| // Copyright 2014 The Chromium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "base/hash/hash.h" |
| |
| #include "base/check_op.h" |
| #include "base/notreached.h" |
| #include "base/rand_util.h" |
| #include "base/third_party/cityhash/city.h" |
| #include "build/build_config.h" |
| |
| // Definition in base/third_party/superfasthash/superfasthash.c. (Third-party |
| // code did not come with its own header file, so declaring the function here.) |
| // Note: This algorithm is also in Blink under Source/wtf/StringHasher.h. |
| extern "C" uint32_t SuperFastHash(const char* data, int len); |
| |
| namespace base { |
| |
| namespace { |
| |
| size_t FastHashImpl(base::span<const uint8_t> data) { |
| // We use the updated CityHash within our namespace (not the deprecated |
| // version from third_party/smhasher). |
| if constexpr (sizeof(size_t) > 4) { |
| return base::internal::cityhash_v111::CityHash64( |
| reinterpret_cast<const char*>(data.data()), data.size()); |
| } else { |
| return base::internal::cityhash_v111::CityHash32( |
| reinterpret_cast<const char*>(data.data()), data.size()); |
| } |
| } |
| |
| // Implement hashing for pairs of at-most 32 bit integer values. |
| // When size_t is 32 bits, we turn the 64-bit hash code into 32 bits by using |
| // multiply-add hashing. This algorithm, as described in |
| // Theorem 4.3.3 of the thesis "Über die Komplexität der Multiplikation in |
| // eingeschränkten Branchingprogrammmodellen" by Woelfel, is: |
| // |
| // h32(x32, y32) = (h64(x32, y32) * rand_odd64 + rand16 * 2^16) % 2^64 / 2^32 |
| // |
| // Contact danakj@chromium.org for any questions. |
| size_t HashInts32Impl(uint32_t value1, uint32_t value2) { |
| uint64_t value1_64 = value1; |
| uint64_t hash64 = (value1_64 << 32) | value2; |
| |
| if (sizeof(size_t) >= sizeof(uint64_t)) |
| return static_cast<size_t>(hash64); |
| |
| uint64_t odd_random = 481046412LL << 32 | 1025306955LL; |
| uint32_t shift_random = 10121U << 16; |
| |
| hash64 = hash64 * odd_random + shift_random; |
| size_t high_bits = |
| static_cast<size_t>(hash64 >> (8 * (sizeof(uint64_t) - sizeof(size_t)))); |
| return high_bits; |
| } |
| |
| // Implement hashing for pairs of up-to 64-bit integer values. |
| // We use the compound integer hash method to produce a 64-bit hash code, by |
| // breaking the two 64-bit inputs into 4 32-bit values: |
| // http://opendatastructures.org/versions/edition-0.1d/ods-java/node33.html#SECTION00832000000000000000 |
| // Then we reduce our result to 32 bits if required, similar to above. |
| size_t HashInts64Impl(uint64_t value1, uint64_t value2) { |
| uint32_t short_random1 = 842304669U; |
| uint32_t short_random2 = 619063811U; |
| uint32_t short_random3 = 937041849U; |
| uint32_t short_random4 = 3309708029U; |
| |
| uint32_t value1a = static_cast<uint32_t>(value1 & 0xffffffff); |
| uint32_t value1b = static_cast<uint32_t>((value1 >> 32) & 0xffffffff); |
| uint32_t value2a = static_cast<uint32_t>(value2 & 0xffffffff); |
| uint32_t value2b = static_cast<uint32_t>((value2 >> 32) & 0xffffffff); |
| |
| uint64_t product1 = static_cast<uint64_t>(value1a) * short_random1; |
| uint64_t product2 = static_cast<uint64_t>(value1b) * short_random2; |
| uint64_t product3 = static_cast<uint64_t>(value2a) * short_random3; |
| uint64_t product4 = static_cast<uint64_t>(value2b) * short_random4; |
| |
| uint64_t hash64 = product1 + product2 + product3 + product4; |
| |
| if (sizeof(size_t) >= sizeof(uint64_t)) |
| return static_cast<size_t>(hash64); |
| |
| uint64_t odd_random = 1578233944LL << 32 | 194370989LL; |
| uint32_t shift_random = 20591U << 16; |
| |
| hash64 = hash64 * odd_random + shift_random; |
| size_t high_bits = |
| static_cast<size_t>(hash64 >> (8 * (sizeof(uint64_t) - sizeof(size_t)))); |
| return high_bits; |
| } |
| |
| // The random seed is used to perturb the output of base::FastHash() and |
| // base::HashInts() so that it is only deterministic within the lifetime of a |
| // process. This prevents inadvertent dependencies on the underlying |
| // implementation, e.g. anything that persists the hash value and expects it to |
| // be unchanging will break. |
| // |
| // Note: this is the same trick absl uses to generate a random seed. This is |
| // more robust than using base::RandBytes(), which can fail inside a sandboxed |
| // environment. Note that without ASLR, the seed won't be quite as random... |
| #if DCHECK_IS_ON() |
| constexpr const void* kSeed = &kSeed; |
| #endif |
| |
| template <typename T> |
| T Scramble(T input) { |
| #if DCHECK_IS_ON() |
| return HashInts64Impl(input, reinterpret_cast<uintptr_t>(kSeed)); |
| #else |
| return input; |
| #endif |
| } |
| |
| } // namespace |
| |
| size_t FastHash(base::span<const uint8_t> data) { |
| return Scramble(FastHashImpl(data)); |
| } |
| |
| uint32_t Hash(const void* data, size_t length) { |
| // Currently our in-memory hash is the same as the persistent hash. The |
| // split between in-memory and persistent hash functions is maintained to |
| // allow the in-memory hash function to be updated in the future. |
| return PersistentHash(data, length); |
| } |
| |
| uint32_t Hash(const std::string& str) { |
| return PersistentHash(as_bytes(make_span(str))); |
| } |
| |
| uint32_t Hash(const std::u16string& str) { |
| return PersistentHash(as_bytes(make_span(str))); |
| } |
| |
| uint32_t PersistentHash(span<const uint8_t> data) { |
| // This hash function must not change, since it is designed to be persistable |
| // to disk. |
| if (data.size() > static_cast<size_t>(std::numeric_limits<int>::max())) { |
| NOTREACHED(); |
| return 0; |
| } |
| return ::SuperFastHash(reinterpret_cast<const char*>(data.data()), |
| static_cast<int>(data.size())); |
| } |
| |
| uint32_t PersistentHash(const void* data, size_t length) { |
| return PersistentHash(make_span(static_cast<const uint8_t*>(data), length)); |
| } |
| |
| uint32_t PersistentHash(const std::string& str) { |
| return PersistentHash(str.data(), str.size()); |
| } |
| |
| size_t HashInts32(uint32_t value1, uint32_t value2) { |
| return Scramble(HashInts32Impl(value1, value2)); |
| } |
| |
| // Implement hashing for pairs of up-to 64-bit integer values. |
| // We use the compound integer hash method to produce a 64-bit hash code, by |
| // breaking the two 64-bit inputs into 4 32-bit values: |
| // http://opendatastructures.org/versions/edition-0.1d/ods-java/node33.html#SECTION00832000000000000000 |
| // Then we reduce our result to 32 bits if required, similar to above. |
| size_t HashInts64(uint64_t value1, uint64_t value2) { |
| return Scramble(HashInts64Impl(value1, value2)); |
| } |
| |
| } // namespace base |