blob: f6d83ecef149182f5a80d4fc0970b6aaa36e8a1d [file] [log] [blame]
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/containers/intrusive_heap.h"
#include "base/check_op.h"
#include "base/functional/callback_helpers.h"
#include "base/memory/ptr_util.h"
#include "base/memory/raw_ptr_exclusion.h"
#include "base/notreached.h"
#include "base/rand_util.h"
#include "base/test/bind.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace base {
namespace {
using IntrusiveHeapInt = IntrusiveHeap<WithHeapHandle<int>>;
// Validates whether or not the given heap satisfies the heap invariant.
template <class H>
void ExpectHeap(const H& heap) {
const auto& less = heap.value_comp();
const auto& handle_access = heap.heap_handle_access();
for (size_t i = 0; i < heap.size(); ++i) {
size_t left = intrusive_heap::LeftIndex(i);
size_t right = left + 1;
if (left < heap.size())
EXPECT_FALSE(less(heap[i], heap[left]));
if (right < heap.size())
EXPECT_FALSE(less(heap[i], heap[right]));
intrusive_heap::CheckInvalidOrEqualTo(handle_access.GetHeapHandle(&heap[i]),
i);
}
}
// A small set of canonical elements, and the a function for validating the
// heap that should be created by those elements. This is used in various
// constructor/insertion tests.
#define CANONICAL_ELEMENTS 3, 1, 2, 4, 5, 6, 7, 0
void ExpectCanonical(const IntrusiveHeapInt& heap) {
ExpectHeap(heap);
// Manual implementation of a max-heap inserting the elements defined by
// CANONICAL_ELEMENTS:
// 3
// 3 1
// 3 1 2
// 3 1 2 4 -> 3 4 2 1 -> 4 3 2 1
// 4 3 2 1 5 -> 4 5 2 1 3 -> 5 4 2 1 3
// 5 4 2 1 3 6 -> 5 4 6 1 3 2 -> 6 4 5 1 3 2
// 6 4 5 1 3 2 7 -> 6 4 7 1 3 2 5 -> 7 4 6 1 3 2 5
// 7 4 6 1 3 2 5 0
std::vector<int> expected{7, 4, 6, 1, 3, 2, 5, 0};
std::vector<int> actual;
for (const auto& element : heap)
actual.push_back(element.value());
ASSERT_THAT(actual, testing::ContainerEq(expected));
}
// Initializes the given heap to be the "canonical" heap from the point of view
// of these tests.
void MakeCanonical(IntrusiveHeapInt* heap) {
static constexpr int kInts[] = {CANONICAL_ELEMENTS};
heap->clear();
heap->insert(kInts, kInts + std::size(kInts));
ExpectCanonical(*heap);
}
// A handful of helper functions and classes related to building an exhaustive
// stress test for IntrusiveHeap, with all combinations of default-constructible
// supports-move-operations and supports-copy-operations value types.
// IntrusiveHeap supports 3 types of operations: those that cause the heap to
// get smaller (deletions), those that keep the heap the same size (updates,
// replaces, etc), and those that cause the heap to get bigger (insertions).
enum OperationTypes : int {
kGrowing,
kShrinking,
kSameSize,
kOperationTypesCount
};
// The operations that cause a heap to get bigger.
enum GrowingOperations : int { kInsert, kEmplace, kGrowingOperationsCount };
// The operations that cause a heap to get smaller. Some of these are only
// supported by move-only value types.
enum ShrinkingOperations : int {
kTake,
kTakeTop,
kErase,
kPop,
kShrinkingOperationsCount
};
// The operations that keep a heap the same size.
enum SameSizeOperations : int {
kReplace,
kReplaceTop,
kUpdate,
kSameSizeOperationsCount
};
// Randomly selects an operation for the GrowingOperations enum, applies it to
// the given heap, and validates that the operation completed as expected.
template <typename T>
void DoGrowingOperation(IntrusiveHeap<T>* heap) {
GrowingOperations op = static_cast<GrowingOperations>(
base::RandInt(0, kGrowingOperationsCount - 1));
int value = base::RandInt(0, 1000);
size_t old_size = heap->size();
typename IntrusiveHeap<T>::const_iterator it;
switch (op) {
case kInsert: {
it = heap->insert(T(value));
break;
}
case kEmplace: {
it = heap->emplace(value);
break;
}
case kGrowingOperationsCount:
NOTREACHED();
}
EXPECT_EQ(old_size + 1, heap->size());
EXPECT_EQ(value, it->value());
EXPECT_EQ(it->GetHeapHandle().index(), heap->ToIndex(it));
}
// Helper struct for determining with the given value type T is movable or not.
// Used to determine whether or not the "take" operations can be used.
template <typename T>
struct NotMovable {
static constexpr bool value = !std::is_nothrow_move_constructible<T>::value &&
std::is_copy_constructible<T>::value;
};
// Invokes "take" if the type is movable, otherwise invokes erase.
template <typename T, bool kNotMovable = NotMovable<T>::value>
struct Take;
template <typename T>
struct Take<T, true> {
static void Do(IntrusiveHeap<T>* heap, size_t index) { heap->erase(index); }
};
template <typename T>
struct Take<T, false> {
static void Do(IntrusiveHeap<T>* heap, size_t index) {
int value = heap->at(index).value();
T t = heap->take(index);
EXPECT_EQ(value, t.value());
EXPECT_FALSE(t.GetHeapHandle().IsValid());
}
};
// Invokes "take_top" if the type is movable, otherwise invokes pop.
template <typename T, bool kNotMovable = NotMovable<T>::value>
struct TakeTop;
template <typename T>
struct TakeTop<T, true> {
static void Do(IntrusiveHeap<T>* heap) { heap->pop(); }
};
template <typename T>
struct TakeTop<T, false> {
static void Do(IntrusiveHeap<T>* heap) {
int value = heap->at(0).value();
T t = heap->take_top();
EXPECT_EQ(value, t.value());
EXPECT_FALSE(t.GetHeapHandle().IsValid());
}
};
// Randomly selects a shrinking operations, applies it to the given |heap| and
// validates that the operation completed as expected and resulted in a valid
// heap. The "take" operations will only be invoked for a value type T that
// supports move operations, otherwise they will be mapped to erase/pop.
template <typename T>
void DoShrinkingOperation(IntrusiveHeap<T>* heap) {
ShrinkingOperations op = static_cast<ShrinkingOperations>(
base::RandInt(0, kShrinkingOperationsCount - 1));
size_t old_size = heap->size();
size_t index = static_cast<size_t>(base::RandInt(0, old_size - 1));
switch (op) {
case kTake: {
Take<T>::Do(heap, index);
break;
}
case kTakeTop: {
TakeTop<T>::Do(heap);
break;
}
case kErase: {
heap->erase(index);
break;
}
case kPop: {
heap->pop();
break;
}
case kShrinkingOperationsCount:
NOTREACHED();
}
EXPECT_EQ(old_size - 1, heap->size());
}
// Randomly selects a same size operation, applies it to the given |heap| and
// validates that the operation completed as expected and resulted in a valid
// heap.
template <typename T>
void DoSameSizeOperation(IntrusiveHeap<T>* heap) {
SameSizeOperations op = static_cast<SameSizeOperations>(
base::RandInt(0, kSameSizeOperationsCount - 1));
size_t old_size = heap->size();
size_t index = static_cast<size_t>(base::RandInt(0, old_size - 1));
if (op == kReplaceTop)
index = 0;
int new_value = base::RandInt(0, 1000);
typename IntrusiveHeap<T>::const_iterator it;
switch (op) {
case kReplace: {
it = heap->Replace(index, T(new_value));
break;
}
case kReplaceTop: {
it = heap->ReplaceTop(T(new_value));
break;
}
case kUpdate: {
it = heap->Modify(
index, [&new_value](T& element) { element.set_value(new_value); });
break;
}
case kSameSizeOperationsCount:
NOTREACHED();
}
EXPECT_EQ(old_size, heap->size());
EXPECT_EQ(new_value, it->value());
EXPECT_EQ(it->GetHeapHandle().index(), heap->ToIndex(it));
}
// Randomly selects an operation, applies it to the given |heap| and validates
// that the operation completed as expected and resulted in a valid heap.
template <typename T>
void DoRandomHeapOperation(IntrusiveHeap<T>* heap) {
static constexpr int kMinHeapSize = 10u;
static constexpr int kMaxHeapSize = 100u;
OperationTypes operation_type =
static_cast<OperationTypes>(base::RandInt(0, kOperationTypesCount - 1));
// Keep the heap size bounded by forcing growing and shrinking operations when
// it exceeds the bounds.
if (heap->size() < kMinHeapSize) {
operation_type = kGrowing;
} else if (heap->size() > kMaxHeapSize) {
operation_type = kShrinking;
}
switch (operation_type) {
case kGrowing:
DoGrowingOperation(heap);
break;
case kShrinking:
DoShrinkingOperation(heap);
break;
case kSameSize:
DoSameSizeOperation(heap);
break;
case kOperationTypesCount:
NOTREACHED();
}
}
// A stress test that is only applicable to value types T that support move
// operations.
template <typename T>
void MoveStressTest() {
IntrusiveHeap<T> heap({2, 4, 6, 8});
EXPECT_EQ(4u, heap.size());
EXPECT_FALSE(heap.empty());
ExpectHeap(heap);
IntrusiveHeap<T> heap2(std::move(heap));
EXPECT_EQ(4u, heap2.size());
EXPECT_FALSE(heap2.empty());
ExpectHeap(heap2);
EXPECT_EQ(0u, heap.size());
EXPECT_TRUE(heap.empty());
ExpectHeap(heap);
heap = std::move(heap2);
EXPECT_EQ(4u, heap.size());
EXPECT_FALSE(heap.empty());
ExpectHeap(heap);
EXPECT_EQ(0u, heap2.size());
EXPECT_TRUE(heap2.empty());
ExpectHeap(heap2);
}
// A stress that that is only applicable to value types T that support copy
// operations.
template <typename T>
void CopyStressTest() {
IntrusiveHeap<T> heap({2, 4, 6, 8});
EXPECT_EQ(4u, heap.size());
EXPECT_FALSE(heap.empty());
ExpectHeap(heap);
IntrusiveHeap<T> heap2(heap);
EXPECT_EQ(4u, heap2.size());
EXPECT_FALSE(heap2.empty());
ExpectHeap(heap2);
EXPECT_EQ(4u, heap.size());
EXPECT_FALSE(heap.empty());
ExpectHeap(heap);
IntrusiveHeap<T> heap3({1, 3, 5});
heap3.clear();
heap3 = heap;
EXPECT_EQ(4u, heap3.size());
EXPECT_FALSE(heap3.empty());
ExpectHeap(heap);
EXPECT_EQ(4u, heap.size());
EXPECT_FALSE(heap.empty());
ExpectHeap(heap);
EXPECT_TRUE(heap == heap2);
EXPECT_FALSE(heap != heap2);
}
// A stress test that is applicable to all value types, whether or not they
// support copy and/or move operations.
template <typename T>
void GeneralStressTest() {
std::vector<int> vector{2, 4, 6, 8};
IntrusiveHeap<T> heap(vector.begin(), vector.end());
EXPECT_EQ(4u, heap.size());
EXPECT_FALSE(heap.empty());
ExpectHeap(heap);
heap.clear();
EXPECT_EQ(0u, heap.size());
EXPECT_TRUE(heap.empty());
ExpectHeap(heap);
// Create an element and get a handle to it.
auto it = heap.insert(T(34));
EXPECT_EQ(1u, heap.size());
HeapHandle* handle = it->handle();
EXPECT_EQ(0u, handle->index());
ExpectHeap(heap);
// Add some other elements.
heap.insert(T(12));
heap.emplace(14);
EXPECT_EQ(3u, heap.size());
ExpectHeap(heap);
// The handle should have tracked the element it is associated with.
EXPECT_EQ(34, heap[*handle].value());
// Replace with a value that shouldn't need moving in the heap.
size_t index = handle->index();
handle = heap.Replace(*handle, T(40))->handle();
EXPECT_EQ(3u, heap.size());
ExpectHeap(heap);
EXPECT_EQ(index, handle->index());
// Replace with a value that should cause the entry to move.
handle = heap.Replace(handle->index(), T(1))->handle();
EXPECT_EQ(3u, heap.size());
ExpectHeap(heap);
EXPECT_NE(index, handle->index());
// Replace the top element.
heap.ReplaceTop(T(65));
EXPECT_EQ(3u, heap.size());
ExpectHeap(heap);
// Insert several more elements.
std::vector<int> elements({13, 17, 19, 23, 29, 31, 37, 41});
heap.insert(elements.begin(), elements.end());
EXPECT_EQ(11u, heap.size());
ExpectHeap(heap);
// Invasively change an element that is already inside the heap, and then
// repair the heap.
T* element = const_cast<T*>(&heap[7]);
element->set_value(97);
heap.Update(7u);
ExpectHeap(heap);
// Safely modify an element that is already inside the heap.
heap.Modify(7u, [](T& element) { element.set_value(128); });
ExpectHeap(heap);
// Do some more updates that are no-ops, just to explore all the flavours of
// ToIndex.
handle = heap[5].handle();
heap.Update(*handle);
heap.Update(heap.begin() + 6);
heap.Update(heap.rbegin() + 8);
ExpectHeap(heap);
handle = heap[5].handle();
EXPECT_TRUE(handle);
EXPECT_EQ(5u, handle->index());
EXPECT_EQ(5u, heap.ToIndex(*handle));
EXPECT_EQ(5u, heap.ToIndex(heap.begin() + 5));
EXPECT_EQ(5u, heap.ToIndex(heap.cbegin() + 5));
EXPECT_EQ(5u, heap.ToIndex(heap.rbegin() + 5));
EXPECT_EQ(5u, heap.ToIndex(heap.crbegin() + 5));
EXPECT_EQ(HeapHandle::kInvalidIndex, heap.ToIndex(heap.end()));
EXPECT_EQ(HeapHandle::kInvalidIndex, heap.ToIndex(heap.cend()));
EXPECT_EQ(HeapHandle::kInvalidIndex, heap.ToIndex(heap.rend()));
EXPECT_EQ(HeapHandle::kInvalidIndex, heap.ToIndex(heap.crend()));
EXPECT_EQ(&heap[0], &heap.at(0));
EXPECT_EQ(&heap[0], &heap.front());
EXPECT_EQ(&heap[0], &heap.top());
EXPECT_EQ(&heap[heap.size() - 1], &heap.back());
EXPECT_EQ(&heap[0], heap.data());
// Do a bunch of random operations on a heap as a stress test.
for (size_t i = 0; i < 1000; ++i) {
DoRandomHeapOperation(&heap);
ExpectHeap(heap);
}
}
// A basic value type that wraps an integer. This is default constructible, and
// supports both move and copy operations.
class Value : public InternalHeapHandleStorage {
public:
explicit Value(int value) : value_(value) {}
Value() : value_(-1) {}
Value(Value&& other) noexcept
: InternalHeapHandleStorage(std::move(other)),
value_(std::exchange(other.value_, -1)) {}
Value(const Value& other) : value_(other.value_) {
HeapHandle h = other.GetHeapHandle();
if (h.IsValid())
SetHeapHandle(h);
}
~Value() override {}
Value& operator=(Value&& other) noexcept {
InternalHeapHandleStorage::operator=(std::move(other));
value_ = std::exchange(other.value_, -1);
return *this;
}
Value& operator=(const Value& other) {
value_ = other.value_;
return *this;
}
int value() const { return value_; }
void set_value(int value) { value_ = value; }
bool operator==(const Value& rhs) const { return value_ == rhs.value_; }
bool operator!=(const Value& rhs) const { return value_ != rhs.value_; }
bool operator<=(const Value& rhs) const { return value_ <= rhs.value_; }
bool operator>=(const Value& rhs) const { return value_ >= rhs.value_; }
bool operator<(const Value& rhs) const { return value_ < rhs.value_; }
bool operator>(const Value& rhs) const { return value_ > rhs.value_; }
private:
int value_;
};
// Macro for creating versions of Value that selectively enable/disable
// default-constructors, move-operations and copy-operations.
#define DEFINE_VALUE_TYPE(name, default_construct, move, copy) \
class name : public Value { \
public: \
explicit name(int value) : Value(value) {} \
name() = default_construct; \
name(name&&) noexcept = move; \
name(const name&) = copy; \
name& operator=(name&&) noexcept = move; \
name& operator=(const name&) = copy; \
};
DEFINE_VALUE_TYPE(Value_DMC, default, default, default)
DEFINE_VALUE_TYPE(Value_DmC, default, delete, default)
DEFINE_VALUE_TYPE(Value_DMc, default, default, delete)
DEFINE_VALUE_TYPE(Value_dMC, delete, default, default)
DEFINE_VALUE_TYPE(Value_dmC, delete, delete, default)
DEFINE_VALUE_TYPE(Value_dMc, delete, default, delete)
// Used to validate that the generated value types work as expected wrt
// default-constructors, move-operations and copy-operations.
template <typename ValueType, bool D, bool M, bool C>
void ValidateValueType() {
static_assert(std::is_default_constructible<ValueType>::value == D, "oops");
static_assert(std::is_move_constructible<ValueType>::value == M, "oops");
static_assert(std::is_move_assignable<ValueType>::value == M, "oops");
static_assert(std::is_copy_constructible<ValueType>::value == C, "oops");
static_assert(std::is_copy_assignable<ValueType>::value == C, "oops");
}
// A small test element that provides its own HeapHandle storage and implements
// the contract expected of the DefaultHeapHandleAccessor.
struct TestElement {
int key;
// This field is not a raw_ptr<> because it was filtered by the rewriter for:
// #reinterpret-cast-trivial-type
RAW_PTR_EXCLUSION HeapHandle* handle;
// Make this a min-heap by return > instead of <.
bool operator<(const TestElement& other) const { return key > other.key; }
void SetHeapHandle(HeapHandle h) {
if (handle)
*handle = h;
}
void ClearHeapHandle() {
if (handle)
handle->reset();
}
HeapHandle GetHeapHandle() const {
if (handle)
return *handle;
return HeapHandle::Invalid();
}
};
} // namespace
////////////////////////////////////////////////////////////////////////////////
// TEST SUITE 1
//
// Explicit tests of a simple heap using WithHeapHandle<>.
TEST(IntrusiveHeapTest, Constructors) {
{
// Default constructor.
IntrusiveHeapInt heap;
EXPECT_TRUE(heap.empty());
}
{
// Constructor with iterators.
std::vector<int> ints{CANONICAL_ELEMENTS};
IntrusiveHeapInt heap(ints.begin(), ints.end());
ExpectCanonical(heap);
// Move constructor.
IntrusiveHeapInt heap2(std::move(heap));
EXPECT_TRUE(heap.empty());
ExpectCanonical(heap2);
}
{
// Constructor with initializer list.
IntrusiveHeapInt heap{CANONICAL_ELEMENTS};
ExpectCanonical(heap);
}
}
TEST(IntrusiveHeapTest, Assignment) {
IntrusiveHeapInt heap{CANONICAL_ELEMENTS};
// Move assignment.
IntrusiveHeapInt heap2;
heap2 = std::move(heap);
EXPECT_TRUE(heap.empty());
ExpectCanonical(heap2);
}
TEST(IntrusiveHeapTest, Swap) {
IntrusiveHeapInt heap{CANONICAL_ELEMENTS};
IntrusiveHeapInt heap2;
swap(heap, heap2);
EXPECT_TRUE(heap.empty());
ExpectCanonical(heap2);
heap.swap(heap2);
EXPECT_TRUE(heap2.empty());
ExpectCanonical(heap);
}
TEST(IntrusiveHeapTest, ElementAccess) {
IntrusiveHeapInt heap{CANONICAL_ELEMENTS};
EXPECT_EQ(heap.front(), heap[0]);
EXPECT_EQ(heap.back(), heap[7]);
EXPECT_EQ(heap.top(), heap[0]);
for (size_t i = 0; i < heap.size(); ++i) {
EXPECT_EQ(heap[i], heap.at(i));
EXPECT_EQ(heap[i], heap.data()[i]);
}
}
TEST(IntrusiveHeapTest, SizeManagement) {
IntrusiveHeapInt heap;
EXPECT_TRUE(heap.empty());
EXPECT_LE(heap.size(), heap.capacity());
MakeCanonical(&heap);
EXPECT_FALSE(heap.empty());
EXPECT_LE(heap.size(), heap.capacity());
}
TEST(IntrusiveHeapTest, Iterators) {
IntrusiveHeapInt heap;
MakeCanonical(&heap);
size_t i = 0;
for (auto it = heap.begin(); it != heap.end(); ++it) {
EXPECT_EQ(i, heap.ToIndex(it));
EXPECT_EQ(&(*it), heap.data() + i);
++i;
}
i = heap.size() - 1;
for (auto rit = heap.rbegin(); rit != heap.rend(); ++rit) {
EXPECT_EQ(i, heap.ToIndex(rit));
EXPECT_EQ(&(*rit), heap.data() + i);
--i;
}
}
////////////////////////////////////////////////////////////////////////////////
// TEST SUITE 2
//
// Exhaustive stress tests with different value types, exploring all
// possibilities of default-constrible, movable and copyable value types.
TEST(IntrusiveHeapTest, MoveOnlyNoDefaultConstructorTest) {
using ValueType = Value_dMc;
ValidateValueType<ValueType, false, true, false>();
MoveStressTest<ValueType>();
GeneralStressTest<ValueType>();
}
TEST(IntrusiveHeapTest, CopyOnlyNoDefaultConstructorTest) {
using ValueType = Value_dmC;
ValidateValueType<ValueType, false, false, true>();
// We cannot perform CopyStressTest nor GeneralStressTest here, because
// Value_dmC has deleted move constructor and assignment operator. See
// crbug.com/1022576.
}
TEST(IntrusiveHeapTest, CopyAndMoveNoDefaultConstructorTest) {
using ValueType = Value_dMC;
ValidateValueType<ValueType, false, true, true>();
CopyStressTest<ValueType>();
MoveStressTest<ValueType>();
GeneralStressTest<ValueType>();
}
TEST(IntrusiveHeapTest, MoveOnlyWithDefaultConstructorTest) {
using ValueType = Value_DMc;
ValidateValueType<ValueType, true, true, false>();
MoveStressTest<ValueType>();
GeneralStressTest<ValueType>();
}
TEST(IntrusiveHeapTest, CopyOnlyWithDefaultConstructorTest) {
using ValueType = Value_DmC;
ValidateValueType<ValueType, true, false, true>();
// We cannot perform CopyStressTest nor GeneralStressTest here, because
// Value_DmC has deleted move constructor and assignment operator. See
// crbug.com/1022576.
}
TEST(IntrusiveHeapTest, CopyAndMoveWithDefaultConstructorTest) {
using ValueType = Value_DMC;
ValidateValueType<ValueType, true, true, true>();
CopyStressTest<ValueType>();
MoveStressTest<ValueType>();
GeneralStressTest<ValueType>();
}
////////////////////////////////////////////////////////////////////////////////
// TEST SUITE 3
//
// Tests individual functions on a custom type that provides heap handle storage
// externally through raw pointers.
TEST(IntrusiveHeapTest, Basic) {
IntrusiveHeap<TestElement> heap;
EXPECT_TRUE(heap.empty());
EXPECT_EQ(0u, heap.size());
}
TEST(IntrusiveHeapTest, Clear) {
IntrusiveHeap<TestElement> heap;
HeapHandle index1;
heap.insert({11, &index1});
EXPECT_EQ(1u, heap.size());
EXPECT_TRUE(index1.IsValid());
heap.clear();
EXPECT_EQ(0u, heap.size());
EXPECT_FALSE(index1.IsValid());
}
TEST(IntrusiveHeapTest, Destructor) {
HeapHandle index1;
{
IntrusiveHeap<TestElement> heap;
heap.insert({11, &index1});
EXPECT_EQ(1u, heap.size());
EXPECT_TRUE(index1.IsValid());
}
EXPECT_FALSE(index1.IsValid());
}
TEST(IntrusiveHeapTest, Min) {
IntrusiveHeap<TestElement> heap;
heap.insert({9, nullptr});
heap.insert({10, nullptr});
heap.insert({8, nullptr});
heap.insert({2, nullptr});
heap.insert({7, nullptr});
heap.insert({15, nullptr});
heap.insert({22, nullptr});
heap.insert({3, nullptr});
EXPECT_FALSE(heap.empty());
EXPECT_EQ(8u, heap.size());
EXPECT_EQ(2, heap.top().key);
}
TEST(IntrusiveHeapTest, MinDuplicates) {
IntrusiveHeap<TestElement> heap;
heap.insert({2, nullptr});
heap.insert({2, nullptr});
heap.insert({3, nullptr});
EXPECT_FALSE(heap.empty());
EXPECT_EQ(3u, heap.size());
EXPECT_EQ(2, heap.top().key);
}
TEST(IntrusiveHeapTest, InsertAscending) {
IntrusiveHeap<TestElement> heap;
for (int i = 0; i < 50; i++)
heap.insert({i, nullptr});
EXPECT_EQ(0, heap.top().key);
EXPECT_EQ(50u, heap.size());
}
TEST(IntrusiveHeapTest, InsertDescending) {
IntrusiveHeap<TestElement> heap;
for (int i = 0; i < 50; i++)
heap.insert({50 - i, nullptr});
EXPECT_EQ(1, heap.top().key);
EXPECT_EQ(50u, heap.size());
}
TEST(IntrusiveHeapTest, HeapIndex) {
HeapHandle index5;
HeapHandle index4;
HeapHandle index3;
HeapHandle index2;
HeapHandle index1;
IntrusiveHeap<TestElement> heap;
EXPECT_FALSE(index1.IsValid());
EXPECT_FALSE(index2.IsValid());
EXPECT_FALSE(index3.IsValid());
EXPECT_FALSE(index4.IsValid());
EXPECT_FALSE(index5.IsValid());
heap.insert({15, &index5});
heap.insert({14, &index4});
heap.insert({13, &index3});
heap.insert({12, &index2});
heap.insert({11, &index1});
EXPECT_TRUE(index1.IsValid());
EXPECT_TRUE(index2.IsValid());
EXPECT_TRUE(index3.IsValid());
EXPECT_TRUE(index4.IsValid());
EXPECT_TRUE(index5.IsValid());
EXPECT_FALSE(heap.empty());
}
TEST(IntrusiveHeapTest, HeapIndexDuplicates) {
HeapHandle index2;
HeapHandle index1;
IntrusiveHeap<TestElement> heap;
EXPECT_FALSE(index1.IsValid());
EXPECT_FALSE(index2.IsValid());
heap.insert({2, &index2});
heap.insert({2, &index1});
EXPECT_TRUE(index1.IsValid());
EXPECT_TRUE(index2.IsValid());
EXPECT_EQ(2U, heap.size());
}
TEST(IntrusiveHeapTest, Pop) {
IntrusiveHeap<TestElement> heap;
HeapHandle index1;
HeapHandle index2;
heap.insert({11, &index1});
heap.insert({12, &index2});
EXPECT_EQ(2u, heap.size());
EXPECT_TRUE(index1.IsValid());
EXPECT_TRUE(index2.IsValid());
heap.pop();
EXPECT_EQ(1u, heap.size());
EXPECT_FALSE(index1.IsValid());
EXPECT_TRUE(index2.IsValid());
heap.pop();
EXPECT_EQ(0u, heap.size());
EXPECT_FALSE(index1.IsValid());
EXPECT_FALSE(index2.IsValid());
}
TEST(IntrusiveHeapTest, PopMany) {
IntrusiveHeap<TestElement> heap;
for (int i = 0; i < 500; i++)
heap.insert({i, nullptr});
EXPECT_FALSE(heap.empty());
EXPECT_EQ(500u, heap.size());
for (int i = 0; i < 500; i++) {
EXPECT_EQ(i, heap.top().key);
heap.pop();
}
EXPECT_TRUE(heap.empty());
}
TEST(IntrusiveHeapTest, Erase) {
IntrusiveHeap<TestElement> heap;
HeapHandle index12;
heap.insert({15, nullptr});
heap.insert({14, nullptr});
heap.insert({13, nullptr});
heap.insert({12, &index12});
heap.insert({11, nullptr});
EXPECT_EQ(5u, heap.size());
EXPECT_TRUE(index12.IsValid());
heap.erase(index12);
EXPECT_EQ(4u, heap.size());
EXPECT_FALSE(index12.IsValid());
EXPECT_EQ(11, heap.top().key);
heap.pop();
EXPECT_EQ(13, heap.top().key);
heap.pop();
EXPECT_EQ(14, heap.top().key);
heap.pop();
EXPECT_EQ(15, heap.top().key);
heap.pop();
EXPECT_TRUE(heap.empty());
}
TEST(IntrusiveHeapTest, ReplaceTop) {
IntrusiveHeap<TestElement> heap;
for (int i = 0; i < 500; i++)
heap.insert({500 - i, nullptr});
EXPECT_EQ(1, heap.top().key);
for (int i = 0; i < 500; i++)
heap.ReplaceTop({1000 + i, nullptr});
EXPECT_EQ(1000, heap.top().key);
}
TEST(IntrusiveHeapTest, ReplaceTopWithNonLeafNode) {
IntrusiveHeap<TestElement> heap;
for (int i = 0; i < 50; i++) {
heap.insert({i, nullptr});
heap.insert({200 + i, nullptr});
}
EXPECT_EQ(0, heap.top().key);
for (int i = 0; i < 50; i++)
heap.ReplaceTop({100 + i, nullptr});
for (int i = 0; i < 50; i++) {
EXPECT_EQ((100 + i), heap.top().key);
heap.pop();
}
for (int i = 0; i < 50; i++) {
EXPECT_EQ((200 + i), heap.top().key);
heap.pop();
}
EXPECT_TRUE(heap.empty());
}
TEST(IntrusiveHeapTest, ReplaceTopCheckAllFinalPositions) {
HeapHandle index[100];
HeapHandle top_index;
for (int j = -1; j <= 201; j += 2) {
IntrusiveHeap<TestElement> heap;
for (size_t i = 0; i < 100; i++) {
heap.insert({static_cast<int>(i) * 2, &index[i]});
}
heap.ReplaceTop({j, &top_index});
int prev = -2;
while (!heap.empty()) {
DCHECK_GT(heap.top().key, prev);
DCHECK(heap.top().key == j || (heap.top().key % 2) == 0);
DCHECK_NE(heap.top().key, 0);
prev = heap.top().key;
heap.pop();
}
}
}
TEST(IntrusiveHeapTest, ReplaceUp) {
IntrusiveHeap<TestElement> heap;
HeapHandle index[10];
for (size_t i = 0; i < 10; i++) {
heap.insert({static_cast<int>(i) * 2, &index[i]});
}
heap.Replace(index[5], {17, &index[5]});
std::vector<int> results;
while (!heap.empty()) {
results.push_back(heap.top().key);
heap.pop();
}
EXPECT_THAT(results, testing::ElementsAre(0, 2, 4, 6, 8, 12, 14, 16, 17, 18));
}
TEST(IntrusiveHeapTest, ReplaceUpButDoesntMove) {
IntrusiveHeap<TestElement> heap;
HeapHandle index[10];
for (size_t i = 0; i < 10; i++) {
heap.insert({static_cast<int>(i) * 2, &index[i]});
}
heap.Replace(index[5], {11, &index[5]});
std::vector<int> results;
while (!heap.empty()) {
results.push_back(heap.top().key);
heap.pop();
}
EXPECT_THAT(results, testing::ElementsAre(0, 2, 4, 6, 8, 11, 12, 14, 16, 18));
}
TEST(IntrusiveHeapTest, ReplaceDown) {
IntrusiveHeap<TestElement> heap;
HeapHandle index[10];
for (size_t i = 0; i < 10; i++) {
heap.insert({static_cast<int>(i) * 2, &index[i]});
}
heap.Replace(index[5], {1, &index[5]});
std::vector<int> results;
while (!heap.empty()) {
results.push_back(heap.top().key);
heap.pop();
}
EXPECT_THAT(results, testing::ElementsAre(0, 1, 2, 4, 6, 8, 12, 14, 16, 18));
}
TEST(IntrusiveHeapTest, ReplaceDownButDoesntMove) {
IntrusiveHeap<TestElement> heap;
HeapHandle index[10];
for (size_t i = 0; i < 10; i++) {
heap.insert({static_cast<int>(i) * 2, &index[i]});
}
heap.Replace(index[5], {9, &index[5]});
std::vector<int> results;
while (!heap.empty()) {
results.push_back(heap.top().key);
heap.pop();
}
EXPECT_THAT(results, testing::ElementsAre(0, 2, 4, 6, 8, 9, 12, 14, 16, 18));
}
TEST(IntrusiveHeapTest, ReplaceCheckAllFinalPositions) {
HeapHandle index[100];
for (int j = -1; j <= 201; j += 2) {
IntrusiveHeap<TestElement> heap;
for (size_t i = 0; i < 100; i++) {
heap.insert({static_cast<int>(i) * 2, &index[i]});
}
heap.Replace(index[40], {j, &index[40]});
int prev = -2;
while (!heap.empty()) {
DCHECK_GT(heap.top().key, prev);
DCHECK(heap.top().key == j || (heap.top().key % 2) == 0);
DCHECK_NE(heap.top().key, 80);
prev = heap.top().key;
heap.pop();
}
}
}
TEST(IntrusiveHeapTest, At) {
HeapHandle index[10];
IntrusiveHeap<TestElement> heap;
for (int i = 0; i < 10; i++)
heap.insert({static_cast<int>(i ^ (i + 1)), &index[i]});
for (int i = 0; i < 10; i++) {
EXPECT_EQ(heap.at(index[i]).key, i ^ (i + 1));
EXPECT_EQ(heap.at(index[i]).handle, &index[i]);
}
}
bool IsEven(int i) {
return i % 2 == 0;
}
TEST(IntrusiveHeapTest, EraseIf) {
HeapHandle index[10];
IntrusiveHeap<TestElement> heap;
for (int i = 0; i < 10; i++)
heap.insert({i, &index[i]});
ASSERT_EQ(heap.size(), 10u);
// Remove all even elements.
heap.EraseIf([](const TestElement& element) { return IsEven(element.key); });
ASSERT_EQ(heap.size(), 5u);
// Handles were correctly updated.
for (int i = 0; i < 10; i++)
EXPECT_EQ(IsEven(i), !index[i].IsValid());
// Now iterate over all elements of the heap and check their handles.
for (size_t i = 0; i < heap.size(); i++) {
auto it = heap.begin();
std::advance(it, i);
// Retrieve the value of the element at this position.
int value = it->key;
// Its handle should have the correct index.
EXPECT_EQ(index[value].index(), i);
}
std::vector<int> results;
while (!heap.empty()) {
results.push_back(heap.top().key);
heap.pop();
}
EXPECT_THAT(results, testing::ElementsAre(1, 3, 5, 7, 9));
}
// A comparator class whose sole purpose is to allow the insertion of a
// ScopedClosureRunner inside the heap. The ordering does not matter.
class Comparator {
public:
bool operator()(const WithHeapHandle<ScopedClosureRunner>& lhs,
const WithHeapHandle<ScopedClosureRunner>& rhs) {
// Treat all closures as equal.
return true;
}
};
// Tests that inserting another element from the destructor of an object removed
// during EraseIf() doesn't crash.
TEST(IntrusiveHeapTest, EraseIf_Reentrancy) {
IntrusiveHeap<WithHeapHandle<ScopedClosureRunner>, Comparator> heap;
// The task that will post a new element inside the heap upon destruction of
// the first.
OnceClosure insert_task = BindLambdaForTesting([&]() {
// Insert a null callback so it can be differentiated.
heap.insert(OnceClosure());
});
heap.insert(ScopedClosureRunner(std::move(insert_task)));
// The heap contains the non-null closure.
EXPECT_EQ(heap.size(), 1u);
EXPECT_TRUE(heap.top().value());
// Erase the only element using EraseIf().
heap.EraseIf([](const auto& element) { return true; });
// Now the heap contains the null closure.
EXPECT_EQ(heap.size(), 1u);
EXPECT_FALSE(heap.top().value());
}
} // namespace base