// around. The buffer is not resized, and the begin_ and end_ members are
// not changed.
void DestructRange(size_t begin, size_t end) {
if (end == begin) {
return;
} else if (end > begin) {
buffer_.DestructRange(&buffer_[begin], &buffer_[end]);
} else {
buffer_.DestructRange(&buffer_[begin], &buffer_[buffer_.capacity()]);
buffer_.DestructRange(&buffer_[0], &buffer_[end]);
}
}
// Makes room for |count| items starting at |*insert_begin|. Since iterators
// are not stable across buffer resizes, |*insert_begin| will be updated to
// point to the beginning of the newly opened position in the new array (it's
// in/out), and the end of the newly opened position (it's out-only).
void MakeRoomFor(size_t count, iterator* insert_begin, iterator* insert_end) {
if (count == 0) {
*insert_end = *insert_begin;
return;
}
// The offset from the beginning will be stable across reallocations.
size_t begin_offset = insert_begin->OffsetFromBegin();
ExpandCapacityIfNecessary(count);
insert_begin->index_ = (begin_ + begin_offset) % buffer_.capacity();
*insert_end =
iterator(this, (insert_begin->index_ + count) % buffer_.capacity());
// Update the new end and prepare the iterators for copying.
iterator src = end();
end_ = (end_ + count) % buffer_.capacity();
iterator dest = end();
// Move the elements. This will always involve shifting logically to the
// right, so move in a right-to-left order.
while (true) {
if (src == *insert_begin)
break;
--src;
--dest;
buffer_.MoveRange(&buffer_[src.index_], &buffer_[src.index_ + 1],
&buffer_[dest.index_]);
}
}
#if DCHECK_IS_ON()
// Asserts the given index is dereferencable. The index is an index into the
// buffer, not an index used by operator[] or at() which will be offsets from
// begin.
void CheckValidIndex(size_t i) const {
if (begin_ <= end_)
DCHECK(i >= begin_ && i < end_);
else
DCHECK((i >= begin_ && i < buffer_.capacity()) || i < end_);
}
// Asserts the given index is either dereferencable or points to end().
void CheckValidIndexOrEnd(size_t i) const {
if (i != end_)
CheckValidIndex(i);
}
void ValidateIterator(const const_iterator& i) const {
DCHECK(i.parent_deque_ == this);
i.CheckUnstableUsage();
}
// See generation_ below.
void IncrementGeneration() { generation_++; }
#else
// No-op versions of these functions for release builds.
void CheckValidIndex(size_t) const {}
void CheckValidIndexOrEnd(size_t) const {}
void ValidateIterator(const const_iterator& i) const {}
void IncrementGeneration() {}
#endif
// Danger, the buffer_.capacity() is the "internal capacity" which is
// capacity() + 1 since there is an extra item to indicate the end. Otherwise
// being completely empty and completely full are indistinguishable (begin ==
// end). We could add a separate flag to avoid it, but that adds significant
// extra complexity since every computation will have to check for it. Always
// keeping one extra unused element in the buffer makes iterator computations
// much simpler.
//
// Container internal code will want to use buffer_.capacity() for offset
// computations rather than capacity().
VectorBuffer buffer_;
size_type begin_ = 0;
size_type end_ = 0;
#if DCHECK_IS_ON()
// Incremented every time a modification is made that could affect iterator
// invalidations.
uint64_t generation_ = 0;
#endif
};
// Implementations of base::Erase[If] (see base/stl_util.h).
template <class T, class Value>
size_t Erase(circular_deque<T>& container, const Value& value) {
auto it = ranges::remove(container, value);
size_t removed = std::distance(it, container.end());
container.erase(it, container.end());
return removed;
}
template <class T, class Predicate>
size_t EraseIf(circular_deque<T>& container, Predicate pred) {
auto it = ranges::remove_if(container, pred);
size_t removed = std::distance(it, container.end());
container.erase(it, container.end());
return removed;
}
} // namespace base
#endif // BASE_CONTAINERS_CIRCULAR_DEQUE_H_